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Abstract. We present a local convergence analysis of Newton’s method for
approximating a zero of a mapping from a Lie group into its Lie algebra. Using
more precise estimates than before [55, 56] and under the same computational
cost, we obtain a larger convergence ball and more precise error bounds on
the distances involved. Some examples are presented to further validate the
theoretical results.
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1. INTRODUCTION

In this paper, we are concerned with the problem of approximating a zero
x? of C1-mapping F : G −→ Q, where G is a Lie group and Q the Lie algebra
of G that is the tangent space TeG of G at e, equipped with the Lie bracket
[., .] : Q×Q −→ Q [7, 21, 28, 29, 53].

The study of numerical algorithms on manifolds for solving eigenvalue or
optimization problems on Lie groups [1]–[12], [33]–[36], [54]–[57] is very im-
portant in Computational Mathematics. Newton-type methods are the most
popular iterative procedures used to solve equations, when these equations
contain differentiable operators. The study about convergence matter of New-
ton’s method is usually centered on two types: semilocal and local conver-
gence analysis. The semilocal convergence matter is, based on the information
around an initial point, to give criteria ensuring the convergence of Newton’s
method; while the local one is, based on the information around a solution, to
find estimates of the radii of convergence balls. There is a plethora of studies
on the weakness and/or extension of the hypothesis made on the underlying
operators; see for example (cf. [7, 11, 16] and references theiren). A local as
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well as a semilocal convergence of Newton-type methods has been given by
several authors under various conditions [2]–[58]. Recently in [15], we pre-
sented a finer semilocal convergence analysis for Newton’s method than in
earlier studies [7, 32, 34, 36, 54, 55, 56].

Newton’s method with initial point x0 ∈ G was first introduced by Owren
and Welfert [43] in the form
(1.1) xn+1 = xn · exp (−dF−1

xn
F (xn)) for each n = 0, 1, . . . .

Newton’s method is undoubtedly the most popular method for generating
a sequence {xn} approximating x? [7, 11, 15, 16, 32, 34, 36], [54]–[56]. In
the present paper we establish a finer local convergence analysis with the
advantages (Al):

(i) Larger convergence ball;
and

(ii) Tighter error bounds on the distances involved.
The necessary background on Lie groups can be found in [7, 11, 15, 16] and
the references therein. The paper is organized as follows. In Section 2, we
present the local convergence analysis of Newton’s method. Finally, numerical
examples are given in the concluding Section 3.

2. LOCAL CONVERGENCE ANALYSIS FOR NEWTON’S METHOD

We shall study the semilocal/local convergence of Newton’s method. In the
rest of the paper we assume 〈·, ·〉 the inner product and ‖ · ‖ on Q. As in [56]
we define a distance on G for x, y ∈ G as follows:

m(x, y) = inf
{

k∑
i=1
‖ zi ‖ : there exist k ≥ 1 and z1, · · · , zk ∈ Q(2.1)

such that y = x · exp z1 · · · exp zk

}
.

By convention inf ∅ = +∞. It is easy to see that m(·, ·) is a distance on G
and the topology induced is equivalent to the original one on G. Let w ∈ G
and r > 0, we denote by

U(w, r) = {y ∈ G : m(w, y) < r}
the open ball centered at w and of radius r. Moreover, we denote the closure
of U(w, r) by U(w, r). Let also L(Q) denotes the set of all linear operators on
Q.

We need the definition of Lipschitz continuity for a mapping.

Definition 2.1. Let M : G −→ L(Q), x? ∈ G and r > 0. We say that M
satisfies the L-Lipschitz condition on U(x?, r) if
(2.2) ‖M(x · exp u)−M(x) ‖≤ L ‖ u ‖
holds for any u ∈ Q and x ∈ U(x?, r) such that ‖ u ‖ +m(x, x?) < r .
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It follows from (2.2) that there exists L? such that
(2.3) ‖M(x · exp u)−M(x?) ‖≤ L? (‖ u ‖ +m(x, x?))
holds for any u ∈ Q and x ∈ U(x?, r) such that ‖ u ‖ +m(x, x?) < r.

We then say M satisfies the L?-center Lipschitz condition at x? ∈ G on
U(x?, r). Note that if M satisfies the L-Lipschitz condition on U(x?, r), then it
also satisfies the L?-center Lipschitz condition at x? ∈ G on U(x?, r). Clearly,
(2.4) L? ≤ L
holds in general and L/L? can be arbitrarily large [4]–[16].

Let us show that (2.2) indeed implies (2.3). If (2.2) holds, then for x = x?

there exists K ∈ (0, L] such that
‖M(x? ·exp u)−M(x?) ‖≤ K ‖ u ‖ for any u ∈ Q such that ‖ u ‖< r.

There exist k ≥ 1 and z0, z1, · · · , zk ∈ Q such that x = x? · exp z0 · · · exp zk.
Let y0 = x?, yi+1 = yi · exp ui, i = 0, 1, · · · , k. Then, we have that x = yk+1.
We can write the identity
M(x · exp u)−M(x?) =
= (M(x · exp u)−M(x)) + (M(x)−M(x?))
= (M(x · exp u)−M(x)) + (M(yk · exp uk)−M(yk)) + (M(yk)−M(x?))
= (M(x · exp u)−M(x)) + (M(yk · exp uk)−M(yk))

+(M(yk−1 · exp uk−1)−M(x?))
= (M(x · exp u)−M(x)) + (M(yk · exp uk)−M(yk)) + · · ·+

+(M(y1 · exp u1)−M(y1)) + (M(x? · exp u0)−M(x?)).
Using (2.2) and the triangle inequality, we obtain in turn that

‖M(x · exp u)−M(x?) ‖≤
≤‖M(x · exp u)−M(x) ‖ + ‖M(yk · exp uk)−M(yk) ‖ + · · ·

+ ‖M(y1 · exp u1)−M(y1) ‖ + ‖M(x? · exp u0)−M(x?) ‖
≤ L (‖ u ‖ + ‖ uk ‖ + · · ·+ ‖ u1 ‖) +K ‖ u0 ‖
= L (‖ u ‖ + ‖ uk ‖ + · · ·+ ‖ u0 ‖) + (K − L) ‖ u0 ‖
≤ L (‖ u ‖ + ‖ uk ‖ + · · ·+ ‖ u0 ‖),

which implies (2.3).
We need a Banach type lemma on invertible mappings.

Lemma 2.2. Suppose that dF−1
x? exists and let 0 < r ≤ 1

L?
. Suppose

dF−1
x? dF satisfies the L?-center Lipschitz condition at x? ∈ G on U(x?, r);

for x ∈ U(x?, r), there exist k ≥ 1 and z0, z1, · · · , zk ∈ Q, such that x =

x? · exp z0 · · · exp zk and
k∑
i=0
‖ zi ‖< r. Then, linear mapping dF−1

x exists and

(2.5) ‖ dF−1
x dFx? ‖≤

(
1− L?

k∑
i=0
‖ zi ‖

)−1
.
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Proof. Let yk = x? · exp z0 · exp z1 · · · exp zk−1. Then, we deduce yk ∈

U(x?, r), since
k−1∑
i=0
‖ zi ‖< r. Note that x = yk · exp zk. Using (2.3) for

M = dF−1
x? dF , we get in turn

(2.6)

‖ dF−1
x? (dFx − dFx?) ‖≤ L? (‖ zk ‖ +m(yk, x?)) ≤ L?

k∑
i=0
‖ zi ‖< L? r ≤ 1.

It follows from (2.6) and the Banach lemma on invertible operators [7], [32]
that dF−1

x exists and (2.5) holds. That completes the proof of Lemma 2.2. �

Next, we study the convergence domain of Newton’s method around a zero
x? of mapping F . First from Lemma 2.3 until Corollary 2.9, we present the
local result for Newton’s method when G is an Abelian group. Then, the
corresponding local results follow when G is not necessarily an Abelian group.

Lemma 2.3. Let G be an Abelian group and 0 < r ≤ 1
L?

. Let F : G −→ Q

be a C1-mapping. Let x? ∈ G be a zero of mapping F . Suppose dF−1
x? exists

and let L? > 0; there exist j ≥ 1 and z1, z2, · · · , zj ∈ Q such that

(2.7) x0 = x? · exp z1 · · · exp zj for
j∑
i=1
‖ zi ‖< r;

dF−1
x? dF satisfies the L?-center Lipschitz condition at x? on U(x?, r). Then,

linear mapping dF−1
x0 exists and

(2.8) ‖ dF−1
x0 F (x0) ‖≤

(
2+L?

j∑
i=1
‖ zi ‖

) j∑
i=1
‖ zi ‖

2

(
1−L?

j∑
i=1
‖ zi ‖

) .

Proof. Using hypothesis dF−1
x? dF satisfies the L?-center Lipschitz condition

at x? on U(x?, 1
L?

), we have that

(2.9) ‖ dF−1
x? (dFx·expu − dFx?) ‖≤ L? (‖ u ‖ +m(x, x?))

for all u ∈ Q, x ∈ U(x?, r) such that ‖ u ‖ +m(x, x?) < r. Let z = z1 +
z2 + · · · + zj . Then, since G is an Abelian group, exp z1 · exp z2 · · · exp zj =
exp (z1 +z2 + · · ·+zj) = exp z, so, we can write x0 = x? · exp z. It then follows
from Lemma 2.2 that dF−1

x0 exists and

(2.10) ‖ dF−1
x0 dFx?) ‖≤

(
1− L?

j∑
i=1
‖ zi ‖

)−1
.

We also have the following identity
(2.11)

F (x0) = F (x? · exp z)− F (x?)

=
∫ 1

0
dFx?·exp (tz) z dt =

∫ 1

0
(dFx?·exp (tz) − dFx?) z dt+ dFx? z.
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In view of (2.9) and (2.11), we get that
(2.12)

‖ dF−1
x? F (x0) ‖ ≤

∫ 1

0
‖ dF−1

x? (dFx?·exp (t z) − dFx?) ‖ ‖ z ‖ dt+ ‖ z ‖

≤
∫ 1

0
‖ L? (t ‖ z ‖) ‖ z ‖ dt+ ‖ z ‖

≤
(
L?
2

j∑
i=1
‖ zi ‖ +1

) j∑
i=1
‖ zi ‖ .

Moreover, by (2.10) and (2.12), we obtain that

‖ dF−1
x0 F (x0) ‖≤‖ dF−1

x0 dFx? ‖ ‖ dF−1
x? F (x0) ‖≤

(
2+L?

j∑
i=1
‖ zi ‖

) j∑
i=1
‖ zi ‖

2

(
1−L?

j∑
i=1
‖ zi ‖

) .

That completes the proof of Lemma 2.3. �

Remark 2.4. The proof of Lemma 2.3 reduces to [56, Lemma 3.2] if L? = L.
Otherwise (i.e., if L? < L) it constitutes an improvement. We have also
included the proof although similar to the corresponding one in [56] because
it is not straightforward to see that L? can replace L in the derivation of the
crucial estimate (2.8). Note also that (2.9) can holds for some L1

? ∈ (0, L?].
If L1

? < L?, then according to the proof of Lemma 2.3, L1
? can replace L? in

(2.8).

Let us define parameter α for β = L?
L by

(2.13) α =

 4
√

1+3β−(1+β)
β (1−β) , if L? 6= L

1, if L? = L.

Then, it is can easily be seen that
(2.14) α ≥ 1.
We have the local convergence result for Newton’s method.

Theorem 2.5. Let G be an Abelian group. Let 0 < r ≤ α
4L , where α in given

in (2.13). Let F : G −→ Q be a C1-mapping. Suppose there exists x? ∈ G such
that F (x?) = 0, dF−1

x? exists and dF−1
x? dF satisfies the L-Lipschitz condition

on U(x?, 3 r
1−L? r

). Then, sequence {xn} (n ≥ 0) generated by Newton’s method
starting at x0 ∈ U(x?, r) is well defined, remains in U(x?, 3 r

1−L? r
) for all n ≥ 0

and converges to a zero y? of mapping F such that
m(x?, y?) < 3 r

1−L? r
.

Proof. It follows from hypothesis x0 ∈ U(x?, r) that there exist j ≥ 1
and z1, z2, · · · , zj ∈ Q such that (2.7) holds. If dF−1

x? dF is L-Lipschitz on
U(x?, 3 r

1−L? r
), then it is L?-center Lipschitz at x? on U(x?, 3 r

1−L? r
). Note also
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that α
4L ≤

1
L?

by the choice of α. It follows from Lemma 2.3 that linear
mapping dF−1

x0 exists and

(2.15) η =‖ dF−1
x0 F (x0) ‖≤

(
2+L?

j∑
i=1
‖ zi ‖

) j∑
i=1
‖ zi ‖

2

(
1−L?

j∑
i=1
‖ zi ‖

) .

Set
L = L

1−L?

j∑
i=1
‖ zi ‖

and r = (2+L? r) r
1−L? r

.

We shall show mapping dF−1
x0 dF satisfies the L-Lipschitz condition on U(x0, r).

Indeed, let x ∈ U(x0, r) and z ∈ Q be such that ‖ z ‖ +m(x0, x) < r. Then,
we get that

‖ z ‖ +m(x, x?) <‖ z ‖ +m(x, x0) +m(x0, x
?) < r + r ≤ 3 r

1−L? r
.

Using Lemma 2.2, we have that

‖ dF−1
x0 (dFx·exp z − dFx) ‖ ≤ ‖ dF−1

x0 dFx? ‖ ‖ dF−1
x? (dFx·exp z − dFx) ‖

≤ L ‖z‖

1−L?

j∑
i=1
‖ zi ‖

= L ‖ z ‖ .

Set

(2.16) h = Lη and r1 = 2 η
1+
√

1−2h
≤ 2 η.

Then, by (2.15), we obtain that

(2.17) r1 ≤

(
2+L?

j∑
i=1
‖ zi ‖

) j∑
i=1
‖ zi ‖

1−L?

j∑
i=1
‖ zi ‖

≤ (2+L? r) r
1−L? r

= r

and

(2.18) h ≤ (2+L? r)Lr
2 (1−L? r)2 ≤ 1

2 ,

by the choice of r and α. By standard majorization techniques [7], {xk}
converges to some zero y? of mapping F and m(x0, y

?) ≤ r1. Furthermore, we
obtain that

m(x?, y?) ≤ m(x?, x0) +m(x0, y
?) ≤ r + r1 ≤ r + r ≤ 3 r

1−L? r
.

That completes the proof of Theorem 2.5. �

The proofs of remaining results in this Section are omitted, since they can
be obtained from the corresponding ones in [56].
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Corollary 2.6. Let G be an Abelian group. Let F : G −→ Q be a
C1-mapping. Let x? ∈ G be a zero of mapping F . Suppose dF−1

x? exists
and dF−1

x? dF satisfies the L-Lipschitz condition on U(x?, 1
L?

). Let also x0 ∈
U(x?, α

4L). Then, sequence {xn} (n ≥ 0) generated by Newton’s method start-
ing at x0 is well defined, remains in U(x?, α

4L) for all n ≥ 0 and converges to
a zero y? of mapping F such that m(x?, y?) < 1

L?
.

We denote in the following Corollary

B(0, r) = {z ∈ Q : ‖ z ‖< r}.

Corollary 2.7. Let G be an Abelian group. Let F : G −→ Q be a
C1-mapping. Let x? ∈ G be a zero of mapping F . Suppose dF−1

x? exists
and dF−1

x? dF satisfies the L-Lipschitz condition on U(x?, 1
L?

). Let also x0 ∈
U(x?, 1

L?
). Let σ be the maximal number such that U(e, σ) ⊆ exp (B(0, 1

L?
)).

Set r = min
{

σ
3+L? σ

, α
4L

}
and N(x?, r) = x? exp(B(0, r)). Then, sequence

{xn} (n ≥ 0) generated by Newton’s method starting at x0 ∈ N(x?, r) con-
verges to x?.

Corollary 2.8. Let G be an Abelian group. Let F : G −→ Q be a
C1-mapping, where G is a compact connected Lie group equipped with a bi-
invariant Riemannian metric. Let x? ∈ G be a zero of mapping F and 0 < r <
α

4L . Suppose dF−1
x? exists and dF−1

x? dF satisfies the L-Lipschitz condition on
U(x?, 3 r

1−L? r
). Let also x0 ∈ U(x?, r). Then, sequence {xn} (n ≥ 0) generated

by Newton’s method starting at x0, remains in U(x?, 3 r
1−L? r

) for all n ≥ 0 and
converges to x?.

Corollary 2.9. Let G be an Abelian group. Let F : G −→ Q be a
C1-mapping, where G is a compact connected Lie group equipped with a bi-
invariant Riemannian metric. Let x? ∈ G be a zero of mapping F . Suppose
dF−1

x? exists and dF−1
x? dF satisfies the L-Lipschitz condition on U(x?, 1

L?
).

Let also x0 ∈ U(x?, α
4L). Then, sequence {xn} (n ≥ 0) generated by Newton’s

method starting at x0, remains in U(x?, α
4L) for all n ≥ 0 and converges to

x?.

Lemma 2.10. Let 0 < r ≤ 1
L . Let F : G −→ Q be a C1-mapping. Let

x? ∈ G be a zero of mapping F . Suppose dF−1
x? exists; there exist j ≥ 1

and z1, z2, · · · , zj ∈ Q such that x0 = x? · exp z1 · · · exp zj for
j∑
i=1
‖ zi ‖< r

and dF−1
x? dF satisfies the L-Lipschitz condition at x? on U(x?, r). Then, the

following assertions hold
(i)

‖ dF−1
x? (dFx?·exp z − dFx?) ‖≤ K? ‖ z ‖

for each z ∈ Q with ‖ z ‖< r and some K? ∈ (0, L].
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(ii)

‖ dF−1
x? (F ′(x0)− F ′(x?)) ‖≤ L?

j∑
i=1
‖ zi ‖ for some L? ∈ (0, L].

(iii) Linear mapping dF−1
x0 exists and

‖ dF−1
x0 F (x0) ‖≤

(
2+L

j∑
i=1
‖ zi ‖

) j∑
i=1
‖ zi ‖

2

(
1−L?

j∑
i=1
‖ zi ‖

) .

Proof. (i) This assertion follows from the hypothesis that dF−1
x? dF sat-

isfies the L-Lipschitz condition at x? on U(x?, r).
(ii) Let w0 = x?, wi+1 = wi · exp zi+1, i = 1, 2, · · · , j − 1. Then, we have

wj = wj−1 · exp zj = x0. Using the L-Lipschitz condition, we get in
turn that

‖ dF−1
x? (dFwj − dFx?) ‖

≤‖ dF−1
x? (dFwj−1·exp zj − dFwj−1) ‖ + · · ·+ ‖ dF−1

x? (dFw1·exp z2 − dFw1) ‖ +
‖ dF−1

x? (dFx?·exp z1 − dFx?) ‖
≤ L(‖ zj ‖ + · · ·+ ‖ z2 ‖) +K? ‖ z1 ‖
= L (‖ zj ‖ + · · ·+ ‖ z1 ‖) + (K? − L) ‖ z1 ‖≤ L (‖ zj ‖ + · · ·+ ‖ z1 ‖)

which shows (ii).
(iii) We have by (ii) that

‖ dF−1
x? (dFx0 − dFx?) ‖≤ L? (‖ zj ‖ + · · ·+ ‖ z1 ‖) ≤ Lr < 1.

Hence, dF−1
x0 exists and

(2.19) ‖ dF−1
x0 dFx? ‖≤

(
1− L?

j∑
i=1
‖ zi ‖

)−1
.

We have that

dF−1
x? (F (wi)− F (wi−1)) = dF−1

x?

∫ 1

0
dFwi−1·exp (t zi) zi dt

=
∫ 1

0
dF−1

x? (dFwi−1·exp (t zi) − dFx?) zi dt+ zi.

Hence, we get that
‖ dF−1

x? (dFwk−1·exp (zk) − dFwk−1) ‖≤ L ‖ zk ‖ for each k = 1, 2, · · · , j.
Therefore, we obtain that

‖dF−1
x? (dFwi−1·exp (t zi) − dFx?)‖ ≤

≤
i−1∑
k=1
‖dF−1

x? (dFwk−1·exp(zk) − dFwk−1)‖+ ‖dF−1
x? (dFwi−1·exp(twi) − dFwi−1)‖

≤ L
i−1∑
k=1
‖zk‖+ Lt‖zi‖.
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We have that F (x0) =
j∑
i=1

(F (wi)− F (wi−1)). That is, we can get

(2.20)

‖ dF−1
x? F (x0) ‖

≤
j∑
i=1

(∫ 1

0
‖ dF−1

x? (dFwi−1·exp (t zi) − dFx?) ‖ ‖ zi ‖ dt+ ‖ zi ‖
)

≤
j∑
i=1

(∫ 1

0
L

(
i−1∑
k=1
‖ zk ‖ +t ‖ zi ‖

)
‖ zi ‖ dt+ ‖ zi ‖

)
≤
(
L
2

j∑
i=1
‖ zi ‖ +1

) j∑
i=1
‖ zi ‖ .

The result now follows from (2.19), (2.20) and

‖ dF−1
x0 F (x0) ‖≤‖ dF−1

x0 dFx? ‖ ‖ dF−1
x? F (x0) ‖≤

(
2+L

j∑
i=1
‖ zi ‖

) j∑
i=1
‖ zi ‖

2

(
1−L?

j∑
i=1
‖ zi ‖

) .

The proof of Lemma 2.10 is complete. �

Let us define parameter δ by

(2.21) δ =
{

4
√

2 (1+β)−(1+β)
1−β2 , if L? 6= L

1, if L? = L.

We have that
δ ≥ 1.

Theorem 2.11. Let 0 < r ≤ δ
4L , where δ in given in (2.21). Let F :

G −→ Q be a C1-mapping. Suppose there exists x? ∈ G such that F (x?) = 0,
dF−1

x? exists and dF−1
x? dF satisfies the L-Lipschitz condition on U(x?, R =

3+(L−L?) r
1−L? r

r). Then, sequence {xn} (n ≥ 0) generated by Newton’s method
starting at x0 ∈ U(x?, r) is well defined, remains in U(x?, R) for all n ≥ 0
and converges to a zero y? of mapping F such that m(x?, y?) < R.

Proof. The proof is similar to the proof of Theorem 2.5. Note that r in the
proof of Theorem 2.5 is replaced by

r = (2+Lr) r
1−L? r

and η satisfies the new condition

η ≤

(
2+L

j∑
i=1
‖ zi ‖

) j∑
i=1
‖ zi ‖

2

(
1−L?

j∑
i=1
‖ zi ‖

) .

The proof of Theorem 2.11 is complete. �
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Corollary 2.12. Let F : G −→ Q be a C1-mapping. Let x? ∈ G be a zero
of mapping F . Suppose dF−1

x? exists and dF−1
x? dF satisfies the L-Lipschitz

condition on U(x?, 1
L?

). Let also x0 ∈ U(x?, δ
4L). Then, the conclusions of

Corollary 2.6 hold.

Corollary 2.13. Let F : G −→ Q be a C1-mapping. Let x? ∈ G be a zero
of mapping F . Suppose dF−1

x? exists and dF−1
x? dF satisfies the L-Lipschitz

condition on U(x?, 1
L?

). Let also x0 ∈ U(x?, 1
L?

). Let σ and N(x?, r) as in
Corollary 2.7. Set r = min

{
r0, r1,

δ
4L

}
, where

r0 =

 −(L?+3L)+
√

(L?+3L)2+4L (L−L?)
2L (L−L?) , if L? 6= L

1
4L , if L? = L

and

r1 =

 −(3+σ L?)+
√

(3+σ L?)2+4σ (L−L?)
2 (L−L?) , if L? 6= L

σ
3+σ L , if L? = L.

Then, sequence {xn} (n ≥ 0) generated by Newton’s method starting at x0 ∈
N(x?, r) converges to x?.

Corollary 2.14. Let F : G −→ Q be a C1-mapping, where G is a com-
pact connected Lie group equipped with a bi-invariant Riemannian metric. Let
x? ∈ G be a zero of mapping F and 0 < r < δ

4L . Suppose dF−1
x? exists and

dF−1
x? dF satisfies the L-Lipschitz condition on U(x?, R), where R is defined in

Theorem 2.11. Let also x0 ∈ U(x?, r). Then, sequence {xn} (n ≥ 0) generated
by Newton’s method starting at x0, remains in U(x?, R) for all n ≥ 0 and
converges to x?.

Corollary 2.15. Let F : G −→ Q be a C1-mapping, where G is a com-
pact connected Lie group equipped with a bi-invariant Riemannian metric. Let
x? ∈ G be a zero of mapping F . Suppose dF−1

x? exists and dF−1
x? dF satisfies

the L-Lipschitz condition on U(x?, 1
L?

). Let also x0 ∈ U(x?, δ
4L). Then, se-

quence {xn} (n ≥ 0) generated by Newton’s method starting at x0, remains in
U(x?, δ

4L) for all n ≥ 0 and converges to x?.

Remark 2.16. (a) The local results reduce to the corresponding ones in
[56] if L = L?. Otherwise (i.e., if L? < L), they constitute an improvement
under the same computational cost with advantages as already stated in the
Introduction of this study. Note also that α > 1, δ > 1 if L? < L and α −→∞,
δ −→∞ if L

L?
−→∞.

(b) The local results if G is an Abelian group are weaker and tighter than
the ones when G is not necessarily an Abelian group. We have for example
that r < r, δ < α, 3 r

1−L? r
< R and the upper bound on η is smaller if L? < L.

(c) It is obvious that finer results can be immediately obtained if similar
conditions as the semilocal case (see [15, Section 1, L? instead L0]) are used
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instead of Kantorovich condition for L? < L. However, we decided to leave
this part of analysis to the motivated reader. We refer the reader to [14] for
such results involving nonlinear equations in a Banach space setting. We also
refer the reader to [7, 11, 15, 16] for examples.

3. NUMERICAL EXAMPLES

In this Section we present two numerical examples in the more general
setting of a nonlinear equation on a Hilbert space where L? < L.

Example 3.1. Let X = Y = R, x? = 0. Define F by F (x) = −d2 sin 1 +
d1 x + d2 sin ed3 x, where d1, d2, d3 are given real numbers. We have that
F (x?) = 0. Moreover, if d3 is sufficiently large and d2 sufficiently small, L/L?
can be arbitrarily large.

Example 3.2. Let X = Y = R3, D = U(0, 1) and x? = (0, 0, 0). Define
function F on D for w = (x, y, z) by

(3.1) F (w) = (ex − 1, e−1
2 y2 + y, z).

Then, the Fréchet derivative of F is given by

F ′(w) =

ex 0 0
0 (e− 1) y + 1 0
0 0 1


Notice that we have F (x?) = 0, F ′(x?) = F ′(x?)−1 = diag {1, 1, 1} and L? =
e− 1 < L = e.
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