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THIRD ORDER CONVERGENCE THEOREM
FOR A FAMILY OF NEWTON LIKE METHODS IN BANACH SPACE

TUGAL ZHANLAV∗ and DORJGOTOV KHONGORZUL†

Abstract. In this paper, we propose a family of Newton-like methods in Banach
space which includes some well known third-order methods as particular cases.
We establish the Newton-Kantorovich type convergence theorem for a proposed
family and get an error estimate.
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1. INTRODUCTION

Recently, many third order iterative methods free from second derivative
have been derived and studied for nonlinear systems [1]-[10]. In particular,
in [1] were suggested two Chebyshev-like (CL1, CL2) methods, while in [10]
are considered two families of modifications of Chebyshev method (MOD1,
MOD2). In [6] was also presented a new family of Chebyshev-type methods
with a real parameter θ (A2θ). All the above mentioned methods are obtained
using different approximations of second derivative in Chebyshev method.

In [9] it was proposed a family of third-order methods given by

(1) xn+1 = xn − f(xn)
(1+ 1

2a)f ′(xn)− 1
2af
′
(
xn+a f(xn)

f ′(xn)

) , a ∈ R \ {0}

for solving nonlinear scalar equations f(x) = 0. In this study, we consider
a generalization of methods (1) in Banach space, which is used to solve the
nonlinear operator equation

(2) F (x) = 0.

Suppose that F is defined on an open convex domain Ω of a Banach space
X with values in a Banach space Y, F ′(x) is a Frechet derivative in Ω, and
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F ′(x)−1 exists. The generalization of methods (1) is

yn = xn − F ′(xn)−1F (xn),
zn = (1 + a)xn − ayn, a 6= 0

xn+1 = xn −
[(

1 + 1
2a

)
F ′(xn)− 1

2aF
′(zn)

]−1
F (xn).(3)

Thus we have a family of methods (3) for solving nonlinear equation (2). We
consider some particular cases of (3). Let a = −1. Then (3) leads to

yn = xn − F ′(xn)−1F (xn),
xn+1 = xn − 1

2
[
F ′(xn) + F ′(yn)

]−1
F (xn),(4)

which was proposed by Q.Wu and Y.Zhao in [7]. They established third-
order convergence of this method by using majorizing function and obtained
the error estimate. It should be mentioned that the iteration (4) for scalar
equation was given also in [5]. Let a = −1

2 . Then (3) leads to

yn = xn − 1
2F
′(xn)−1F (xn),

xn+1 = xn − F ′(yn)−1F (xn).
This is a generalization of the third order method proposed by the Frontini and
Sormani [2] for scalar case. Thus, the proposed iteration (3) can be considered
as a generalization of well known iterations.

We prove Newton-Kantorovich type convergence theorem for the family of
methods (3) to show that it has third order convergence by using recurrent
relations [3]-[4] and get the error bounds. Finally, some examples are provided
to show the application of the proposed method.

2. PRELIMINARIES

Let us assume that F ′(x0)−1 ∈ L(Y,X) exists for some x0 ∈ Ω, where
L(Y,X) is a set of bounded linear operators from Y into X. Moreover, we
suppose that (see [4])

‖Γ0‖ = ‖F ′(x0)−1‖ ≤ β,(c1)
‖y0 − x0‖ = ‖Γ0F (x0)‖ ≤ η,(c2)
‖F ′′(x)‖ ≤M, x ∈ Ω,(c3)

‖F ′′(x)− F ′′(y)‖ ≤ K‖x− y‖, x, y ∈ Ω, K > 0.(c4)
Let F be a nonlinear twice Frechet differentiable operator in an open convex
domain Ω. We denote Γn = F ′(xn)−1,

a0 = Mβη,(5)
f(x) = 2−x

2−3x , 0 < x < 2
3 ,

g(x) = x2

(2−x)2d,
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where
d = 3

7 + ω
4 (1 + |a|),(6)

ω = K
M2m ,

m = min
n
‖Γn‖ > 0

and define the sequence
an+1 = f(an)2g(an)an.

We need following technical lemmas, whose proofs are trivial [4].

Lemma 1. Let f and g be two real functions given in (5). Then
(i) f(x) and g(x) are increasing and f(x) > 1 for x ∈ (0, 2

3)
(ii) f(γx) < f(x) and g(γx) < γ2g(x) for γ ∈ (0, 1).

Lemma 2. Let f2(a0)g(a0) < 1. Then the sequence {an} is decreasing.

Lemma 3. If 0 < a0 <
2

3+
√
d
, then f2(a0)g(a0) < 1.

Lemma 4. Let 0 < a0 <
2

3+
√
d

and define γ = a1/a0. Then
(i) γ = f2(a0)g(a0) ∈ (0, 1);
(iin) an ≤ γ3n−1an−1 ≤ γ

3n−1
2 a0;

(iiin) f(an)g(an) ≤ γ3n

f(a0) = ∆γ3n , ∆ = 1
f(a0) < 1.

3. CONVERGENCE STUDY

According to (3), we have
(7) x1 − x0 = −A−1

0 F (x0),
where
(8) A0 = (1 + 1

2a)F ′(x0)− 1
2aF

′(z0).
Using the following formula

F ′(z0) = F ′(x0) +
∫ z0

x0
F ′′(x)dx

in (8), we obtain
A0 = F ′(x0)(I − P0),

where
P0 = 1

2aΓ0

∫ z0

x0
F ′′(x)dx.

If we notice that M ||Γ0||||Γ0F (x0)|| ≤ a0 <
2
3 , then follows

||P0|| ≤ 1
2|a| ||Γ0||M |a|||Γ0F (x0)|| ≤ a0

2 < 1
3 ,

which shows the existence of A−1
0

A−1
0 = (I − P0)−1Γ0,
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where P0 = 1
2Γ0F

′′(ξ0)Γ0F (x0). So, from (7) we get

‖x1 − x0‖ ≤ 1
1−a0

2
‖Γ0F (x0)‖ ≤ η

1−a0
2
< η

(1−a0
2 )(1−γ∆) = Rη,

where R = 1
(1−a0

2 )(1−γ∆) . This means that y0, x1 ∈ B(x0, Rη) = {x ∈ X :
‖x− x0‖ < Rη}.

In these conditions, we prove the following statements for n ≥ 1:

‖Γn‖ ≤ f(an−1)‖Γn−1‖,(In)
‖ΓnF (xn)‖ ≤ f(an−1)g(an−1)‖Γn−1F (xn−1)‖,(IIn)

M‖Γn‖‖ΓnF (xn)‖ ≤ an,(IIIn)
‖xn+1 − xn‖ ≤ 1

1−an/2‖ΓnF (xn)‖,(IVn)
yn, xn+1 ∈ B(x0, Rη).(Vn)

Assuming a0
1−a0/2 < 1 which is valid for a0 < 2/3 and x1 ∈ Ω we have

‖I − Γ0F
′(x1)‖ ≤ ‖Γ0‖‖F ′(x0)− F ′(x1)‖ ≤ ‖Γ0‖M‖x0 − x1‖ ≤ a0

1−a0
2
< 1.

Then, by the Banach lemma, Γ1 is defined and satisfies

‖Γ1‖ ≤ ‖Γ0‖
1−‖Γ0‖‖F ′(x0)−F ′(x1)‖ ≤

a0
1− a0

1−a0
2

‖Γ0‖ = f(a0)‖Γ0‖.

Taking into account (3) and the Taylor formula of xn, yn ∈ Ω, we have
(9)
F (xn+1) = F (yn)+F ′(yn)(xn+1−yn)+

∫ xn+1

yn
F ′′(x)(xn+1−x)dx, n = 0, 1, . . .

Also

F (yn) = F (xn) + F ′(xn)(yn − xn) +
∫ yn

xn
F ′′(x)(yn − x)dx

=
∫ 1

0
F ′′(xn + t(yn − xn))(yn − xn)2(1− t)dt

F ′(yn)(xn+1 − yn) = 1
2

∫ 1

0
F ′′(xn − at(yn − xn))(xn − yn)(xn+1 − xn)dt.

Substituting the last two expressions into (9), we get

F (xn+1) =
∫ 1

0
F ′′(xn + t(yn − xn))(yn − xn)2(1− t)dt+

+1
2

∫ 1

0
F ′′(xn − at(yn − xn))(xn − yn)(xn+1 − yn)dt

+
∫ 1

0
F ′′(xn + t(yn − xn))(yn − xn)(xn+1 − yn)dt

+
∫ 1

0
F ′′(yn + t(xn+1 − yn))(xn+1 − yn)2(1− t)dt.
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From (3) we also obtain

xn+1 − yn = Γn
2a

∫ zn

xn
F ′′(x)(xn+1 − xn)dx

and
xn+1 − xn = (I − Pn)−1(yn − xn) = yn − xn + Pn(I − Pn)(yn − xn),

where
Pn = Γn

2a

∫ zn

xn
F ′′(x)dx.

Taking into account∫ 1

0
F ′′(xn − at(yn − xn))(xn+1 − yn)(xn+1 − xn)dt =

= −
∫ 1

0
F ′′(xn − at(yn − xn))(yn − xn)2dt

−
∫ 1

0
F ′′(xn − at(yn − xn))(yn − xn)Pn(I − Pn)−1(yn − xn)dt

we obtain

F (xn+1) =
∫ 1

0
[F ′′(xn + t(yn − xn))− F ′′(xn)](yn − xn)2(1− t)dt

+1
2

∫ 1

0
[F ′′(xn)− F ′′(xn − at(yn − xn))](yn − xn)2dt

−1
2

∫ 1

0
F ′′(xn − at(yn − xn))(yn − xn)Pn(I − Pn)−1(yn − xn)dt

+
∫ 1

0
F ′′(xn + t(yn − xn))(yn − xn)(xn+1 − yn)dt

+
∫ 1

0
F ′′(yn + t(xn+1 − yn))(xn+1 − yn)2(1− t)dt.(10)

From (10) for n = 0, we obtain ||Γ0F (xn)||; therefore
||Γ1F (x1)|| ≤ ||Γ1F

′(x0)||||Γ0F (x1)|| ≤ f(a0)g(a0)||Γ0F (x0)||.
So, (II1) is true. To prove (III1) and (IV1), notice that

M‖Γ1‖‖Γ1F (x1)‖ ≤Mf2(a0)g(a0)ηβ = f2(a0)g(a0)a0 = a1

and
‖x2 − x1‖ ≤ ‖A−1

1 F (x1)‖
where

A1 = F ′(x1) + 1
2a(F ′(x1)− F ′(z1)) = F ′(x1)[I − P1].

Since
‖P1‖ = 1

2‖Γ1F
′′(η1)Γ1F (x1)‖ ≤ a1

2 < 1,
there exists A−1

1 = (I − P1)−1Γ1, thereby we get

‖x2 − x1‖ ≤ 1
1−a1/2‖Γ1F (x1)‖ ≤ f(a0)g(a0)

1−a0/2 η = ∆γ
1−a0/2η.
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Consequently, we obtain

‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖ ≤ ∆γ
1−a0/2η + η

1−a0/2 = 1+∆γ
1−a0/2η < Rη.

Analogously, we get
‖y1 − x0‖ ≤ ‖y1 − x1‖+ ‖x1 − x0‖ ≤ f(a0)g(a0)η + 1

1−a0/2η < Rη

i.e. (IV1) and (V1) are proved. Now, following an inductive procedure and
assuming
(11) yn, xn+1 ∈ Ω and an

1−an/2 < 1 ∀n ∈ N,

the items (In) − (Vn) can be proved. Notice that Γn > 0 for all n = 0, 1, . . . .
Indeed if Γk = 0 for some k, then due to statement (In), we have ‖Γn‖ = 0
for all n ≥ k. As a consequence, the iteration (3) terminated after k-th step,
i.e. the convergence of iteration does not hold. To establish the convergence
of {xn} we only have to prove that it is a Cauchy sequence and that the above
assumptions (11) are true. Note that

1
1−an/2‖ΓnF (xn)‖ ≤ 1

1−a0/2f(an−1)g(an−1)‖Γn−1F (xn−1)‖

≤ . . . ≤ 1
1−a0/2‖Γ0F (x0)‖

n−1∏
k=0

f(ak)g(ak).

As a consequence of Lemma 4, it follows that
n−1∏
k=0

f(ak)g(ak) ≤
n−1∏
k=0

∆γ3k = ∆nγ
3n−1

2 .

So, from ∆ < 1 and γ < 1, we deduce that
∏n−1
k=0 f(ak)g(ak) converges to zero

by letting n→∞. We are now ready to state the main result on convergence
for (3).

Theorem 5. Let us assume that Γ0 = F ′(x0)−1 ∈ L(Y,X) exists at some
x0 ∈ Ω and (c1)− (c4) are satisfied. Suppose that
(12) 0 < a0 <

2
3+
√
d

with d given by (6)

Then, if B(x0, Rη) = {x ∈ X : ‖x−x0‖ ≤ Rη} ⊆ Ω, the sequence {xn} defined
in (3) and starting at x0 has, at least, R-order three and converges to a solution
x∗ of the equation (2). In that case, the solution x∗ and the iterates yn, xn
belong to B(x0, Rη) and x∗ is the only solution of (2) in B(x0, 2/Mβ−Rη)∩Ω.
Furthermore, we have the following error estimates:

(13) ‖xn − x∗‖ ≤ 1
1−a0

2 γ
3n−1

2
γ

3n−1
2 ∆n

1−∆γ3n η.

Proof. Let us now prove (12). From a0 ∈ (0; 2
3+
√
d
) follows

an
1−an2

< a0
1−a0

2
< 1.



8 Third order convergence theorem 87

In addition, as yn, xn ∈ B(x0, Rη) for all n ∈ N, then yn, xn ∈ Ω, ∀n ∈ N.
Hence (12) follows. Now we prove that {xn} is a Cauchy sequence. To do this,
we consider n,m ≥ 1 :

‖xn+m − xn‖ ≤(14)
≤ ‖xn+m − xn+m−1‖+‖xn+m−1 − xn+m−2‖+. . .+ ‖xn+1 − xn‖

≤ 1
1−an2

η

(
n+m−2∏
k=0

f(ak)g(ak)+
n+m−3∏
k=0

f(ak)g(ak) + . . .+
n−1∏
k=0

f(ak)g(ak)
)

≤ η

1−an2

(
∆n+m−1γ

3n+m−1−1
2 + ∆n+m−2γ

3n+m−2−1
2 + . . .+ ∆nγ

3n−1
2
)

< η

1−a0
2 γ

3n−1
2

γ
3n−1

2 ∆n 1−γ3nm∆m

1−γ3n∆ ,

Then {xn} is a Cauchy sequence. By letting m→∞ in (14), we obtain (13).
To prove that F (x∗) = 0, notice that ‖ΓnF (xn)‖ → 0 by letting n → ∞. As
‖F (xn)‖ ≤ ‖F ′(xn)‖‖ΓnF (xn)‖ and {‖F ′(xn)‖} is a bounded sequence, we
deduce ‖F (xn)‖ → 0, this means F (x∗) = 0 by the continuity of F.

Now to show the uniqueness, suppose that y∗ ∈ B(x0,
2
Mβ − Rη) ∩ Ω is

another solution of (2). Then

0 = F (y∗)− F (x∗) =
∫ 1

0
F ′(x∗ + t(y∗ − x∗))dt(y∗ − x∗).

Using the estimate

‖Γ0‖
∫ 1

0
‖F ′(x∗ + t(y∗ − x∗))− F ′(x0)‖dt ≤

≤Mβ

∫ 1

0
‖x∗ + t(y∗ − x∗)− x0‖dt

≤Mβ

∫ 1

0
((1− t)‖x∗ − x0‖+ t‖y∗ − x0‖)dt

< Mβ
2 (Rη + 2

Mβ −Rη) = 1,

we have that the operator
∫ 1
0 F

′(x∗ + t(y∗ − x∗))dt has an inverse and conse-
quently, y∗ = x∗. �

It should be mentioned that in [7] the convergence of iteration (4) was
proved under conditions (c1)− (c4) and

a0 ≤ 1
2(1+ 5K

3M2β
) ,

whereas convergence of iteration (3) holds under condition (12).In [10] was
found the convergence domain

(15) 0 < a0 <
1
2d ,
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where

d =


1 + 2w, for Chebyshev method (CM)
1 + 5w, for the first modification of CM
1 + 4w, for the second modification of CM.

The comparison of (12) and (15) shows that the convergence domain of (3)
is larger than that of CM and its modifications, when |a| < 7.

4. NUMERICAL RESULTS

Now we present some numerical test results for the various third order, free
from second derivative methods. Tests were done with a double arithmetic
precision and the numbers of iterations such that ‖xn−xn−1‖ ≤ 1.0e− 15 are
shown below. Compared were

MOD1 [10]: yn = xn − ΓnF (xn)
zn = (1− θ)xn + θyn, θ ∈ (0, 1]

xn+1 = yn − 1
2θΓn(F ′(zn)− F ′(xn))(yn − xn)

MOD2 [10]: yn = xn − ΓnF (xn)
zn = xn − ΓnF (xn)

xn+1 = yn − Γn
(
(1 + b

2)F (yn) + F (xn)− b
2F (zn)

)
b ∈ [−2, 0]

CL1 [1]: yn = xn − ΓnF (xn)
xn+1 = yn − 1

2Γn(F ′(yn)− F ′(xn))(yn − xn)

CL2 [1]: yn = xn − ΓnF (xn)
xn+1 = yn − ΓnF (yn)

A2θ [6]: yn = xn − ΓnF (xn)
xpn = xn − θΓnF (xn)
ypn = −1

2Γn(F ′(xpn)− F ′(xn))(xpn − xn)
xcn = xpn + ypn

xn+1 = yn − 1
2Γn(F ′(xcn)− F ′(xn))(xcn − xn)

and the proposed iteration (3).
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As a test we take the following systems of equations:

I. x2
1 − x2 + 1 = 0
x1 + cos(π2x2) = 0 x0 = (0; 0.1)

II. x1x3 + x2x4 + x3x5 + x4x6 = 0
x1x5 + x2x6 = 0
x1 + x3 + x5 = 1
−x1 + x2 − x3 + x4 − x5 + x6 = 0
−3x1 − 2x2 − x3 + x5 + 2x6 = 0
3x1 − 2x2 + x3 − x5 + 2x6 = 0 x0 = (0; 0; 0; 1; 1; 0)

III. x2
1 + x2

2 = 1
x2

1 − x2
2 = −0.5 x0 = (0.3; 0.7)

IV. x2
1 − x1 − x2

2 = 1
sin(x1)− x2 = 0 x0 = (0.1; 0)

V. x2
1 + x2

2 = 4
ex1 + x2 = 1 x0 = (0.5;−1)

MOD1 MOD2 CL1 CL2 A2θ (3)
Ex. θ=0.5 b=−1 θ=−1 θ=1 a =−1 a=−0.5 a=0.5 a=1

I 7 7 8 7 6 - 6 6 6 5
II 6 6 6 6 5 18 6 6 6 6
III 6 6 6 6 5 7 5 5 5 5
IV 6 6 6 6 6 8 6 6 7 8
V 7 6 7 7 6 15 6 6 6 6

Table 1. Numerical results.

5. CONCLUSION

In this work we proposed a family of Newton type methods which is free
from second derivative and includes some known third order methods as par-
ticular case. Also, we proved Newton-Kantorovich type convergence theorem
using recurrent relations to show that it has a R-order three convergence and
obtained an error estimate. The proposed method was compared to previously
known third order methods to show that it has an equivalent performance.
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