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CONVERGENCE OF HALLEY’S METHOD UNDER CENTERED
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Abstract. We present a semi-local as well as a local convergence analysis of
Halley’s method for approximating a locally unique solution of a nonlinear equa-
tion in a Banach space setting. We assume that the second Fréchet-derivative
satisfies a centered Lipschitz condition. Numerical examples are used to show
that the new convergence criteria are satisfied but earlier ones are not satisfied.
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique solution x? of the nonlinear equation

(1.1) F (x) = 0,

where F is twice Fréchet-differentiable operator defined on a nonempty open
and convex subset of a Banach space X with values in a Banach space Y .

Many problems from computational sciences and other disciplines can be
brought in a form similar to equation (1.1) using mathematical modelling
[1, 2, 6]. The solutions of these equations can be rarely be found in closed
form. That is why most solution methods for these equations are iterative. The
study about convergence matter of iterative procedures is usually based on two
types: semi-local and local convergence analysis. The semi-local convergence
matter is, based on the information around an initial point, to give conditions
ensuring the convergence of the iterative procedure; while the local one is,
based on the information around a solution, to find estimates of the radii of
convergence balls.
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In the present study we provide a convergence analysis for Halley’s method
defined by [3, 4, 5, 8]

(1.2) xn+1 = xn − ΓF (xn)F ′(xn)−1F (xn), for each n = 0, 1, 2, . . . ,

where, ΓF (x) = (I − LF (x))−1 and LF (x) = 1
2F
′(x)−1F ′′(x)F ′(x)−1F (x).

The convergence of Halley’s method has a long history and has been studied
by many authors (cf [1-5,7,8] and the references therein). The most popular
conditions for the semi-local convergence of Halley’s method are given by
(C1) There exists x0 ∈ D such that F ′(x0)−1 ∈ L(Y,X), the space of bounded
linear operator from Y into X;
(C2) ‖F ′(x0)−1F (x0)‖ ≤ η;
(C3) ‖F ′(x0)−1F ′′(x)‖ ≤M for each x in D;
(C4) ‖F ′(x0)−1[F ′′(x)− F ′′(y)]‖ ≤ K‖x− y‖ for each x and y in D.
The corresponding sufficient convergence condition is given by

(1.3) η ≤ 4K+M2−M
√
M2+2K

3K(M+
√
M2+2K)

.

There are simple examples show that (C4) is not satisfied. As an example, let
X = Y = R, D = [0,+∞) and define F (x) on D by

F (x) = 4
15x

5
2 + x2 + x+ 1.

Then, we have that

|F ′′(x)− F ′′(y)| = |
√
x−√y| = |x−y|√

x+
√
y
.

Therefore, there is no constant K satisfying (C4). Other examples where (C4)
is not satisfied can be found in [2]. We shall use the weaker than (C3) and
(C4) conditions given by
(C3)′ ‖F ′(x0)−1F ′′(x0)‖ ≤ β;
(C4)′ ‖F ′(x0)−1[F ′′(x)− F ′′(x0)]‖ ≤ L‖x− x0‖ for each x in D.
Note that in this case for x0 > 0

|F ′′(x)− F ′′(x0)| ≤ |x−x0|√
x0

for each x in D.

Hence, we can choose L = |F ′(x0)−1| 1√
x0

. A semi-local convergence under con-

ditions (C1), (C2), (C3)′ and (C4)′ has been given by Xu in [8] using recurrent
relations. However, the semi-local analysis is false under the stated hypothe-
ses. In fact, the following semi-local convergence theorem was established in
Ref. [8].

Theorem 1. Let F : D ⊂ X → Y be continuously twice Fréchet differen-
tiable, D open and convex. Assume that there exists a starting point x0 ∈ D
such that F ′(x0)−1 exists, and the following conditions hold:
(C2) ‖F ′(x0)−1F (x0)‖ ≤ η;
(C3)′ ‖F ′(x0)−1F ′′(x0)‖ ≤ β;
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condition (C4)′ is true;
1
2βη < τ , where

(1.4) τ = 3s?+1−
√

7s?+1
9s?−1 = 0.134065 . . . ,

s? = 0.800576 . . . such that q(s?) = 1, and

(1.5) q(s) = (6s+2)−2
√

7s+1

(6s−2)+
√

7s+1
(1 + s

1−s2 );

U(x0, R) ⊂ D, where R is the positive solution of

(1.6) Lt2 + βt− 1 = 0.

Then, the Halley sequence {xk} generated by (1.2) remains in the open ball
U(x0, R), and converges to the unique solution x? ∈ U(x0, R) of Eq. (1.1).
Moreover, the following error estimate holds

(1.7) ‖x? − xk‖ ≤ a
c(1−τ)γ

∞∑
i=k+1

γ2i ,

where a = βη, c = 1
R and γ = a(a+4)

(2−3a)2
.

We provide an example to show the results of the above theorem does not
hold under the stated hypotheses.

Example 2. Let us define a scalar function F (x) = 20x3− 54x2 + 60x− 23
on D = (0, 3) with initial point x0 = 1. Then, we have that

(1.8) F ′(x) = 12(5x2 − 9x+ 5), F ′′(x) = 12(10x− 9).

Hence, we obtain F (x0) = 3, F ′(x0) = 12, F ′′(x0) = 12. We can choose η = 1
4

and β = 1 in Theorem 1.1. Moreover, we have for any x ∈ D that

(1.9) |F ′(x0)−1[F ′′(x)− F ′′(x0)]| = 10|x− x0|.

That is, the center Lipschitz condition (C4)′ is true for constant L = 10. We
can also verify condition 1

2βη = 1
8 < τ = 0.134065 . . . is true. By (1.6), we get

(1.10) R =

√
β2+4L−β

2L =
√

41−1
20 = 0.270156 . . . .

Then, condition U(x0, R) = [x0 − R, x0 + R] ≈ [0.729844, 1.270156] ⊂ D is
also true. Hence, all conditions in Theorem 1.1 are satisfied. However, we
can verify that the point x1 generated by the Halley’s method (1.2) doesn’t
remain in the open ball U(x0, R). In fact, we have that

(1.11) |x1 − x0| = |F ′(x0)−1F (x0)|
|1−1

2F
′(x0)−1F ′′(x0)F ′(x0)−1F (x0)|

= 2
7 = 0.285714 . . . > R.

Clearly, the rest of the conclusions of Theorem 1.1 cannot be reached. �
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We use a different approach than recurrent relations in our semi-local con-
vergence analysis. The paper is organized as follows: Section 2 contains the
semi-local convergence of Halley’s method, in Section 3 the local convergence
is given, whereas the numerical examples are presented in the concluding Sec-
tion 4.

2. SEMI-LOCAL CONVERGENCE ANALYSIS

We present the semi-local convergence analysis of Halley’s method in a
different way than in [1]. Let η > 0, β ≥ 0 and L > 0. Set R = 2

β+
√
β2+4L

.

Then, we have that
LR2 + βR = 1

and
Lt2 + βt < 1, for any t ∈ (0, R).

Suppose that

(2.1) η < R

1+
βR
2

= 2

2β+
√
β2+4L

,

which is equivalent to
η0 < R,

where
η0 = η

1−a , a = 1
2βη < 1.

Define function φ(t) on [0, R] by

φ(t) = 2t2[1− (Lt+ β)t]2 − 2t2[1− (Lt+ β)t](Lt+ β)η0

−2t[1− (Lt+ β)t]2η0 − (Lt+ β)tη2
0 + (Lt+ β)η3

0

= 2t2[1− (Lt+β)t]2 − 2t[1− (Lt+β)t]η0 − (Lt+β)tη2
0 +(Lt+β)η3

0.

Suppose function φ has zeros on (η0, R), and let R0 be the smallest such zero.
Define

α = (LR0 + β)R0.

Then, we have that
α ∈ (0, 1).

Assume further that

(2.2) (LR0 + β)η2
0 ≤ 4R2

0β(1− α)2

and

(2.3) (LR0 + β)η2
0 < 2R0(1− α)2.

By the definition of R0, we have that

(2.4) b = 2R0(1−α)(LR0+β)η0
2R0(1−α)2−(LR0+β)η20

= 1− η0
R0
∈ (0, 1).

We shall refer to (C1), (C2), (C3)′, (C4)′, (2.1), (2.2), (2.3) and the existence of
R0 on (η0, R) as the (C) conditions. Let U(x,R), U(x,R) stand, respectively,
for the open and closed balls in X with center x and radius R > 0. Then,
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we can show the following semi-local convergence result for Halley’s method
(1.2).

Theorem 3. Let F : D ⊂ X → Y be continuously twice Fréchet differen-
tiable, where X, Y are Banach spaces and D is open and convex. Suppose the
(C) conditions and U(x0, R) ⊂ D. Then, the Halley sequence {xn} generated
by (1.2) is well defined, remains in U(x0, R0) for all n ≥ 0 and converges to
a solution x? ∈ U(x0, R0) of equation F (x) = 0 . Furthermore, x? is the only
solution limit point of equation F (x) = 0 in U(x0, R). Moreover, the following
error estimate holds for any n ≥ 1

(2.5) ‖xn+2 − xn+1‖ ≤ (LR0+β)‖xn+1−xn‖2

(1−α)

[
1− (LR0+β)‖xn+1−xn‖2

2R0(1−α)2

] ≤ b‖xn+1 − xn‖.

Proof. We shall show using induction that (2.5) and the following hold for
n ≥ 0:

(2.6) ‖(I − LF (xn+1))−1‖ ≤ 1
1−‖LF (xn+1)‖ ,

(2.7) xn+2 ∈ U(x0, R0),

(2.8) ‖F ′(xn+1)−1F ′(x0)‖ ≤ 1
1−(L‖xn+1−x0‖+β)‖xn+1−x0‖ <

1
1−α ,

(2.9) ‖F ′(x0)−1F ′′(xn+1)‖ ≤ L‖xn+1 − x0‖+ β < LR0 + β < 1
R0
,

‖LF (xn+1)‖ ≤ (LR0+β)‖xn+1−xn‖2
2R0[1−(L‖xn+1−x0‖+β)‖xn+1−x0‖]2(2.10)

≤ LR0+β
2R0(1−α)2

‖xn+1 − xn‖2 < 1,

(2.11) ‖LF (xn+1)‖
2R0

≤ β.

We have

‖I − (I − LF (x0))‖ = ‖LF (x0)‖ = 1
2‖F

′(x0)−1F ′′(x0)F ′(x0)−1F (x0)‖
≤ 1

2‖F
′(x0)−1F ′′(x0)‖‖F ′(x0)−1F (x0)‖≤ 1

2βη=a<1.(2.12)

It follows from (2.12) and the Banach lemma on invertible operators [2], [6]
that (I − LF (x0))−1 exists, so that

‖(I − LF (x0))−1‖ ≤ 1
1−‖LF (x0)‖ ≤

1
1−a

and

‖x1 − x0‖ = ‖(I − LF (x0))−1F ′(x0)−1F (x0)‖
≤ ‖(I − LF (x0))−1‖‖F ′(x0)−1F (x0)‖
≤ η

1−a = η0 < R0.
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We need an estimate on

‖I − F ′(x0)−1F ′(x1)‖ =

=
∥∥∥F ′(x0)−1

∫ 1

0
F ′′(x0 + θ(x1 − x0))(x1 − x0)dθ

∥∥∥
=
∥∥∥F ′(x0)−1

∫ 1

0
[F ′′(x0 + θ(x1 − x0))− F ′′(x0)](x1 − x0)dθ

+ F ′(x0)−1F ′′(x0)(x1 − x0)
∥∥∥

≤
∫ 1

0
‖F ′(x0)−1[F ′′(x0 + θ(x1 − x0))− F ′′(x0)](x1 − x0)dθ‖

+ ‖F ′(x0)−1F ′′(x0)(x1 − x0)‖

≤
∫ 1

0
Lθ‖x1 − x0‖2dθ + β‖x1 − x0‖ = (L2 ‖x1 − x0‖+ β)‖x1 − x0‖

< (LR0 + β)R0 = α < 1.

Hence, F ′(x1)−1 exists and

‖F ′(x1)−1F ′(x0)‖ ≤ 1

1−
(
L
2 ‖x1−x0‖+β

)
‖x1−x0‖

≤ 1
1−(L‖x1−x0‖+β)‖x1−x0‖ <

1
1−α .

In view of Halley’s iteration we can write

[I − LF (x0)](x1 − x0) + F ′(x0)−1F (x0) = 0

or

F (x0) + F ′(x0)(x1 − x0)− 1
2F
′′(x0)F ′(x0)−1F (x0)(x1 − x0) = 0.

It then follows from the integral form of the mean theorem that

‖F ′(x0)−1[F (x1)−F (x0)−F ′(x0)(x1−x0)− 1
2F
′′(x0)(x1−x0)2]‖ ≤ L

6 ‖x1−x0‖3

and

‖1
2F
′(x0)−1F ′′(x0)[F ′(x0)−1F (x0)+(x1−x0)](x1−x0)‖ ≤ β

2 ‖LF (x0)‖‖x1−x0‖2.

Hence, we get that

‖F ′(x0)−1F (x1)‖ =

= ‖F ′(x0)−1[F (x1)− F (x0)− F ′(x0)(x1 − x0)− 1
2F
′′(x0)(x1 − x0)2]

+ 1
2F
′(x0)−1F ′′(x0)[F ′(x0)−1F (x0) + (x1 − x0)](x1 − x0)‖

≤ (L6 ‖x1 − x0‖+ β
2 ‖LF (x0)‖)‖x1 − x0‖2 ≤ (LR0 + β)‖x1 − x0‖2

≤ (LR0 + β)R0‖x1 − x0‖ ≤ αη0

and

‖F ′(x0)−1F ′′(x1)‖ ≤ ‖F ′(x0)−1(F ′′(x1)− F ′′(x0))‖+ ‖F ′(x0)−1F ′′(x0)‖
≤ L‖x1 − x0‖+ β < LR0 + β < 1

R0
.
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Hence, we get that

‖LF (x1)‖ =

= 1
2‖F

′(x1)−1F ′(x0)F ′(x0)−1F ′′(x1)F ′(x1)−1F ′(x0)F ′(x0)−1F (x1)‖
≤ 1

2‖F
′(x1)−1F ′(x0)‖2‖F ′(x0)−1F ′′(x1)‖‖F ′(x0)−1F (x1)‖

≤ (LR0+β)‖x1−x0‖2
2R0[1−‖x1−x0‖(L‖x1−x0‖+β)]2

≤ (LR0+β)‖x1−x0‖2
2R0(1−α)2

≤ (LR0+β)η20
2R0(1−α)2

< 1

and
1

2R0
‖LF (x1)‖ ≤ β

by (2.2) and (2.3). Then, (I − LF (x1))−1 exists,

‖(I − LF (x1))−1‖ ≤ 1
1−‖LF (x1)‖ .

So, x2 is well defined, and using (1.2) and (2.4) we get

‖x2 − x1‖ ≤
‖F ′(x1)−1F ′(x0)‖‖F ′(x0)−1F (x1)‖

1− ‖LF (x1)‖

≤ (LR0 + β)‖x1 − x0‖2

(1− α)(1− (LR0+β)‖x1−x0‖2
2R0(1−α)2

)
≤ b‖x1 − x0‖.

Therefore, we have that

‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖
≤ b‖x1 − x0‖+ ‖x1 − x0‖ = (1 + b)‖x1 − x0‖

= 1−b2
1−b ‖x1 − x0‖ ≤ ‖x1−x0‖1−b ≤ η0

1−b = R0 < R.

Hence, we have x2 ∈ U(x0, R0). The rest will be shown by induction. Assume
(2.5)-(2.11) are true for all natural integers n ≤ k, where k ≥ 0 is a fixed
integer. Then we have that

‖I − F ′(x0)−1F ′(xk+2)‖ =

=
∥∥∥F ′(x0)−1

∫ 1

0
F ′′(x0 + θ(xk+2 − x0))(xk+2 − x0)dθ

∥∥∥
=
∥∥∥F ′(x0)−1

∫ 1

0
[F ′′(x0 + θ(xk+2 − x0))− F ′′(x0)](xk+2 − x0)dθ

+ F ′(x0)−1F ′′(x0)(xk+2 − x0)
∥∥∥

≤
∫ 1

0
‖F ′(x0)−1[F ′′(x0 + θ(xk+2 − x0))− F ′′(x0)](xk+2 − x0)‖dθ

+ ‖F ′(x0)−1F ′′(x0)‖‖xk+2 − x0‖

≤
∫ 1

0
Lθ‖xk+2 − x0‖2dθ + β‖xk+2 − x0‖

≤ (L‖xk+2 − x0‖+ β)‖xk+2 − x0‖ < (LR0 + β)R0 = α < 1.
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Hence, F ′(xk+2)−1 exists and

‖F ′(xk+2)−1F ′(x0)‖ ≤ 1
1−(L‖xk+2−x0‖+β)‖xk+2−x0‖ <

1
1−α .

Next, we shall estimate ‖F ′(x0)−1F (xk+2)‖. We have that

F (xk+2) =

= F (xk+2)− F (xk+1)− F ′(xk+1)(xk+2 − xk+1)

+ 1
2F
′′(xk+1)F ′(xk+1)−1F (xk+1)(xk+2 − xk+1)

= F (xk+2)− F (xk+1)− F ′(xk+1)(xk+2 − xk+1)− 1
2F
′′(xk+1)(xk+2 − xk+1)2

+ 1
2F
′′(xk+1)[F ′(xk+1)−1F (xk+1) + (xk+2 − xk+1)](xk+2 − xk+1).

Hence, we get that

‖F ′(x0)−1F (xk+2)‖ ≤ A1 +A2 =

= |F ′(x0)−1[F (xk+2)− F (xk+1)− F ′(xk+1)(xk+2 − xk+1)

− 1
2F
′′(xk+1)(xk+2 − xk+1)2‖

+ 1
2‖F

′(x0)−1F ′′(xk+1)[F ′(xk+1)−1F (xk+1)

+ (xk+2 − xk+1)](xk+2 − xk+1)]‖.

We have in turn that

A1 =

=
∥∥∥F ′(x0)−1

∫ 1

0

∫ 1

0
[F ′′(xk+1+sθ(xk+2−xk+1))−F ′′(xk+1)](xk+2−xk+1)2θdsdθ

∥∥∥
=
∥∥∥F ′(x0)−1

∫ 1

0

∫ 1

0
[F ′′(xk+1+sθ(xk+2 − xk+1))− F ′′(x0)](xk+2−xk+1)2θdsdθ

+ F ′(x0)−1

∫ 1

0

∫ 1

0
[F ′′(x0)− F ′′(xk+1)](xk+2 − xk+1)2θdsdθ

∥∥∥
≤
∫ 1

0

∫ 1

0
‖F ′(x0)−1[F ′′(xk+1+sθ(xk+2−xk+1))−F ′′(x0)]‖‖xk+2−xk+1‖2θdsdθ

+

∫ 1

0

∫ 1

0
‖F ′(x0)−1[F ′′(x0)− F ′′(xk+1)]‖‖xk+2 − xk+1‖2θdsdθ

≤
∫ 1

0

∫ 1

0
L‖xk+1 + sθ(xk+2 − xk+1)− x0‖‖xk+2 − xk+1‖2θdsdθ

+

∫ 1

0

∫ 1

0
L‖xk+1 − x0‖‖xk+2 − xk+1‖2θdsdθ

≤
[∫ 1

0

∫ 1

0
L(sθ‖xk+2−x0‖+(1−sθ)‖xk+1−x0‖+‖xk+1−x0‖)θdsdθ

]
‖xk+2−xk+1‖2 =
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= (L6 ‖xk+2 − x0‖+ L
3 ‖xk+1 − x0‖+ L

2 ‖xk+1 − x0‖)‖xk+2 − xk+1‖2

≤ LR0‖xk+2 − xk+1‖2

and

A2 = 1
2‖F

′(x0)−1F ′′(xk+1)
(
− [I − LF (xk+1)](xk+2 − xk+1)

+(xk+2 − xk+1)
)
(xk+2 − xk+1)‖

= 1
2‖F

′(x0)−1F ′′(xk+1)LF (xk+1)(xk+2 − xk+1)2‖
≤ 1

2R0
‖LF (xk+1)‖‖xk+2 − xk+1‖2.

Hence, summing up we get that

(2.13)
‖F ′(x0)−1F (xk+2)‖ ≤ (LR0 + 1

2R0
‖LF (xk+1)‖)‖xk+2 − xk+1‖2

≤ (LR0 + β)‖xk+2 − xk+1‖2

and

‖LF (xk+2)‖ ≤ 1
2R0
‖F ′(xk+2)−1F ′(x0)‖2‖F ′(x0)−1F (xk+2)‖

≤ (LR0+β)‖xk+2−xk+1‖2
2R0(1−α)2

≤ (LR0+β)η20
2R0(1−α)2

< 1.

Hence, (I − LF (xk+2))−1 exists and

‖(I − LF (xk+2))−1‖ ≤ 1
1−‖LF (xk+2)‖ .

Therefore, xk+3 is well defined. Moreover, we obtain that

‖xk+3 − xk+2‖ ≤
≤ ‖(I − LF (xk+2))−1‖‖F ′(xk+2)−1F ′(x0)‖‖F ′(x0)−1F (xk+2)‖

≤ (LR0+β)‖xk+2−xk+1‖2[
1−

(LR0+β)‖xk+2−xk+1‖2
2R0(1−α)2

]
[1−‖xk+2−x0‖(L‖xk+2−x0‖+β)]

≤ (LR0+β)‖xk+2−xk+1‖2[
1−

(LR0+β)η20
2R0(1−α)2

]
[1−R0(LR0+β)]

≤ (LR0+β)η0[
1−

(LR0+β)η20
2R0(1−α)2

]
(1−α)

‖xk+2 − xk+1‖ ≤ b‖xk+2 − xk+1‖.

Furthermore, we have that

‖xk+3 − x0‖ ≤
≤ ‖xk+3 − xk+2‖+ ‖xk+2 − xk+1‖+ · · ·+ ‖x1 − x0‖

≤ (bk+2 + bk+1 + · · ·+ 1)‖x1 − x0‖

= 1−bk+3

1−b < η0
1−b = R0.

Hence, we deduce that xk+3 ∈ U(x0, R0)
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Let m be a natural integer. Then, we have that

‖xk+m − xk‖ ≤
≤ ‖xk+m − xk+m−1‖+ ‖xk+m−1 − xk+m−2‖+ · · ·+ ‖xk+1 − xk‖
≤ (bm−1 + · · ·+ b+ 1)‖xk+1 − xk‖

≤ 1−bm
1−b b

k‖x1 − x0‖.

It follows that {xk} is Cauchy in a Banach space X and as such it converges
to some x? ∈ U(x0, R0) (since U(x0, R0) is a closed set). By letting k →∞ in
(2.13) we obtain F (x?) = 0. We also have

‖x? − xk‖ ≤ bk

1−b‖x1 − x0‖.

To show the uniqueness part, let y? be a solution equation F (x) = 0 in

U(x0, R0). Let T =
∫ 1

0 F
′(x0)−1F ′(x? + θ(y? − x?))dθ. We have in turn

that

‖I − T‖ =

=
∥∥∥∫ 1

0
F ′(x0)−1[F ′(x? + θ(y? − x?))− F ′(x0)]dθ

∥∥∥
=
∥∥∥∫ 1

0

∫ 1

0
F ′(x0)−1F ′′(x0+s(x? + θ(y?−x?)−x0))(x?+θ(y?−x?)−x0)dsdθ

∥∥∥
≤
∫ 1

0

∫ 1

0
‖F ′(x0)−1F ′′(x0 + s(x? + θ(y? − x?)− x0))‖ds

· ((1− θ)‖x? − x0‖+ θ‖y? − x0‖)dθ

< R0

∫ 1

0

∫ 1

0
‖F ′(x0)−1F ′′(x0 + s(x? + θ(y? − x?)− x0))‖dsdθ

≤ R0

∫ 1

0

∫ 1

0
(L‖s((x? + θ(y? − x?))− x0)‖+ β)dsdθ

= R0

∫ 1

0
(1

2L‖(1− θ)(x
? − x0) + θ(y? − x0)‖+ β)dθ

< R0(LR0 + β) = α < 1.

It follows that T−1 exists. Using the identity

0 = F ′(x0)−1(F (y?)− F (x?)) = F ′(x0)−1T (y? − x?)

we deduce y? = x?. The proof of the theorem is complete. �

Remark 4. The conclusion of Theorem 2.1 holds in an another setting,
where the conditions can be weaker. Indeed, let us introduce center-Lipschitz
condition

‖F ′(x0)−1(F ′(x)− F ′(x0)‖ ≤ L0‖x− x0‖ for all x ∈ D.
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Then, it follows from the proof of Theorem 2.1 that α,R, b can be replaced by
α1, R1, b1, where

α1 = L0R0, R1 = 1
L0
, 0 < b1 < 1− η

R1
.

It is possible that

(2.14) L0 < LR0 + β and R1 > R.

The proof of Theorem 2.1 goes through with α1 replacing α and the results
are finer in this case, since

1
1−α1

< 1
1−α .

As an example, let us define polynomial f on D = U(1, 1− p) by

f(x) = x3 − p,

where p ∈ [2 −
√

3, 1). Then, we have β = L = 2, η = 1−p
3 and L0 = 3 − p.

Estimate (2.14) holds provided that b is chosen so that

p
2+p < b < 1− 1−p

2+p(1 +
√

3),

where
p

2+p < 1− 1−p
2+p(1 +

√
3)

by the choice of p. Note also that R1 > R and 1− η0
R1

> 1− η0
R . The uniqueness

of the solution can be shown in larger ball U(x0, R1), since

‖F ′(x0)−1(T − F ′(x0))‖ ≤ L0

∫ 1
0 ‖x

? + θ(y? − x?)− x0‖dθ
≤ L0

2 (‖x? − x0‖+ ‖y? − x0‖)
< L0

2 (R0 +R0) < L0R < L0R1 = 1.

�

3. LOCAL CONVERGENCE OF HALLEY’S METHOD

In this section we present the local convergence of Halley’s method (1.2).
Let c ≥ 0, d ≥ 0 and l > 0. It is convenient for us to define polynomial p0 on
interval [0,+∞) by

(3.1) p0(t) = (c+ dt)(1 + l
2 t)t− 2(1− lt)2.

We have p0(0) = −2 < 0 and p0(1
l ) = (c+ d

l )(1 + 1
2)1

l > 0. It follows from the

intermediate value theorem that there exists a root of polynomial p0 in (0, 1
l ).

Denote by r0 the smallest such root. Moreover, define functions g and h on
[0, r0) by

(3.2) g(t) =
(c+dt)(1+

l
2 t)t

2(1−lt)2

and

(3.3) h(t) = (1− g(t))−1.
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Note that functions g and h are well defined on [0, r0) and

(3.4) g(t) ∈ [0, 1) for each t ∈ [0, r0).

Define polynomial p1 on [0,+∞) by

(3.5) p1(t) = [10d(1−lt)+(2dt+3c)(c+dt)]t2−6[2(1−lt)2−(c+dt)(1+ l
2 t)t].

We get p1(0) = −12 and p1(1
l ) = (2d

l + 3c)(c + d
l )

1
l2

+ 6(c + d
l )(1 + 1

2)1
l > 0.

Hence, there exists r1 ∈ (0, 1
l ) such that p1(r1) = 0. Set

(3.6) r = min{r0, r1}.

Then, function q given by

(3.7) q(t) = 1
12

h(t)
1−lt(10d+ (2dt+3c)(c+dt)

1−lt )t2

is well defined on [0, r) and

(3.8) q(t) ∈ [0, 1) for each t ∈ [0, r).

We shall show the local convergence of Halley’s method using the conditions
(H) given by
(H1) there exists x? ∈ D such that F ′(x?) ∈ L(Y,X) and F (x?) = 0;
(H2) ‖F ′(x?)−1(F ′(x)− F ′(x?))‖ ≤ l‖x− x?‖ for each x ∈ D;
(H3) ‖F ′(x?)−1F ′′(x?)‖ ≤ c;
(H4) F ′(x?)−1(F ′′(x)− F ′′(x?))‖ ≤ d‖x− x?‖ for each x ∈ D
and
(H5) U(x?, r) ⊆ D.
Then, we can show:

Theorem 5. Suppose that the (H) conditions hold. Then, sequence {xn}
generated by Halley’s method starting from x0 ∈ U(x?, r) is well defined, re-
mains in U(x?, r) for all n ≥ 0 and converges to x?. Moreover, the following
estimates hold

(3.9) ‖xn+1 − x?‖ ≤ en‖xn − x?‖3 for each n = 0, 1, 2, . . . ,

where

(3.10) en = 1
12

h(‖xn−x?‖)
1−l‖xn−x?‖(10d+ (2d‖xn−x?‖+3c)(c+d‖xn−x?‖)

1−l‖xn−x?‖ ).

Proof. We have for x ∈ U(x?, r), the choice of r and (H2) that

(3.11) ‖F ′(x?)−1(F ′(x)− F ′(x?))‖ ≤ l‖x− x?‖ < lr < 1.

It follows from (3.11) and the Banach lemma on invertible operators that
F ′(x)−1 ∈ L(Y,X) and

(3.12) ‖F ′(x)−1F ′(x?)‖ ≤ 1
1−l‖x−x?‖ .

Using the definition of operator LF , function g, radius r, (3.4), (3.12), hy-
potheses (H3) and (H4) we have in turn that
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‖LF (x)‖ ≤ 1
2‖F

′(x)−1F ′(x?)‖2[‖F ′(x?)−1(F ′′(x)−F ′′(x?))+F ′(x?)−1F ′′(x?)‖]

·
∥∥∥{∫ 1

0
F ′(x?)−1[F ′(x? + θ(x− x?))− F ′(x?)]dθ + I

}
(x− x?)

∥∥∥(3.13)

≤ 1
2( 1

1−l‖x−x?‖)
2(c+ d‖x− x?‖)(1 + l

2‖x− x
?‖)‖x− x?‖

= g(‖x− x?‖) ≤ g(r) < 1.

Hence, we get ΓF (x) exists and

(3.14) ‖ΓF (x)‖ ≤ h(‖x− x?‖).
In view of (1.2) and F (x?) = 0 we obtain the identity (cf [4])

xn+1 − x? = ΓF (xn)F ′(xn)−1F ′(x?)F ′(x?)−1

·
∫ 1

0
(1− θ)[(F ′′(xn + θ(x? − xn))− F ′′(x?))(3.15)

+ (F ′′(x?)− F ′′(xn))](x? − xn)2dθ

− 1
2ΓF (xn)F ′(xn)−1F ′(x?)F ′(x?)−1(F ′′(xn)− F ′′(x?) + F ′′(x?))

·
[
F ′(xn)−1F ′(x?)F ′(x?)−1

∫ 1

0
(1−θ)((F ′′(xn+θ(x?−xn))−F ′′(x?))

+ F ′′(x?))(x? − xn)2dθ
]
(x? − xn).

Using (3.12), (3.13), (3.14) for x = xn, (3.15), (H3), (H4) and the definition
of r and q we get that

‖xn+1 − x?‖ ≤(3.16)

≤ 5
6
dh(‖xn−x?‖)
1−l‖xn−x?‖ ‖xn − x

?‖3

+ 2d‖xn−x?‖+3c
12

h(‖xn−x?‖)
(1−l‖xn−x?‖)2 (c+ d‖xn − x?‖)‖xn − x?‖3

= en‖xn − x?‖3 = q(‖xn − x?‖)‖xn − x?‖ < ‖xn − x?‖.

That is xn+1 ∈ U(x?, r) and limn→∞ xn = x?. The proof of the theorem is
complete. �

Remark 6. It follows from the estimate

‖F ′(x?)−1(F ′(x)− F ′(x?))‖ =(3.17)

=
∥∥∥∫ 1

0
F ′(x?)−1[(F ′′(x? + θ(x− x?))− F ′′(x?))

+ F ′′(x?)](x− x?)dθ
∥∥∥

≤ (d2‖x− x
?‖+ c)‖x− x?‖
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that condition (H2) can be dropped from the computation leading to (3.12),
which can be replaced by

‖F ′(x)−1F ′(x?)‖ ≤ 1

1−(
d
2‖x−x

?‖+c)‖x−x?‖
.

The rest stays the same. In this case to obtain the corresponding to Theorem
3.1 result simply replace l by m(t) = d

2 t+ c and 1
l by the only positive root of

polynomial

(3.18) p2(t) = m(t)t− 1.

This can improve the choice of r if

(3.19) d
2 t+ c < 1

l for t ∈ [0, 1
l ).

�

4. NUMERICAL EXAMPLES

In this section, we will give some examples to show the application of our
theorem.

Example 7. Let us define a scalar function F (x) = x3−2.25x2 +3x−1.585
on D = (0, 3) with initial point x0 = 1. Then, we have that

(4.1) F ′(x) = 3x2 − 4.5x+ 3, F ′′(x) = 6x− 4.5.

So, F (x0) = 0.165, F ′(x0) = 1.5, F ′′(x0) = 1.5. We can choose η = 0.11 and
β = 1 in Theorem 2.1. Moreover, we have for any x ∈ D that

(4.2) |F ′(x0)−1[F ′′(x)− F ′′(x0)]| = 4|x− x0|.

Hence, the weak Lipschitz condition (1.3) is true for constant L = 4. By (1.6),
we get

(4.3) R =

√
β2+4L−β

2L =
√

17−1
8 = 0.390388 . . . .

Then, condition U(x0, R) = [x0−R, x0+R] ≈ [0.609612, 1.390388] ⊂ D is true.
We can also verify that function φ has the minimized zero R0 = 0.169896107
on (η0, R), and conditions

η = 0.11 < R

1+
β
2

= 0.326631635,

(LR0 + β)η2
0 = 0.02275745 ≤ 4R2

0β(1− α)2 = 0.058966824,

(LR0 + β)η2
0 = 0.02275745 < 2R0(1− α)2 = 0.029483412

are satisfied. Hence, all conditions in Theorem 2.1 are satisfied, and our the-
orem applies. �



15 Convergence of Halley’s method 17

Example 8. In this example we provide an application of our results to a
special nonlinear Hammerstein integral equation of the second kind. Consider
the integral equation

(4.4) u(s) = f(s) + λ

∫ b′

a′
k(s, t)u(t)2+

1
ndt, λ ∈ R, n ∈ N,

where f is a given continuous function satisfying f(s) > 0 for s ∈ [a′, b′] and
the kernel is continuous and positive in [a′, b′]× [a′, b′].

Let X = Y = C[a′, b′] and D = {u ∈ C[a′, b′] : u(s) ≥ 0, s ∈ [a′, b′]}. Define
F : D → Y by

(4.5) F (u)(s) = u(s)− f(s)− λ
∫ b′

a′
k(s, t)u(t)2+

1
ndt, s ∈ [a′, b′].

We use the max-norm, The first and second derivatives of F are given by
(4.6)

F ′(u)v(s) = v(s)− λ(2 + 1
n)

∫ b′

a′
k(s, t)u(t)1+

1
n v(t)dt, v ∈ D, s ∈ [a′, b′],

and

(4.7) F ′′(u)(vw)(s) = −λ(1 + 1
n)(2 + 1

n)

∫ b′

a′
k(s, t)u(t)

1
n (vw)(t)dt,

where v, w ∈ D, s ∈ [a′, b′], respectively.
Let x0(t) = f(t), γ = mins∈[a′,b′] f(s), δ = maxs∈[a′,b′] f(s) and M =

maxs∈[a′,b′]

∫ b′
a′ |k(s, t)|dt. Then, for any v, w ∈ D,

‖[F ′′(x)− F ′′(x0)](vw)‖ ≤

(4.8)

≤ |λ|(1 + 1
n)(2 + 1

n) max
s∈[a′,b′]

∫ b′

a′
|k(s, t)| ·

∣∣x(t)
1
n − f(t)

1
n
∣∣dt‖vw‖

= |λ|(1+ 1
n)(2+ 1

n) max
s∈[a′,b′]

∫ b′

a′
|k(s, t)| |x(t)−f(t)|

x(t)
n−1
n +x(t)

n−2
n f(t)

1
n+···+f(t)

n−1
n

dt‖vw‖

≤ |λ|(1 + 1
n)(2 + 1

n) max
s∈[a′,b′]

∫ b′

a′
|k(s, t)| |x(t)−f(t)|

f(t)
n−1
n

dt‖vw‖

≤ |λ|(1+
1
n )(2+

1
n )

γ
n−1
n

max
s∈[a′,b′]

∫ b′

a′
|k(s, t)| · |x(t)− f(t)|dt‖vw‖

≤ |λ|(1+
1
n )(2+

1
n )M

γ
n−1
n

‖x− x0‖‖vw‖,
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which means

(4.9) ‖F ′′(x)− F ′′(x0)‖ ≤ |λ|(1+
1
n )(2+

1
n )M

γ
n−1
n

‖x− x0‖.

Next, we give a bound for ‖F ′(x0)−1‖. Using (4.6), we have that

(4.10) ‖I − F ′(x0)‖ ≤ |λ|(2 + 1
n)δ1+

1
nM.

It follows from the Banach theorem that F ′(x0)−1 exists if |λ|(2+ 1
n)δ1+

1
nM <

1, and

(4.11) ‖F ′(x0)−1‖ ≤ 1

1−|λ|(2+
1
n )δ

1+
1
nM

.

On the other hand, we have from (4.5) and (4.7) that ‖F (x0)‖ ≤ |λ|δ2+
1
nM

and ‖F ′′(x0)‖ ≤ |λ|(1 + 1
n)(2 + 1

n)δ
1
nM . Hence, if |λ|(2 + 1

n)δ1+
1
nM < 1, the

weak Lipschitz condition (1.3) is true for

(4.12) L =
|λ|(1+

1
n )(2+

1
n )M

γ
n−1
n [1−|λ|(2+

1
n )δ

1+
1
nM ]

and constants η and β in Theorem 2.1 can be given by

(4.13) η = |λ|δ2+
1
nM

1−|λ|(2+
1
n )δ

1+
1
nM

, β =
|λ|(1+

1
n )(2+

1
n )δ

1
nM

1−|λ|(2+
1
n )δ

1+
1
nM

.

Next we let [a′, b′] = [0, 1], n = 2, f(s) = 1, λ = 0.8 and k(s, t) is the Green
kernel on [0, 1]× [0, 1] defined by

(4.14) G(s, t) =

{
t(1− s), t ≤ s;
s(1− t), s ≤ t.

Consider the following particular case of (4.4):

(4.15) u(s) = f(s) + 0.8

∫ 1

0
G(s, t)u(t)

5
2 dt, s ∈ [0, 1].

Then, γ = δ = 1 and M = 1
8 . Moreover, we have that

(4.16) η = 2
15 , β = 1

2 , L = 1
2 .

By (1.6), we get

(4.17) R =

√
β2+4L−β

2L = 1.

Hence, U(x0, R) ⊂ D. We can also verify that function φ has the minimized
zero R0 = 0.15173576 on (η0, R), and conditions

η = 0.137931034 < R

1+
β
2

= 0.8,

(LR0 + β)η2
0 = 0.010955869 ≤ 4R2

0β(1− α)2 = 0.076703659,
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(LR0 + β)η2
0 = 0.010955869 < 2R0(1− α)2 = 0.25275406

are satisfied. Hence, all conditions in Theorem 2.1 are satisfied. Consequently,
sequence {xn} generated by Halley’s method (1.2) with initial point x0 con-
verges to the unique solution x? of Eq. (4.5) on U(x0, 1). �

Example 9. Let X = Y = R, D = (−1, 1) and define F on D by

(4.18) F (x) = ex − 1.

Then, x? = 0 is a solution of Eq. (1.1), and F ′(x?) = 1. Note that for any
x ∈ D, we have

|F ′(x?)−1(F ′(x)− F ′(x?))| = |F ′(x?)−1(F ′′(x)− F ′′(x?))|(4.19)

= |ex − 1| = |x(1 + x
2! + x2

3! + · · · )|
≤ |x(1 + 1

2! + 1
3! + · · · )| = (e− 1)|x− x?|.

Then, we can choose d = l = e− 1 in Theorem 3.1. It is easy to get c = 1,
r0 = 0.2837798914, r1 = 0.2575402082 and r = r1. Then, all conditions of
Theorem 3.1 are satisfied. Let us choose x0 = 0.25. Suppose sequence {xn}
is generated by Halley’s method (1.2). Table 1 gives a comparison results of
error estimates for Example 4.3, which shows that error estimates (3.9) are
true.

Table 1. The comparison results of error estimates for Example 4.3

n the left-side of (3.9) the right-side of (3.9)
0 1.29e-03 1.84e-01
1 1.81e-10 3.66e-09
2 4.91e-31 9.90e-30
3 9.84e-93 1.99e-91
4 7.93e-278 1.60e-276
5 4.16e-833 8.39e-832

�
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