A SEPARATION OF SOME SEIFFERT-TYPE MEANS BY POWER MEANS

IULIA COSTIN* and GHEORGHE TOADER ${ }^{\dagger}$

Abstract

Consider the identric mean \mathcal{I}, the logarithmic mean \mathcal{L}, two trigonometric means defined by H. J. Seiffert and denoted by \mathcal{P} and \mathcal{T}, and the hyperbolic mean \mathcal{M} defined by E. Neuman and J. Sándor. There are a number of known inequalities between these means and some power means \mathcal{A}_{p}. We add to these inequalities some new results obtaining the following chain of inequalities $$
\mathcal{A}_{0}<\mathcal{L}<\mathcal{A}_{1 / 3}<\mathcal{P}<\mathcal{A}_{2 / 3}<\mathcal{I}<\mathcal{A}_{3 / 3}<\mathcal{M}<\mathcal{A}_{4 / 3}<\mathcal{T}<\mathcal{A}_{5 / 3}
$$

MSC 2000. 26E60.
Keywords. Seiffert type means; power means; logarithmic mean; identric mean; inequalities of means.

1. INTRODUCTION

A mean is a function $M: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$, with the property

$$
\min (a, b) \leq M(a, b) \leq \max (a, b), \quad \forall a, b>0 .
$$

Each mean is reflexive, that is

$$
M(a, a)=a, \quad \forall a>0 .
$$

This is also used as the definition of $M(a, a)$.
A mean is symmetric if

$$
M(b, a)=M(a, b), \quad \forall a, b>0 ;
$$

it is homogeneous (of degree 1) if

$$
M(t a, t b)=t \cdot M(a, b), \quad \forall a, b, t>0
$$

We shall refer here to the following symmetric and homogeneous means:

- the power means \mathcal{A}_{p}, defined by

$$
\mathcal{A}_{p}(a, b)=\left[\frac{a^{p}+b^{p}}{2}\right]^{\frac{1}{p}}, \quad p \neq 0 ;
$$

${ }^{*}$ Department of Computer Science, Technical University of Cluj-Napoca, Baritiu st. no. 28, Cluj-Napoca, Romania, e-mail: Iulia.Costin@cs.utcluj.ro.
${ }^{\dagger}$ Department of Mathematics, Technical University of Cluj-Napoca, Baritiu st. no. 25, Cluj-Napoca, Romania, e-mail: Gheorghe.Toader@math.utcluj.ro.

- the geometric mean \mathcal{G}, defined as $\mathcal{G}(a, b)=\sqrt{a b}$, but verifying also the property

$$
\lim _{p \rightarrow 0} \mathcal{A}_{p}(a, b)=\mathcal{A}_{0}(a, b)=\mathcal{G}(a, b) ;
$$

- the identric mean \mathcal{I} defined by

$$
\mathcal{I}(a, b)=\frac{1}{e}\left(\frac{a^{a}}{b^{b}}\right)^{\frac{1}{a-b}}, \quad a \neq b ;
$$

- the Gini mean \mathcal{S} defined by

$$
\mathcal{S}(a, b)=\left(a^{a} b^{b}\right)^{\frac{1}{a+b}} ;
$$

- the first Seiffert mean \mathcal{P}, defined in [9] by

$$
\mathcal{P}(a, b)=\frac{a-b}{2 \sin ^{-1} \frac{a-b}{a+b}}, \quad a \neq b ;
$$

- the second Seiffert mean \mathcal{T}, defined in [10] by

$$
\mathcal{T}(a, b)=\frac{a-b}{2 \tan ^{-1} \frac{a-b}{a+b}}, \quad a \neq b ;
$$

- the Neuman-Sándor mean \mathcal{M}, defined in [6] by

$$
\mathcal{M}(a, b)=\frac{a-b}{2 \sinh ^{-1} \frac{a-b}{a+b}}, \quad a \neq b ;
$$

- the logarithmic mean \mathcal{L} defined by

$$
\mathcal{L}(a, b)=\frac{a-b}{\ln a-\ln b}, \quad a \neq b .
$$

As remarked B.C. Carlson in [1] the logarithmic mean can be represented also by

$$
\mathcal{L}(a, b)=\frac{a-b}{2 \tanh ^{-1} \frac{a-b}{a+b}}, \quad a \neq b,
$$

thus the last four means are very similar.
Being rather complicated, these means were evaluated by simpler means, first of all by power means. For two means M and N we write $M<N$ if $M(a, b)<N(a, b)$ for $a \neq b$. It is known that the family of power means is an increasing family of means, thus

$$
\mathcal{A}_{p}<\mathcal{A}_{q} \text { if } p<q .
$$

The evaluation of a given mean M by power means assumes the determination of some real indices p and q such that $\mathcal{A}_{p}<M<\mathcal{A}_{q}$. The evaluation is optimal if p is the the greatest and q is the smallest index with this property. This means that M cannot be compared with \mathcal{A}_{r} if $p<r<q$.

Optimal evaluation were given for the logarithmic mean in 5

$$
\mathcal{A}_{0}<\mathcal{L}<\mathcal{A}_{1 / 3},
$$

for the identric mean in [8]

$$
\mathcal{A}_{2 / 3}<\mathcal{I}<\mathcal{A}_{\ln 2},
$$

and for the first Seiffert mean in [3]

$$
\mathcal{A}_{\ln 2 / \ln \pi}<\mathcal{P}<\mathcal{A}_{2 / 3} .
$$

Following evaluations are also known:

$$
\mathcal{A}_{1 / 3}<\mathcal{P}<\mathcal{A}_{2 / 3}
$$

proved in [4],

$$
\mathcal{A}_{1}<\mathcal{T}<\mathcal{A}_{2}
$$

given in [10],

$$
\mathcal{A}_{1}<\mathcal{M}<\mathcal{T}
$$

as it was shown in (6) and

$$
\mathcal{S}>\mathcal{A}_{2}
$$

as it is proved in [7]. In [2] it is proven that

$$
\begin{equation*}
\mathcal{M}<\mathcal{A}_{3 / 2}<\mathcal{T} \tag{1}
\end{equation*}
$$

and using some of the above results, it is obtained the following chain of inequalities

$$
\mathcal{A}_{0}<\mathcal{L}<\mathcal{A}_{1 / 2}<\mathcal{P}<\mathcal{A}_{1}<\mathcal{M}<\mathcal{A}_{3 / 2}<\mathcal{T}<\mathcal{A}_{2}
$$

Here we retain another chain of inequalities

$$
\begin{equation*}
\mathcal{A}_{0}<\mathcal{L}<\mathcal{A}_{1 / 3}<\mathcal{P}<\mathcal{A}_{2 / 3}<\mathcal{I}<\mathcal{A}_{1}<\mathcal{M}<\mathcal{T}<\mathcal{A}_{2}<\mathcal{S} . \tag{2}
\end{equation*}
$$

Our aim is to prove that $\mathcal{A}_{4 / 3}$ can be put between \mathcal{M} and \mathcal{T} and \mathcal{A}_{2} can be replaced by $\mathcal{A}_{5 / 3}$. We obtain so another nice separation of these means by "equidistant" power means.

2. MAIN RESULTS

We add to the inequalities (2) the next results.
Theorem 1. The following inequalities

$$
\mathcal{M}<\mathcal{A}_{4 / 3}<\mathcal{T}<\mathcal{A}_{5 / 3}
$$

hold.
Proof. As the means are symmetric and homogenous, for the first inequality

$$
\frac{a-b}{2 \sinh ^{-1} \frac{a-b}{a+b}}<\left(\frac{a^{4 / 3}+b^{4 / 3}}{2}\right)^{\frac{3}{4}}, \quad a \neq b
$$

we can assume that $a>b$ and denote $a / b=t^{3}>1$. The inequality becomes

$$
\frac{t^{3}-1}{2 \sinh ^{-1} \frac{t^{3}-1}{t^{3}+1}}<\left(\frac{t^{4}+1}{2}\right)^{\frac{3}{4}}, \quad t>1
$$

or

$$
\frac{2^{\frac{3}{4}}\left(t^{3}-1\right)}{2\left(t^{4}+1\right)^{\frac{3}{4}}}<\sinh ^{-1} \frac{t^{3}-1}{t^{3}+1}, \quad t>1
$$

Denoting

$$
f(t)=\sinh ^{-1} \frac{t^{3}-1}{t^{3}+1}-2^{-\frac{1}{4}}\left(t^{3}-1\right)\left(t^{4}+1\right)^{-\frac{3}{4}}
$$

we have to prove that $f(t)>0$ for $t>1$. As $f(1)=0$, we want to prove that $f^{\prime}(t)>0$ for $t>1$. We have

$$
\begin{aligned}
f^{\prime}(t) & =\frac{6 t^{2}}{\left(t^{3}+1\right) \sqrt{2\left(t^{6}+1\right)}}-2^{-\frac{1}{4} \frac{3 t^{2}(t+1)}{\left(t^{4}+1\right)^{\frac{7}{4}}}} \\
& =\frac{3 t^{2}\left[2^{\frac{3}{4}}\left(t^{4}+1\right)^{\frac{7}{4}}-(t+1)\left(t^{3}+1\right) \sqrt{t^{6}+1}\right]}{2^{\frac{1}{4}}\left(t^{3}+1\right) \sqrt{t^{6}+1}\left(t^{4}+1\right)^{\frac{7}{4}}}
\end{aligned}
$$

and so it is positive if

$$
g(t)=\left[2^{\frac{3}{4}}\left(t^{4}+1\right)^{\frac{7}{4}}\right]^{4}-\left[(t+1)\left(t^{3}+1\right) \sqrt{t^{6}+1}\right]^{4}
$$

is positive. Or

$$
\begin{aligned}
g(t)= & (t-1)^{4}\left(7 t^{24}+24 t^{23}+48 t^{22}+68 t^{21}+112 t^{20}\right. \\
& +184 t^{19}+264 t^{18}+296 t^{17}+344 t^{16}+428 t^{15} \\
& +512 t^{14}+488 t^{13}+466 t^{12}+488 t^{11}+512 t^{10} \\
& +428 t^{9}+344 t^{8}+296 t^{7}+184 t^{5}+112 t^{4} \\
& \left.+68 t^{3}+48 t^{2}+24 t+7\right)
\end{aligned}
$$

so that the property is certainly true. The second inequality is a simple consequence of $\sqrt{1}$ because $\mathcal{A}_{4 / 3}<\mathcal{A}_{3 / 2}$. For the last inequality

$$
\frac{a-b}{2 \tan ^{-1} \frac{a-b}{a+b}}<\left(\frac{a^{5 / 3}+b^{5 / 3}}{2}\right)^{\frac{3}{5}}, \quad a \neq b
$$

we can again consider $\frac{a}{b}=t^{3}>1$ and we have to prove that

$$
\frac{t^{3}-1}{2 \tan ^{-1} \frac{t^{3}-1}{t^{3}+1}}<\left(\frac{t^{5}+1}{2}\right)^{\frac{3}{5}}, \quad t>1
$$

This is equivalent with the condition that the function

$$
h(t)=\tan ^{-1} \frac{t^{3}-1}{t^{3}+1}-\frac{t^{3}-1}{2^{\frac{2}{5}}\left(t^{5}+1\right)^{\frac{3}{5}}}
$$

is positive for $t>1$. As $h(1)=0$ and

$$
\begin{aligned}
h^{\prime}(t) & =\frac{3 t^{2}}{t^{6}+1}-\frac{3 t^{2}\left(t^{2}+1\right)}{2^{\frac{2}{5}}\left(t^{5}+1\right)^{\frac{8}{5}}} \\
& =\frac{3 t^{2}\left[2^{\frac{2}{5}}\left(t^{5}+1\right)^{\frac{8}{5}}-\left(t^{2}+1\right)\left(t^{6}+1\right)\right]}{2^{\frac{2}{5}}\left(t^{5}+1\right)^{\frac{8}{5}}\left(t^{6}+1\right)}
\end{aligned}
$$

we have $h(t)>0$ for $t>1$ if $h^{\prime}(t)>0$ for $t>1$, thus if the function

$$
k(t)=\left[2^{\frac{2}{5}}\left(t^{5}+1\right)^{\frac{8}{5}}\right]^{5}-\left[\left(t^{2}+1\right)\left(t^{6}+1\right)\right]^{5}
$$

is positive for $t>1$. Or this is obvious because

$$
\begin{aligned}
k(t)= & (t-1)^{4}\left(185 t^{28}+200 t^{27}+221 t^{26}+365 t^{24}\right. \\
& +410 t^{22}+520 t^{19}+580 t^{18}+520 t^{17}+430 t^{16} \\
& +400 t^{15}+410 t^{14}+440 t^{13}+365 t^{12}+284 t^{11} \\
& +221 t^{10}+200 t^{9}+185 t^{8}+140 t^{7}+90 t^{6} \\
& \left.+60 t^{5}+45 t^{4}+25 t^{2}+40 t^{3}+12 t+3\right) .
\end{aligned}
$$

REMARK 2. For the factorization of the polynomials g and k we have used the computer algebra Maple.

Remark 3. It is an open problem for us to find a mean N, related to the above mentioned means, with the property that

$$
\mathcal{A}_{5 / 3}<N<\mathcal{A}_{2}
$$

For instance, the mean \mathcal{S}, which is similar to \mathcal{I}, is not convenient as follows from (2).

Corollary 4. For each $x \in(0,1)$ we have the following evaluations

$$
1<\frac{x}{\sinh ^{-1} x}<\mathcal{A}_{4 / 3}(1-x, 1+x)<\frac{x}{\tan ^{-1} x}<\mathcal{A}_{5 / 3}(1-x, 1+x)
$$

REFERENCES

[1] B.C. Carlson, The logarithmic mean, Amer. Math. Monthly, 79 (1972), pp. 615-618.
[2] I. Costin and G. ToADER, A nice evaluation of some Seiffert type means by power means, Int. J. Math. Math. Sc., 2012, Article ID 430692, 6 pages, doi:10.1155/2012/430692.
[3] P.A. HÄStÖ, Optimal inequalities between Seiffert's means and power means, Math. Inequal. Appl., 7 (2004) no. 1, pp. 47-53.
[4] A.A. Jagers, Solution of problem 887, Niew Arch. Wisk. (Ser. 4), 12 (1994), pp. 230231.
[5] T.P. Lin, The power and the logarithmic mean, Amer. Math. Monthly, 81 (1974), pp. 879-883.
[6] E. Neuman and J. SÁndor, On the Schwab-Borchardt mean, Math. Panon., 14 (2003) no. 2, pp. 253-266.
[7] E. Neuman and J. Sándor, Comparison inequalities for certain bivariate means, Appl. Anal. Discrete Math., 3 (2009), pp. 46-51.
[8] A.O. Pittenger, Inequalities between arithmetic and logarithmic means, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 678-715 (1980), pp. 15-18.
[9] H.-J. Seiffert, Problem 887, Niew Arch. Wisk. (Ser. 4), 11 (1993), pp. 176-176.
[10] H.-J. Seiffert, Aufgabe $\beta 16$, Die Wurzel, 29 (1995), pp. 221-222.
Received by the editors: June 12, 2012.

