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COMPLEXITY ANALYSIS OF PRIMAL-DUAL ALGORITHMS FOR

THE SEMIDEFINITE LINEAR COMPLEMENTARITY PROBLEM
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Abstract. In this paper a primal-dual path-following interior-point algorithm
for the monotone semidefinite linear complementarity problem is presented. The
algorithm is based on Nesterov-Todd search directions and on a suitable prox-
imity for tracing approximately the central-path. We provide an unified analysis
for both long and small-update primal-dual algorithms. Finally, the iteration
bounds for these algorithms are obtained.

MSC 2000. 90C30, 90C33.

Keywords. Semidefinite linear complementarity problems, interior point meth-
ods, long and small-update primal-dual algorithms, polynomial complexity.

1. INTRODUCTION

Let Sn be the space of all real symmetric matrices of order n, Sn+ be the
cone of positive semidefinite matrices in Snand Sn++is the cone formed by all
symmetric positive definite matrices. The expression X � 0 (X � 0) means
that X ∈ Sn+(X ∈ Sn++). Let L : Sn −→ Sn be a given linear transformation
and Q ∈ Sn. The semidefinite linear complementarity problem (SDLCP) is to
find a couple of matrices (X,Y ) ∈ A such that:

(1) X � 0, Y � 0, and XY = 0,

where

A = {(X,Y ) ∈ Sn × Sn : Y − L(X) = Q}
is an affine subset of Sn.

This problem has made the object of many studies of research this last
years. Its growing importance can be measured by its different applications
in control theory and various areas of optimization problems. This problem
can be also viewed as a generalization of the standard linear complementarity
problem (LCP) and also included the geometric monotone semi-definite linear

∗Department of Mathematics, Faculty of Science, University Ferhat Abbas of
Setif, 19000, Algeria, Laboratory of Fundamental and Numerical Mathematics,
e-mail: achache m@yahoo.fr.
†Department of Mathematics, Faculty of Science, University El Hadj Lakhdar, Batna

05000, Algeria, e-mail: benhassinen13@yahoo.fr.

www.ictp.acad.ro/jnaat


96 Mohamed Achache and Naima Boudiaf 3

complementarity introduced by Kojima et al., [9] and which contains the pair
of primal-dual semidefinite programming problems (SDP). For more details on
(SDLCP) we refer the reader to the references [6-8, 11] and the thesis of Phd
of Song [20]. Moreover it turns out that primal-dual path-following interior
point algorithms can solve efficiently many problems such as linear, semidefi-
nite programming, convex quadratic programming, conic and complementarity
problems. These algorithms have polynomial complexity and numerical effi-
ciency (see[1-4, 9, 10, 12-19, 21, 22]). It has been shown that most primal-dual
(IPMs) algorithms and their analysis can be extended naturally from linear
programming to (SDP) and so to more general context of (SDLCP).

The goal of this paper is to analyze the polynomial complexity of a primal-
dual path-following interior-point algorithm for solving (SDLCP). Here, we
reconsider the analysis used by Peng et al., (Ref. [17]) for (SDP) and we
make it suiting to (SDLCP) case. The algorithm uses at each interior point
iteration a full Nesterov-Todd (NT) step and a suitable proximity for tracing
approximately the central-path. We provide also an unified analysis for both
long and small-update primal-dual algorithms. Finally, the total iteration
bounds for these algorithms are obtained. These polynomial complexity are
analogous to such methods for linear, quadratic, semidefinite programming,
conic and complementarity problems.

The rest of the paper is as follows. In section 2, the central path with its
properties and Nesterov-Todd search directions are discussed. In section 3, the
algorithm and its complexity analysis are stated. In section 4, a conclusion
and future researches are given.

Throughout the paper we use the following notation.Rn×n is the space of
all real n × n matrices, ‖.‖ denotes the Frobenius norm of matrices. For a
given matrix A ∈ Rn×n, detA denotes its determinant if in addition A is
nonsingular then A−1 denotes its inverse whereas AT is the transpose of A.
Let X ∈ Rn+, X1/2 represents its square root matrix. The trace of a matrix
A is the sum of its diagonal entries and it is denoted by Tr(A). Recall that
for any two matrices A = (aij) and B = (bij) in Rn×n, their inner product
(trace) is defined by: 〈A,B〉 := Tr(ATB) =

∑
i,jaijbij .The identity matrix of

order n is denoted by I. Finally, g(t) = O(f(t)) if and only if g(t) ≤ kf(t)
for some positive constant k where f(t) and g(t) are two real valued functions
and t > 0.

2. CENTRAL PATH AND NESTEROV-TODD SEARCH DIRECTIONS FOR SDLCP

In this section we define the central path for SDLCP and its properties and
we determine Nesterov-Todd search directions.

The feasible set and the strict feasible set of (1) are subsets of Rn×n:

F = {(X,Y ) ∈ A : X � 0, Y � 0}
F0 = {(X,Y ) ∈ F : X � 0, Y � 0} .
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In the sequel we do the following hypothesis.
Hypothesis 1. The linear transformation L is monotone [6, 20] i.e.

〈L(X), X〉 ≥ 0, for all X ∈ Sn;

Hypothesis 2. F0 6= ∅.
Under our hypothesis it is shown that the set

Scp = {(X,Y ) ∈ F : XY = 0}

of solutions of (1) is compact and non empty [6, 20].
In addition (1) is equivalent to the following optimization problem:

(2) (OP) min
X,Y

[Tr(XY ) : X,Y ∈ A : X � 0, Y � 0] .

Hence solving (1) is equivalent to find the minimizer of (2) with its objective
value is zero.

Now to introduce an interior point method for solving (2) we use the tech-
nique of the logarithmic barrier approach. So for (2) we associate with it the
following minimization problem:

(3) (OP )µ min
X,Y

[Tr(XY )− µ log det(XY ) : X,Y ∈ A : X � 0, Y � 0] ,

where µ > 0 is the barrier parameter and log det(XY ) is the logarithmic bar-
rier function associated with (2), [4].

Under our hypothesis we deduce the following useful properties for (3).

• (OP)µ is a convex optimization problem.
• (OP)µ has a unique solution (X(µ), Y (µ)) for all µ > 0.
• If A 6= ∅. Then limµ 7→0(X(µ), Y (µ)) = (X∗, Y ∗) is a solution of (1),

[9].
• The solution (X(µ), Y (µ)) is characterized by the first-order necessary

and sufficient optimality conditions called conditions of Karush-Kuhn-
Tucker of (OP)µ given by the following nonlinear system of equations:

(4)

{
Y − L(X) = Q,
XY = µI, X � 0, Y � 0.

• Hence solving (OP)µ is equivalent to solve (4).
• The set

{(X(µ), Y (µ)) : µ > 0}
of solutions of the system (4) defines the central-path which is a smooth
curve.

For solving (4) we use primal-dual path-following (IPMs) algorithms. The
basic ideas behind these algorithms is to follow the central path approximately
and to approach the solution of (4) as µ goes to zero by using Newton step.
Suppose now that we have (X,Y ) ∈F0. Applying Newton method for the
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system (4) we obtain a class of search directions given by the following linear
system of equations:

(5)

{
L(∆X) = ∆Y,
X∆Y + ∆XY = µI −XY.

Note that the system (5) has a unique solution (∆X,∆Y ) but unfortunately
this last it is not symmetric. To remedy this default many works have been
done in literature for symmetrizing the second equation in (5). In most sugges-
tions used by researchers in this domain is to introduce a scaling and invertible
matrix P and to consider the following linear transformation HP given by:

HP (M) = 1
2(PMP−1 + P−TMTP T ) for a given M in Rn×n.

Then the second equation in system (5) becomes:

(6)


L(∆X) = ∆Y,
P (X∆Y + ∆XY )P−1 + P−T (Y∆X + ∆Y X)P T =

= 2µI − PXY P−1 − P−TY XP T .
Now we give some popular directions used in IPMs. For P = I we get the

Alizadeh-Haerberly-Overton (A.H.O) direction and for P =Y 1/2 or P = X1/2

it defines the so-called (H.K.M) direction.
Here we use the Nesterov-Todd (NT) direction where P is given by P =

D−1/2 and D = X1/2(X1/2Y X1/2)−1/2X1/2 = Y −1/2(Y 1/2XY 1/2)1/2Y −1/2.
The role of the symmetric and positive definite matrixD is to rescale the

two matrices X and Y to the same symmetric and positive definite matrixV
given by:

(7) V = D−
1
2XD−

1
2 = D

1
2Y D

1
2 .

Then the scaling Newton directions are:

(8) DX = D−
1
2 ∆XD−

1
2 , DY = D

1
2 ∆Y D

1
2 .

Hence using (7) and (8) the system (6) can be written as:

(9)

{
L̄(DX) = DY ,
V DV +DV V = 2µI − 2V 2,

where

(10) DV = DX +DY

and L̄ is given by:

L̄(DX) = D
1
2L(D

1
2DXD

1
2 )D

1
2 .

The linear transformation L̄ is also monotone on Sn. Under our hypothe-
sis the new linear system in (9) has a unique symmetric solution (DX , DY ).
Furthermore these directions satisfy:

(11) Tr(DYDX) = Tr(DXDY ) ≥ 0.
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This inequality shows that the Newton directions in the primal-dual space
are not orthogonal in contrast to SDP case. Thus makes the analysis of the
complexity a little different to SDP. As mentioned before the proximity used
here is defined as:

(12) δ(XY, µ) = 1
2

∥∥∥ 1√
µV −

√
µV −1

∥∥∥ .
One can easily verify that:

δ2(XY, µ) = 1
4( 1
µ Tr(XY )− 2n+ µTr(XY )−1).

Remark 1. The unique solution of the Sylvester equation:

V DV +DV V = 2µI − 2V 2,

stated in (9) is

(13) DV = µV −1 − V,

and using (12), we deduce

�(14) ‖DV ‖2 = 4µδ2.

3. THE ALGORITHM AND ITS COMPLEXITY ANALYSIS

In this section we present the algorithm and we study its complexity and we
compute the total number of iterations produced by it. We start to state some
technical results that are needed for the analysis of the algorithm. LetA be
a given matrix in Rn×n. We decompose A in its symmetric part A and its

skew-symmetric part Ã. Thus we have

A = A+ Ã, A = A+AT

2 , Ã = A−AT

2 .

Lemma 2. [14, Lemme 2.1] If A is positive definite matrix then

TrA−1 ≤ Tr(A
−1

)

equality holds if and only A = AT .

Lemma 3. [14, Lemme 2.2] Suppose that A1 and A2 are both symmetric and
positive definite and, α, β ≥ 0, α+ β = 1. Then

Tr(αA1 + βA2)−1 ≤ αTr(A1)−1 + β Tr(A2)−1

with equality only if α =1 or β = 1.

Now the generic form of this algorithm is stated as follows.
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3.1. The Algorithm. (Generic primal-dual algorithm for (SDLCP))

Input:
an accuracy parameter ε;
an update parameter θ, 0 < θ < 1;
a proximity parameter τ ;
a feasible step size α;
a strictly feasible point (X0, Y 0) and µ0 = 1

n Tr(X0Y 0) s.t. δ(X0Y 0, µ0) ≤ τ ;
begin

set X := X0; Y := Y 0; µ := µ0;
while nµ ≥ ε do

begin
µ := (1− θ)µ;
while δ(XY, µ) ≥ τ do

begin
compute (∆X,∆Y ) via (9);
set X := X + α∆X; Y := Y + α∆Y ;

end
end

end.

3.2. Complexity analysis. Defining the symmetric matrix

(15) D̃ = 1
2µ(DXDY +DYDX).

Since D̃ is symmetric then its eigenvalues λi(D̃) are real for all i ∈ I =
{1, 2, . . . , n} and due to (11) there exist two nonnegative numbers (Ref. [18])
such that:

σ+ =
∑
i∈I+

λi(D̃) , σ− = −
∑
i∈I−

λi(D̃)

where

I+ =
{
i ∈ I : λi(D̃) ≥ 0

}
and

I− = I − I+ =
{
i ∈ I : λi(D̃) < 0

}
are index sets.

Lemma 4. One has

σ− ≤ σ+ ≤ 2δ2

and

0 ≤ Tr(D̃) ≤ 2δ2.
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Proof. For the left hand of the first statement it is clear from (11) and (15)
that:

Tr(D̃) =
∑
i∈I

λi(D̃) = σ+ − σ− ≥ 0.

For the right hand of it since D̃ is symmetric then it is diagonalizable and
there exists an orthogonal matrix Q

D̃
such that:

QT
D̃
D̃Q

D̃
= diag(λi(D̃), i ∈ I+, λi(D̃), i ∈ I−)

and let

D = 1
2µQ

T
D̃

(D2
X +D2

Y )Q
D̃
.

Since the matrix

1
2µQ

T
D̃

(DX +DY )2Q
D̃

= D + diag(λi(D̃), i ∈ I+, λi(D̃), i ∈ I−)

is positive semi-definite it holds that:

Dii + λi(D̃) ≥ 0 for all i ∈ I, Dii ≥ −λi(D̃) > 0 for all i ∈ I−,

and ∑
i∈I−

Dii ≥
∑
i∈I−

−λi(D̃) = σ−.

On the other hand the matrix

1
2µQ

T
D̃

(DX −DY )2Q
D̃

= D − diag(λi(D̃), i ∈ I+, λi(D̃), i ∈ I−)

is also positive semi-definite whence

Dii − λi(D̃) ≥ 0, i.e. Dii ≥ λi(D̃) > 0 for all i ∈ I+,

and ∑
i∈I+

Dii ≥
∑
i∈I+

λi(D̃) = σ+,

and together leads to

σ+ + σ− ≤ Tr(D̄) = 1
2µ Tr(D2

X +D2
Y )

≤ 1
2µ Tr(DX +DY )2

= 1
2µ ‖DV ‖2 = 2δ2.

Thus gives

σ+ ≤ 2δ2, σ− ≤ 2δ2.

For the last result it follows from (11) and (15) that:

2µTr(D̃) = Tr(DXDY +DYDX)

≤ ‖DX +DY ‖2 .
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Then using (10) and (14) we deduce:

0 ≤ Tr(D̃) ≤ 1
2µ ‖DX +DY ‖2

= 2 1
4µ ‖DV ‖2

= 2δ2.

It completes the proof. �

Next we want to estimate the quantity δ2
+ − δ2 i.e. the effect of a damped

Newton iteration on the proximity. Here δ+ denotes the proximity after a
stepsize α. Let

δ+ = δ(X+Y +, µ), X+ = X + α∆X and Y + = Y + α∆Y

First we start to give a result for δ+.

Lemma 5. Suppose that the step α is strictly feasible. Then

δ2
+ ≤ 1−α

4µ Tr(V 2) + αn
4 −

n
2 + α2

4

n∑
i=1

λi(D̃)+ µ(1−α)
4 Tr(V −2)+ α

4

n∑
i=1

1

1+αλi(D̃)

with D̃ is defined in (15).

Proof. We deal first with the quantity Tr(X+Y +). We have:

Tr(X+Y +) = Tr((V + αDX)(V + αDY ))

= Tr(V 2 + α(DXV + V DY ) + α2DXDY )

= Tr(V 2 + αV DV + α2DXDY ),

since Tr(V DX) = Tr(DXV ) and Tr(V DY ) = Tr(DY V ).
Now substituting DX , DY , DV by their values and by (11) we deduce:

Tr(X+Y +) = Tr((V 2 + α(µI − V 2)) + α2µTr(D̃)

= (1− α) Tr(V 2) + αnµ+ α2µ
n∑
i=1

λi(D̃).

For the quantity Tr((X+)−1(Y +)−1) we have by a simple calculus and using
Lemma 3.1 that:

Tr((X+)−1(Y +)−1) =

= Tr((V + αDX)−1(V + αDY )−1)

≤ 2 Tr [(V + αDX)(V + αDY ) + (V + αDY )(V + αDX)]−1

= 2 Tr
[
(2V 2 + αV DV + αDV V + α2DYDX + α2DXDY )−1

]
= 2 Tr

[
(2V 2 + αV DV + αDV V + 2α2µD̃)−1

]
= 2 Tr([(1− α)2V 2 + 2αµ(I + αD̃)]−1).
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Now for the last term in the right hand side of the above inequality and

if 0 < α < 1, is sufficiently small such that the matrix (I + αD̃) is positive
definite, then by Lemma 3.2 we get:

Tr([(1− α)2V 2 + 2αµ(I + αD̃)]−1) ≤ 1−α
2 Tr(V −2) + α

2µ Tr(I + αD̃)−1

≤ 1−α
2 Tr(V −2) + α

2µ

n∑
i=1

1

1+αλi(D̃)
.(16)

It completes the proof of the lemma. �

Theorem 6. If 0 < α < 1
σ+

. Then the step size is strictly feasible and the

matrix

(V + αDX)(V + αDY )

is positive definite. This result is an immediate consequence of (16).

Now by Lemma 3.3 λi(D̃) the eigenvalues of D̃ satisfy
∣∣∣λi(D̃)

∣∣∣ ≤ σ ≤ 2δ2

for all i ∈ I where σ = σ+ since Tr(D̃) ≥ 0, it implies σ+ ≥ σ−, then the
following result holds.

Theorem 7. Let δ = δ(XY, µ) and σ = σ+. For all 0 < α < 1
σ , one has

δ2
+ ≤ (1− α)δ2 + 2α3δ4

1−4α2δ4
.

Proof. By Lemma 3.2 it follows that:

δ2
+ ≤ 1−α

4µ Tr(V 2) + αn
4 −

n
2 + α2

4

n∑
i=1

λi(D̃)+ µ(1−α)
4 Tr(V −2)+ α

4

n∑
i=1

1

1+αλi(D̃)

= 1−α
4 Tr( 1

µV
2 + µV −2 − 2I)− αn

4 + α2

4

n∑
i=1

λi(D̃) + α
4

n∑
i=1

1

1+αλi(D̃)

= 1−α
4 Tr( 1

µV
2 + µV −2 − 2I) + α2

4

n∑
i=1

λi(D̃) + α
4

n∑
i=1

( 1

1+αλi(D̃)
− 1)

= (1− α)δ2 + α2

4

n∑
i=1

λi(D̃)− α2

4

n∑
i=1

λi(D̃)

1+αλi(D̃)
,

and

δ2
+ ≤ (1− α)δ2 + α2

4

n∑
i=1

λi(D̃)− α2

4

n∑
i∈I+

λi(D̃)

1+αλi(D̃)
+ α2

4

∑
i∈I−

−λi(D̃)

1+αλi(D̃)

δ2
+ ≤ (1− α)δ2 + α2

4 σ+ − α2

4
σ+

(1+ασ+) + α3

4

∑
i∈I−

(λi(D̃))2

(1+αλi(D̃))

≤ (1− α)δ2 +
α3σ2

+

4(1+ασ+) +
α3σ2
−

4(1−ασ−) .
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Now using the fact that σ ≤ 2δ2 and σ− ≤ σ. We deduce:

α3σ2
+

1+ασ+
= α3σ2

1+ασ ≤
4α3δ4

1+2αδ2

and
α3σ2
−

1−ασ− ≤
α3σ2

1−ασ ≤
4α3δ4

1−2αδ2
.

It completes the proof of the theorem. �

Theorem 8. If α = 1, then from the above inequality in Theorem 4.2, we
get:

δ2
+ ≤ 2δ4

1−4δ4
.

Proof. Since

α = 1
4δ2
≤ 1

σ ,

then the step size is strictly feasible and by Theorem 3.2 it follows that

δ2
+ − δ2 ≤ −αδ2 + 2α3δ4

1−4α2δ4

≤ −1
4 + 1

24δ2
≤ − 5

24 .

This completes the proof of the theorem. �

Now we are ready to compute the iteration bounds of the algorithm.

3.3. Iteration bounds.

Lemma 9. [19, Lemme IV.36] Let (X,Y ) be a strictly feasible point and
µ > 0. If µ+ = (1− θ)µ then

(17) δ(XY, µ+)2 ≤ (2δ+θ
√
n)2

4(1−θ) .

Lemma 10. If δ(XY, µ) ≤ τ and τ ≥ 1, then after an update of the barrier
parameter no more than[

6θ
5(1−θ)

(
nθ + 4τ

√
n+ 4τ 2

)]
,

iterations are needed to recenter.

Proof. By (17) in Lemma 3.5 after the update

δ2(XY, µ+) ≤ (2δ+θ
√
n)2

4(1−θ) .

Then every damped Newton step decreases δ2 by at least 5
24 . Hence after at

most

[24
5 ( (2τ+θ

√
n)2

4(1−θ) − τ2)],

iterations the proximity will have passed the threshold value τ . This completes
the proof of the lemma. �

Consequently we have the following theorem.
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Theorem 11. If τ ≥ 1, then the total number of iterations produced by the
primal-dual algorithm is not more than[

6θ
5(1−θ)(nθ + 4τ

√
n+ 4τ2)

] [
1
θ log nµ0

ε

]
.

Proof. It is shown that the number of iterations produced by the algorithm
(see Ref. [19, Lemme II.18 page116] is given by

1
θ log nµ0

ε .

Multiplication of this number by the bound in Lemma 3.5 yields the theorem.
Omitting the round-off brackets in Theorem 3.4 (this does not change the
order of magnitude of the iteration bound) our algorithm does not exceed the
following upper bound of iterations

O
(

6
5(1−θ)(nθ + 4τ

√
n+ 4τ2) log nµ0

ε

)
.

Thus if θ = 1
2 and τ = 1 the bound becomes:

O
(

12
5 (n2 + 4

√
n+ 4) log nµ0

ε

)
= O

(
n log nµ0

ε

)
which is the bound complexity of such long-update primal-dual algorithms.

Meanwhile if θ = n−
1
2 and τ = 1 we obtain the best well-known iteration

bound for small-update primal-dual algorithms, namely:

O(
√
n log nµ0

ε ).

It completes the proof of the theorem. �

4. CONCLUSION AND FUTURE RESEARCH

In this paper we have extended the study of complexity analysis of a primal-
dual path-following algorithm designed for (SDP) to monotone (SDLCP). We
have succeed to give an unified analysis for its polynomial complexity. For

long-update algorithm we have O
(
n log nµ0

ε

)
iteration bound. This complex-

ity is similar to such primal-dual (IPMs) methods. For small-update algorithm

the iteration bound is O
(√
n log nµ0

ε

)
which is the best known iteration bound.

Finally, an important topic for further research is the numerical implementa-
tion of this algorithm and to extend it for other optimization problems.
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