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Abstract. Using our new concept of recurrent functions, we present new suffi-
cient convergence conditions for the secant method to a locally unique solution
of a nonlinear equation in a Banach space. We combine Lipschitz and center–
Lipschitz conditions on the divided difference operator to obtain the semilocal
convergence analysis of the secant method. Our error bounds are tighter than
earlier ones. Moreover, under our convergence hypotheses, we can expand the
applicability of the secant method in cases not covered before [8], [9], [12]–[14],
[16], [19]–[21]. Application and examples are also provided in this study.
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique solution x? of equation

(1.1) F (x) = 0,

where F is a Fréchet–differentiable operator defined on a convex subset D of
a Banach space X with values in a Banach space Y.

The field of computational sciences has seen a considerable development
in mathematics, engineering sciences, and economic equilibrium theory. For
example, dynamic systems are mathematically modeled by difference or differ-
ential equations, and their solutions usually represent the states of the systems.
For the sake of simplicity, assume that a time–invariant system is driven by
the equation ẋ = T (x), for some suitable operator T , where x is the state.
Then the equilibrium states are determined by solving equation (1.1). Similar
equations are used in the case of discrete systems. The unknowns of engineer-
ing equations can be functions (difference, differential, and integral equations),
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vectors (systems of linear or nonlinear algebraic equations), or real or complex
numbers (single algebraic equations with single unknowns). Except in special
cases, the most commonly used solution methods are iterative–when starting
from one or several initial approximations a sequence is constructed that con-
verges to a solution of the equation. Iteration methods are also applied for
solving optimization problems. In such cases, the iteration sequences converge
to an optimal solution of the problem at hand. Since all of these methods have
the same recursive structure, they can be introduced and discussed in a general
framework. We note that in computational sciences, the practice of numer-
ical analysis for finding such solutions is essentially connected to variants of
Newton’s method.

We consider the secant method (SM) in the form

(1.2) xn+1 = xn − δF (xn−1, xn)−1 F (xn) (n ≥ 0), (x−1, x0 ∈ D)

where, δF (x, y) ∈ L(X ,Y) (x, y ∈ D) is a consistent approximation of the
Fréchet–derivative of F [4], [11]. L(X ,Y) denotes the space of bounded linear
operators from X into Y. (SM) is an alternative method of Newton’s method
(NM)

xn+1 = xn − F ′(xn)−1 F (xn), (n ≥ 0), (x0 ∈ D).

Dennis [8], Potra [14]–[16], Bosarge and Falb [7], Hernández, M.J. Rubio and
J.A. Ezquerro [9], Argyros [4], and others [10], [13], [20], have provided suffi-
cient convergence conditions for (SM) based on Lipschitz–type conditions on
δF (see, also relevant works in [1], [2], [5], [12], [17], [18], [19], [21]).

In the previous mentioned references, the conditions usually associated with
the semilocal convergence of secant method (1.2) are:

(H1) F is a nonlinear operator defined on a convex subset D of a Banach
space X with values in a Banach space Y;

(H2) x−1 and x0 are two points belonging to the interior D0 of D and sat-
isfying the inequality

‖ x0 − x−1 ‖≤ c;

(H3) F is Fréchet–differentiable on D0, and there exists an operator
δF : D0×D0 → L(X ,Y), such that the linear operator A=δF (x−1, x0)
is invertible, its inverse A−1 is bounded, and:

‖ A−1 F (x0) ‖≤ η;

‖ A−1 (δF (x, y)− F ′(z)) ‖≤ ` (‖ x− z ‖ + ‖ y − z ‖), for all x, y, z ∈ D;

U(x0, r) = {x ∈ X : ‖ x− x0 ‖≤ r} ⊆ D0,

for some r > 0 depending on `, c, and η; and

(1.3) ` c+ 2
√
` η ≤ 1.
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The sufficient convergence condition (1.3) is easily violated. Indeed, let
` = 1, η = .18, and c = .185. Then, (1.3) does not holds, since

` c+ 2
√
` η = 1.033528137.

Moreover, our recently found corresponding conditions are also violated [6]
(see, Remark 4(c)). Hence, there is not guarantee that equation (1.1) under the
information (`, c, η) has a solution that can be found using (SM). In this study
we are motivated by optimization considerations, and the above observation.

Here, using a combination of Lipschitz and center–Lipschitz conditions,
we provide a semilocal convergence analysis for (SM). Our error bounds are
tighter, and our convergence conditions hold in cases where the corresponding
hypotheses in earlier references [8], [9], [12]–[14], [16], [19]–[21] are violated.
Applications and examples are also provided in this study.

2. SEMILOCAL CONVERGENCE ANALYSIS OF (SM)

We need the following result on majorizing sequences for (SM).

Lemma 1. Let `0 > 0, ` > 0, c ≥ 0, and η ∈ (0, c] be given constants.
Assume:

(2.1) (`+ 2 `0) η + `0 c < 1;

for

δ0 = ` (c+η)
1−`0 (c+η) ,

δ = 2 (1−((`+2 `0) η+`0 c))

(`+2 `0) η+
√

((`+2 `0) η)2+4 `0 η (1−((`+2 `0) η+`0 c))
,

δ1 the unique positive root of polynomial f in (0, 1)

(2.2) f(t) = `0 t
3 + (`0 + `) t2 − `,

given by

(2.3) δ1 = 1
2
−`+
√
`2+4 ` `0
`0

,

and

(2.4) δ0 ≤ δ ≤ δ1.

Then, scalar sequence {tn} (n ≥ −1) given by

(2.5) t−1 = 0, t0 = c, t1 = c+ η, tn+2 = tn+1 + ` (tn+1−tn−1) (tn+1−tn)
1−`0 (tn+1−t0+tn)

is non–decreasing, bounded from above by

(2.6) t?? = η
1−δ + c,

and converges to its unique least upper bound t? such that

(2.7) 0 ≤ t? ≤ t??.
Moreover, the following estimates hold for all n ≥ 0:

(2.8) 0 ≤ tn+2 − tn+1 ≤ δ (tn+1 − tn) ≤ δn+1 η.
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Proof. In view of (2.1), we have δ0 ∈ [0, 1), and δ > 0.
We shall show using mathematical induction on k ≥ 0

(2.9) 0 ≤ tk+2 − tk+1 ≤ δ (tk+1 − tk).

By (2.5) for k = 0, we must show

0 ≤ ` (t1−t−1)
1−`0 t1 ≤ δ or 0 ≤ ` (c+η)

1−`0 (c+η) ≤ δ,

which is true from (2.1), and the choice of δ ≥ δ0.
Let assume that (2.9) holds for k ≤ n+ 1. The induction hypothesis gives

(2.10)

tk+2 ≤ tk+1 + δ (tk+1 − tk)
≤ tk + δ (tk − tk−1) + δ (tk+1 − tk)
≤ t1 + δ (t1 − t0) + · · ·+ δ (tk+1 − tk)
≤ c+ η + δ η + · · ·+ δk+1 η

= c+ 1−δk+2

1−δ η < η
1−δ + c = t??.

Moreover, we have:
(2.11)

` (tk+2 − tk) + δ `0 (tk+2 − t0 + tk+1)

≤ `
(

(tk+2 − tk+1) + (tk+1 − tk)
)

+ δ `0

(
1−δk+2

1−δ + 1−δk+1

1−δ

)
η + δ `0 c

≤ ` (δk + δk+1) η + δ `0
1−δ (2− δk+1 − δk+2) η + δ `0 c.

We prove now (2.9). By (2.5), we can have estimate

(2.12) ` (δk + δk+1) η + δ `0
1−δ (2− δk+1 − δk+2) η + δ `0 c ≤ δ

or
(2.13)

` (δk−1 + δk) η+ `0

(
(1 + δ+ · · ·+ δk) + (1 + δ+ · · ·+ δk+1)

)
η+ `0 c− 1 ≤ 0.

In view of (2.13), we are motivated to define (for δ = s) the functions for k ≥ 1

(2.14) fk(s) = ` (sk−1 + sk) η+ `0

(
2 (1 + s+ · · ·+ sk) + sk+1

)
η+ `0 c− 1.

We need the relationship between two consecutive functions fk. Using (2.14),
we obtain
(2.15)

fk+1(s) = ` (sk+sk+1) η+`0

(
2 (1+s+· · ·+sk+1)+sk+2

)
η + `0 c− 1

= fk(s) + ` (sk+1 − sk−1) η + `0 (sk+1 + sk+2) η
= f(s) sk−1 η + fk(s).

Note that δ is the unique positive root of polynomial f1.
Instead of (2.13), we shall show

(2.16) fk(δ) ≤ 0 (k ≥ 0).
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Estimate (2.16) holds for k = 1, as equality. Using (2.15), we get in turn

f2(δ) = f1(δ) + f(δ) δ η ≤ 0,

since,

f1(δ) = 0, f(δ) ≤ 0 (by (2.2), and δ1 ≥ δ).
Assume (2.16) holds for m ≤ k. Then, again by (2.15), we have:

fk+1(δ) = fk(δ) + f(δ) δk−1 η ≤ 0,

which completes the induction for (2.16).
Moreover, define function f∞ on [0, 1) by

(2.17) f∞(s) = lim
k−→∞

fk(s).

Using (2.16), and (2.17), we obtain

(2.18) f∞(δ) = lim
k−→∞

fk(δ) ≤ 0.

Hence, we showed sequence {tn} (n ≥ −1) is non–decreasing and bounded
above from by t??, so that (2.8) holds. It follows that there exists t? ∈ [0, t??],
so that lim

n−→∞
tn = t?.

That completes the proof of Lemma 1. �

We shall study (SM) for triplets (F, x−1, x0) belonging to the class
C(`, `0, η, c, δ) defined as follows:

Definition 2. Let `, `0, η, c, δ be non–negative constants satisfying the
hypotheses of Lemma 1. A triplet (F, x−1, x0) belongs to the class C(`, `0, η, c, δ)
if:

(A1) F is a nonlinear operator defined on a convex subset D of a Banach
space X with values in a Banach space Y;

(A2) x−1 and x0 are two points belonging to the interior D0 of D and sat-
isfying the inequality

‖ x0 − x−1 ‖≤ c;

(A3) F is Fréchet–differentiable on D0, and there exists an operator
δF : D0×D0 → L(X ,Y), such that, A−1 = δF (x−1, x0)−1 ∈ L(Y,X ),
and for all x, y, z ∈ D, the following hold

‖ A−1 F (x0) ‖≤ η,

‖ A−1 (δF (x, y)− F ′(z)) ‖≤ ` (‖ x− z ‖ + ‖ y − z ‖),
and

‖ A−1 (δF (x, y)− F ′(x0)) ‖≤ `0 (‖ x− x0 ‖ + ‖ y − x0 ‖);

(A4) U(x0, t
?) ⊆ Dc = {x ∈ D : F is continuous at x} ⊆ D, where, t? is

given in Lemma 1;
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(A5) For

δ2 = 2 (1−`0 (c+η))
1−`0 c ,

we have {
δ ≤ δ1 if δ2 < δ1

δ < δ2 if δ1 ≤ δ2.

The semilocal convergence theorem for (SM) is as follows.

Theorem 3. If (F, x−1, x0) ∈ C(`, `0, η, c, δ), then, the sequence {xn} (n ≥
−1) generated by (SM) is well defined, remains in U(x0, t

?) for all n ≥ 0, and
converges to a unique solution x? ∈ U(x0, t

?) of (1.1).
Moreover the following estimates hold for all n ≥ 0

(2.19) ‖ xn − xn−1 ‖≤ tn − tn−1,

and

(2.20) ‖ xn − x? ‖≤ t? − tn
where, {tn}, (n ≥ 0) is given by (2.5).

Furthermore, if there exists R > 0, such that

(2.21) R ≥ t? − t0 and `0

(
η

1−δ + c+R

)
≤ 1,

then, the solution x? is unique in U(x0, R).

Proof. First, we show that L = δF (xk, xk+1) is invertible for xk, xk+1 ∈
U(x0, t

?). By (2.5), (2.6), (A2) and (A3), we have

‖ I −A−1 L ‖ =‖ A−1 (L−A) ‖(2.22)

≤‖ A−1(L− F ′(x0)) ‖ + ‖ A−1(F ′(x0)−A) ‖
≤ `0 (‖ xk − x0 ‖ + ‖ xk+1 − x0 ‖ + ‖ x0 − x−1 ‖)
≤ `0 (tk − t0 + tk+1 − t0 + c)

≤ `0 (t? − t0 + t? − t0 + c)

≤ `0
(

2

(
η

1−δ + c

)
− c
)
< 1,

by (A5).
Using the Banach Lemma on invertible operators [4], [11], and (2.22), L is

invertible and

(2.23) ‖ L−1A ‖≤
(

1− `0 (‖ xk − x0 ‖ + ‖ xk+1 − x0 ‖ +c)

)−1

.

By (A3), we have

(2.24) ‖ A−1 (F ′(u)− F ′(v)) ‖≤ 2 ` ‖ u− v ‖, u, v ∈ D0.
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We can write the identity

(2.25) F (x)− F (y) =

∫ 1

0
F ′(y + t(x− y)) dt (x− y)

then, for all x, y, u, v ∈ D0, we obtain

(2.26)
‖ A−1

0 (F (x)− F (y)− F ′(u)(x− y)) ‖
≤ ` (‖ x− u ‖ + ‖ y − u ‖) ‖ x− y ‖

and

(2.27)
‖ A−1

0 (F (x)− F (y)− δF (u, v) (x− y)) ‖
≤ ` (‖ x− v ‖ + ‖ y − v ‖ + ‖ u− v ‖) ‖ x− y ‖ .

By a continuity argument (2.24)–(2.27) remain valid if x and/or y belong to
Dc.

Now we show (2.19). If (2.19) holds for all n ≤ k and if {xn} (n ≥ 0) is
well defined for n = 0, 1, 2, · · · , k, then

(2.28) ‖ xn − x0 ‖≤ tn − t0 < t? − t0, n ≤ k.

That is (1.2) is well defined for n = k + 1. For n = −1, and n = 0, (2.19)
reduces to ‖ x−1 − x0 ‖≤ c, and ‖ x0 − x1 ‖≤ η. Suppose (2.19) holds for
n = −1, 0, 1, · · · , k (k ≥ 0). By (2.23), (2.27), and

(2.29) F (xk+1) = F (xk+1)− F (xk)− δF (xk−1, xk) (xk+1 − xk)

we obtain the following estimate

(2.30)

‖ xk+2 − xk+1 ‖ = ‖ δF (xk, xk+1)−1 F (xk+1) ‖
≤ ‖ δF (xk, xk+1)−1A ‖ ‖ A−1 F (xk+1) ‖
≤ ` (‖xk+1−xk‖+‖xk−xk−1‖)

1−`0 (‖xk+1−x0‖+‖xk−x0‖+c) ‖ xk+1 − xk ‖
≤ ` (tk+1−tk+tk−tk−1)

1−`0 (tk+1−t0+tk−t0+t0−t−1) (tk+1 − tk)
= tk+2 − tk+1,

and the induction for (2.19) is completed. It follows from (2.19), and Lemma
1 that{xn} (n ≥ −1) is Cauchy in a Banach space X , and as such it converges
to some x? ∈ U(x0, t

?) (since U(x0, t
?) is a closed set). By letting k → ∞

in (2.30), we obtain F (x?) = 0. Estimate (2.20) follows from (2.19) by using
standard majoration techniques [4], [5], [11].

Finally, for showing the uniqueness in U(x0, t
?), let y? ∈ U(x0, t

?) be a
solution (1.1). Set

M =

∫ 1

0
F ′(y? + t (y? − x?)) dt.
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It then follows by (A3), and (A5):
(2.31)

‖ A−1 (A−M) ‖ = `0 (‖ y? − x0 ‖ + ‖ x? − x0 ‖ + ‖ x0 − x−1 ‖)
≤ `0 ((t? − t0) + (t? − t0) + t0)

≤ `0

(
2

(
η

1−δ + c

)
− c
)

= `0

(
2 η
1−δ + c

)
< 1.

It follows from (2.31), and the Banach lemma on invertible operators that
M−1 exists on U(x0, t

?).
Using the identity:

(2.32) F (x?)− F (y?) =M (x? − y?)
we deduce x? = y?. Finally, we shall show uniqueness in U(x0, R). As in
(2.31), we arrive at

‖ A−1 (A−M) ‖< `0

(
η

1−δ + c+R

)
≤ 1,

by (2.21)–(2.23).
That completes the proof of Theorem 3. �

Remark 4. (a) The point t?? given in closed form by (2.6) can replace
t? in Theorem 3.

(b) If we impose the condition (5 `0 + 2 `) η + `0 c > 1, hence δ ∈ (0, 1).
Moreover, if

f(δ) ≤ 0,

then,

δ ≤ δ1

(see also part (c) that follows).
(c) Returning back to the example given in the introduction, say `0 =

.9, we obtain δ0 = .543559196, δ = .554824435, δ1 = .6359783661,
whereas (2.1) holds, since .6705 < 1. That is our results can apply,
whereas the ones using (1.3) cannot.

Let us define δ∞ by

δ∞ = 1−`0 (c+2 η)
1−`0 c .

The corresponding to (2.4) condition in [6] is given by

δ0 ≤ δ1 ≤ δ∞.
But we have

δ∞ = .611277744 < δ1 = .6359783661.

Hence, again the results in this study apply, but not the ones in our
study [6].

That is the sufficient convergence conditions in this study are dif-
ferent from ones in [6]. We conclude that as far as the convergence
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domains go, in practice we shall test all of them, to see which one (if
any) applies.

�

Remark 5. (a) Let us define the majoring sequence {wn} used in [8],
[9], [12]–[14], [16], [19]–[21] (under condition (1.3)):

(2.33) w−1 = 0, w0 = c, w1 = c+η, wn+2 = wn+1 + ` (wn+1−wn−1) (wn+1−wn)
1−` (wn+1−w0+wn) .

Note that in general

(2.34) `0 ≤ `

holds , and `
`0

can be arbitrarily large [2], [4]. In the case `0 = `, then

tn = wn (n ≥ −1). Otherwise:

(2.35) tn < wn, tn+1 − tn ≤ wn+1 − wn,

and

(2.36) 0 ≤ t? − tn ≤ w? − wn, w? = lim
n−→∞

wn.

Note also that strict inequality holds in (2.35) for n ≥ 1, if `0 < `.
The proof of (2.35), (2.36) can be found in [4]. Note that the only

difference in the proofs is that the conditions of Lemma 1 are used here,
instead of the ones in [3]. However this makes no difference between
the proofs.

Finally, note that (1.3) is the sufficient convergence condition for
sequence (2.33).

(b) It turns out from the proof of Theorem 3 that {vn} given by

(2.37) v−1 = 0, v0 = c, v1 = c+ η, vn+2 = vn+1 + `1 (vn+1−vn−1) (vn+1−vn)
1−`0 (vn+1−v0+vn) ,

where,

`1 =

{
`0 if n = 0
` if n > 0

is a finer majorizing sequence for {xn} than {tn}, if `0 < `.
Moreover, we have

(2.38) vn < tn, vn+1 − vn < tn+1 − tn,

and

(2.39) 0 ≤ v? − vn ≤ t? − tn, v? = lim
n−→∞

vn.

�
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3. EXAMPLES

In this section, we present some numerical examples.

Example 6. In the following table, we validate our Remark 4(c) and 5(b).

Comparison table.
(2.5) (2.33) (2.37)

n tn+1 − tn wn+1 − wn vn+1 − vn
1 .0978406552 .1034645669 .0880565897
2 .0645024008 .0834298221 .0548615926
3 .0380319604 .0947064307 .0259951222
4 .0213029402 -1.250121362 .0091844655
5 .0097492108 .0578542134 .0016385499
6 .0029765775 .0165794721 .0000946072
7 .0004197050 -.1376680823 8.821 ×10−7

8 .0000163476 -.5014996853 5 ×10−10

9 8.21×10−8 .5290112928 0

The table shows that our error bounds vn+1 − vn, and tn+1 − tn are finer
than wn+1 − wn given in [8], [9], [12]–[14], [16], [19]–[21]. �

Example 7. Define the scalar function F by F (x) = c0 x+ c1 + c2 sin ec3 x,
x0 = 0, where ci, i = 0, 1, 2, 3 are given parameters. Define linear operator
δF (x, y) by

δF (x, y) =

∫ 1

0
F ′(y + t (x− y)) dt = c0 + c2

sin ec3 x−sin ec3 y

x−y .

Then it can easily be seen that for c3 large and c2 sufficiently small, `
`0

can be

arbitrarily large. That is (2.4) may be satisfied but not (1.3). �

Example 8. [4] (Newton’s method case) Let X = Y = C[0, 1] be
the space of real–valued continuous functions defined on the interval [0, 1],
equipped with the max–norm ‖ . ‖. Let θ ∈ [0, 1] be a given parameter.
Consider the ”Cubic” Chandrasekhar integral equation

(3.1) u(s) = u3(s) + λu(s)

∫ 1

0
q(s, t)u(t) dt+ y(s)− θ.

Here the kernel q(s, t) is a continuous function of two variables defined on
[0, 1] × [0, 1]. The parameter λ in (3.1) is a real number called the ”albedo”
for scattering, and y(s) is a given continuous function defined on [0, 1] and
x(s) is the unknown function sought in C[0, 1]. For simplicity, we choose
u0(s) = y(s) = 1, and q(s, t) = s

s+t , for all s ∈ [0, 1], and t ∈ [0, 1], with

s+ t 6= 0. If we let D = U(u0, 1− θ), and define the operator F on D by

(3.2) F (x)(s) = x3(s)− x(s) + λx(s)

∫ 1

0
q(s, t)x(t) dt+ y(s)− θ,

for all s ∈ [0, 1], then every zero of F satisfies equation (3.1).
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We have the estimates

max
0≤s≤1

|
∫ 1

0

s
s+t dt| = ln 2.

Therefore, if we set ξ =‖ F ′(u0)−1 ‖, then the hypotheses of Theorem 3
(see (A3)) correspond to the usual Lipschitz and center–Lipschitz conditions
for (NM) (see [6, Theorem 3.4]), such that

η = ξ (|λ| ln 2 + 1− θ),

` = 2 ξ (|λ| ln 2 + 3 (2− θ)) and `0 = ξ (2 |λ| ln 2 + 3 (3− θ)).
It follows from an equivalent Theorem for (NM) to Theorem 3 that if condition

hA = 1
8

(
`+ 4 `0 +

√
`2 + 8 ` `0

)
η ≤ 1

2 ,

holds, then problem (3.1) has a unique solution near u0. This assumption is
weaker than the one given before using the Newton–Kantorovich hypothesis.
Note also that `0 < ` for all θ ∈ [0, 1]. �

Example 9. (secant method case) Let X = Y = C[0, 1], equipped with
the norm ‖ x ‖= max

0≤s≤1
|x(s)|. Consider the following nonlinear boundary value

problem [4] {
u′′ = −u3 − γ u2

u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation

(3.3) u(s) = s+

∫ 1

0
Q(s, t) (u3(t) + γ u2(t)) dt

where, Q is the Green function:

Q(s, t) =

{
t (1− s), t ≤ s
s (1− t), s < t.

We observe that

max
0≤s≤1

∫ 1

0
|Q(s, t)| dt = 1

8 .

Then problem (3.3) is in the form (1.1), where, F : D −→ Y is defined as

[F (x)] (s) = x(s)− s−
∫ 1

0
Q(s, t) (x3(t) + γ x2(t)) dt.

It is easy to verify that the Fréchet derivative of F is defined in the form

[F ′(x)v] (s) = v(s)−
∫ 1

0
Q(s, t) (3 x2(t) + 2 γ x(t)) v(t) dt.

Let

δF (x, y) =

∫ 1

0
F ′(y + t (x− y)) dt.
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If we set u0(s) = s, and D = U(u0, R), then since ‖ u0 ‖= 1, it is easy to
verify that U(u0, R) ⊂ U(0, R+ 1). It follows that 2 γ < 5, then (see [4])

‖ I − F ′(u0) ‖≤ 3+2 γ
8 , ‖ F ′(u0)−1 ‖≤ 8

5−2 γ ,

‖ F (u0) ‖≤ 1+γ
8 , ‖ F (u0)−1 F (u0) ‖≤ 1+γ

5−2 γ .

On the other hand, for x, y ∈ D, we have

[(F ′(x)−F ′(y))v] (s) = −
∫ 1

0
Q(s, t) (3x2(t)−3 y2(t)+2 γ (x(t)−y(t))) v(t) dt.

Consequently (see [4]),

‖ F ′(x)− F ′(y) ‖≤ γ+6R+3
4 ‖ x− y ‖,

and
‖ F ′(x)− F ′(u0) ‖≤ 2 γ+3R+6

8 ‖ x− u0 ‖ .
Define linear operator δF (x, y) by

δF (x, y) =

∫ 1

0
F ′(y + t (x− y)) dt.

Then, conditions of Theorem 3 hold with

η = 1+γ
5−2 γ , ` = γ+6R+3

8 , `0 = 2 γ+3R+6
16 .

Note also that `0 < `. �

CONCLUSION

We provided new sufficient convergence conditions for (SM) to a locally
unique solution of a nonlinear equation in a Banach space. Using our new
concept of recurrent functions, and combining Lipschitz and center–Lipschitz
conditions on the divided difference operator, we obtained the semilocal con-
vergence analysis of (SM). Our error bounds are more precise than earlier ones,
and under our convergence hypotheses we can cover cases where earlier condi-
tions are violated [8], [9], [12]–[14], [16], [19]–[21]. Applications, and numerical
examples are also provided in this study.
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