h-STRONGLY E-CONVEX FUNCTIONS

DANIELA MARIAN*

Abstract

Starting from strongly E-convex functions introduced by E. A. Youness, and T. Emam, from h-convex functions introduced by S. Varošanec and from the more general concept of h-convex functions introduced by A. Házy we define and study h-strongly E-convex functions. We study some properties of them.

MSC 2000. 26B25.
Keywords. Strongly E-convex sets, strongly E-convex functions, h-convex functions, h-strongly E-convex functions.

1. PRELIMINARY NOTIONS AND RESULTS

The concepts of E-convex sets and E-convex functions were introduced by Youness in [8]. Subsequently, Chen introduced a new concept of semi- E-convex functions in [2]. Based upon these approaches, in [9] Youness and Emam introduced the concepts of strongly E-convex sets and strongly E-convex functions. We firstly recall the definitions of convex sets, convex functions, E-convex sets and E-convex functions then of strongly E-convex sets and strongly E-convex functions and finally the definitions of h-convex functions, in the sense of Varošanec [7] and Házy [4].

Definition 1. A set $A \subset \mathbb{R}^{n}$ is called convex if $\lambda x+(1-\lambda) y \in A$, for every pair of points $x, y \in A$ and every $\lambda \in[0,1]$.

Definition 2. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called convex on a convex set $A \subset \mathbb{R}^{n}$ if for every pair of points $x, y \in A$ and every $\lambda \in[0,1]$, the following inequality is satisfied:

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

We consider a function $E: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
Definition 3. [8] A set $A \subset \mathbb{R}^{n}$ is called E-convex if $\lambda E(x)+(1-\lambda) E(y) \in$ A, for every pair of points $x, y \in A$ and every $\lambda \in[0,1]$.

[^0]Definition 4. [8] function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called E-convex on an E convex set $A \subset \mathbb{R}^{n}$ if for every pair of points $x, y \in A$ and every $\lambda \in[0,1]$, the following inequality is satisfied:

$$
f(\lambda E(x)+(1-\lambda) E(y)) \leq \lambda f(E(x))+(1-\lambda) f(E(y)) .
$$

Definition 5. 9] A set $A \subset \mathbb{R}^{n}$ is called strongly E-convex if

$$
\lambda(\alpha x+E(x))+(1-\lambda)(\alpha y+E(y)) \in A,
$$

for every pair of points $x, y \in A, \alpha \in[0,1]$ and $\lambda \in[0,1]$.
Definition 6. [9] A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called strongly E-convex on a strongly E-convex set $A \subset \mathbb{R}^{n}$ if for every pair of points $x, y \in A, \alpha \in[0,1]$ and $\lambda \in[0,1]$, the following inequality is satisfied:

$$
f(\lambda(\alpha x+E(x))+(1-\lambda)(\alpha y+E(y))) \leq \lambda f(E(x))+(1-\lambda) f(E(y)) .
$$

In the following lines we recall the definition of h-convex functions introduced in [7] by S. Varošanec.

We consider I and J intervals in $\mathbb{R},(0,1) \subseteq J$ and the real non-negative functions $h: J \rightarrow \mathbb{R}, f: I \rightarrow \mathbb{R}, h \neq 0$.

Definition 7. 7 The function $f: I \rightarrow \mathbb{R}$ is called h-convex on I or is said to belong to the class $S X(h, I)$ if for every pair of points $x, y \in I$ and every $\lambda \in(0,1)$, the following inequality is satisfied:

$$
f(\lambda x+(1-\lambda) y) \leq h(\lambda) f(x)+h(1-\lambda) f(y) .
$$

In 11 Bombardelli and Varošanec omitted the assumption that f and h are non-negative. We recall now the definitions of h-convex functions introduced in 4 by A. Házy.

Let X be a real (complex) linear space and $A \subset X$ nonempty, convex, open. Let $h:[0,1] \rightarrow \mathbb{R}, f: A \rightarrow \mathbb{R}$.

Definition 8. [4] The function $f: A \rightarrow \mathbb{R}$ is called h-convex on A if for every pair of points $x, y \in A$ and every $\lambda \in[0,1]$, the following inequality is satisfied:

$$
f(\lambda x+(1-\lambda) y) \leq h(\lambda) f(x)+h(1-\lambda) f(y) .
$$

2. PROPERTIES OF h-STRONGLY E-CONVEX FUNCTIONS

Starting from strongly E-convex functions and from h-convex functions in the sense of Házy we define and study h-strongly E-convex functions.

In the following lines we consider a map $E: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and a strongly E convex set $A \subset \mathbb{R}^{n}$. We also consider the functions $h:[0,1] \rightarrow \mathbb{R}, f: A \rightarrow \mathbb{R}$.

Definition 9. A function $f: A \rightarrow \mathbb{R}$ is called h-strongly E-convex on A if for every pair of points $x, y \in A, \alpha \in[0,1]$ and $\lambda \in[0,1]$, the following inequality is satisfied:
(1)
$f(\lambda(\alpha x+E(x))+(1-\lambda)(\alpha y+E(y))) \leq h(\lambda) f(E(x))+h(1-\lambda) f(E(y))$.

Theorem 10. If $f: A \rightarrow \mathbb{R}$ is h-strongly E-convex on A and $h(0)=0$ then

$$
\begin{equation*}
f(\alpha x+E(x)) \leq h(1) f(E(x)) . \tag{2}
\end{equation*}
$$

Proof. We put $\lambda=1$ in (1) and we obtain (2).
Theorem 11. If the functions $f_{i}: A \rightarrow \mathbb{R}, i=1,2, \ldots, k$ are h-strongly E-convex on A, then, for $a_{i} \geq 0, i=1,2, \ldots, k$ the function $F: A \rightarrow \mathbb{R}$, $F(x)=\sum_{i=1}^{k} a_{i} f_{i}(x)$ is h-strongly E-convex on A.

Proof. Since the functions $f_{i}: A \rightarrow \mathbb{R}, i=1,2, \ldots, k$ are h-strongly E convex on A, then, for each $x, y \in A$, every $\alpha \in[0,1]$ and $\lambda \in[0,1]$, we have

$$
\begin{aligned}
& F(\lambda(\alpha x+E(x))+(1-\lambda)(\alpha y+E(y))) \\
& =\sum_{i=1}^{k} a_{i} f_{i}(\lambda(\alpha x+E(x))+(1-\lambda)(\alpha y+E(y))) \\
& \leq h(\lambda) \sum_{i=1}^{k} a_{i} f_{i}(E(x))+h(1-\lambda) \sum_{i=1}^{k} a_{i} f_{i}(E(y)) \\
& =h(\lambda) F(E(x))+h(1-\lambda) F(E(y)) .
\end{aligned}
$$

Hence the function F is h-strongly E-convex on A.
We consider a strongly E-convex set $A \subset \mathbb{R}^{n}$, a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and a function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ linear and nondecreasing.

Theorem 12. If the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is h-strongly E-convex on A then the composite function $\varphi \circ f$ is h-strongly E-convex on A.

Proof. Since f is h-strongly E-convex on A, for each $x, y \in A, \alpha \in[0,1]$ and $\lambda \in[0,1]$, we have $f(\lambda(\alpha x+E(x))+(1-\lambda)(\alpha y+E(y))) \leq h(\lambda) f(E(x))+$ $h(1-\lambda) f(E(y))$ and hence

$$
\begin{aligned}
& (\varphi \circ f)(\lambda(\alpha x+E(x))+(1-\lambda)(\alpha y+E(y))) \\
& \leq \varphi[h(\lambda) f(E(x))+h(1-\lambda) f(E(y)))] \\
& =h(\lambda)(\varphi \circ f)(E(x))+h(1-\lambda)(\varphi \circ f)(E(y)),
\end{aligned}
$$

which implies that $\varphi \circ f$ is h-strongly E-convex on A.
We denote $E(x)$ by $E x$ for simplicity.
Theorem 13. If the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is non-negative and differentiable h-strongly E-convex on a strongly E-convex set A and h is a non-negative function with the property $h(\lambda) \leq \lambda$ for every $\lambda \in[0,1]$ then

$$
\begin{equation*}
(E x-E y) \nabla(f \circ E)(y) \leq(f \circ E)(x)-(f \circ E)(y) \tag{3}
\end{equation*}
$$

for every $x, y \in A$.

Proof. Since f is h-strongly E-convex on A,
$f(\lambda(\alpha x+E x)+(1-\lambda)(\alpha y+E y)) \leq h(\lambda)(f \circ E)(x)+h(1-\lambda)(f \circ E)(y)$ for each $x, y \in A, \lambda \in[0,1]$ and $\alpha \in[0,1]$. Since $h(x) \leq x$ for every $x \in[0,1]$ we have

$$
\begin{aligned}
& f((\alpha y+E y)+\lambda[(\alpha x+E x)-(\alpha y+E y)]) \\
& \leq \lambda(f \circ E)(x)+(1-\lambda)(f \circ E)(y) \\
& =(f \circ E)(y)+\lambda[(f \circ E)(x)-(f \circ E)(y)]
\end{aligned}
$$

and hence

$$
\begin{aligned}
& f(\alpha y+E y)+\lambda[(\alpha x+E x)-(\alpha y+E y)]) \nabla f(\alpha y+E y)+O\left(\lambda^{2}\right) \\
& \leq(f \circ E)(y)+\lambda[(f \circ E)(x)-(f \circ E)(y)]
\end{aligned}
$$

By taking $\alpha \rightarrow 0$, we get

$$
\begin{aligned}
& f(E y)+\lambda(E x-E y) \nabla f(E y))+O\left(\lambda^{2}\right) \\
& \leq(f \circ E)(y)+\lambda[(f \circ E)(x)-(f \circ E)(y)] .
\end{aligned}
$$

Dividing by $\lambda>0$ and taking $\lambda \rightarrow 0$, we obtain

$$
(E x-E y) \nabla(f \circ E)(y) \leq(f \circ E)(x)-(f \circ E)(y),
$$

for each $x, y \in A$.
The following theorem provides a characterization of h-strongly E-convex functions with respect to the E-monotonicity of the gradient of map, similar with that obtain from E-convex functions, by Soleimani-Damaneh in 3 .

Definition 14. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable. The map $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called E-monotone if

$$
(\nabla f(E(x))-\nabla f(E(y)))(E(x)-E(y)) \geq 0,
$$

for every $x, y \in R^{n}$.
Theorem 15. If the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is non-negative and differentiable h-strongly E-convex on a strongly E-convex set A and h is a non-negative function with the property $h(\lambda) \leq \lambda$ for every $\lambda \in[0,1]$ then

$$
\begin{equation*}
(\nabla f(E(x))-\nabla f(E(y)))(E(x)-E(y)) \geq 0 \tag{4}
\end{equation*}
$$

for every $x, y \in A$.
Proof. Since f is h-strongly E-convex on A, from theorem (13) we have

$$
(E x-E y) \nabla(f \circ E)(y) \leq(f \circ E)(x)-(f \circ E)(y)
$$

and

$$
(E y-E x) \nabla(f \circ E)(x) \leq(f \circ E)(y)-(f \circ E)(x),
$$

for every $x, y \in A$. Adding these two inequalities we obtain

$$
(\nabla f(E(x))-\nabla f(E(y)))(E(x)-E(y)) \geq 0
$$

for every $x, y \in A$.
Theorem 16. Let the functions $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1,2, \ldots, m$ be h-strongly E-convex on \mathbb{R}^{n}. We consider the set

$$
M=\left\{x \in R^{n} \mid g_{i}(x) \leq 0, i=1,2, \ldots m\right\} .
$$

If $E(M) \subseteq M$ and the function h is positively then the set M is strongly E-convex.

Proof. Since the functions $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1,2, \ldots, m$ are h-strongly E convex on \mathbb{R}^{n} then, for every $x, y \in M, \alpha \in[0,1]$ and $\lambda \in[0,1]$ we have

$$
\begin{aligned}
& g_{i}(\lambda(\alpha x+E x)+(1-\lambda)(\alpha y+E y)) \\
& \leq h(\lambda)\left(g_{i} \circ E\right)(x)+h(1-\lambda)\left(g_{i} \circ E\right)(y) \leq 0,
\end{aligned}
$$

and hence $\lambda(\alpha x+E x)+(1-\lambda)(\alpha y+E y) \in M$.

REFERENCES

[1] Bombardelli, M. and Varošanec, S., Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities, Computers and Mathematics with Applications, 58, pp. 1869-1877, 2009.
[2] Chen, X., Some Properties of Semi-E-convex Functions, J. Math. Anal. Appl, 275, pp. 251-262, 2002.
[3] Soleimani-Damaneh, M., E-convexity and its generalizations, International Journal of Computer Mathematics, pp. 1-15, 2011.
[4] Házy, A., Bernstein-Doetsch Type Results for h-convex Functions, Mathematical Inequalities and Applications, 14, no. 3, pp. 499-508, 2011.
[5] Popoviciu, E., Teoreme de medie din analiza matematică şi legătura lor cu teoria interpolării, Editura Dacia, Cluj, 1972.
[6] Popoviciu, T., Les fonctions convexes, Herman, Paris, 1945.
[7] Varošanec, S., On h-convexity, J. Math. Anal. Appl, 326, pp. 303-311, 2007.
[8] Youness, E. A., E-convex Sets, E-convex Functions, and E-convex Programming, Journal of Optimization Theory and Aplications, 102, no. 2, pp. 439-450, 1999.
[9] Youness, E. A. andEmam, T., Strongly E-convex Sets and Strongly E-convex Functions, Journal of Interdisciplinary Mathematics, 8, no. 1, pp. 107-117, 2005.

Received by the editors: January 12, 2011.

[^0]: *Department of Mathematics, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Constantin Daicoviciu, no. 15, 400020 Cluj-Napoca, Romania, e-mail: daniela.marian@math.utcluj.ro.

