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ON A DUAL CHARACTERIZATION
IN BEST APPROXIMATION PROBLEM
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Abstract. We establish a dual characterization of solutions of Ky Fan best
approximation problem and as consequence we obtain an existence criterium
under conditions formulated for the weak topology.
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1. INTRODUCTION AND PRELIMINARIES

Let X be a linear normed space and X∗ its dual. Given a nonvoid set
A ⊂ X and a function f : A→ X, the associated best approximation problem
of Ky Fan type is to find y ∈ A such that

(1.1) inf
x∈A
‖f(y)− x‖ = ‖f(y)− y‖.

Obviously, if f is a constant function we obtain the well known best approxima-
tion problem. Also, if the range of a function f is contained in A the solutions
of Ky Fan best approximation problem are the fixed points of f . Generally,
the set of all solutions of Ky Fan best approximation problem coincides with
the set of all fixed points of the multivalued mapping PA ◦ f , where PA is the
projection operator on A. On the other hand, any fixed point of y is a solution
of Ky Fan approximation problem, but it is possible to exist other solutions
y ∈ A such that f(y) /∈ A which, obviously are not fixed points of f . We
denote

(1.2) PA(f) = {y ∈ A; ‖y − f(y)‖ = d(f(y);A)},

where

(1.3) d(u;A) = inf
x∈A
‖x− u‖.

Therefore the best approximation problem (1.1) can be regarded as a unifica-
tion of this two problems: the best approximation problem and the fixed point
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problem of a given function. The problem (1.1) is equivalent to the following
variational inequality:
(1.4) ‖f(y)− y‖ ≤ ‖f(y)− x‖, for all x ∈ A.
In 1969 Ky Fan [4] was established an important criterium under hypotheses
that the set A is nonvoid compact convex set and the function f is continuous
on A. This result generalizes the well known fixed point theorem of Browder.
Many authors (see, for example, Kapoor [7], Ky Fan [5], Lin [10], [11], Lin and
Yen [12], Ding and Tan [2], Sehgal and Singh [16], Roux and Singh [15], Singh
and Watson [17], Reich [14]) have obtained other interesting extensions of Ky
Fan’s result. Also, several extensions and applications concerning Ky Fan best
approximation problem are investigated by Singh, Watson and Srivastava in
their monograph [18] (see also the references cited therein).

If we define the multivalued mapping G : A⇒ A by
(1.5) G(x) = {y ∈ A; ‖f(y)y‖ ≤ ‖f(y)− x‖},
then the solutions of Ky Fan best approximation problem are the elements of
the intersection

⋂
x∈A

G(x).

Since G is a Knaster-Kuratowski-Mazurkiewicz mapping (KKM-mapping)
we can obtain optimality criteria using special results for this mappings which
assures that the above intersection is nonvoid. We recall that a multivalued
mapping F : K ⇒ E, where K is a nonvoid subset of a separated topological
vector space E, is called a KKM-mapping if

co{x1, x2, . . . , xn} ⊂
n⋃

i=1
F (xi),

for any finite subset {x1, x2, . . . , xn} of K ([1], [8], [18]).
An important result concerning KKM-mappings was obtained by Ky Fan.

Theorem 1. ([3]) Let K be a nonvoid subset in a separated topological space
E and let F : K ⇒ E be a closed valued KKM -mapping. If F (x0) is compact
for at least one x0 ∈ E, then

(1.6)
⋂

x∈K

F (x) 6= ∅.

Consequently, if in the linear normed space X we consider KKM -mapping
G defined by (1.5) we can obtain Ky Fan’s result above mentioned. In fact,
the following two conditions are sufficient:

(i) f is continuous on every compact subset of A;
(ii) there exists x0 ∈ A such that the set {y ∈ A; ‖f(y)− y‖ ≤ ‖f(y)−x0‖

is compact.
Now, if X is endowed with weak topology we get a result obtained by

Kapoor [7]. The Kapoor’s hypotheses are:
(i′) A is a nonempty weakly compact convex set;
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(ii′) f is a strongly continuous mapping.

2. DUAL CHARACTERIZATIONS

Firstly, we recall the well known dual characterization of best approximation
elements with respect to a nonvoid convex set established by Garkavi [6].

Theorem 2. ([6]) Let A be a nonvoid convex set in a linear normed space
X. Then, an element x ∈ A is a best approximation of an element u ∈ X
from elements of A if and only if there exists x∗0 ∈ X∗ such that

(2.1) ‖x∗0‖ = ‖x− u‖,

(2.2) x∗0(x− u) ≥ ‖x− u‖2, for all x ∈ A.

See also [1], [9], [13].
Because an element y ∈ A is a solution of Ky Fan best approximation

problem if and only if y ∈ PA(f(y)), by Theorem 2 we obtain the following
dual characterization.

Theorem 3. Let A be a nonvoid convex set in X. Then an element y ∈ A
is a solution of Ky Fan best approximation problem if and only if there exists
y∗ ∈ X∗ such that

(2.3) ‖y∗‖ ≤ 1,

(2.4) y∗(x− f(y)) ≥ ‖y − f(y)‖, for all x ∈ A.

Remark 4. It is obvious that (2.3), (2.4) are fulfilled whenever y is a fixed
point of f taking y∗ = 0. If y is not a fixed point of f , i.e. ‖y − f(y)‖ > 0,
then we have necessarily ‖y∗‖ = 1. �

Remark 5. If A is a closed linear subspace of X and y is not a fixed point
of f , then ‖y∗‖ = 1 and (2.4) is equivalent with the following two conditions

(2.4′) y∗(x) = 0 for all x ∈ A;

(2.4′′) y∗(f(y)) = ‖y − f(y)‖.

�

The conditions (2.3), (2.4) can be equivalently rewrite in a special minimax
form or in a variational form.

Theorem 6. Let A be a nonvoid convex set in X. Then y ∈ PA(f) if and
only if there exists y∗ ∈ X∗ such that the pair (y∗, y) ∈ SX∗(0; 1) × A is a
saddle point of the minimax equality

(2.5) max
‖x∗‖≤1

min
x∈A

x∗(f(y)− x) = min
x∈A

max
‖x∗‖≤1

x∗(f(y)− x),
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or equivalently, the following variational inequality is fulfilled
y∗(f(y)− x)− x∗(f(y)− y) ≥ 0,(2.6)
for all (x∗, x) ∈ SX∗(0; 1)×A.

Proof. The minimax equality (2.5) says that (y∗, y) is a saddle point of the
function ∅y(x∗, x) = x∗(f(y)− x) and so we have

∅y(x∗, y) ≤ ∅y(y∗, y) ≤ ∅y(y∗, x),(2.7)
for all (x∗, x) ∈ SX∗(0; 1)×A,

which is just the variational inequality (2.6). Therefore (2.5) and (2.6) are
equivalent. On the other hand, from (2.6) it follows

y∗(f(y)− x) ≥ sup
x∗∈SX∗ (0;1)

x∗(f(y)− y) = ‖f(y)− y‖,

which proves that −y∗ has the properties (2.3) and (2.4). Conversely, it is
easily to prove that (2.4) implies (2.6) for −y∗.

Now, we denote
F (x∗, x) = {(y∗, y) ∈ SX∗(0; 1)×A;(2.8)
y∗(f(y)− x)− x∗(f(y)− y) ≥ 0},

for every (x∗, x) ∈ SX∗(0; 1)×A. Obviously,
(2.9) (x∗, x) ∈ F (x∗, x) for every (x∗, x) ∈ SX(0; 1)×A.
Moreover, if A is a convex set, then the multivalued function F : SX∗(0; 1)×
A ⇒ SX∗(0; 1) × A is a KKM-mapping. Indeed, if (y∗i , yi) ∈ SX∗(0; 1) × A,
i = 1, n, and we suppose that (

n∑
i=1

λiy
∗
i ,

n∑
i=1

λiyi) /∈ F (y∗j , yj), for all j = 1, n,

where λi ≥ 0 such that
n∑

i=1
λi = 1, then we obtain that

(
n∑

i=1
λiy
∗
i )(f(

n∑
i=1

λiyi)− yj)− y∗j (f(
n∑

i=1
λiyi)−

n∑
i=1

λiyi) < 0,

for all j = 1, n. Consequently, we obtain

(
n∑

i=1
λiy
∗
i )(f(

n∑
i=1

λiyi)−
n∑

j=1
λjyj)− (

n∑
j=1

λjy
∗
j )(f(

n∑
i=1

λiyi)−
n∑

i=1
λiyi) < 0,

i.e. (y∗, y) /∈ F (y∗, y), where y∗ =
∑n

j=1 λjy
∗
j , y =

∑n
i=1 λiyi, which contradicts

(2.9). �

Theorem 7. Let A be a nonempty weakly compact convex set in X and let
f : A→ X be a mapping having the following continuity property:
(2.10) (y∗, y)→ y∗(f(y)) is w∗ × w-continuous on SX∗(0; 1)×A.
Then there exists at least one element y ∈ PA(f).
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Proof. Let us denote K = SX∗(0; 1)× A in X∗ ×X endowed with w∗ × w
topology. Obviously, K is a convex w∗×w compact and F is a KKM-mapping.

Moreover, F is the compact valued. Indeed, F (x, x∗) is a closed set in the
compact K for every (x∗, x) ∈ SX∗(0; 1)×A, because if we consider two nets
(yi)i∈I , (y∗i )i∈I such that yi

w−→ y, y∗i
w∗
−→ y∗ and y∗i (f(yi)−x)−x∗(f(yi)−yi) ≥

0 for all i ∈ I, then we have (y∗i − x∗)(f(yi)) ≥ y∗i (x) − x∗(yi), i ∈ I. Taking
into account the hypothesis of continuity we obtain

(y∗ − x∗)(f(y)) ≥ lim(y∗i − x∗)(f(yi))
≥ lim(y∗i (x)− x∗(yi))
= y∗(x)− x∗(y),

i.e., (y∗, y) ∈ F (x∗, x). Therefore, according to Theorem 1 there exists at
least one element (y∗, y) ∈ F (x∗, x) for all (x∗, x) ∈ SX∗(0; 1)× A. Hence, by
Theorem 3 we obtain that y ∈ PA(f), as claimed. �

Remark 8. If the function f is strongly continuous on A then the continuity
property (2.10) is fulfilled, and so we obtain the result of Kapoor [7]. Indeed,
if f is strongly continuous, i.e. f(yi)

‖·‖−→ f(y), whenever (yi)i∈I
w−→ y in A,

then for a given net (y∗i )i∈I
w∗
−→ y∗ in SX∗(0; 1) we have

|y∗i (f(yi))− y∗(f(y))| ≤ |(y∗i − y∗)(f(y))|+ ‖f(yi)− f(y)‖,
and so, the condition (2.10) is fulfilled.

In the special case of real Hilbert spaces the inequality (1.6) becomes

(2.11) 〈f(y), x− y〉 ≤ 1
2(‖x‖2 − ‖y‖2), for all x ∈ A.

�

Also, by Theorem 2 it follows that an element y ∈ A is a solution of vari-
ational inequality (2.11) if and only if there exists an element z ∈ X such
that
(2.12) ‖z‖ = ‖f(y)− y‖,

(2.13) 〈z, x− f(y)〉 ≥ ‖y − f(y)‖2, for all x ∈ A.
Thus, if A⊥f(A) then the solutions of Ky Fan best approximation problem

are just the minimum elements of the set A.
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