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NUMERICAL EXPERIMENTS
WITH TWO SMOOTHING TYPE-ALGORITHMS

FOR NONLINEAR COMPLEMENTARITY PROBLEMS

M. ACHACHE∗, N. BOUDIAF† and A. KERAGHEL∗

Abstract. In this paper we deal with the numerical experiments of two smooth-
ing descent-type algorithms for solving nonlinear complementarity problems
(NCP). The first algorithm is due to Kanzow and the second one is due to Peng.
These algorithms are both based on the reformulation of (NCP) as unconstrained
minimization problems by using some smoothing merit functions including the
so-called (NCP)-functions. Under suitable conditions they both showed that any
stationary point of these problems are solutions of (NCP). For their numerical
performances many strategies are used. Finally, these algorithms are applied to
some problems of (NCP) found in the literature.
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1. INTRODUCTION

Consider the nonlinear complementarity problem (abbreviated NCP): find
a vector x ∈ Rn such that:
(1) x ≥ 0, F (x) ≥ 0, and xTF (x) = 0
where F is a continuously differentiable vector valued mapping (function)
from Rn into itself, the expression xTF (x) denotes the usual inner product
of the two vectors x and F (x) in Rn, and the inequalities are understood to
be componentwise. The complementarity condition xTF (x) = 0 means that
xiFi(x) = 0 for all i = 1, 2, . . . , n.

This problem appears in many areas of application such as physics, eco-
nomics, transport problems, game theory and mathematical programming.
Also this problem can be seen as a special case of the well-known variational
inequalities problem (VIP).

For solving the NCPs, there are different approaches in the literature no-
tably the popular class of interior point methods and the class of smoothing
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and non-smoothing type methods or other class which is a hybrid between
these two first classes. In this paper we are interested in the class of smooth-
ing type methods and which is divided into two strategies. The first strategy is
based on the reformulation of the (NCP) as an equivalent minimization prob-
lem with and without constrained, however the second one transforms the
(NCP) into an equivalent nonlinear system of equations. Both reformulations
are done by using some appropriate merit functions including the so-called
(NCP)-functions. In general merit functions and (NCP)-functions are intro-
duced and exploited by several authors (See Refs. [3, 7, 9, 10]). If these func-
tions are differentiable everywhere then the corresponding methods are called
smoothing methods, otherwise they called non-smoothing or generalized Ja-
cobian’s methods. Here, we reconsider two important smoothing descent-type
algorithms to solve the (NCP). The first algorithm is due to Kanzow (Ref. [7])
and it is based on some smoothing (NCP)-functions for constructing equivalent
unconstrained minimization problems and the second one is due to Peng (Ref.
[10]) and it is constructed by the exploitation of some merit functions inspired
from a general context for solving (VIP) problems. For their implementation
and their numerical performances many strategies are used.

The rest of the paper is organized as follows. In the next section, we regroup
in brief some definitions and basic results required in our study. In section 3, we
give the connection of this problem with other mathematical problems followed
by some comments on the used algorithms. In section 4, we give a short
summary for illustrating the basic ideas behind the reformulation of (NCP) as
unconstrained minimization problems. In section 5, the review of Kanzow’s
and Peng’s algorithms are presented. In section 6, the implementation of
these two algorithms and the numerical results on some problems of (NCP)
are presented. In section 7, a conclusion and general comments are stated.

1.1. Notation. The notation used in this paper is: Rn denotes the space of
real n-dimensional vectors and Rn+ is the orthant positive (cone) of Rn.Given
x, y ∈ Rn, xTy =

n∑
i=1

xiyi is their inner product, whereas ‖x‖ =
√
xTx is the

Euclidean norm of the vector x. Given a vector v in Rn, G = diag(v) is the
n × n diagonal matrix with Gii = vi for all i . For a vector valued mapping
F from Rn into itself, F (x) = (F1(x), F2(x), . . . , Fn(x))T and F ′(x) is the
Jacobian matrix of F .

2. DEFINITIONS AND BASIC RESULTS

Definition 1. Let F : Rn → Rn be a multivalued vector mapping.
• F is monotone on Rn if for all x, y ∈ Rn,

(x− y)T(F (x)− F (y)) ≥ 0.
• F is strictly monotone if for all x, y ∈ Rn, x 6= y,

(x− y)T(F (x)− F (y)) > 0.



3 Numerical experiments for nonlinear complementarity problems 5

• F is strongly monotone if there exists a positive constant c > 0 such
that for all x, y ∈ Rn, x 6= y,

(x− y)T(F (x)− F (y)) > c ‖x− y‖2 .

Remark 1. It is clear that: F strongly monotone ⇒ F strictly monotone
⇒ F monotone. �

Definition 2. Let ϕ : R2 → R be any function having the following prop-
erty:

ϕ(a, b) = 0⇔ a ≥ 0, b ≥ 0, ab = 0.
Then ϕ is called a complementarity function. (Abbreviated (NCP)-function).

Example 1. The following functions are (NCP)-function.
1.

ϕ1(a, b) = 1
2 {min(a, b)}2 .

2. Mangasarian and Solodov:
ϕ2(a, b) = ab+ 1

2α(max (0, a− αb))2 − a2 + (max(0, b− αa))2 − b2), α > 1.
3. Fisher’s function:

ϕ3(a, b) =
√
a2 + b2 − (a+ b).

4.
ϕ4(a, b) = 1

2(ab)2 + (min(0, a)2 + (min(0, b))2.

5.
ϕ5(a, b) = 1

2

(√
a2 + b2 − a− b

)2
.

�

There exist other examples of (NCP)-function. The following few examples
are cited in Refs. [7, 9] .

Next, we give few results concerning the existence and uniqueness of the
solution of (NCP).

2.1. Existence and uniqueness of solutions of (NCP).

Theorem 1. [8] Let F : Rn→ Rn be a continuous and strictly copositive
function, i.e., there exists a function S : R+ → R such that: S(λ) 7→ +∞ if
λ 7→ +∞, and for all λ ≥ 1, x ≥ 0 :

(F (λx)− F (0))Tx ≥ S(λ)(F (x)− F (0))Tx.

Then the set of solutions of (1) is not empty and compact.

Theorem 2. [8] Let F : Rn→Rn be a continuous and strongly monotone
function. Then (1) has a unique solution.
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Theorem 3. [4] Let F : Rn→Rn be a continuous and monotone function.
If the set of strictly feasible points

X = {x ∈ Rn : x > 0, F (x) > 0}

is not empty, then (1) has a non empty compact solution set.

3. RESOLUTION OF THE (NCP) AND SOME COMMENTS ON THE USED

ALGORITHMS

The design of (iterative) algorithms for solving the problem (1), are system-
atically elaborated from attributed characterizations of this problem through
its different reformulations. For that we can envisage a collective of algorithms,
where each reformulation of (NCP) corresponds to a particular method. Here,
we deal only with smoothing and non-smoothing algorithms. For interior point
algorithms the reader consults other references concerning this subject.

Next, we give the connection of this problem with other mathematical prob-
lems followed by some comments on the used algorithms.

3.1. The linear complementarity problem (LCP). If the mapping is af-
fine, i.e., F (x) = Mx + q for some given n × n matrix M and q ∈ Rn, then
(1) is called the linear complementarity problem. The (LCP) is an important
problem in mathematical programming which includes the linear and qua-
dratic programming. We mention that there are other results of existence and
uniqueness of the solution of (NCP), inspired from the theory of (LCP). (See
Ref. [1]).

3.2. The (NCP) as a Variational inequalities problem (VIP). The vari-
ational inequalities problem (VIP) is defined as: Find x̄ ∈ C such that

(x− x̄)TF (x) ≥ 0, for all x ∈ C,

where C is a non empty subset of Rn and F is a vector valued mapping from
Rn into itself. If C = Rn+, then the (VIP) reduces to an (NCP) problem (See
Refs. [2, 5]).

3.3. The (NCP) as a nonlinear system of equations. The general idea
behind this reformulation is: given an (NCP)-function ϕ and setting a = xi,
and b = Fi(x). Then we have:

ϕ(xi, Fi(x)) = 0⇔ xi ≥ 0, Fi(x) ≥ 0, and xiFi(x) = 0.

Hence the problem (1) is equivalent to the following nonlinear system of equa-
tions:

ϕ(xi, Fi(x)) = 0, i = 1, . . . , n.
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The above system can be written as a vectorial form:

(2) θ(x) =

 ϕ(x1, F1(x))
...
ϕ(xn, Fn(x))

 = 0,

with θ : Rn → Rn is a multivalued function and x ∈ Rn. It is easy to see that
the zeros of θ(x) are solutions of (1). Here 0 in (2) denotes the zero vector in
Rn.

3.4. Smoothing Newton’s type algorithms for nonlinear system of
equations. In the case when one of the (NCP)-functions ϕ is differentiable,
then the corresponding nonlinear system (2) is also differentiable and we apply
the classical principal of linearization (Newton’s method) where we include a
sequence of subproblems obtained by certain linearization of the problem (1).
These algorithms have some nice theoretical properties such as the quadratic
convergence (fast), but locally. However, in practice they have a great accuracy
but with an expansive cost.

3.5. Generalized (or Non-smoothing) Newton’s type algorithms.
These methods are recent where the used (NCP)-function ϕ is not differen-
tiable everywhere, hence a generalization of classical Newton’s methods are
applied, where they used the generalized Jacobian ∂θ(x) at points where ϕ is
not differentiable. With these methods, we recuperate the global convergence
which is superlinear and even quadratic. These methods do not have disad-
vantages cited for the first strategy, but it necessitates a supplementary effort
for replacing the derivative. In addition, at each iteration, we need to solve
subproblems which are linear complementarity problems and thus makes the
task very hard.

3.6. The (NCP) as a constrained optimization problem. For the prob-
lem (1), we associate the following constrained minimization problem:

(OP)C m = min
x

[
xTF (x)

]
subject to x ≥ 0, F (x) ≥ 0.

Clearly, x̄ is a solution of (1) if and only if

F (x̄) = min
x

[
xTF (x)

]
= m = 0.

The problem (OP)C is sometimes used in theory while in practice this prob-
lem does not often have the required properties for a convenient treatment,
notably the convexity and differentiability. Thus other alternatives are pro-
posed. Probably the simple way is to come down to an equivalent uncon-
strained minimization problem easy to apprehend in theory and in practice.
This does not exclude the presence of some difficulties for any of alternatives,
which gives to each approach its totally importance.
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4. THE (NCP) AS AN UNCONSTRAINED OPTIMIZATION PROBLEM

In this section, we present a short summary about the main works that
are developed in the literature in this context, in order to illustrate the image
of the great and effected efforts given in this domain, with bringing out the
principal difficulties under the form of some open questions that the researchers
attempt to respond until to day. The work of Mangasarian and Solodov in
(1993), [9], is one of the first work that have an encouraging respond, it consists
a remarkable impulse for the later developments. The authors have used an
implicit augmented LagrangianM(x, α), which have important properties such
as:

M(x, α) ≥ 0, for all (x, α) ∈ Rn × (1,+∞)

and for α ∈ (1,+∞) ,

M(x, α) = 0⇔ x is a solution of (1).

This nice property establishes a correspondence between the solution of (1),
and the global minimum of the implicit augmented Lagrangian with out us-
ing any assumptions such that the monotonicity and differentiability of the
function F . More precisely, we have the following result:

x̄ is a solution of (1) ⇔ x̄ is a solution of min
x
M(x, α) : s.t. x ∈ Rn .

In spite of the obtained preliminary results by the authors. These results
are significant, but several judicious questions are arouse to respect to this
approach and among them are [7]:

• Under what conditions, the local minimum of M(x, α) is global? Are
the monotonicity and differentiability of F ?
• When a stationary point of M(x, α) is a solution of (1)?
• Under what conditions M(x, α) is convex or pseudoconvex in Rn?

The works of Kanzow and Peng are motivated on some way by the question
two. In fact, with adding other suitable supplementary conditions, they both
succeed to repair some failure in Mangasarian’s approach.

Next task, we review the Kanzow’s and Peng’s algorithms.

5. REVIEW OF KANZOW’S AND PENG’S ALGORITHMS

5.1. Kanzow’s algorithm. In 1996, Kanzow gave an affirmative answer for
the question 2, asked by Mangasarian. His approach aims to reformulate
(1) as an equivalent unconstrained minimization problem by exploiting such
(NCP)-functions, in the sense that both problems have the same solutions.

Let us consider again the nonlinear complementarity problem (1): Find
x ∈ Rn such that

x ≥ 0, F (x) ≥ 0, and xTF (x) = 0
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and given an (NCP) -function ϕ.Let Fi : Rn → R be the i th component of F .
Let us define the following functions: ψi : Rn → R such that
(3) ψi(x) = ϕ(xi, Fi(x)), i = 1, . . . , n,
and Ψ : Rn → R such that

(4) Ψ(x) =
n∑
i=1

ψi(x).

The functions Ψ and ψi, i = 1, . . . , n, depend on the selected (NCP) -function
ϕ. Then, the associated minimization problem is defined as:

(OP)K min
x

Ψ(x) subject to x ∈ Rn.

Hence, solving (1) is equivalent to solve (OP)K . This equivalence is justified
by the following basic lemma.

Lemma 1. [7] Assume that the problem (1) has at least one solution. Let
ϕ be an (NCP)-function such that ϕ(a, b) ≥ 0, for all (a, b)T ∈ R2, and let
ψi, i = 1, . . . , n, and Ψ be defined as in (3) and (4), respectively. Hence, x̄ is
a global minimum of Ψ ⇔ x̄ is a solution of (1), with Ψ(x̄) = 0.

By this lemma, we can say that the problem of globalization is well-ordered,
but there is an other question to ask: how to characterize the solution x̄? For
this purpose, Kanzow proves the following theorem.

Theorem 4. [7] If F : Rn → Rn is continuously differentiable such that
the Jacobian F ′(x) is positive definite for all x ∈ Rn. Assume that (1) has a
solution. Let ϕ be a continuously differentiable (NCP)-function with:

ϕ(a, b) ≥ 0, for all (a, b) ∈ R2,

which satisfy:
• ϕ(a, b) = 0⇔ ∇ϕ(a, b) = 0,
• ∂ϕ

∂a (a, b)∂ϕ∂b (a, b) ≥ 0, for all (a, b) ∈ R2.

Then x̄ is a stationary point of Ψ if and only if x̄ is a solution of (1).

The (NCP)-functions: 2, 3, and 5 satisfied the hypothesis of the theorem
4, whereas 1 and 4 are not.

Next, the description of the algorithm is stated in the table below as follows.
THE ALGORITHM OF KANZOW
• Step 0 (initialization): let ε > 0, ϕ : R2 → R, ψi : Rn→ R and

Ψ : Rn → R,with σ ∈ (0, 1), let x0 ∈ Rn and k := 0;

• Step 1 (stopping Criterion): while Ψ(xk) > ε and
∥∥∥∇Ψ(xk)

∥∥∥ > ε

do
• Step 2 (search direction): compute a direction dk from a linear

system
dk = −H−1

k ∇Ψ(xk) where Hk = ∇2Ψ(xk) is the Hessian matrix of Ψ.
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• Step 3 (line search): compute tk = arg mint≥0 Ψ(xk + tdk).
• Step 4 (update): let xk+1 = xk + tkdk, k = k + 1, and go back to

step 1.

Remark 2. [7] The algorithm of Kanzow converges quadratically, but lo-
cally. �

5.2. Peng’s algorithm. In 1997, Peng also answered to the question 2, by con-
sidering (VIP) case. Here, Peng reformulates the (VIP) as an unconstrained
differentiable minimization problem, by suggesting a class of merit functions
M(x, α), where every stationary point of this problem is a solution of (VIP).
The following merit function is suggested by Peng [10]:

(5) M(x, α) = 1
αf(x, α)− αf(x, 1

α), α > 1

with
f(x, α) = −〈F (x), Hα(x)− x〉 − 1

2 ‖(Hα(x)− x)‖2G
and

Hα(x) = Pr
Rn+,G

(x−G−1F (x)) = max(0, x−G−1F (x)),

where Pr is the projection of the vector (x−G−1F (x)) over the cone Rn+ and
G is a symmetric positive definite matrix with ‖y‖2G = 〈y,Gy〉.

Here, we adapt these results to (NCP) case. The following theorem shows
that M(x, α) is a merit function for it.

Theorem 5. Let M(x, α) be defined as in (5) with α > 1, hence M(x, α) ≥
0 and M(x, α) = 0, if and only if x is a solution of the (1).

Now, we consider the unconstrained minimization problem associated with
(1) and the merit function M(x, α):

(OP)P : min
x
M(x, α) subject to x ∈ Rn.

The following result establishes the equivalence between (1) and (OP)P .

Theorem 6. [10] Let F (x) be a differentiable mapping on Rn and x is a
stationary point of M(x, α). If ∇F (x) is a positive definite matrix, then x is
a solution of (1).

Hence, solving (1) is equivalent to solve (OP)P and so the corresponding
algorithm is as stated as follows.

THE ALGORITHM OF PENG
• Step 0 (initialization): Let ε > 0 and α (α > 2) be a constant

and G is a given (n × n) symmetric positive definite matrix. Let
ϕ : R2 → R, ψi : Rn → R; and Ψ : Rn→ R,with σ ∈ (0, 1). Let
x0 ∈ Rn and k := 0;
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• Step 1 (search direction): compute the direction from:
dk = Hα(xk)−H 1

α
(xk), where

Hα(xk)= Pr
Rn+,G

(xk−αG−1F (xk))=
{
xk−G−1F (xk) if xk−αG−1F (xk) > 0;
0 otherwise.

and

H 1
α

(xk)= Pr
Rn+,G

(xk− 1
α
G−1F (xk))=

{
xk−G−1F (xk) if xk− 1

αG
−1F (xk) > 0;

0 otherwise.

• Step 2 (stopping criterion): while |M(x, α)| > ε and ‖dk‖ > ε do
• Step 3 (line search): compute tk = arg mint∈(0, 1]M(xk + tdk).

• Step 4 (update): let xk+1 = xk + tkdk, k = k + 1, and go back to
step 1 and step 2.

Remark 3. [10] The convergence of the algorithm is globally linear. �

Remark 4. There are other functions of merit suggested by Peng’s. (See
[10]). �

6. IMPLEMENTATION AND NUMERICAL RESULTS

In this section, we present some numerical results applied to some problems
of (NCP). Our algorithms were programmed in Pascal 7, on a Pentium III
where the tolerance in Kanzow’s algorithm is ε = 10−8 with σ = 10−10, and
for Peng’s algorithm the tolerance is ε = 10−6.

6.1. Computation of the direction and the steplength in Kanzow’s
algorithm. The descent direction dk is computed by solving the following
linear system:

(6) Hkdk = −gk,

where Hk = ∇2Ψ(xk) and gk = ∇Ψ(xk). Since Hk is symmetric positive defi-
nite matrix, a Cholesky factorization is used to solve (6). The steplength tk is
computed thanks to the Armijo’s rule:

Ψ(xk + tkdk) ≤ Ψ(xk) + tkσdk.

There exist other rules that we can use to compute the steplength such as
Goldstein, constant step, etc.

The first and the second derivatives of the function Ψ are computed thanks
to the finite difference procedure, since the direct calculus of this last is very
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difficult and with an expensive cost. For that, we have evaluated the first
order and the second derivatives, respectively, by the following formulas:

∂Ψ
∂xi

(x(0)) = Ψ(x(0)
1 ,...,x

(0)
i−1,x

(0)
i +hi,x(0)

i+1,...,x
(0)
n )

2hi − Ψ(x(0)
1 ,...,x

(0)
i−1,x

(0)
i −hi,x

(0)
i+1,...,x

(0)
n )

2hi ,

∂2Ψ
∂x2
i

(x(0)) = Ψ(x(0)
1 ,...,x

(0)
i−1,x

(0)
i +hi,x(0)

i+1,...,x
(0)
j−1,x

(0)
j +hj ,x(0)

j+1,...,x
(0)
n )

4hihj

− Ψ(x(0)
1 ,...,x

(0)
i−1,x

(0)
i −hi,x

(0)
i+1,...,x

(0)
j−1,x

(0)
j −hj ,x

(0)
j+1,...,x

(0)
n )

4hihj

+ Ψ(x(0)
1 ,...,x

(0)
i−1,x

(0)
i +hi,x(0)

i+1,...,x
(0)
j−1,x

(0)
j −hj ,x

(0)
j+1,...,x

(0)
n )

4hihj

+ Ψ(x(0)
1 ,...,x

(0)
i−1,x

(0)
i −hi,x

(0)
i+1,...,x

(0)
j−1,x

(0)
j −hj ,x

(0)
j+1,...,x

(0)
n )

4hihj

with H = (hi = 1
100), i = 1, . . . , n. With these formulas, we obtain good

results.

6.2. Computation of the direction and the steplength in Peng’s algo-
rithm. In this algorithm, the computation of the projection the direction is
linked with the computation of Hα which it is easy to handled. The choice of
the matrix G and the steplength have a great influence on its performance.
Here G is chosen as a diagonal positive definite matrix. For the steplength,
we have adapted two strategies namely the constant and the linearsearch pro-
cedure steps where we have taken the better of them.

6.3. Numerical results. The numerical results of two problems with these
algorithms is stated in the arrays below where we display the following quan-
tities: x0 is the initial starting point, x∗app is the approximate optimal solution,
t is the steplength, iter meant the iterations number and cpu is the time pro-
duced by the machine. Our testing problems are inspired in some of them
from nonlinear programming problems. The (NCP)-functions used for the
implementation in Kanzow’s algorithm is:

ϕ2(a, b) = ab+ 1
2α

[
max (0, a− αb))2 − a2 + (max(0, b− αa))2 − b2

]
,

with different suitable choices of the parameter α (α > 1). For Peng’s algo-
rithm, we have used the following merit function:

M(x, α, β) = 1
α
f(x, α)− βf(x, 1

β
), (β > α > 1),

with also different suitable choices of the parameters α and β.
Problem 1. This problem arises as (KKT) optimality conditions for the
following nonlinear programming problem:

min
x

[
g(x) = x2

1 + x3
2 + x3

3 + x2
4 − 2x1 − 3x4

]
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subject to:
g1(x) = 2x1 + x2

2 + x2
3 + 4x4 − 8 ≤ 0,

g2(x) = x1 + x2
2 + 2x2

3 + x4 − 7 ≤ 0,
g3(x) = 3x1 + 4x2

2 + 2x2
3 + x4 − 10 ≤ 0,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.
Hence the K.K.T-reformulation gives the following (NCP):

F : R7 → R7

F1(x) = 2x1 + 2x2 + x6 + 3x7 − 2,
F2(x) = 3x2

2 + 2x1x5 + 2x2x6 + 8x2x7,

F3(x) = 3x3
2 + 2x3x5 + 4x3x6 + 4x3x7,

F4(x) = 2x4 + 4x5 + x6 + x7 − 3,
F5(x) = −2x1 − x2

2 − x2
3 − 4x4 + 6,

F6(x) = −x1 − x2
2 − 2x2

3 − x4 + 7,
F7(x) = −3x1 − 4x2

2 − 2x2
3 − x4 + 10,

xi ≥ 0, i = 1, . . . , 7.
The exact solution is:

(1, 0, 0, 3
2 , 0, 0, 0)T.

Table 1. Kanzow’s numerical results with α = 1.1 and for different starting points

x0 x∗app t Iter cpu

(0, 1, 1, 0, 1, 1, 1)

(0.999997, 0.00832,
0.000832, 1.499996,
0.000001, 0.000001,
0.000001).

1 1 0.16

(0, 0.25, 0.25, 0,
0.25, 0.25, 0.25)

(1, 0, 0, 1.499999,
0.000001, 0, 0) 1 1 0.16

(0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5)

(0.999996, 0.00833,
0.000834, 1.499981,
0.000007, 0.000002,
0.000004).

1 2 0.22

(0.75, 0.75, 0.75, 0.75,
0.75, 0.75, 0.75)

(0.999994, 0.00834,
0.000833, 1.499993,
0.000003, 0.000001,
0.000002).

1 2 0.22

(0.25, 0.25, 0.25, 0.25,
0.25, 0.25, 0.25)

(1.000002, 0, 0,
1.500004, 0.000002,
0.000001, 0).

1 1 0.16
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Table 2. Peng’s algorithm (α = 3, β = 105, ε = 10−6).

G= diag(v) t x0 x∗app iter cpu

(2, 1, 2, 1, 2, 1, 2) 0.3 (2, 2, 2,
2, 2, 2, 2)

(0.999936, 0.000352,
0.000980, 1.499965,
0, 0.000045, 0.000028)

62 0.05

(2, 2, 1, 3, 3, 3, 3) 0.3 (2, 2, 2,
2, 2, 2, 2)

(0.999961, 0.000904,
0.001762, 1.499980,
0, 0.00023, 0.000018)

49 0.05

(2, 2, 1, 3, 3, 3, 3) 0.4 (4, 3, 4,
3, 2, 2, 1)

(0.999958, 0.000015,
0.000016, 1.499979,
0, 0.000016, 0.000020)

42 0.00

(2, 2, 1, 3, 3, 3, 3) 0.5 (4, 3, 4,
3, 2, 2, 1)

(0.999961, 0.000006,
0.000007, 1.499981,
0, 0.000015, 0.000020)

33 0.00

(2, 2, 1, 3, 3, 3, 3) 0.6 (3, 6, 2,
7, 4, 1, 1)

(0.999962, 0,
0, 1.499983, 0,
0.000015, 0.000018)

64 0.05

Problem 2. F : R9 → R9

F1(x) = x2(x1 + 1),
F2(x) = x3(1

2x2 − 1),
F3(x) = x2

3 − x5,

F4(x) = x4 + x2
7 + 2x8 − 1,

F5(x) = x5 − 1,
F6(x) = x5x6 + x7 − 1,
F7(x) = x3(x2 − x7) + x1x7,

F8(x) = x6 − x7 + 3x8 + 1,
F9(x) = −3x1 + x2 + 3x3 − 2x4 − 2x5 + 3x6 − 2x7 + 3x8 + 2x9,

xi ≥ 0, i = 1, . . . , 9.
The exact solution is:

x∗ = (0, 2, 1, 1, 1, 1, 0, 0, 0)T.

7. CONCLUSION AND GENERAL COMMENTS

In this paper, we have dealt with a computational experience of two smooth-
ing-type algorithms for solving (NCP)-problems. Our preliminary numerical
results are encouraging and show with consulting the arrays above and with
doing a small comparison between them that the number of iterations given by
Kanzow’s algorithm is better than one given by Peng’s algorithm. However,
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Table 3. The numerical results of Kanzow’s algorithm for different starting points x0

x0 x∗app t iter cpu

(0, 1, 1, 0, 1, 1, 0, 1, 0)
(0, 1.999999, 1.000005,
0.999980, 1.000005,
0.999993, 0, 0.000006, 0, 000000)

0.7 6 1.32

(6, 5, 4, 3, 2, 1, 2, 2, 2)
(0.000003, 1.999999, 1.000001,
1.000001, 1.000002, 1.000003,
0.000005, 0.000001, 0.000009)

0.7 8 1.75

(7, 6, 5, 4, 3, 1, 1, 1, 1)
(0.000003, 1.999998, 1.000007,
1.000001, 1.000003, 1.000008,
0.999981, 0.000005, 0.000001)

0.49 12 2.58

(10, 7, 6, 5, 4, 2, 2, 2, 2)
(0.000002, 2.000001, 1.000010,
1.999999, 1.0000013, 1.999974,
0.000003, 0, 0.000008)

0.7 8 2.08

Table 4. For Peng’s algorithm with α = 1.1, β = 105, and ε = 10−6

G =diag(v) t x0 x∗app iter cpu

(2, 1, 3, 6,
5, 4, 3, 3, 3) 1 (4, 4, 3, 3, 2

2, 1, 1, 1)

(0.00004, 2, 1.000002,
1.000032, 0.999984,
0.999966, 0.000001,
0.000006, 0.000005)

51 0.05

(4, 2, 2, 5,
4, 3, 4, 4, 4) 1 (4, 4, 3, 3, 2

2, 1, 1, 1)

(0.00005, 2.000001,
1.000001,
1.000036, 1.000036,
0.999990, 0.000010,
0.000005, 0.000003)

41 0.05

(6, 5, 4, 3,
2, 1, 2, 2, 2) 0.7 (4, 4, 4, 4, 4

4, 4, 4, 4)

(0.000003, 2.000088, 1,
0.999980, 1,
0.999990, 0.000010,
0.000010, 0.000020)

118 0.11

(6, 5, 4, 3,
2, 1, 2, 2, 2) 0.5 (4, 4, 4, 4, 4

4, 4, 4, 4)

(0.000003, 2.000089,
1, 0.999980,
1, 0.999990, 0.000010,
0.000010, 0.000020)

167 0.11

(6, 5, 4, 3
2, 1, 2, 2, 2 0.3 (4, 4, 4, 4, 4

4, 4, 4, 4)

(0.000003, 2.000091,
1, 0.999980,
1, 0.999990, 0.000010,
0.000010, 0.000020)

281 0.17

for the time produced by the Peng’s algorithm is better than in Kanzow’s.
The convergence of Peng’s algorithm is guaranteed only with high values of
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β and with limited maximal value of α . A good choice of merit functions in
both algorithms has a great influence on their numerical performances, also
the starting point stays a crucial task for their initialization and it needs an
adequate treatment.
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