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BILATERAL APPROXIMATIONS OF THE ROOTS OF SCALAR
EQUATIONS BY LAGRANGE-AITKEN-STEFFENSEN METHOD

OF ORDER THREE∗

ION PĂVĂLOIU

Abstract. We study the monotone convergence of two general methods of
Aitken-Steffenssen type. These methods are obtained from the Lagrange inverse
interpolation polynomial of degree two, having controlled nodes. The obtained
results provide information on controlling the errors at each iteration step.
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1. INTRODUCTION

It is well known that the Steffensen, Aitken, and Aitken-Steffensen methods
are obtained from the inverse Lagrange interpolation polynomial of degree one,
with controlled nodes [8]–[12], [6]. Consider the equation

(1.1) f(x) = 0

where
f : [a, b]→ R, a, b ∈ R, a < b.

We also consider the following three equations, each of them equivalent with
equation (1.1):

(1.2) x = g(x), g : [a, b]→ [a, b]

and

x = g1(x), g1 : [a, b]→ [a, b],(1.3)
x = g2(x), g2 : [a, b]→ [a, b].

The Steffensen method in given by relations

(1.4) xn+1 = xn −
f(xn)

[xn, g(xn); f ] , x0 ∈ [a, b], n = 0, 1, 2, . . . ,
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and, analogously, the Aitken method is of the following form:

(1.5) xn+1 = g1(xn)− f(g1(xn))
[g1(xn), g2(xn); f ] , x0 ∈ [a, b], n = 0, 1, 2, . . . .

Finally, the Aitken-Steffensen method is given by the relations:

(1.6) xn+1 = g1(xn)− f(g1(xn))
[g1(xn), g2(g1(xn)); f ] , x0 ∈ [a, b], n = 0, 1, 2, . . . .

The order of convergence of all three methods (1.4)–(1.6) is at least two, and
this order depends on the functions g and g1, g2 respectively. Essentially,
the methods (1.4)–(1.6) are obtained from the method of chord where the
interpolation nodes depend on the functions g and respectively g1, g2. In
papers [1], [8], [9], [12] some conditions had to be considered in order that
all the three methods (1.4)–(1.6) generate two sequences (un)n≥0 and (vn)n≥0
with the properties:
α) The sequence (un)n≥0 is increasing and the sequence (vn)n≥1 is decreas-

ing:
β) lim un = lim vn = x̄, where x̄ is the root of equation (1.1), x̄ ∈ [a, b].
Practically, such sequences are very interesting, because by inequalities

max{x̄− un, vn − x̄} ≤ vn − un, n = 0, 1, 2, . . . ,

the errors of approximation at every step of iteration may be controlled.
Let a1, a2, a3 ∈ [a, b] be three nodes of interpolation, and let b1, b2, b3 the

values of the function f , i.e.

b1 = f(a1), b2 = f(a2), b3 = f(a3).

Suppose that the function f : [a, b]→ F, is bijective where F = f([a, b]).
Then there exists f−1 : F → [a, b] and the following equality holds [12],

[14]:

f−1(y) = a1 + [b1, b2; f−1](y − b1)(1.7)
+[b1, b2, b3; f−1](y − b1)(y − b2)
+[y, b1, b2, b3; f−1](y − b1)(y − b2)(y − b3),

for every y ∈ F.
If x̄ ∈ [a, b] is the root of equation (1.1), then x̄ = f−1(0), and by (1.7) one

obtains the following representation of x̄ :

x̄ = a1 − [b1, b2; f−1]b1 + [b1, b2, b3; f−1]b1b2(1.8)
−[0, b1, b2, b3; f−1]b1b2b3.

By relations (see [12])

[b1, b2; f−1] = 1
[a1, a2; f ]
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and
[b1, b2, b3; f−1] = − [a1, a2, a3; f ]

[a1, a2; f ][a1, a3; f ][a2, a3; f ] ,

using (1.8), one obtains the following approximation for x̄ :

(1.9) a4 = a1 −
f(a1)

[a1, a2; f ] −
[a1, a2, a3; f ]f(a1)f(a2)

[a1, a2; f ][a1, a3; f ][a2, a3; f ]
and the error:

(1.10) x̄− a4 = −[0, b1, b2, b3; f−1]f (a1) f(a2)f (a3) .

If f ∈ C3([a, b]) and f ′(x) 6= 0, ∀x ∈ [a, b], then f−1 ∈ C3(F ) and the
following equality holds (see [12], [16]):

(1.11) [f−1(y)]′′′ = 3[f ′′(x)]2−f ′(x)f ′′′(x)
[f ′(x)]5 ,

where y = f (x) .
Using the mean value formula for divided differences (see [12]) it follows

that there exists η ∈ F such that

(1.12) [0, b1, b2, b3; f−1] = (f−1)′′′(η)
6 .

Because f is bijective, it follows that there exists ξ ∈ [a, b] such that η =
f(ξ), and by (1.11) and (1.12) one obtains:

(1.13) [0, b1, b2, b3; f−1] = 3[f ′′(ξ)]2−f ′(ξ)f ′′′(ξ)
6[f ′(ξ)]5 .

By (1.9), if one considers particular nodes a1, a2, a3 it is possible to obtain
different methods of Steffensen type, of Aitken type or of Aitken-Steffensen
type.

Let xn ∈ [a, b] be an approximation of the root x̄ of equation (1.1).
If one considers a1 = xn, a2 = g(xn), a3 = g(g(xn)), then it follows the

following method of Steffensen type [8], [9], [12]:

xn+1 = xn −
f(xn)

[xn, g(xn); f ](1.14)

− [xn, g(xn), g(g(xn)); f ]f(xn)f(g(xn))
[xn, g(xn); f ][xn, g(g(xn)); f ][g(xn), g(g(xn)); f ] ,

x0 ∈ [a, b], n = 0, 1, 2, . . . .
If a1 = xn, a2 = g1(xn), a3 = g2(g1(xn)), then one obtains the following

method of Aitken-Steffensen type:

xn+1 = xn −
f(xn)

(xn, g1(xn); f ](1.15)

− [xn, g1(xn), g2(g1(xn)); f ]f(xn)f(g1(xn))
[xn, g1(xn); f ][xn, g2(g1(xn)); f ][g1(xn), g2(g1(xn)); f ] ,
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n = 0, 1, . . . , x0 ∈ [a, b], and finally, for a1 = xn, a2 = g1(xn), a3 = g2(xn) one
obtains the following method of Aitken type:

xn+1 = xn −
f(xn)

[xn, g1(xn); f ](1.16)

− [xn, g1(xn), g2(xn); f ]f(xn)f(g1(xn))
[xn, g1(xn); f ][xn, g2(xn); f ][g1(xn), g2(xn); f ] ,

n = 0, 1, . . . , x0 ∈ [a, b].

Using the symmetry of Lagrange polynomial with respect to nodes, by per-
mutations of a1, a2, a3 in methods (1.14)–(1.16), one obtains the same results
for xn+1.

In [14] conditions are given in order that method (1.14) generates sequences
approximating the root of equation (1.1) bilaterally. In this paper we study
methods (1.15) and (1.16) and we obtain same conditions in order that the
sequences generated by there methods are bilateral approximations of the root
x̄ of equations (1.1).

2. THE CONVERGENCE OF AITKEN-STEFFENSEN METHOD

In the following we study the method (1.15) and we search the conditions
on the sequences (xn)n≥0, (g1(xn))n≥0 and (g2(g1(xn))n≥0 generated from this
method in order that they are monotonic sequences, bilaterally approximating
the root x̄ of equation (1.1).

We need the following hypothesis:
a) g1 is increasing on [a, b];
b) g2 is continuous and decreasing on [a, b];
c) equation (1.1) has a solution x̄ ∈ [a, b] and g1(x̄) = g2(x̄) = x̄,
d) function f is in C3([a, b]), and for every x ∈ [a, b] the following relation

is fulfilled:

(2.1) 3[f ′′(x)]2 − f ′(x)f ′′′(x) < 0;

e) function g1 satisfies inequality

|g1(x)− g1(x̄)| ≤ L |x− x̄| , ∀x ∈ [a, b],
where 0 < L < 1.

Concerning the convergence of sequence (xn)n≥0 generated by (1.15), the fol-
lowing Theorem holds:

Theorem 2.1. Let x0 ∈ [a, b] and f, g1, g2 verify the following conditions:

i1) f is increasing on [a, b];
ii1) f is convex on [a, b];

iii1) functions g1, g2 and f verify hypotheses a)− e);
iv1) x0 > x̄ and g2(g1(x0)) ≥ a.
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Then the sequences (xn)n≥0, (g1(xn))n≥0 and (g2(g1(xn))n≥0 generated by
(1.15) verify the properties:

j1) sequences (xn)n≥0 and (g1(xn))n≥0 are decreasing and bounded from
below by x̄ ;

jj1) sequence (g2(g1(xn))n≥0 is increasing and bounded from above by x̄;
jjj1) at every iteration step the following inequalities hold:

(2.2) xn − x̄ ≤ xn − g2(g1(xn)), n = 0, 1, . . . ;
jv1) lim xn = lim g1(xn) = lim g2(g1(xn) = x̄.

Proof. By hypotheses a) and x0 > x̄ it follows g1 (x0) > g1(x̄), i.e g1(x0) >
x̄. Hypothesis e) implies g1(x0) < x0. From iv1) it follows g2(g1(x0) ≥ a and
from b) and g1(x0) > x̄ one obtains g2(g1(x1)) < x̄. Now using i1) it follows:

f(x0) > 0, f(g1(x0)) > 0
and

f(g2(g1(x0)) < 0,
and by considering i1) and ii1) for n = 0 in (1.15) it follows that x1 < x0.
Using (1.13), by hypotheses d) and (1.10) for a4 = x1 and b1 = f(x0), b2 =
f(g1(x0)), b3 = f(g2(g1(x0)) it follows x̄−x1 < 0, i.e x1 > x̄. By hypotheses a)
and x1 < x0 it follows g1(x1) < g1(x0) and then, by b) one obtains g2(g1(x1)) ≥
g2(g1(x0)), and g2(g1(x1)) < x̄. Let xm, m ∈ N be an element of sequence
(xn)n≥0 generated by (1.15) and suppose that xm > x̄. Then one obtains the
relations:
(2.3) g2(g1(xm)) < g2(g1(xm+1)) < x̄ < g1(xm+1) < xm+1 < g1(xm) < xm.

Inequality xm+1 < g1(xm) follows from equality:

xm+1 = xm −
f(xm)

[xm, g1(xm); f ]

− [xm, g1(xm), g2(g1(xm)); f ]f(xm)f(g1(xm)
[xm, g1(xm); f ][xm, g2(g1(xm)); f ][g1(xm), g2(g1(xm)); f ]

= g1(xm)− f(g1(xm)
[xm, g1(xm); f ]

− [xm, g1(xm), g2(g1(xm)); f ]f(g1(xm))f(xm)
[xm, g1(xm); f ][xm, g2(g1(xm)); f ][g1(xm), g2(g1(xm)); f ]

and from the hypothesis of the theorem.
From relations (2.3) it follows (2.2) and conclusions j1) and jj1). Conclusion

jv1) is obvious. The theorem is proved. �

Remark 2.2. If function f is concave and decreasing on [a, b], then function
h : [a, b]→ R defined by h(x) = −f(x) in convex and increasing. The relation
(2.1) is also verified for h. Consequently the sequence generated by (1.15) for
function h, verifies all the conditions of Theorem 2.1, and then the conclusions
of this theorem hold.
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An analogous proof with that from Theorem 2.1 is valid for the following:

Theorem 2.3. Let x0 ∈ [a, b] and f, g1, g2 verify the following conditions:

i2) function f is increasing on [a, b];
ii2) function f is concave on [a, b];
iii2) functions g1, g2 and f verify the hypotheses a)− e);
iv2) x0 < x̄ and g2(g1(x0) ≤ b.
Then sequences (xn)n≥0, (g1(xn))n≥0 and (g2(g1(xn≥0))) generated by (1.15)

have the following properties:
j2) sequences (xn)n≥0 and (g1(xn))n≥0 are increasing and bounded from

above by x̄;
jj2) sequence g2(g1(xn)) is decreasing and bounded from below by x̄;

jjj2) the following relations hold:

(2.4) x̄− xn ≤ g2(g1(xn))− xn, n = 0, 1, 2, . . . ,

jv2) lim xn = lim g1(xn) = lim g2(g1(xn)) = x̄.

Remark 2.4. If function f is decreasing and convex, then h1 : [a, b] → R
defined by h1(x) = −f(x) is increasing and concave, h1verifies all hypotheses
of Theorem 2.3 and consequently all the conclusions j2)− jv2) hold.

3. CONVERGENCE OF AITKEN TYPE METHOD

In order to study the convergence of the sequences generated by (1.16) we
must suppose that functions f, g1 and g2 verify hypotheses a)-e) of section 2.

The following theorem holds:

Theorem 3.1. Let x0 ∈ [a, b] and the functions f, g1 and g2 verify the
conditions:

i3) f is increasing an [a, b];
ii3) f is convex an [a, b];

iii3) f, g1 and g2 verifies the hypotheses a)− e);
iv3) x0 > x̄ and g2(x0) > a.

Then sequences (xn)n≥0, (g1(xn))n≥0 and (g2(xn))n≥0 generated by (1.16)
have the properties:

j3) sequences (xn)n≥0 and (g1(xn))n≥0 are decreasing and bounded from
below by x̄ ;

jj3) sequence (g2(xn))n≥0 is increasing and bounded from above by x̄;
jjj3) the following relations hold,

xn − x̄ ≤ xn − g2(xn), n = 0, 1, . . . ;

jv3) lim xn = lim g1(xn) = lim g2(xn) = x̄.
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Proof. Let be xm ∈ [a, b], xm > x̄ and g2(xm) > a, where m ∈ N. By a) it
follows that g1(xm) > x̄ and by b) g2(xm) < x̄. Using e) one obtains g1(xm) <
xm. By hypothesis i3) and ii3), and by the above relations and (1.16), for
n = m it follows xm+1 < xm.

For a1 = xm, a2 = g1(xm) and a3 = g2(xm) in (1.10), by (1.13) and hy-
pothesis d) it follows that xm+1 > x̄. Observe that xm+1 in (1.16) may by
expressed in the following way:

xm+1 = g1(xm)− f (g1(xm))
[g1(xm), xm; f ] −

− [xm, g1(xm), g2(xm); f ]f(g1(xm))f(xm)
[xm, g1(xm); f ][xm, g2(xm); f ][g1(xm), g2(xm); f ]

and then xm+1 < g1(xm). By relation xm+1 < xm it follows that g2(xm+1) >
g2(xm). Consequently it follows that for every m ∈ N, the following relations
hold:

g2(xm) < g2(xm+1) < x̄ < g1(xm+1) < xm+1 < g1(xm) < xm.

By these relations conclusions jjj3) and jv3) also follow. �

Remark 3.2. If function f is decreasing and concave, then function h(x) =
−f(x), x ∈ [a, b] verifies all the hypothesis of Theorem 3.1 and consequently
the sequence (xn)n≥1 generated by (1.16) verifies all the conclusions in Theo-
rem 3.1.

Analogously, the following result can be proved

Theorem 3.3. Let x0 ∈ [a, b] and functions f, g1, g2 have the following
properties:

i4) f is increasing on [a, b];
ii4) f is concave on [a, b];

iii4) f, g1, and g2 verify hypothesis a)-e);
iv4) x0 < x̄ and g2(x0) ≤ b.
Then sequences (xn)n≥0, (g1(xn))n≥0 and (g2(xn))n≥0 generated by (1.16)

verify the properties:
j4) (xn)n≥0 and (g1(xn))n≥0 are increasing and bounded from above by x̄;

jj4) sequence (g2(xn))n≥0 is decreasing and bounded from below by x̄;
jjj4) the following relations hold:

x̄− xn ≤ g2(xn)− xn, n = 0, 1, 2, . . . ,
jv4) lim xn = lim g1(xn) = lim g2(xn) = x̄.

Remark 3.4. If function f is decreasing and convex, then function h(x)
= −f(x), x ∈ [a, b] is increasing and concave. It follows that sequence (xn)n≥0
generated by (1.16) verifies the hypotheses and all the conclusions of Theorem
3.3.
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4. THE DETERMINATION OF THE AUXILIARY FUNCTIONS

In the following, for every situation concerning the monotonicity and con-
vexity of function f, functions g1 and g2 can be determined such that conditions
a), b), c) and e) should be verified. In the following we thoroughly present the
case in which function f is increasing and convex.

Supposing that f ′(x) > 0 for every x ∈ [a, b], one considers the functions:

(4.1) g1(x) = x− f(x)
f ′(b) ,

and

(4.2) g2(x) = x− f(x)
f ′(a) .

Then
g′1(x) = 1− f ′(x)

f ′(b) ≥ 0

for every x ∈ [a, b] and, consequently g1 is increasing. Analogously

g′2(x) = 1− f ′(x)
f ′(a) ≤ 0

for every x ∈ [a, b] and then g2 is a decreasing function. It follows that g1
and g2 verify hypotheses a) and b). The hypothesis e) is also verified because
g′1(x) < 1, for every x ∈ [a, b]. In iv1) the inequality g2(g1(x0) ≥ a holds.
Because g1(x0) < x0 and x0 > x̄, the above inequality is verified if g2(x0) ≥ a.
This follows, because g2(g1(x0)) > g2(x0) (g2 is a decreasing functions). This
means that the following relation must hold:

x0 − f(x0)
f ′(a) ≥ a

i.e.
x0 ≥ a+ f(x0))

f ′(a) .

Because f(x0) > 0 and f ′(a) > 0, for the veridicity of last inequality it is
sufficient that

a+ f(x0)
f ′(a) ≤ x̄,

where x̄ is the root of equation (1.1). This last inequality may be realized if
x0 is sufficiently close to x̄.

Consequently, the hypotheses of theorems 2.1 and 3.1 are realized for g1
and g2 considered above. The other cases may be similarly analyzed.

5. ORDER OF CONVERGENCE

In the following we prove that every method (1.15) and (1.16) have the order
of convergence three. The order of convergence for method (1.14) was treated
in [14], and this order is at least three. Assume the following hypotheses:
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α) function g2 verifies relation

|g2(x)− g2(x̄)| ≤ p |x− x̄| ,

for every x ∈ [a, b], where p > 0, p ∈ R;
β) m ≤ |f ′(x)| ≤ M, for every x ∈ [a, b], where m > 0 and M > 0 are real

numbers.
γ)

∣∣3[f ′(x)]2 − f ′(x)f ′′′(x)
∣∣ ≤ q, for every x ∈ [a, b], where q > 0, q ∈ R .

In hypotheses α), β), γ) and e), by (1.10) and (1.13), for sequence (xn)n≥0
generated by (1.15), one obtains:

|x̄− xn+1| ≤ qM3L2p
6m5 |x̄− xn|3 , n = 0, 1, 2, . . .

and this means that the order of convergence for method (1.15) is at least
three.

With the same hypotheses, for tree sequence (xn)n≥0 generated by (1.16) it
follows:

|x̄− xn+1| ≤ qM3Lp
6m5 |x̄− xn|3 , n = 0, 1, 2, . . .

i.e. the order of convergence of (1.16) is also at least three.
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