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Abstract. A multicriteria linear combinatorial problem is considered, principle
of optimality of which is defined by a partitioning of partial criteria onto groups
with Slater preference relation within each group and the lexicographic prefer-
ence relation between them. Quasistability of the problem is investigated. This
type of stability is a discrete analog of Hausdorff lower semicontinuity of the
many-valued mapping that defines the choice function. A formula of quasistabil-
ity radius is derived for the case of metric l∞. Some conditions of quasistability
are stated as corollaries.
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1. INTRODUCTION

Usually stability of an optimization problem is understood as continuous
dependence of solution set on parameters of the problem. The most general
approaches to stability analysis of optimization problems are based on prop-
erties of many-valued mappings that define optimality principles [1].

Mathematical analysis does not present methods sufficient to investigate
stability of a discrete optimization problem. It is greatly due to complexity
of discrete models, which can behave unpredictably under small variations of
initial data. At the same time, if terminology of general topology is not used,
then the formulation of a question of stability can be significantly simplified
in the case of a space of acnodes. There are different types of stability of
discrete optimization problems (see e.g. [2–6]). Stability of a discrete problem
in the broad sense means that there exists a neighborhood of the initial data
in the space of parameters such that any problem with parameters from this
neighborhood possesses some invariance with respect to the initial problem. In
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particular, upper (lower) semicontinuity of an optimal mapping is equivalent to
nonappearance of new (preserving of initial) optimal solutions under ”small”
perturbations of the mapping parameters. So concepts of stability [2–7] and
quasistability [5,8–12] of discrete optimization problems arise.

In this article under parametrization of optimality principle (from Slater
to lexicographic) we obtain a generalized formula of quasistability radius of
a multicriteria linear combinatorial problem with partitioning of criteria into
groups according to their importance. Slater preference relation is defined
within each group and the lexicographic preference relation – between them.
We consider the case, where metric l∞ is defined in the space of problem
parameters.

Note that similar formulas have been derived earlier in [13–21] for stability
and quasistability radii of vector trajectorial and game-theoretic problems with
other parametric principles of optimality (“from Condorset to Pareto”, “from
Pareto to Slater”, “from Pareto to Nash”, “from lexicographic to Nash” and
others).

2. DEFINITIONS AND PROPERTIES

We consider typical vector (n-criteria) combinatorial problem. Let a vector
criterion

f(t, A) = (f1(t, A1), f2(t, A2), . . . , fn(t, An))→ min
t∈T

with partial criteria
fi(t, Ai) =

∑
j∈N(t)

aij , i ∈ Nn = {1, 2, ..., n}, n ≥ 1,

be defined on a system of subsets (trajectories) T ⊆ 2E , |T | ≥ 2, of a finite
set E = {e1, e2, . . . , em}, m ≥ 2. Here N(t) = {j ∈ Nm : ej ∈ t}, Ai is the i-th
row of a matrix A = [aij ] ∈ Rn×m. Put fi(∅, Ai) = 0.

A specific peculiarity of vector optimization is the existence of many princi-
ples of optimality (or functions of choice) which could be defined with binary
relations of preference.

Let us define three binary relations in the space Rp of arbitrary dimension
p ∈ N according to formulas

y �
Sl
y′ ⇔ yi > y′i, i ∈ Np,

y �
Sm

y′ ⇔ yi ≥ y′i, i ∈ Np,

y �
lex

y′ ⇔ yk > y′k,

where k=min{i ∈ Np : yi 6= y′i}, y=(y1, y2, . . . , yp), y′=(y′1, y′2, . . . , y′p).
These relations create the following well-known objects of vector optimiza-

tion:
Slater set ( weakly efficient trajectories )
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Sln(A) = {t ∈ T : ∀t′ ∈ T (f(t, A) �
Sl
f(t′, A))},

Smale set ( strictly efficient trajectories )

Smn(A) = {t ∈ T : ∀t′ ∈ T \ {t} (f(t, A) �
Sm

f(t′, A))}

and set of lexicographically optimal trajectories

Ln(A) = {t ∈ T : ∀t′ ∈ T (f(t, A) �
lex

f(t′, A))}.

Here � is the negation of the relation �. Obviously that Smn(A) ⊆ Sln(A).
Due to transitivity of relation �

Sl
and finiteness of set T, set Sln(A) 6= ∅ for

any matrix A ∈ Rn×m. But Smale set can be empty, because binary relation
�

Sm
is not transitivity.

Let s ∈ Nn, I = {I1, I2, . . . , Is} be a partition of the set Nn into s nonin-
tersecting nonempty subsets, i.e.

Nn =
⋃

r∈Ns

Ir,

where Ir 6= ∅, r ∈ Ns; p 6= q ⇒ Ip∩Iq = ∅. For any such partitioning we define
the binary relation Ωn

I of strict preference in the space Rn between different
vectors y = (y1, y2, . . . , yn) and y′ = (y′1, y′2, . . . , y′n) as follows:

y Ωn
I y
′ ⇔ yIk

� y′Ik
,

where k = min{i ∈ Ns : yIi 6= y′Ii
}; yIk

and y′Ik
are the projections of the

vectors y and y′ correspondingly onto the coordinate axes of the space Rn

with numbers from the subset Ik.
The introduced binary relation Ωn

I determines ordering of the shaped sub-
sets of criteria such that any previous subset is significantly more important
that any consequent subset. This relation generates the set of I-optimal tra-
jectories

Tn(A, I) = {t ∈ T : ∀t′ ∈ T (f(t, A) Ωn
I f(t′, A))}.

It is evident that Tn(A, ISl), where ISl = {Nn} (s = 1), is Slater set
Sln(A), and Tn(A, IL), where IL = {{1}, {2}, . . . , {n}} (s = n), is the set of
lexicographically optimal trajectories.

So under the parametrization of optimality principle we understand assign-
ing a characteristic to binary relation which in special cases induces well-known
Slater and lexicographic optimality principles.

It is easy to show that the binary relation Ωn
I is antireflexive, asymmetric,

transitive, and hence it is a cyclic. And since the set T is finite, the set
Tn(A, I) is non-empty for any matrix A and any partitioning I of the set Nn.

Hereinafter by Zn(A, I) we denote the problem of finding the set Tn(A, I).
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Clearly, T 1(A, {1}) is the set of optimal trajectories of the scalar linear
trajectories problem Z1(A, {1}), where A ∈ Rm. Many extreme combinato-
rial problems on graphs, boolean programming and scheduling problems and
others are reduced to Z1(A, {1}) (see e.g. [4, 6, 7]).

Denote
Sl1(A) = {t ∈ T : ∀t′ ∈ (fI1(t, A) �

Sl
fI1(t′, A))}

The following properties follow directly from the above definitions.

Property 2.1. Tn(A, I) ⊆ Sl1(A) ⊆ T.

Property 2.2. If fI1(t, A) �
Sl

fI1(t′, A), then f(t, A) Ωn
I f(t′, A).

Property 2.3. If f(t, A) Ωn
I f(t′, A), then fI1(t, A) �

Sl
fI1(t′, A)∨ fI1(t, A) =

fI1(t′, A).

Property 2.4. A trajectory t 6∈ Tn(A, I) if and only if there exists a
trajectory t′ 6= t, such that f(t, A) Ωn

I f(t′, A).

Property 2.5. A trajectory t ∈ Tn(A, I) if and only if for any trajectory
t′ the relation f(t, A) Ωn

I f(t′, A) holds.

Denote
Sm1(A) = {t ∈ Sl1(A) : t′ ∈ T \ {t}

(
fI1(t, A) 6= fI1(t′, A)

)
}.

Property 2.6. Sm1(A) ⊆ Tn(A, I).

Assume the converse, i.e. t ∈ Sm(A) and t 6∈ Tn(A, I). Then according to
property 2.4 there exists a trajectory t′ 6= t, such that

f(t, A) Ωn
I f(t′, A).

Hence due to property 2.3 we have
fI1(t, A) �

Sl
fI1(t′, A) ∨ fI1(t, A) = fI1(t′, A).

Taking into account the inclusion t ∈ Sl1(A), we obtain
fI1(t, A) = fI1(t′, A),

i. e. t 6∈ Sm1(A), which contradicts to the assumption.
Directly from definition of set Sm1 we obtain

Property 2.7. ∀ t ∈ Sm1(A) ∀ t′ ∈ T \ {t} ∃ i ∈ I1
(
fi(t′, Ai) >

fi(t, Ai)
)
.

Let us consider such variant of the problem Zn(A, I) stability, which is
the discrete analog of Hausdorff lower semicontinuity in the point A of the
many-valued mapping

Rn×m → 2T ,

that puts set Tn(A, I) to any collection of parameters of the problem from
the metric space Rn×m with metric l∞. For a vector problem Zn(A, I), lower
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semicontinuity means that set Tn(A, I) can only expand under ”small” per-
turbations of elements of matrix A.

For any number ε > 0, define the set of perturbing matrixes
Ψ(ε) = {A′ ∈ Rn×m : ||A′|| < ε},

where ||A′|| = max{|a′ij | : (i, j) ∈ Nn ×Nm}, A′ = [a′ij ].
According to definitions from [5, 8–12], we will give following definitions.

Definition 2.8. Vector problem Zn(A, I), n ≥ 1, is called quasistabile (
under perturbations of elements of matrix A ), if there exists ε > 0, such that
for any perturbing matrix A′ ∈ Ψ(ε) the inclusion

Tn(A, I) ⊆ Tn(A+A′, I)
holds.

Definition 2.9. Under the quasistability radius of the vector problem Zn(A, I),
n ≥ 1, we understand the number

ρn(A, I) =
{

sup Ξ , if Ξ 6= ∅,
0 , if Ξ = ∅,

where
Ξ = {ε > 0 : ∀ A′ ∈ Ψ(ε) (Tn(A, I) ⊆ Tn(A+A′, I))}.

3. LEMMAS

For any different trajectories t any t′ we define the numbers:
∆(t, t′) = |(t ∪ t′) \ (t ∩ t′)|,

dn(t, t′, A) = max
i∈I1

fi(t′, Ai)− fi(t, Ai)
∆(t, t′) .

Obviously, that ∆(t, t′) > 0.

Lemma 3.1. If dn(t, t′, A) ≥ ϕ > 0, then the following relation holds for any
perturbing matrix A′ ∈ Ψ(ϕ) :

f(t, A+A′) Ωn
I f(t′, A+A′).

Proof. Directly from the definition of the number dn(t, t′, A), there exists
index k ∈ I1, such that
(1) fk(t′, Ak)− fk(t, Ak) ≥ ϕ∆(t, t′).

Further suppose that the assertion of the lemma is false, i.e. that there
exists a matrix A∗ = [a∗ij ] ∈ Ψ(ϕ) such that f(t, A + A∗) Ωn

I f(t′, A + A∗).
Then by virtue of property 2.3 and linearity of the functions fi(t, A), i ∈ Nn,
we derive
0 ≥ fi(t′, Ai+A∗i )−fi(t, Ai+A∗i ) = fi(t′, Ai)−fi(t, Ai)+fi(t′, A∗i )−fi(t, A∗i ) ≥
≥ fi(t′, Ai)−fi(t, Ai)−||A∗i ||∆(t, t′) > fi(t′, Ai)−fi(t, Ai)−ϕ∆(t, t′), i ∈ I1,
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i.e. for any index i ∈ I1 the inequality
fi(t′, Ai)− fi(t, Ai) < ϕ∆(t, t′),

holds, which contradicts to (1). �

Lemma 3.2. Let t ∈ Tn(A, I), t′ ∈ T \ {t}. For any number α > dn(t, t′, A)
there exists a matrix A∗ ∈ Rn×m with norm ||A∗|| = α, such that
(2) f(t, A+A∗) Ωn

I f(t′, A+A∗).

Proof. We construct the perturbing matrix A∗ = [a∗ij ] ∈ Rn×m by the
formula:

a∗ij =


−α , if i ∈ I1, ej ∈ t′ \ t,
α , if i ∈ I1, ej ∈ t \ t′,
0 , otherwise.

Then ||A∗|| = α and equitably equalities
fi(t′, A∗i )− fi(t, A∗i ) = −α∆(t, t′), i ∈ I1.

From here we get
1

∆(t, t′)(fi(t′, Ai +A∗i )− fi(t, Ai +A∗i )) = fi(t′, Ai)− fi(t, Ai)
∆(t, t′) − α ≤

≤ dn(t, t′, A)− α < 0, i ∈ I1,

i.e. fI1(t, A + A∗) �
Sl

fI1(t′, A + A∗), this implies (2) by virtue of property
2.2. �

4. THEOREM

Theorem 4.1. For any partitioning I = {{I1}, {I2}, . . . , {Is}} of the set
Nn, n ≥ 1, into s subsets, s ∈ Nn, the quasistability radius ρn(A, I) of a
problem Zn(A, I) is expressed by the formula
(3) ρn(A, I) = min

t∈T n(A,I)
min

t′∈T\{t}
dn(t, t′, A).

Proof. Before proving of the theorem, let us note that from the non-emptiness
of Tn(A, I) and T \ {t} and from the definition of dn(t, t′, A), the right side of
formula (3), further define it by ϕ, is positive and correctly defined.

At first we prove the inequality
(4) ρn(A, I) ≥ ϕ.
Without loss of generality assume that ϕ > 0 (otherwise inequality (4) is obvi-
ous). From the definition of the number ϕ, it follows that for any trajectories
t ∈ Tn(A, I) and t′ 6= t the inequalities

dn(t, t′, A) ≥ ϕ > 0
hold. Applying lemma 3.1 we get
∀ A′ ∈ Ψ(ϕ) ∀ t ∈ Tn(A, I) ∀ t′ ∈ T (f(t, A+A′) Ωn

I f(t′, A+A′)).
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Therefore by virtue of property 2.5 we have t ∈ Tn(A + A′, I). Thus we
conclude

∀ A′ ∈ Ψ(ϕ) (Tn(A, I) ⊆ Tn(A+A′, I)),
this formula proves (4).

It remains to show that

(5) ρn(A, I) ≤ ϕ.

Let ε > α > ϕ and trajectories t ∈ Tn(A, I) and t′ 6= t be such that
dn(t, t′, A) = ϕ. Then according to lemma 3.2 there exists a matrix A∗ with
norm ||A∗|| = α such that (2) holds, i.e. t 6∈ Tn(A+A∗, I). Hence we have

∀ε > ϕ ∃A∗ ∈ Ψ(ε) (Tn(A, I) 6⊆ Tn(A+A∗, I)) ,

which proves inequality (5), said above and taking into (4) we obtain (3). �

5. COROLLARIES

Series of corollaries follows directly from theorem.

Corollary 5.1. The quasistability radius of the problem Zn(A, ISl), n ≥ 1,
of finding Slater set Sln(A) is expressed by the formula

ρn(A, ISl) = min
t∈Sln(A)

min
t′∈T\{t}

max
i∈Nn

fi(t′, Ai)− fi(t, Ai)
∆(t, t′) .

The formula of quasistability radius, led in corollary 5.1, easily pass into the
formula of quasistability radius of the scalar trajectorial problem with linear
criterion [4]

Corollary 5.2 ( [22] ). The quasistability radius of the problem Zn(A, IL),
n ≥ 1, of finding the set of lexicographically optimal trajectories Ln(A) is
expressed by the formula

ρn(A, IL) = min
t∈Ln(A)

min
t′∈T\{t}

f1(t′, A1)− f1(t, A1)
∆(t, t′) .

Corollary 5.3. For any partitioning I of the set Nn, n ≥ 1, into s subsets,
s ∈ Nn, the following statements are equivalent for a problem Zn(A, I), n ≥ 1:

(i) the problem Zn(A, I) is quasistable,
(ii) ∀ t ∈ Tn(A, I) ∀ t′ ∈ T \ {t} ∃ i ∈ I1

(
fi(t′, Ai) > fi(t, Ai)

)
,

(iii) Tn(A, I) = Sm1(A).

Proof. Equivalence of statements (i) and (ii) follows directly from the the-
orem.

The implication (ii) ⇒ (iii) is proved by contradiction. Suppose that (ii)
holds but (iii) does not.

From properties 2.1 and 2.6 we get

Sm1(A) ⊆ Tn(A, I) ⊆ Sl1(A).
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Then (since Tn(A, I) 6= Sm1(A) is assumed) there exists a trajectory t ∈
Tn(A, I) ⊆ Sl1(A), such that t 6∈ Sm1(A). It follows that there exists a
trajectory t′ ∈ Sl1(A) such that

t′ 6= t, fI1(t, A) = fI1(t′, A),
which contradicts to statement (ii).

The implication (iii) ⇒ (i) is obvious by virtue of property 2.7. �

From corollary 5.3, we easily get the following attendant results.

Corollary 5.4. The problem Zn(A, ISl), n ≥ 1, of finding Slater set Sln(A)
is quasistable if and only if Sln(A) and Smn(A) are coinciding.

It is easy to understand that for a scalar linear trajectorial problem the
coincidence of Slater and Smale sets is equivalent to existence of a unique
optimal solution. Therefore partial case of corollary 5.4 is

Corollary 5.5 ( [4] ). Singlecriterion (scalar) linear trajectorial problem
is quasistable if and only if it has a unique optimal solution.

Corollary 5.6 ( [22] ). The problem Zn(A, IL), n ≥ 1, of finding the set
Ln(A) of lexicographically optimal trajectories is quasistable if and only if

|Ln(A)| =
∣∣∣∣Arg min

t∈T
f1(t, A1)

∣∣∣∣ = 1.
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