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ON A STEFFENSEN-HERMITE TYPE METHOD
FOR APPROXIMATING THE SOLUTIONS OF NONLINEAR EQUATIONS∗

ION PĂVĂLOIU†

Abstract. It is well known that the Steffensen and Aitken-Steffensen type methods
are obtained from the chord method, using controlled nodes. The chord method is an
interpolatory method, with two distinct nodes. Using this remark, the Steffensen and
Aitken-Steffensen methods have been generalized using interpolatory methods obtained
from the inverse interpolation polynomial of Lagrange or Hermite type. In this paper
we study the convergence and efficiency of some Steffensen type methods which are
obtained from the inverse interpolatory polynomial of Hermite type with two controlled
nodes.
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1. INTRODUCTION

The most well-known methods for approximating the solutions of nonlinear equa-
tions are of interpolatory type.

The Newton type methods and, more generally, the Chebyshev type methods are
obtained from the inverse interpolatory polynomial of Taylor type, with one node.
The chord method and its generalizations are obtained from the inverse interpolation
polynomial of Lagrange, or more generally, from the inverse interpolation polynomial
of Hermite [4], [7], [10]. The Steffensen and Aitken-Steffensen methods are also of
interpolatory type, but their nodes are controlled at each step [6]–[9]. For the methods
of interpolatory type it is necessary to compute the values of the derivative of the
inverse function at different points in R.

Let f : [c, d] −→ R be a given function, where c, d ∈ R, c < d, and denote by
F = f([c, d]) the set of the values of f on [c, d]. Assume that f is one-to-one and
therefore there exists f−1 : F −→ [c, d].

Consider the equation

(1) f(x) = 0.

If equation (1) has a solution x̄ ∈ [c, d] then obviously

x̄ = f−1(0).

∗This work has been supported by the Romanian Academy under grant GAR 14/2005.
†“T. Popoviciu” Institute of Numerical Analysis, P.O. Box 68-1, Cluj-Napoca, Romania, e-mail:

pavaloiu@ictp.acad.ro, web: www.ictp.acad.ro/ p̃avaloiu.

www.ictp.acad.ro/jnaat


88 Ion Păvăloiu 2

It is therefore natural to seek methods of approximation of the values of f−1 at
y = 0, in order to determine different approximations to x̄.

Several methods of approximation for f−1(0) have been studied in papers such as
[2]–[5], [7], [8], [10].

In the following we shall consider a method of Hermite type with two interpolation
nodes. Such a method has been studied in [2], [3], [8], etc.

Let p, q ∈ N, p, q ≥ 1, and x1, x2 ∈ [c, d]. Denote by

(2) H(y) = H(y1, p; y2, q; f−1 | y)

the Hermite polynomial associated to the inverse function f−1 with the multiple
nodes: y1 of order p, and y2 of order q, where yi = f(xi), i = 1, 2. In order that
polynomial (2) exists, it suffices that function f−1 to be differentiable up to the order
p+ q in F.

In this sense the following theorem holds [4], [11].

Theorem 1. If f satisfies the following conditions:
i1. f : [c, d] −→ F is one-to-one;

ii1. f is differentiable up to the order n ∈ N at each point x ∈ [c, d];
iii1. f ′(x) 6= 0 for all x ∈ [c, d],

then the inverse function f−1 is differentiable up to the order n at each point y ∈ F ,
and the following relations hold:

(3) [f−1(y)](k) =
∑ (2k−2−i1)(−1)k−1+i1

i2!i3!...ik![f ′(x)]2k−1

(
f ′(x)

1!

)i1
.
(
f ′′(x)

2!

)i2
. . .
(
f(k)(x)
k!

)ik
,

where y = f(x), and the above sum extends over all integer solutions of the system

(4) i2 + 2i3 + · · ·+ (k − 1)ik = k − 1
i1 + i2 + i3 + · · ·+ ik = k − 1.

Taking into account the above relations, under the hypothesis that f admits deriva-
tives up to the order p+ q on [c, d], f ′(x) 6= 0,∀x ∈ [c, d], and using the remainder of
the Hermite interpolation, it follows:

(5) f−1(y) = H(y) + [(f−1(η)](p+q)

(p+q)! (y − y1)p(y − y2)q

for some η ∈ int(F ).
Setting y = 0 in (5), then we obtain for x̄ the following relation:

(6) x̄ = f−1(0) = H(0) + [f−1(ξ)](p+q)

(p+q)! (−1)p+qyp1y
q
2.

Denote by x3 the next approximation for x̄, obtained from (6)

(7) x3 = H(y1, p; y2, q; f−1|0).

If we assume that the derivative of order p+ q of the inverse function is bounded,
i.e., there exists M ∈ R,M > 0, such that

(8)
∣∣∣[f−1(y)](p+q)

∣∣∣ ≤M, for all y ∈ F,

then by (2), (6) and (7) we deduce:

|x̄− x3| ≤ M
(p+q)! |f(x1)|p |f(x2)|q .
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In general, if xn, xn+1 ∈ [c, d] are two approximations for x̄, then
(9) xn+2 = H(yn, p; yn+1, q; f−1 | 0), n = 1, 2, . . . ,
where yn = f(xn) while yn+1 = f(xn+1) is a new approximation for x̄, and obviously
(10) |x̄− xn+2| ≤ M

(p+q)! |f(xn)|p |f(xn+1|q , n = 1, 2, . . . .

Taking into account all the above relations one can generate the sequence of ap-
proximations (xn)n≥1, under the assumption that at each iteration step, the new
approximation xn+2 obtained by (9) from xn and xn+1, lies in [c, d].

It can be easily seen that the convergence order of method (9) is given by the
positive root of equation [1]–[4], [8], [10]:

t2 − qt− p = 0
i.e.,

(11) ω = q+
√
q2+4p
2 .

If we assume now that the Fréchet derivative f ′ of f satisfies
(12) sup

x∈[c,d]
|f ′(x)| ≤ a, a ∈ R, a > 0,

then (10) becomes

(13) |x̄− xn+2| ≤ Map+q

(p+q)! |x̄− xn+1|q |x̄− xn|p , n = 1, 2, . . . .

In the following we shall denote ρi, i = 1, 2, . . . , the expressions

(14) ρi = a
[

Ma
(p+q)!

] 1
p+q−1 |x̄− xi| .

By (13) and (14) we obtain
ρn+2 ≤ ρqn+1ρ

p
n, n = 1, 2, . . . .

If we assume now that ρ1 obeys
(15) ρ1 < 1
and, moreover, ρ2 ≤ ρω1 , with ω given by (11), we easily deduce that for all n ∈ N, n ≥
2 we have

ρn ≤ ρω
n−1

1 , n = 2, 3, . . .
and

lim ρn = 0
which implies

lim
n→∞

xn = x̄.

Theorem 2. If the following conditions hold:
i2. function f obeys the assumptions of Theorem 1 for n = p+ q;

ii2. equation (1) has a root x̄ ∈]c, d[;
iii2. [f−1(y)](p+q) verifies (8);
iv2. f ′ (x) verifies (12);
v2. ρ1 given by (14) verifies (15) and ρ2≤ρ

ω
1 , where ω is given by (11);

vi2. the sequence (xn)n≥1 generated by (9) remains in [c, d],
then the following relations hold:
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j2. |x̄− xn| ≤ a−1[ Ma
(p+q)! ]

− 1
p+q−1 ρω

n−1

1 , n = 1, 2, . . . ;
jj2. lim xn = x̄.

Remark 1.1. The uniqueness of the root x̄ of equation (1) is ensured by hypothesis
iii1 from Theorem 1. �

We consider in the following, besides (1), an equivalent equation, of the form

(16) x− ϕ(x) = 0

where
ϕ : [c, d] −→ [c, d], ϕ(x̄) = x̄.

We shall show in the following section that if instead of method (9) we consider
the iterative method

(17) xn+1 = H(f(xn), p; f(ϕ(xn)), q; f−1 | 0), n = 1, 2, . . . , x1 ∈ [c, d],

then the r-convergence order of this resulted method, which we call of Steffensen-
Hermite type, is at least p+ q, i.e., substantially higher than ω, given by (11).

We shall also determine the values of p and q for which the methods is the class
(17) are optimal with respect to the efficiency index [4].

In section 3 we shall study the convergence of the optimal methods determined in
Section 2.

2. THE CONVERGENCE AND THE EFFICIENCY OF THE STEFFENSEN-HERMITE

TYPE METHODS

We shall assume that the function ϕ from (16) is Lipschitz, i.e., there exists b ∈ R,
b > 0, such that

(18) |ϕ(x)− ϕ(y)| ≤ b |x− y| , x, y ∈ [c, d].

For the approximation of the solution x̄ of (1), consider the sequence (xm)m≥1,
generated by (17).

Concerning the convergence of this method the following result holds.

Theorem 3. If the functions f and ϕ obey the following conditions:
i3. function f obeys conditions i2–iv2 from Theorem 2;

ii3. the approximation x1 ∈ [c, d] verifies

(19) δ1 = a
[
Mabq

(p+q)!

] 1
p+q−1 |x̄− x1| < 1,

where b is the Lipschitz constant from relation (18) and 0 < b < 1;
iii3. the elements of the sequence (xn)n≥1 generated by (17) remain in [c, d],

then the following relations hold:

j3. |x̄− xn| ≤ a−1[ Mabq

(p+q)! ]
− 1
p+q−1 δ

(p+q)(n−1)

1 ;
jj3. lim xn = x̄.

Proof. The proof can be done along the same lines as in Theorem 2. �
From the inequality given in j3 one can see that the r-convergence order of method

(16) is p+ q.
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The following function evaluations are required by method (17) at each iteration
step n in order to determine xn+1, under the hypothesis that function ϕ from (16) is
expressed with the aid of function f and its derivatives up to the order r = min{p, q}:

f(xn), f ′(xn), . . . , f (p−1)(xn),
f(ϕ(xn), f ′(ϕ(xn)), . . . , f (q−1)(ϕ(xn)),

i.e., p+ q function evaluations.
The values of the successive derivatives of f−1 at the points yn = f(xn) and

ȳn = f(ϕ(xn)) respectively, are determined by (3).
We shall admit that the number of function evaluations which must be performed

from iteration step n to n+ 1 is proportional to p+ q, with a factor α ∈ R, α > 0. In
this case, the efficiency index (see, e.g., [4], [10]) of method (17) is given by relation

I(p, q) = (p+ q)
1

α(p+q) .

An elementary study on the function g : (0,+∞) −→ (0,+∞) given by

g(t) = t
1
αt ,

show that this function attains its maximum at t̄ = e, and also that g is increasing
on (0, e) and decreasing on (e,+∞), i.e. t̄ is a unique stationary point.

From here it follows that
I3(p, q) = [ 3

√
3]

1
α

while for p+ q = 2
I2(p, q) = [ 2

√
2] 1
α .

It is clear that I3(p, q) > I2(p, q) and therefore I(p, q) has the maximum value for
p+ q = 3.

We shall point out and study the optimal methods in the following section.

3. THE CONVERGENCE OF THE OPTIMAL METHODS

We shall determine in the beginning the methods which correspond to the two
cases which may be considered for p+ q = 3, i.e., p = 1, q = 2 or p = 2, q = 1.

In the first case (p = 1, q = 2) we want to determine a polynomial H of the form:
H(y) = a0 + a1y + a2y

2

with the conditions:
H(y1) = x1, x1 ∈ [c, d],(20)
H(y2) = ϕ(x1),
H ′(y2) = 1

f ′(ϕ(x1)) = [f−1(y2)]′,

where y1 = f(x1) and y2 = f(ϕ(x1)).
Conditions (20) lead to a system of 3 equations with the unknowns a0, a1, a2. For

our purpose, of approximating the solution of (1), we are interested only in the value
H(0) = a0. Denoting by [ϕ(x1), ϕ(x1); f ] = f ′(ϕ(x1)), then for a0 we obtain the
following two equivalent expressions:

a0 = ϕ(x1)− f(ϕ(x1))
[ϕ(x1),ϕ(x2);f ] −

[x1,ϕ(x1),ϕ(x1);f ]
[ϕ(x1),ϕ(x1);f ][x1,ϕ(x1);f ]2 f

2(ϕ(x1))

= x1 − f(x1)
[x1,ϕ(x1);f ] −

[x1,ϕ(x1),ϕ(x1);f ]
[ϕ(x1),ϕ(x1);f ][x1,ϕ(x1);f ]2 f(x1)f(ϕ(x1)).
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The above expressions for a0 lead us to the sequences (xn)n≥1 and (ϕ(xn))n≥1,
generated by

(21) xn+1 = xn− f(xn)
[xn,ϕ(xn);f ]−

[xn,ϕ(xn),ϕ(xn);f ]
[ϕ(xn),ϕ(xn);f ][xn,ϕ(xn);f ]2 f(xn)f (ϕ(xn)) , n = 1, 2, . . .

or equivalently
(22)
xn+1 = ϕ(xn)− f(ϕ(xn))

[ϕ(xn),ϕ(xn);f ] −
[xn,ϕ(xn),ϕ(xn);f ]

[ϕ(xn),ϕ(xn);f ][xn,ϕ(xn);f ]2 f
2(ϕ(xn)), n = 1, 2, . . . .

In the second case, p = 2, q = 1, we obtain in our analogous fashion, the following
expressions for (xn)n≥0 and (ϕ(xn))n≥0

(23) xn+1 = xn − f(xn)
[xn,xn;f ] −

[xn,xn,ϕ(xn);f ]
[xn,xn;f ][xn,ϕ(xn);f ]2 f

2(xn)

n = 1, 2, . . . , or, equivalently,

(24) xn+1 = ϕ(xn)− f(ϕ(xn))
[xn,ϕ(xn);f ]−

[xn,xn,ϕ(xn);f ]
[xn,xn;f ][xn,ϕ(xn);f ]2 f(xn)f (ϕ(xn)) , n = 1, 2, . . . .

In order to study the convergence of methods (21) or (23) we need to determine
the third order derivative of f−1.

By (3) for k = 3, we get:

[f−1(y)]′′′ = 3[f ′′(x)]2−f ′′′(x)f ′(x)
[f ′(x)]5 , y = f(x).

Regarding methods (21) or (22) the following result holds.

Theorem 4. If the initial approximation x1 and functions f and ϕ obey
i4. equation (1) has a root x̄ ∈]c, d[;

ii4. function f is derivable up to the order 3 on [c, d];
iii4. f ′(x) 6= 0, ∀x ∈ [c, d];
iv4. there exists r > 0 such that ∆ = [x̄− r, x̄+ r] ⊆ [c, d];
v4. a = maxx∈∆ |f ′(x)| ;

vi4. function ϕ verifies (18), where 0 < b < 1;
vii4. ρ1 = ab[ma6 ]1/2 | x̄− x1 |< 1, where

m = max
x∈∆

∣∣ 3[f ′′(x)]2−f ′(x)f ′′′(x)
[f ′(x)]5

∣∣,
then the elements of the sequence (xn)n≥0 generated by (21) remain in ∆ and, more-
over, the following relations hold:

j4) lim xn = x̄;
jj4) |x̄− xn+1| ≤ 1

ab

√
6
maρ

3n
1 , n = 1, 2, . . . , i.e., the sequence (xn)n≥1 has the r-

convergence order 3.

Proof. We assume first that hypothesis iii4 implies that function f : [c, d] −→ F
admits an inverse f−1 : F −→ [c, d] and also that the root x̄ of equation (1) is unique
in the interval [c, d]. Conditions ii4 and iii4 ensure that function f−1 is derivable up
to the order 3 on F.

By (18) and hypothesis vi4 we have that for any x1 ∈ ∆, ϕ(x1) ∈ ∆.
The element x2 is given by

x2 = H(f(x1), 1; f(ϕ(x1)), 2; f−1 | 0)
and by (5) we have:

x̄ = x2 + (−1)3[0, f(x1), f(ϕ(x1)), f(ϕ(x1)); f−1]f(x1)f2(ϕ(x1)).
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From this relation, taking into account the mean value formula for divided differ-
ences, and also hypotheses v4–vii4, we get that

(25) |x̄− x2| ≤ ma3b2

6 |x̄− x1|3 .

Relation ρ1 < 1 and condition (25) imply that |x̄− x2| < |x̄− x1| , i.e., x2 ∈ ∆.
In general, assuming that an element xk of the sequence (xn)n≥1 belongs to the

interval ∆, obviously ϕ(xn) ∈ ∆, and, similarly as above, we can prove that

|xn+1 − x̄| ≤ Ma3b2

6 |x̄− xn|3 , k = 1, 2, . . . ,

The above relations imply jj4. and then obviously j4. �

Regarding the sequence generated by (23), resp. (24), the following result holds:

Theorem 5. If the initial approximation x1, and the function f, ϕ obey
i5. equation (1) has a root x̄ ∈]c, d[;
ii5 function f admits derivatives of orders up to 3 on [c, d];

iii5 f ′ (x) 6= 0 for all x ∈ [c, d];
iv5 there exists r > 0 such that ∆ = [x̄− r, x̄+ r] ⊆ [c, d];
v5. a = max{|f ′(x)| : x ∈ ∆};
vi5 function ϕ verifies (18) with 0 < b < 1;

vii5 ρ1 = a
√

mab
6 |x̄− x1| < 1, where

m = max
x∈∆

∣∣ 3[f ′′(x)]2−f ′(x)f ′′′(x)
[f ′(x)]5

∣∣,
then the sequence (xn)n≥1 generated by (23) is convergent, and the following relations
hold:

j5. lim xn = x̄;
jj5. |x̄− xn+1| ≤ 1

a

√
6

mab q
3n
1 , n = 1, 2, . . . .

Proof. The proof of this theorem can be done in an analogous fashion, as for
Theorem 4. �
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