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Rev. Anal. Numér. Théor. Approx., vol. 35 (2006) no. 1, pp. 65–70
ictp.acad.ro/jnaat

GENERALIZED UNIMODAL MULTICRITERIA OPTIMIZATION
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Abstract. The aim of this paper is to characterize the sets of weakly-efficient
solutions and efficient solutions for multicriteria optimization problem involving
generalized unimodal objective functions. An implementable algorithm which
completely determines these sets is given for the particular framework of discrete
feasible domains.
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1. INTRODUCTION

Recall (see e.g. [1]) that a function f : D → R, defined on a nonempty
subset D of R, is called lower unimodal on a compact interval [a, b] ⊂ D
if there exists u ∈ [a, b] such that f is decreasing on [a, u] and increasing
on [u, b] (note that throughout this paper it will be convenient to denote
[α, β] := {x ∈ R | α ≤ x ≤ β} for any α, β ∈ R, α ≤ β; in particular, [α, α]
means {α}). An extension of the classical concept of unimodality was recently
proposed in [3]. We present here a slightly modified version of it:

Definition 1. Let f : D → R be a function, defined on a nonempty set
D ⊂ R. We say that f is lower unimodal on S ⊂ D if there exist u, v ∈ S
satisfying the following conditions:
(LU1) f(u) = f(v);
(LU2) f(x) > f(y) whenever x, y ∈ S, x < y ≤ u;
(LU3) f(x) < f(y) whenever x, y ∈ S, v ≤ x < y;
(LU4) S ∩ [u, v] = {u, v}.

Remark 1. 1) By (LU1)–(LU2) it follows that u ≤ v, so (LU4) makes
sense. Indeed, supposing to the contrary that v < u, by letting x := v
and y := u in (LU2), we derive f(v) > f(u), which contradicts (LU1).
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2) As a direct consequence of (LU1)–(LU4) we can easily deduce that for
any x, y ∈ S the following implications hold:

x < y ≤ v =⇒ f(x) ≥ f(y);
u ≤ x < y =⇒ f(x) ≤ f(y).

3) If f is lower unimodal on S, then there exists a unique pair (u, v) ∈
S × S of numbers satisfying (LU1)–(LU4), implicitly defined by:

Argmin
x∈S

f(x) = {u, v} and u ≤ v.

4) When S = D in Definition 1 is a compact interval, it follows by (LU4)
that u = v and we recover the classical notion of lower unimodality.
In this case Argmin

x∈S
f(x) = {u}.

5) If f is lower unimodal on S = D∩Z, then there exists an unique integer
u ∈ D such that either Argmin

x∈S
f(x) = {u} or Argmin

x∈S
f(x) = {u, u+ 1}.

6) It is easily seen that if f is lower unimodal (in the classical sense) on a
compact interval D then f is lower unimodal on every nonempty finite
subset S of D. �

Example 1. Consider the function f : R → R, defined for all x ∈ R
by f(x) = |x2 − x|. It is easily seen that f is lower unimodal on Z and
Argmin

x∈Z
f(x) = {0, 1}. �

2. UNIMODAL MULTICRITERIA OPTIMIZATION

Let f = (f1, . . . , fm) : D → Rm (m ∈ N, m ≥ 2) be a vector-valued function
defined on a nonempty set D ⊂ R, such that the scalar components f1, . . . , fm

are lower unimodal on a nonempty subset S of D. Consider the multicriteria
optimization problem:

(1)
{

Minimize f(x)
subject to x ∈ S,

where the partial ordering in the image space of the objective function is
understood to be induced by the standard ordering cone Rm

+ . More precisely,
denoting I := {1, . . . ,m}, we have for any a = (a1, . . . , am), b = (b1, . . . , bm) ∈
Rn:

a ≤ b :⇐⇒ ai ≤ bi, for all i ∈ I,
a < b :⇐⇒ ai < bi, for all i ∈ I.

Recall (see e.g. [2]) that the sets of efficient solutions and weakly-efficient
solutions of problem (1) are given, respectively, by:

Eff(S; f) :=
{
x ∈ S |

(
f(x)− Rm

+
)
∩ f(S) = {f(x)}

}
= {x ∈ S | @ y ∈ S such that f(y) ≤ f(x) 6= f(y)} ,
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WEff(S; f) :=
{
x ∈ S |

(
f(x)− intRm

+
)
∩ f(S) = ∅

}
= {x ∈ S | @ y ∈ S such that f(y) < f(x)} .

The principal aim of this paper is to show that both the sets Eff(S; f)
and WEff(S; f) can be completely determined by only using the numbers
u1, v1, . . . , um, vm, implicitly defined (in view of Remark 1.3) by

Argmin
x∈S

fi(x) = {ui, vi} and ui ≤ vi, for all i ∈ I.

To this end, we firstly introduce the following notations:
u := min

i∈I
ui, v := min

i∈I
vi, u := max

i∈I
ui and v := max

i∈I
vi.

Remark 2. 1) Recalling that ui ≤ vi for all i ∈ I, it is easily seen that
u ≤ min{v, u} ≤ max{v, u} ≤ v.

2) If u < v then for each i ∈ I we have ui ≤ u < v ≤ vi, which in view of
(LU4) implies that ui = u and v = vi. In this case we have u = u = ui

and v = v = vi, for all i ∈ I. �

Theorem 2. The set of weakly efficient solutions of problem (1) admits the
following representation:

WEff(S; f) = [u, v] ∩ S.(2)

Proof. Suppose to the contrary that there exists x ∈WEff(S; f) such that
x /∈ [u, v] ∩ S. Since x ∈ S, it follows that either x < u or x > v. In the
first case we have x < u ≤ ui, hence fi(x) > fi(u) for each i ∈ I, which
yields f(u) < f(x), contradicting the weak efficiency of x. In the second case
we should have vi ≤ v < x, hence fi(v) < fi(x) for each i ∈ I, which yields
f(v) < f(x), contradicting again the weak efficiency of x. Thus the inclusion
WEff(S; f) ⊂ [u, v] ∩ S holds.

In order to prove the converse inclusion, let us suppose to the contrary that
there exists x ∈ [u, v] ∩ S \WEff(S; f). Then we can find some y ∈ S such
that

fi(y) < fi(x), for all i ∈ I.(3)
Obviously x 6= y. If x < y then (in view of the second implication in Remark
1.2) it follows by (3) that x < ui for every i ∈ I, which yields x < u, a
contradiction. Similarly, if y < x then (in view of the first implication in
Remark 1.2) we can deduce by (3) that x > vi for every i ∈ I, which yields
x > v, contradicting again the choice of x. Thus the inclusion [u, v] ∩ S ⊂
WEff(S; f) holds and relation (2) is proven. �

Theorem 3. The set of efficient solutions of problem (1) is given by the
following representation:

Eff(S; f) = [min{v, u},max{v, u}] ∩ S.(4)

Proof. We will distinguish two cases:
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Case 1: u < v. In this case, according to Remark 2.2, we have u = u = ui and
v = v = vi for all i ∈ I. In view of Remark 1.3 and (LU4) we infer
that ⋂

i∈I

Argmin
x∈S

fi(x) = [u, v] ∩ S,

which actually means (4), since in this case the efficient solutions be-
come ideal efficient (cf. Proposition 2.2.2 in [2]).

Case 2: v 6 u. In this case relation (4) can be rewritten as:

Eff(S; f) = [v, u] ∩ S.(5)

Suppose to the contrary that there exists x ∈ Eff(S; f) such that
x /∈ [v, u] ∩ S. Since x ∈ S, it follows that either x < v or x > u.
If x < v, then for each i ∈ I we have x < v ≤ vi, which (in view of
Remark 1.2) implies that fi(x) ≥ fi(v). Hence f(x) ≥ f(v). Since
x ∈ Eff(S; f) it follows that f(x) = f(v). Taking into account that
x < v ≤ vi and fi(v) = fi(x) for each i ∈ I, we can deduce (in view
of (LU1)–(LU4)) that ui = x < v = vi for all i ∈ I. In particular, it
follows that u < v, a contradiction. Similarly, if x > u, then for each
i ∈ I we have ui ≤ u < x, which (in view of Remark 1.2) implies that
fi(u) ≤ fi(x). Hence f(u) ≤ f(x). Since x ∈ Eff(S; f) it follows that
f(u) = f(x). Taking into account that ui ≤ u < x and fi(u) = fi(x)
for each i ∈ I, we can deduce that ui = u < x = vi for all i ∈ I. In
particular, it follows that u < v, which gives again a contradiction.
Thus inclusion Eff(S; f) ⊂ [v, u] ∩ S holds.

In order to prove the converse inclusion, let us suppose to the con-
trary that there exists x ∈ [v, u]∩S \Eff(S; f). Then we can find some
y ∈ S such that f(y) ≤ f(x) and f(y) 6= f(x). It follows that

fi(y) ≤ fi(x), for all i ∈ I(6)

and y 6= x. If y < x then we have y < x ≤ u. In particular, by choosing
h ∈ I such that uh = u, we obtain y < x ≤ uh, which in view of (LU2)
yields fh(y) > fh(x), contradicting (6). Similarly, if x < y then we
have v ≤ x < y. In particular, by choosing k ∈ I such that vk = v,
we obtain vk ≤ x < y, which in view of (LU3) yields fk(x) < fk(y),
contradicting again (6). Thus the inclusion [v, u] ∩ S ⊂ Eff(S; f) also
holds.

Consequently, relation (5) is proven.
�

Remark 3. 1) By Theorem 2 and Theorem 3 it follows that in the
particular case when u < v we have

Eff(S; f) = WEff(S; f) = {ui, vi}, for all i ∈ I.



5 Generalized unimodal multicriteria optimization 69

2) As a direct consequence of Theorem 2 and Theorem 3, we can also
deduce that in the particular case when S is an interval (i.e. the
functions f1, . . . , fm are lower unimodal in the classical sense) we have

Eff(S; f) = WEff(S; f) = [u, v] .

Note that this representation was already obtained in [5], by using a
quite different approach, based on some results from [4]. �

3. NUMERICAL APPROACH

In what follows we consider the particular case where the feasible set S of
problem (1) is discrete. More precisely, we assume that all objective functions
f1, . . . , fm are lower unimodal on a finite set S = {x1, . . . , xn} ⊂ D, where
n ∈ N, n ≥ 2, and x1 < · · · < xn. In this case, Theorem 2 and Theorem 3 can
be used to design a numerical method for solving problem (1). Throughout
the algorithm below, the elements u, u, v and v, needed for generating the
sets WEff(S; f) and Eff(S; f), will be xju , xju

, xjv and xjv
, respectively.

Algorithm

1◦ Set j := 1.
2◦ Set i := 1.
3◦ If fi(xj) ≤ fi(xj+1) then go to step 4◦, else set i := i + 1 and go to

step 7◦.
4◦ If fi(xj) = fi(xj+1) then go to step 5◦, else set jv := j and go to step

9◦.
5◦ Set i := i+ 1.
6◦ If i ≤ m then go to step 4◦, else set jv := j + 1 and go to step 9◦.
7◦ If i ≤ m then go to step 3◦, else set j := j + 1.
8◦ If j < n then go to step 2◦, else set jv := j.
9◦ Set ju := j.

10◦ Set j := n.
11◦ Set i := 1.
12◦ If fi(xj−1) ≥ fi(xj) then go to step 13◦, else set i := i + 1 and go to

step 16◦.
13◦ If fi(xj−1) = fi(xj) then go to step 14◦, else set ju := j and go to step

18◦.
14◦ Set i := i+ 1.
15◦ If i ≤ m then go to step 13◦, else set ju := j − 1 and go to step 18◦.
16◦ If i ≤ m then go to step 12◦, else set j := j − 1.
17◦ If j > 1 then go to step 11◦, else set ju := j.
18◦ Set jv := j.
19◦ Generate WEff(S; f) := {xj | ju ≤ j ≤ jv}.
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20◦ If jv ≤ ju then generate Eff(S; f) := {xj | jv ≤ j ≤ ju}, else generate
Eff(S; f) := {xj | ju ≤ j ≤ jv}.

21◦ Stop.

Remark 4. 1) The above algorithm may be used for solving integer
multicriteria optimization problems of type (1), where the objective
functions f1, . . . , fm are lower unimodal on a finite feasible domain
S = D ∩ Z = {x1, . . . , xn} with cardinality n ≥ 2.

2) If the objective functions f1, . . . , fm are lower unimodal (in the clas-
sical sense) on a compact interval D then, by choosing S as being a
division of D with small enough norm, the above algorithm can serve
for approximating the sets Eff(D; f) and WEff(D; f) by Eff(S; f) and
WEff(S; f), respectively. �
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