THE ABSTRACT, MULTIDIMENSIONAL VARIETIES AND THEIR CLASSIFICATION

MARIANA BUJAC* and PETRU SOLTAN*

Dedicated to Professor Elena Popoviciu on the occasion of her 80th birthday

Abstract

We define abstract multidimensional variety without borders, using the investigation of the complex of multi-ary relations (H. Martini and P. Soltan, 2003 [3]) and the notion of compact, combinatorial, multidimensional variety without borders (V. G. Boltyanski and V. A. Efrimovici, 1982 [1]). We indicate the classification of this kind of varieties similarly to the results of classification of compact, two-dimensional surfaces without borders (V. G. Boltyanski and V. A. Efrimovici, 1982 [1]). We use varieties' genders (modulo Euler characteristic (V. G. Boltyanski, $1995[2]$)) to classify them.

MSC 2000. $57 \mathrm{~N} 60,51 \mathrm{H} 16$.
Keywords. Abstract multidimensional variety, Euler characteristic.

Let $\mathcal{K}^{n}=\left\{\mathcal{S}^{0}, \mathcal{S}^{1}, \ldots, \mathcal{S}^{n}\right\}$ be a complex of multi-ary relations [3].
Definition 1. If the complex \mathcal{K}^{n} satisfies the conditions:
(1) $\forall S^{n-1} \subset \mathcal{S}^{n-1}$ is a commune face with exactly two simplexes from \mathcal{S}^{n};
(2) For $\forall S_{i}^{n}, S_{j}^{n} \in \mathcal{S}^{n}, i \neq j$, there is a sequence

$$
S_{i_{1}}^{n}=S_{1}^{n}, S_{i_{2}}^{n}, \ldots, S_{i_{q}}^{n}=S_{j}^{n}
$$

from \mathcal{S}^{n} so that the pair $S_{i_{k}}^{n}, S_{i_{k+1}}^{n}, 1 \leq k \leq q-1$ satisfies the relation $S_{i_{k}}^{n} \cap S_{i_{k+1}}^{n} \in \mathcal{S}^{n-1} ;$
(3) $S^{m} \in \mathcal{K}^{n}, 0 \leq m \leq n$, is at least a face of one simplex $S^{n} \in \mathcal{K}^{n}$;
(4) For $\forall S_{i}^{n}, S_{j}^{n} \subset \mathcal{S}^{n}, i \neq j$, so that $S_{i}^{n} \cap S_{j}^{n}=S^{m} \in \mathcal{S}^{m}$, the sequence from 2. involve the relation $S^{m} \in S_{i_{1}}^{n} \cap S_{i_{2}}^{n} \cap \ldots \cap S_{i_{q}}^{n}$,
then \mathcal{K}^{n} is called abstract variety of dimension n and without borders, that is denoted by V^{n}.

Let \mathbb{Z} be the group of integer numbers, $f: V^{n} \rightarrow \mathbb{Z}$ - a single-valued map that satisfies: for $\forall S^{m} \in \mathcal{S}^{m}, f\left(-S^{m}\right)=-f\left(S^{m}\right)$, where $0 \leq m \leq n$. We consider the group of chains of dimension m of the complex \mathcal{K}^{n} and $\forall l^{m} \in$

[^0]$\mathcal{L}^{m} \Longrightarrow$
$$
l^{m}=g_{1} S_{1}^{m}+g_{2} S_{2}^{m}+\ldots+g_{\alpha_{m}}^{m} S_{\alpha_{m}}^{m}
$$
where $g_{i} \in \mathbb{Z}, i=1, \ldots, \alpha_{m}, \alpha_{m}=\operatorname{card} \mathcal{S}^{m}$.
DEFINITION 2. Let V^{n} be an abstract variety. If $\exists l^{n} \in \mathcal{L}^{n}, \Delta l=0$, then V^{n} is said to be oriented variety, otherwise it is called nonoriented variety. The chain $l^{n} \in \mathcal{L}^{n}$ is said to be cycle of dimension $\boldsymbol{m}[3]$ of the complex \mathcal{K}^{n} if $\Delta l^{n}=0$. It is denoted by z^{n}.

Theorem 3. $\forall z^{n} \in V^{n}$ has a unique representation by the formula: $f\left(z^{n}\right)=$ $g_{1} S_{1}^{n}+g_{2} S_{2}^{n}+\ldots+g_{\alpha_{n}} S_{\alpha_{n}}^{n}$, where $g_{i}= \pm 1, i \in\left\{1, \ldots \alpha_{n}\right\}$.

The spherical variety of dimension n will be denoted by V^{n} or Σ^{n}. It satisfies one of the relations: $\chi\left(V^{n}\right)=2$, if n is even, or $\chi\left(V^{n}\right)=0$, if n is odd.

TheOrem 4. An abstract, oriented variety V^{n} is a spherical variety, if $\forall V^{n-1} \subset V^{n}$, where V^{n-1} is spherical, satisfies the relation:

$$
V^{n} \backslash V^{n-1}=\mathcal{K}_{1}^{n} \cup \mathcal{K}_{2}^{n}, \mathcal{K}_{1}^{n} \cap \mathcal{K}_{2}^{n}=\emptyset \quad \text { and } \chi\left(\mathcal{K}_{1}^{n}\right)=\chi\left(\mathcal{K}_{2}^{n}\right)=1
$$

Definition 5. Let \mathcal{K}^{n} be a complex of multy-ary relations, $S^{k}=\left[x_{i_{0}}\right.$, $\left.x_{i_{1}}, \ldots, x_{i_{k}}\right], k \in\{1,2, \ldots, n\}$, a simplex from \mathcal{K}^{n}. We denote

$$
\stackrel{\circ}{S}^{k}=\left(x_{i_{0}}, x_{i_{1}}, \ldots, x_{i_{k}}\right)=S^{k} \backslash\left\{F_{\lambda}\right\}, \lambda \in \Lambda^{\prime}
$$

where $\left\{F_{\lambda}: \lambda \in \Lambda^{\prime}\right\}$ is the family of all faces of $S^{k} .{\stackrel{\circ}{S^{k}} \text { is said to be vacuum }}^{\prime}$ of dimension k.

DEfinition 6. The variety V^{n} has t spherical borders of dimension $n-1$,

Let Σ_{1}^{n} and Σ_{2}^{n} be two disjoint, isomorphic varieties that are generated by the sets $X_{1}, X_{2} \in F, X_{1} \cap X_{2}=\emptyset$, where n is even. Card $X_{i}>n+1, i=$ $1,2 \Longrightarrow \exists\left\{S_{i}^{n-1}\right\}_{i},\left\{S_{j}^{n-1}\right\}_{j}$, that are respectively generated by the sets X_{1} and X_{2}. So, we can take out from Σ_{1}^{n} two vacuum of dimension $n-1$. We denote them by $\stackrel{\circ}{S}_{11}^{n-1}$ and $\stackrel{\circ}{S}_{12}^{n-1}$ that are respectively suitable to the simplexes S_{11}^{n-1} and S_{12}^{n-1}. Isomorphicly we take out S_{21}^{n} and S_{22}^{n} from Σ_{2}^{n}. We "stick" these borders to the isomorphic images from Σ_{2}^{n}. So we get the variety V_{2}^{n}. This is called the variety of gender two. We get inductively the countable set of varieties of respective gender:

$$
\begin{equation*}
V_{0}^{n}, V_{1}^{n}, V_{2}^{n}, \ldots, V_{p}^{n}, \ldots \tag{1}
\end{equation*}
$$

The construction of set (1) was done by the countable set of finite sets $\left\{X_{i}\right\}_{i=1, \ldots, \infty}$, where $X_{i} \in F, \forall i \geq 1$. The set (1) satisfies the relation $\chi\left(V_{p}^{n}\right)=$ $2-2 p, \forall p \geq 0$.

Let $F^{\prime}=F \backslash \bigcup_{i=1}^{\infty} X_{i}$ be a set of unused sets for (1). Similarly we construct one set of abstract, oriented varieties of odd dimension. In this case the
varieties will be generated by the sets from F^{\prime}. This set of varieties satisfies the relation $\chi\left(V_{q}^{n}\right)=0, \forall q \geq 0$. So, now, the Euler characteristic cannot be used as a criterion of classification.

The set of all Δ-cycle of dimension $m[3]$ of the variety $V^{n}, m=0,1, \ldots, n$, with respect to the addition of Δ-chains form a commutative group $Z^{m}(\Delta)$. There are two kind of Δ-cycles of V^{n} :
(a) $\Delta l^{m}=\Delta z^{m}=0$;
(b) $\Delta \Delta l^{m}=\Delta\left(\Delta l^{m}\right)=0 ; \Delta l^{m} \neq 0$.

The set of cycles of dimensions m with the property (a) forms a commutative group $Z_{0}^{m}(\Delta) \in Z^{m}(\Delta), m=0,1, \ldots, n$. Let $r_{0}, r_{1}, \ldots, r_{n}$ be the ranks of the groups of Δ-homologies of the variety $V^{n}, Z^{m}(\Delta) / Z_{0}^{m}(\Delta)=$ $\Delta^{m}\left(V^{n}, Z\right), m=1,2, \ldots, n$. It is known [3] that

$$
\begin{equation*}
\chi\left(V_{j}^{n}\right)=\sum_{i=0}^{n}(-1)^{i} r_{i}, j \geq 0 . \tag{2}
\end{equation*}
$$

So, we can classify the abstract, oriented varieties with odd dimension by comparing the sequences $\left(r_{0}^{j}, r_{1}^{j}, \ldots, r_{n}^{j}\right), j \geq 0$.

Definition 7. If for the abstract, odd dimension varieties and without borders V_{1}^{n} and V_{2}^{n} the groups $\Delta^{q}\left(V_{1}^{n}, Z\right)$ and $\Delta^{q}\left(V_{2}^{n}, Z\right)$ are isomorphic, then V_{1}^{n} and V_{2}^{n} belong to the same class.

This classification establishes the set of oriented varieties of odd dimension:

$$
\begin{equation*}
V_{0}^{n}, V_{1}^{n}, V_{2}^{n}, \ldots, V_{q}^{n}, \ldots \tag{3}
\end{equation*}
$$

Theorem 8. Let V^{n} be an arbitrary, abstract, oriented variety. There is one and only one element in (1) or (3), V_{p}^{n} and V_{q}^{n}, so that $\chi\left(V^{n}\right)=\chi\left(V_{p}^{n}\right)$ or $\chi\left(V^{n}\right)=\chi\left(V_{q}^{n}\right)$.

Similarly it is constructed the set of abstract, nonoriented varieties:

$$
\begin{equation*}
V_{1}^{n}, V_{2}^{n}, \ldots, V_{l}^{n}, \ldots \tag{4}
\end{equation*}
$$

where $n \geq 2$ is even and $\chi\left(V_{l}^{n}\right)=2-l$.
Theorem 9. Let V^{n} be an abstract, nonoriented variety, $n=2 m-1>2$. There is one and only one element in (4), V_{l}^{n}, so that $\chi\left(V^{n}\right)=\chi\left(V_{l}^{n}\right)$.

So, the classification of abstract varieties of dimension n is done by there genders (modulo Euler characteristic).

REFERENCES

[1] Boltyanski, V. G. and Efrimovici, V. A., Nagliadnaya topologya, Moscow, pp. 2-148, 1982 (in Russian).
[2] Boltyanski, V. G., Gomotopiceskaya teoriya nepreryvnyh otobrajenii i vectornyn polei, Izd. ANSSSR, Moscow, pp. 2-199, 1995 (in Russian).
[3] Martini, H., Soltan, P., On the Homologies of Multi-ary Relations, JCMCC, 45, pp. 219-243, 2003.

Received by the editors: April 22, 2004.

[^0]: *Faculty of Mathematics and Computer Science, Moldova State University, A. Mateevici street, 60, MD 2009, Chişinău, Republic of Moldova, e-mail: marianabujac@yahoo.com, soltan@usm.md.

