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LOCAL CONVERGENCE
OF GENERAL STEFFENSEN TYPE METHODS∗

ION PĂVĂLOIU†

Abstract. We study the local convergence of a generalized Steffensen method.
We show that this method substantially improves the convergence order of the
classical Steffensen method. The convergence order of our method is greater or
equal to the number of the controlled nodes used in the Lagrange-type inverse
interpolation, which, in its turn, is substantial higher than the convergence orders
of the Lagrange type inverse interpolation with uncontrolled nodes (since their
convergence order is at most 2).
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1. INTRODUCTION

In this paper we study the local convergence of some general methods of
Aitken-Steffensen type, which are based on inverse interpolation of Lagrange
type.

Let f : [a, b] → R, a, b ∈ R, a < b be a function and xi, i = 0, n, n + 1
distinct points in [a, b], which we call interpolation nodes. Denote yi = f (xi),
i = 0, n, and suppose that yi 6= yj for i 6= j. Assume in the beginning that
f : I → f (I), I = [a, b] is one-to-one, i.e., there exists f−1 : f (I) → I.
Consider the Lagrange polynomial with the interpolation nodes yi, i = 0, n
and the values of f−1 on these nodes xi = f−1 (yi), i = 0, n. This is the inverse
interpolation polynomial, which we denote by L

(
y0, y1, ..., yn; f−1| y

)
, and it

can be represented in the Lagrange form

(1) L
(
y0, y1, ..., yn; f−1| y

)
=

n∑
i=0

xiω(y)
(y−yi)ω′(yi) , ω (y) =

n∏
i=0

(y − yi)

and in the Newton form:

L
(
y0, y1, ..., yn; f−1| y

)
=x0 +

[
y0, y1; f−1

]
(y − y0)

(2)

+
[
y0, y1, y2; f−1

]
(y − y0) (y − y1) + · · ·

+
[
y0, y1, ..., yn; f−1

]
(y − y0) (y − y1) · · · (y − yn−1) ,
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where
[
y0, ..., yi; f−1] , i = 1, n denotes the i-th order divided difference of the

function f−1 on the nodes y0, ..., yi.
Assuming that f admits derivatives up to the order n + 1 on the interval

[a, b], then

(3) f−1 (y) = L
(
y0, y1, ..., yn; f−1|y

)
+ [f−1(ξ)](n+1)

(n+1)! ω (y)

where ξ is a point belonging to the smallest interval containing y, y0, ..., yn.
Denote

Rn
[
f−1; y

]
= [f−1(ξ)](n+1)

(n+1)! ω (y) .
Consider now the equation

(4) f (x) = 0.
If it has a solution x ∈ [a, b], then obviously

(5) x = f−1 (0) .
An approximation of the solution x can be obtained from (3) for y = 0, i.e.,

(6) x = L
(
y0, y1, ..., yn; f−1|0

)
+Rn

[
f−1; 0

]
,

whence, by neglecting the remainder Rn
[
f−1, 0

]
we get

(7) xn+1 = L
(
y0, y1, ..., yn; f−1|0

)
,

and the error
(8) x− xn+1 = Rn

[
f−1; 0

]
.

Denoting M = sup
y∈f(I)

∣∣∣[f−1 (y)
](n+1)

∣∣∣, then

(9) |x− xn+1| ≤ M
(n+1)! |y0| |y1| · · · |yn| .

Assuming that xn+1 ∈ [a, b] and denoting yn+1 = f (xn+1), then we can
obtain a new approximation xn+2 given by relation

(10) xn+2 = L
(
y1, y2, ..., yn, yn+1; f−1|0

)
,

where, as it can be seen, the node x0 has been neglected and instead we
consider yn+1. The above procedure may continue indefinitely: assuming that
we have obtained the approximations xk, xk+1, ..., xk+n ∈ [a, b] then the next
approximation is given by

(11) xn+k+1 = L
(
yk, yk+1, ..., yn+k; f−1|0

)
, k = 0, 1, ...,

where yk+i = f (xk+i), i = 0, n. If all the iterates are contained in [a, b], then
the procedure may continue indefinitely.

In the same way as for (9), we get the following error bound:
(12) |x− xn+k+1| ≤ M

(n+1)! |yk| |yk+1| · · · |yk+n| , k = 0, 1, ...,



3 Local convergence of general Steffensen type methods 81

Assume that f ′ (x) 6= 0,∀x ∈ [a, b], and denote
m = sup

x∈I

∣∣f ′ (x)
∣∣ .

Obviously

(13) |x− x| ≥ |f (x)|
m

.

By (12) and (13)
(14) |f (xn+k+1)| ≤ mM

(n+1)! |f (xk)| |f (xk+1)| · · · |f (xk+n)| , k = 0, 1, ... .

Multiplying relations (14) by
(
mM

(n+1)!
) 1

n and denoting

ρi =
(

mM
(n+1)!

) 1
n |f (xi)| , i = 0, 1, ...

leads to
(15) ρn+k+1 ≤ ρkρk+1...ρk+n, k = 0, 1, ....

Suppose now that ρi ≤ dαi , with 0 < d < 1 and αi ∈ R, αi > 0, i = 0, n.
Then
(16) ρn+1 ≤ dα0+α1+···+αn = dαn+1 ,

where
(17) αn+1 = αn + αn−1 + · · ·+ α1 + α0.

In general, from (15) it follows
(18) ρn+k+1 ≤ dαn+k+1 ,

where
(19) αn+k+1 = αn+k + αn+k−1 + · · ·+ αk+1 + αk, n = 0, 1, ....

Let now t0 > 0 be the unique positive solution of equation
(20) tn+1 − tn − tn−1 − · · · − t− 1 = 0.

Assume that the values of f obey

(21) ρi ≤ dαt
i
0 , i = 0, n,

for a certain constant α > 0, i.e., αi = αti0. Then one can show by induction
using (19) that

(22) ρn+k+1 ≤ dαt
n+k+1
0 , k = 0, 1, ....

In [7] it is shown that t0 verifies 2(n+1)
n+2 < t0 < 2. It is clear that the

convergence order of the sequence given in (11) is less than 2.
In order to increase the convergence order of the sequence we proceed as

follows. Consider the following equation, equivalent to (4):
(23) x− g (x) = 0.
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We shall choose the interpolation nodes in (11) using g, generalizing in this
way the Steffensen method.

2. GENERAL METHODS OF STEFFENSEN TYPE

Assume in the beginning that for all x ∈ [a, b], it follows that g (x) ∈ [a, b].
Let u0 ∈ [a, b] be an initial approximation of the solution x of equation (14).

We shall use the following notations:
(24) x0 = u0, x1 = g (x0) , x2 = g (x1) , . . . , xn = g (xn−1) ,
which, by (7) lead to a new approximation for x

(25) u1 = L
(
y0, y1, ..., yn; f−1|0

)
,

where yi = f (xi) , i = 0, n, xi being given by (24).
From (9) we get:

(26) |x− u1| ≤ M
(n+1)! |f (x0)| |f (x1)| · · · |f (xn)| ,

whence, by (13) we get

(27) |x− u1| ≤ Mmn+1

(n+1)! |x− x0| |x− x1| · · · |x− xn| .

Assume that g obeys the Lipschitz condition on [a, b], i.e. there exists l > 0
such that

|g (x)− g (y)| ≤ l |x− y| , ∀x, y ∈ [a, b] .
Under this hypothesis, taking into account (24), we are lead to

(28) |x− u1| ≤ M ·mn+1·l
n(n+1)

2
(n+1)! |x− u0|n+1 .

Let now u1 be the next approximation for x; then, analogously to (24), we
consider in (7) the following values to f−1 at the interpolation nodes:
(29) x0 = u1, x1 = g (x0) ..., xn = g (xn−1) .

In the same way as above, we obtain the next approximation u2 for x, which
satisfies

|x− u2| ≤ M ·mn+1·l
n(n+1)

2
(n+1)! |x− u1|n+1 .

In general, if uk is an approximation of x and we set
x0 = uk, x1 = g (x0) , ..., xn = g (xn−1) ,

then by (7) we obtain the next approximation uk+1, which satisfies

(30) |x− uk+1| ≤ M ·mn+1·l
n(n+1)

2
(n+1)! |x− uk|n+1 , k = 0, 1, . . . .

Denoting δk = ml
n+1

2
(

Mm
(n+1)!

) 1
n |x− uk|, then from the above relation we

deduce
δk+1 ≤ δn+1

k , k = 0, 1, . . . ,
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which leads to the conclusion that for n ≥ 1, method (11) converges super-
linearly. Moreover, if x0 is chosen such that δ0 < 1 then limk→∞ δk = 0 and
therefore limk→∞ uk = x.

The error at each step is bounded by:

(31) |x− uk| ≤ m−1l−
n+1

2
(

Mm
(n+1)!

)− 1
n δ

(n+1)k

0 , k = 1, 2, ....

In the following we analyze two particular cases.
(1) Case n = 1. In this case (11) leads to the well known Steffensen

method.
Indeed, by (2) we get

(32) L
[
y0, y1f

−1|y
]

= x0 +
[
y0, y1; f−1

]
(y − y0) ,

hence, taking into account the equality[
y0, y1; f−1

]
= 1

[x0,x1;f ] ,

for y = 0 we obtain the approximation

(33) x2 = x0 − f(x0)
[x0,x1;f ] ,

i.e., the first step in the chord method.
Obviously, (9) may continue by

(34) xk = xk−2 − f(xk−2)
[xk−2,xk−1;f ] , k = 2, 3, ... .

Denoting in (33) x0 = u0 and x1 = g (u0), we get

u1 = u0 − f(u0)
[u0,g(u0);f ]

and in general

(35) uk = uk−1 − f(uk−1)
[uk−1,g(uk−1);f ] ,

which is precisely the Steffensen method.
In this case, the elements of the sequence (δk)k≥0 have the form

δk = lm2M
2 |x− uk| , k = 0, 1, ..., M = sup

y∈f(I)

∣∣∣∣(f−1 (y)
)′′∣∣∣∣

and obey
δk+1 ≤ δ2

k, k = 0, 1, ....
If δ0 < 1, then obviously

lim
k→∞

δk = 0

and hence lim xk = x, with the error

|xk − x| ≤ 2
lm2M δ

2k

0 , k = 1, 2, . . . ,
whence (35) converges quadratically.
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2. Case n = 2
It can be easily seen that the second order divided difference

[y0, y1, y2; f−1] can be expressed as

(36)
[
y0, y1, y2; f−1

]
= −[x0,x1,x2;f ]

[x0,x1;f ][x0,x;f ][x1,x2;f ] .

By (2) we get

L
[
y0, y1, y2; f−1|y

]
=x0 +

[
y0, y1; f−1

]
(y − y0)

+
[
y0, y1, y2; f−1

]
(y − y0) (y − y1) .

Setting y = 0 and taking into account (36) and the corresponding
formula for the first order divided difference, we are lead to

(37) x3 = x0 − f(x0)
[x0,x1;f ] −

[x0,x1,x2;f ]f(x0)f(x1)
[x0,x1;f ][x1,x2;f ][x1,x2;f ] ,

i.e., to a method correcting the chord method.
In general, a method of type (37) has the form

xn+3 = xn − f(xn)
[xn,xn+1;f ] −

[xn,xn+1,xn+2;f ]
[xn,xn+1;f ][xn+1,xn+2;f ][xn,xn+2f ] ,(38)

n = 0, 1, . . .. If in (37) we control the interpolation nodes as
x0 = u0, x1 = g (x0) , x2 = g (x1) = g (g (x0))

we obtain
u1 =u0 − f(u0)

[u0,g(u0);f ] −
[u0,g(u0);g(g(u0));f ]f(u0)f(g(u0))

[u0,g(u0);f ][u0,g(g(u0));f ][g(u0),g(g(u0));f ] .

In general, if uk is an approximation to x, then uk+1 is given by

uk+1 = uk − f(uk)
[uk,g(uk);f ] −

[uk,g(uk),g(g(uk));f ]f(uk)f(g(uk))
[uk,g(uk);f ][uk,g(g(uk));f ][g(uk),g(g(uk));f ] .(39)

Denoting M = supy∈f(I)
∣∣[f−1(y)]′′′

∣∣, then the error satisfies at each
iteration step:

(40) |uk − x| ≤
√

6
ml3/2

√
mM

δ3k

0 ,

where
δ0 = ml3/2√Mm√

6 |x− u0| .
Assuming δ0 < 1, then limk→∞ uk = x, with the convergence order

at least 3.
Suppose in the following that the function g given by (23) has deriva-

tives up to the p-th order, p ∈ N, p ≥ 2, on [a, b] and its derivatives
satisfy

(41) g(i) (x) = 0, i = 1, p− 1, g(p) (x) 6= 0.
In this case, if the derivative of p-th order in continuous on [a, b] and

L = sup
x∈[a,b]

∣∣∣g(p) (x)
∣∣∣ ,
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then for all x ∈ [a, b] one has
(42) |g (x)− g (x)| ≤ L

p! |x− x|
p .

Using the above relation (27) we get

(43) |x− u1| ≤ Mmn+1

(n+1)!

(
p!
L

)n+1
p−1 θ

pn+1−1
p−1

0 ,

where θ0 =
(
L
p!

) 1
p−1 |x− u0| .

We make the following notations:

q = pn+1−1
p−1 ;

K = Mmn+1

(n+1)!

(
p!
L

)n+1
p−1 ;

ε0 = K
1

q−1 θ0;

ε1 = K
1

q−1 |x− u1| .
By (43), we are lead to

ε1 ≤ εq0.
We obtain the sequence of approximation (us)s≥0 for which, if de-

noting

(44) εs = K
1

q−1 |x− us| , s = 1, 2, ...,
we get

(45) εs ≤ εq
s

0 , s = 1, 2, . . . .
Obviously, in this case too, if ε0 < 1, then by (44) and (45) it follows

lim
s→∞

us = x and the convergence order is q.
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tions, Rev. Anal. Numér. Théor. Approx., 21, no. 2, pp. 111–117, 1992.

[2] Brent, R., Winograd, S. and Walfe, Ph., Optimal iterative processes for root-
finding, Numer. Math., 20, no. 5, pp. 327–341, 1973.

[3] Coman, C., Some practical approximation methods for nonlinear equations, Mathe-
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