LOCAL CONVERGENCE
 OF GENERAL STEFFENSEN TYPE METHODS*

ION PĂVĂLOIU ${ }^{\dagger}$

Abstract

We study the local convergence of a generalized Steffensen method. We show that this method substantially improves the convergence order of the classical Steffensen method. The convergence order of our method is greater or equal to the number of the controlled nodes used in the Lagrange-type inverse interpolation, which, in its turn, is substantial higher than the convergence orders of the Lagrange type inverse interpolation with uncontrolled nodes (since their convergence order is at most 2).

MSC 2000. 65 H 05 .
Keywords. Nonlinear scalar equations, Steffensen type method.

1. INTRODUCTION

In this paper we study the local convergence of some general methods of Aitken-Steffensen type, which are based on inverse interpolation of Lagrange type.

Let $f:[a, b] \rightarrow \mathbb{R}, a, b \in \mathbb{R}, a<b$ be a function and $x_{i}, i=\overline{0, n}, n+1$ distinct points in $[a, b]$, which we call interpolation nodes. Denote $y_{i}=f\left(x_{i}\right)$, $i=\overline{0, n}$, and suppose that $y_{i} \neq y_{j}$ for $i \neq j$. Assume in the beginning that $f: I \rightarrow f(I), I=[a, b]$ is one-to-one, i.e., there exists $f^{-1}: f(I) \rightarrow I$. Consider the Lagrange polynomial with the interpolation nodes $y_{i}, i=\overline{0, n}$ and the values of f^{-1} on these nodes $x_{i}=f^{-1}\left(y_{i}\right), i=\overline{0, n}$. This is the inverse interpolation polynomial, which we denote by $L\left(y_{0}, y_{1}, \ldots, y_{n} ; f^{-1} \mid y\right)$, and it can be represented in the Lagrange form

$$
\begin{equation*}
L\left(y_{0}, y_{1}, \ldots, y_{n} ; f^{-1} \mid y\right)=\sum_{i=0}^{n} \frac{x_{i} \omega(y)}{\left(y-y_{i}\right) \omega^{\prime}\left(y_{i}\right)}, \quad \omega(y)=\prod_{i=0}^{n}\left(y-y_{i}\right) \tag{1}
\end{equation*}
$$

and in the Newton form:
(2)

$$
\begin{aligned}
L\left(y_{0}, y_{1}, \ldots, y_{n} ; f^{-1} \mid y\right)= & x_{0}+\left[y_{0}, y_{1} ; f^{-1}\right]\left(y-y_{0}\right) \\
& +\left[y_{0}, y_{1}, y_{2} ; f^{-1}\right]\left(y-y_{0}\right)\left(y-y_{1}\right)+\cdots \\
& +\left[y_{0}, y_{1}, \ldots, y_{n} ; f^{-1}\right]\left(y-y_{0}\right)\left(y-y_{1}\right) \cdots\left(y-y_{n-1}\right)
\end{aligned}
$$

[^0]where $\left[y_{0}, \ldots, y_{i} ; f^{-1}\right], i=\overline{1, n}$ denotes the i-th order divided difference of the function f^{-1} on the nodes y_{0}, \ldots, y_{i}.

Assuming that f admits derivatives up to the order $n+1$ on the interval $[a, b]$, then

$$
\begin{equation*}
f^{-1}(y)=L\left(y_{0}, y_{1}, \ldots, y_{n} ; f^{-1} \mid y\right)+\frac{\left[f^{-1}(\xi)\right]^{(n+1)}}{(n+1)!} \omega(y) \tag{3}
\end{equation*}
$$

where ξ is a point belonging to the smallest interval containing y, y_{0}, \ldots, y_{n}. Denote

$$
R_{n}\left[f^{-1} ; y\right]=\frac{\left[f^{-1}(\xi)\right]^{(n+1)}}{(n+1)!} \omega(y) .
$$

Consider now the equation

$$
\begin{equation*}
f(x)=0 . \tag{4}
\end{equation*}
$$

If it has a solution $\bar{x} \in[a, b]$, then obviously

$$
\begin{equation*}
\bar{x}=f^{-1}(0) . \tag{5}
\end{equation*}
$$

An approximation of the solution \bar{x} can be obtained from (3) for $y=0$, i.e.,

$$
\begin{equation*}
\bar{x}=L\left(y_{0}, y_{1}, \ldots, y_{n} ; f^{-1} \mid 0\right)+R_{n}\left[f^{-1} ; 0\right], \tag{6}
\end{equation*}
$$

whence, by neglecting the remainder $R_{n}\left[f^{-1}, 0\right]$ we get

$$
\begin{equation*}
x_{n+1}=L\left(y_{0}, y_{1}, \ldots, y_{n} ; f^{-1} \mid 0\right), \tag{7}
\end{equation*}
$$

and the error

$$
\begin{equation*}
\bar{x}-x_{n+1}=R_{n}\left[f^{-1} ; 0\right] . \tag{8}
\end{equation*}
$$

Denoting $M=\sup _{y \in f(I)}\left|\left[f^{-1}(y)\right]^{(n+1)}\right|$, then

$$
\begin{equation*}
\left|\bar{x}-x_{n+1}\right| \leq \frac{M}{(n+1)!}\left|y_{0}\right|\left|y_{1}\right| \cdots\left|y_{n}\right| . \tag{9}
\end{equation*}
$$

Assuming that $x_{n+1} \in[a, b]$ and denoting $y_{n+1}=f\left(x_{n+1}\right)$, then we can obtain a new approximation x_{n+2} given by relation

$$
\begin{equation*}
x_{n+2}=L\left(y_{1}, y_{2}, \ldots, y_{n}, y_{n+1} ; f^{-1} \mid 0\right), \tag{10}
\end{equation*}
$$

where, as it can be seen, the node x_{0} has been neglected and instead we consider y_{n+1}. The above procedure may continue indefinitely: assuming that we have obtained the approximations $x_{k}, x_{k+1}, \ldots, x_{k+n} \in[a, b]$ then the next approximation is given by

$$
\begin{equation*}
x_{n+k+1}=L\left(y_{k}, y_{k+1}, \ldots, y_{n+k} ; f^{-1} \mid 0\right), k=0,1, \ldots, \tag{11}
\end{equation*}
$$

where $y_{k+i}=f\left(x_{k+i}\right), i=\overline{0, n}$. If all the iterates are contained in $[a, b]$, then the procedure may continue indefinitely.

In the same way as for (9), we get the following error bound:

$$
\begin{equation*}
\left|\bar{x}-x_{n+k+1}\right| \leq \frac{M}{(n+1)!}\left|y_{k}\right|\left|y_{k+1}\right| \cdots\left|y_{k+n}\right|, \quad k=0,1, \ldots, \tag{12}
\end{equation*}
$$

Assume that $f^{\prime}(x) \neq 0, \forall x \in[a, b]$, and denote

$$
m=\sup _{x \in I}\left|f^{\prime}(x)\right| .
$$

Obviously

$$
\begin{equation*}
|\bar{x}-x| \geq \frac{|f(x)|}{m} . \tag{13}
\end{equation*}
$$

By (12) and (13)

$$
\begin{equation*}
\left|f\left(x_{n+k+1}\right)\right| \leq \frac{m M}{(n+1)!}\left|f\left(x_{k}\right)\right|\left|f\left(x_{k+1}\right)\right| \cdots\left|f\left(x_{k+n}\right)\right|, \quad k=0,1, \ldots . \tag{14}
\end{equation*}
$$

Multiplying relations 14 by $\left(\frac{m M}{(n+1)!}\right)^{\frac{1}{n}}$ and denoting

$$
\rho_{i}=\left(\frac{m M}{(n+1)!}\right)^{\frac{1}{n}}\left|f\left(x_{i}\right)\right|, \quad i=0,1, \ldots
$$

leads to

$$
\begin{equation*}
\rho_{n+k+1} \leq \rho_{k} \rho_{k+1} \ldots \rho_{k+n}, \quad k=0,1, \ldots \tag{15}
\end{equation*}
$$

Suppose now that $\rho_{i} \leq d^{\alpha_{i}}$, with $0<d<1$ and $\alpha_{i} \in \mathbb{R}, \alpha_{i}>0, i=\overline{0, n}$. Then

$$
\begin{equation*}
\rho_{n+1} \leq d^{\alpha_{0}+\alpha_{1}+\cdots+\alpha_{n}}=d^{\alpha_{n+1}}, \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{n+1}=\alpha_{n}+\alpha_{n-1}+\cdots+\alpha_{1}+\alpha_{0} . \tag{17}
\end{equation*}
$$

In general, from (15) it follows

$$
\begin{equation*}
\rho_{n+k+1} \leq d^{\alpha_{n+k+1}}, \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{n+k+1}=\alpha_{n+k}+\alpha_{n+k-1}+\cdots+\alpha_{k+1}+\alpha_{k}, \quad n=0,1, \ldots \tag{19}
\end{equation*}
$$

Let now $t_{0}>0$ be the unique positive solution of equation

$$
\begin{equation*}
t^{n+1}-t^{n}-t^{n-1}-\cdots-t-1=0 . \tag{20}
\end{equation*}
$$

Assume that the values of f obey

$$
\begin{equation*}
\rho_{i} \leq d^{\alpha t_{0}^{i}}, \quad i=\overline{0, n}, \tag{21}
\end{equation*}
$$

for a certain constant $\alpha>0$, i.e., $\alpha_{i}=\alpha t_{0}^{i}$. Then one can show by induction using (19) that

$$
\begin{equation*}
\rho_{n+k+1} \leq d^{\alpha t_{0}^{n+k+1}}, \quad k=0,1, \ldots . \tag{22}
\end{equation*}
$$

In [7] it is shown that t_{0} verifies $\frac{2(n+1)}{n+2}<t_{0}<2$. It is clear that the convergence order of the sequence given in (11) is less than 2.

In order to increase the convergence order of the sequence we proceed as follows. Consider the following equation, equivalent to (4):

$$
\begin{equation*}
x-g(x)=0 \tag{23}
\end{equation*}
$$

We shall choose the interpolation nodes in (11) using g, generalizing in this way the Steffensen method.

2. GENERAL METHODS OF STEFFENSEN TYPE

Assume in the beginning that for all $x \in[a, b]$, it follows that $g(x) \in[a, b]$.
Let $u_{0} \in[a, b]$ be an initial approximation of the solution \bar{x} of equation (14). We shall use the following notations:

$$
\begin{equation*}
x_{0}=u_{0}, x_{1}=g\left(x_{0}\right), x_{2}=g\left(x_{1}\right), \ldots, x_{n}=g\left(x_{n-1}\right), \tag{24}
\end{equation*}
$$

which, by (7) lead to a new approximation for \bar{x}

$$
\begin{equation*}
u_{1}=L\left(y_{0}, y_{1}, \ldots, y_{n} ; f^{-1} \mid 0\right), \tag{25}
\end{equation*}
$$

where $y_{i}=f\left(x_{i}\right), i=\overline{0, n}, x_{i}$ being given by (24).
From (9) we get:

$$
\begin{equation*}
\left|\bar{x}-u_{1}\right| \leq \frac{M}{(n+1)!}\left|f\left(x_{0}\right)\right|\left|f\left(x_{1}\right)\right| \cdots\left|f\left(x_{n}\right)\right|, \tag{26}
\end{equation*}
$$

whence, by (13) we get

$$
\begin{equation*}
\left|\bar{x}-u_{1}\right| \leq \frac{M m^{n+1}}{(n+1)!}\left|\bar{x}-x_{0}\right|\left|\bar{x}-x_{1}\right| \cdots\left|\bar{x}-x_{n}\right| . \tag{27}
\end{equation*}
$$

Assume that g obeys the Lipschitz condition on $[a, b]$, i.e. there exists $l>0$ such that

$$
|g(x)-g(y)| \leq l|x-y|, \quad \forall x, y \in[a, b] .
$$

Under this hypothesis, taking into account (24), we are lead to

$$
\begin{equation*}
\left|\bar{x}-u_{1}\right| \leq \frac{M \cdot m^{n+1, \cdot} \frac{n(n+1)}{2}}{(n+1)!}\left|\bar{x}-u_{0}\right|^{n+1} . \tag{28}
\end{equation*}
$$

Let now u_{1} be the next approximation for \bar{x}; then, analogously to (24), we consider in (7) the following values to f^{-1} at the interpolation nodes:

$$
\begin{equation*}
x_{0}=u_{1}, \quad x_{1}=g\left(x_{0}\right) \ldots, \quad x_{n}=g\left(x_{n-1}\right) . \tag{29}
\end{equation*}
$$

In the same way as above, we obtain the next approximation u_{2} for \bar{x}, which satisfies

$$
\left|\bar{x}-u_{2}\right| \leq \frac{M \cdot m^{n+1} \cdot \frac{n(n+1)}{2}}{(n+1)!}\left|\bar{x}-u_{1}\right|^{n+1} .
$$

In general, if u_{k} is an approximation of \bar{x} and we set

$$
x_{0}=u_{k}, \quad x_{1}=g\left(x_{0}\right), \ldots, x_{n}=g\left(x_{n-1}\right),
$$

then by (7) we obtain the next approximation u_{k+1}, which satisfies

$$
\begin{equation*}
\left|\bar{x}-u_{k+1}\right| \leq \frac{M \cdot m^{n+1} \cdot l^{\frac{n(n+1)}{2}}}{(n+1)!}\left|\bar{x}-u_{k}\right|^{n+1}, \quad k=0,1, \ldots \tag{30}
\end{equation*}
$$

Denoting $\delta_{k}=m l^{\frac{n+1}{2}}\left(\frac{M m}{(n+1)!}\right)^{\frac{1}{n}}\left|\bar{x}-u_{k}\right|$, then from the above relation we deduce

$$
\delta_{k+1} \leq \delta_{k}^{n+1}, \quad k=0,1, \ldots,
$$

which leads to the conclusion that for $n \geq 1$, method 11 converges superlinearly. Moreover, if x_{0} is chosen such that $\delta_{0}<1$ then $\lim _{k \rightarrow \infty} \delta_{k}=0$ and therefore $\lim _{k \rightarrow \infty} u_{k}=\bar{x}$.

The error at each step is bounded by:

$$
\begin{equation*}
\left|\bar{x}-u_{k}\right| \leq m^{-1} l^{-\frac{n+1}{2}}\left(\frac{M m}{(n+1)!}\right)^{-\frac{1}{n}} \delta_{0}^{(n+1)^{k}}, \quad k=1,2, \ldots \tag{31}
\end{equation*}
$$

In the following we analyze two particular cases.
(1) Case $n=1$. In this case (11) leads to the well known Steffensen method.

Indeed, by (2) we get

$$
\begin{equation*}
L\left[y_{0}, y_{1} f^{-1} \mid y\right]=x_{0}+\left[y_{0}, y_{1} ; f^{-1}\right]\left(y-y_{0}\right) \tag{32}
\end{equation*}
$$

hence, taking into account the equality

$$
\left[y_{0}, y_{1} ; f^{-1}\right]=\frac{1}{\left\lfloor x_{0}, x_{1} ; f\right\rceil}
$$

for $y=0$ we obtain the approximation

$$
x_{2}=x_{0}-\frac{f\left(x_{0}\right)}{\left[x_{0}, x_{1} ; f\right]},
$$

i.e., the first step in the chord method.

Obviously, (9) may continue by

$$
\begin{equation*}
x_{k}=x_{k-2}-\frac{f\left(x_{k-2}\right)}{\left[x_{k-2}, x_{k-1} ; f\right]}, \quad k=2,3, \ldots \tag{34}
\end{equation*}
$$

Denoting in (33) $x_{0}=u_{0}$ and $x_{1}=g\left(u_{0}\right)$, we get

$$
u_{1}=u_{0}-\frac{f\left(u_{0}\right)}{\left\lfloor u_{0}, g\left(u_{0}\right) ; f\right\rceil}
$$

and in general

$$
u_{k}=u_{k-1}-\frac{f\left(u_{k-1}\right)}{\left[u_{k-1}, g\left(u_{k-1}\right) ; f\right]},
$$

which is precisely the Steffensen method.
In this case, the elements of the sequence $\left(\delta_{k}\right)_{k \geq 0}$ have the form

$$
\delta_{k}=\frac{l m^{2} M}{2}\left|\bar{x}-u_{k}\right|, \quad k=0,1, \ldots, \quad M=\sup _{y \in f(I)}\left|\left(f^{-1}(y)\right)^{\prime \prime}\right|
$$

and obey

$$
\delta_{k+1} \leq \delta_{k}^{2}, \quad k=0,1, \ldots
$$

If $\delta_{0}<1$, then obviously

$$
\lim _{k \rightarrow \infty} \delta_{k}=0
$$

and hence $\lim x_{k}=\bar{x}$, with the error

$$
\left|x_{k}-\bar{x}\right| \leq \frac{2}{l m^{2} M} \delta_{0}^{2^{k}}, \quad k=1,2, \ldots
$$

whence (35) converges quadratically.
2. Case $n=2$

It can be easily seen that the second order divided difference [$\left.y_{0}, y_{1}, y_{2} ; f^{-1}\right]$ can be expressed as

$$
\begin{equation*}
\left[y_{0}, y_{1}, y_{2} ; f^{-1}\right]=\frac{-\left[x_{0}, x_{1}, x_{2} ; f\right]}{\left[x_{0}, x_{1} ; f\right]\left[x_{0}, x ; f\right]\left[x_{1}, x_{2} ; f\right]} \tag{36}
\end{equation*}
$$

By (2) we get

$$
\begin{aligned}
L\left[y_{0}, y_{1}, y_{2} ; f^{-1} \mid y\right]= & x_{0}+\left[y_{0}, y_{1} ; f^{-1}\right]\left(y-y_{0}\right) \\
& +\left[y_{0}, y_{1}, y_{2} ; f^{-1}\right]\left(y-y_{0}\right)\left(y-y_{1}\right)
\end{aligned}
$$

Setting $y=0$ and taking into account (36) and the corresponding formula for the first order divided difference, we are lead to

$$
x_{3}=x_{0}-\frac{f\left(x_{0}\right)}{\left[x_{0}, x_{1} ; f\right]}-\frac{\left[x_{0}, x_{1}, x_{2} ; f\right] f\left(x_{0}\right) f\left(x_{1}\right)}{\left[x_{0}, x_{1} ; f\right]\left[x_{1}, x_{2} ; f\right]\left[x_{1}, x_{2} ; f\right]}
$$

i.e., to a method correcting the chord method.

In general, a method of type (37) has the form

$$
x_{n+3}=x_{n}-\frac{f\left(x_{n}\right)}{\left[x_{n}, x_{n+1} ; f\right]}-\frac{\left[x_{n}, x_{n+1}, x_{n+2} ; f\right]}{\left[x_{n}, x_{n+1} ; f\right\rfloor\left[x_{n+1}, x_{n+2} ; f\right\rfloor\left[x_{n}, x_{n+2} f\right]},
$$

$n=0,1, \ldots$. If in (37) we control the interpolation nodes as

$$
x_{0}=u_{0}, x_{1}=g\left(x_{0}\right), x_{2}=g\left(x_{1}\right)=g\left(g\left(x_{0}\right)\right)
$$

we obtain

$$
u_{1}=u_{0}-\frac{f\left(u_{0}\right)}{\left[u_{0}, g\left(u_{0}\right) ; f\right]}-\frac{\left[u_{0}, g\left(u_{0}\right) ; g\left(g\left(u_{0}\right)\right) ; f\right] f\left(u_{0}\right) f\left(g\left(u_{0}\right)\right)}{\left[u_{0}, g\left(u_{0}\right) ; f\right]\left[u_{0}, g\left(g\left(u_{0}\right)\right) ; f\right]\left[g\left(u_{0}\right), g\left(g\left(u_{0}\right)\right) ; f\right]} .
$$

In general, if u_{k} is an approximation to \bar{x}, then u_{k+1} is given by
$u_{k+1}=u_{k}-\frac{f\left(u_{k}\right)}{\left[u_{k}, g\left(u_{k}\right) ; f\right]}-\frac{\left[u_{k}, g\left(u_{k}\right), g\left(g\left(u_{k}\right)\right) ; f\right] f\left(u_{k}\right) f\left(g\left(u_{k}\right)\right)}{\left[u_{k}, g\left(u_{k}\right) ; f\right]\left[u_{k}, g\left(g\left(u_{k}\right)\right) ; f\right]\left[g\left(u_{k}\right), g\left(g\left(u_{k}\right)\right) ; f\right]}$.
Denoting $M=\sup _{y \in f(I)}\left|\left[f^{-1}(y)\right]^{\prime \prime \prime}\right|$, then the error satisfies at each iteration step:

$$
\left|u_{k}-\bar{x}\right| \leq \frac{\sqrt{6}}{m l^{3 / 2} \sqrt{m M}} \delta_{0}^{3^{k}}
$$

where

$$
\delta_{0}=\frac{m l^{3 / 2} \sqrt{M m}}{\sqrt{6}}\left|\bar{x}-u_{0}\right|
$$

Assuming $\delta_{0}<1$, then $\lim _{k \rightarrow \infty} u_{k}=\bar{x}$, with the convergence order at least 3.

Suppose in the following that the function g given by (23) has derivatives up to the p-th order, $p \in \mathbb{N}, p \geq 2$, on $[a, b]$ and its derivatives satisfy

$$
\begin{equation*}
g^{(i)}(\bar{x})=0, i=\overline{1, p-1}, g^{(p)}(\bar{x}) \neq 0 \tag{41}
\end{equation*}
$$

In this case, if the derivative of p-th order in continuous on $[a, b]$ and

$$
L=\sup _{x \in[a, b]}\left|g^{(p)}(x)\right|
$$

then for all $x \in[a, b]$ one has

$$
|g(\bar{x})-g(x)| \leq \frac{L}{p!}|\bar{x}-x|^{p}
$$

Using the above relation (27) we get

$$
\left|\bar{x}-u_{1}\right| \leq \frac{M m^{n+1}}{(n+1)!}\left(\frac{p!}{L}\right)^{\frac{n+1}{p-1}} \theta_{0}^{\frac{p^{n+1}-1}{p-1}}
$$

where $\theta_{0}=\left(\frac{L}{p!}\right)^{\frac{1}{p-1}}\left|\bar{x}-u_{0}\right|$.
We make the following notations:

$$
\begin{aligned}
q & =\frac{p^{n+1}-1}{p-1} \\
K & =\frac{M m^{n+1}}{(n+1)!}\left(\frac{p!}{L}\right)^{\frac{n+1}{p-1}} \\
\varepsilon_{0} & =K^{\frac{1}{q-1}} \theta_{0} \\
\varepsilon_{1} & =K^{\frac{1}{q-1}}\left|\bar{x}-u_{1}\right|
\end{aligned}
$$

By (43), we are lead to

$$
\varepsilon_{1} \leq \varepsilon_{0}^{q}
$$

We obtain the sequence of approximation $\left(u_{s}\right)_{s \geq 0}$ for which, if denoting

$$
\varepsilon_{s}=K^{\frac{1}{q-1}}\left|\bar{x}-u_{s}\right|, \quad s=1,2, \ldots
$$

we get

$$
\varepsilon_{s} \leq \varepsilon_{0}^{q^{s}}, \quad s=1,2, \ldots
$$

Obviously, in this case too, if $\varepsilon_{0}<1$, then by 44) and 45 it follows $\lim _{s \rightarrow \infty} u_{s}=\bar{x}$ and the convergence order is q.

REFERENCES

[1] Balázs, M., A bilateral approximating method for finding the real roots of real equations, Rev. Anal. Numér. Théor. Approx., 21, no. 2, pp. 111-117, 1992. [
[2] Brent, R., Winograd, S. and Walfe, Ph., Optimal iterative processes for rootfinding, Numer. Math., 20, no. 5, pp. 327-341, 1973.
[3] Coman, C., Some practical approximation methods for nonlinear equations, Mathematica - Rev. Anal. Numér. Théor. Approx., 11, nos. 1-2, pp. 41-48, 1982. ©
[4] Cassulli, V. and Trigiante, D., The convergence order for iterative multipoint procedures, Calcolo, 13, no. 1, pp. 25-44, 1977.
[5] Iancu, C., PĂvăloiu, I. and ŞErb, I., Méthodes iteratives optimales de type Steffensen obtinues par interpolation inverse, Faculty of Mathematics, "Babeş-Bolyai" University, Seminar on Functional analysis and Numerical Methods, Preprint no. 1, pp. 81-88, 1983.
[6] Kacewicz, B., An integral-interpolation iterative method for the solution of scalar equations, Numer. Math., 26, no. 4, pp. 355-365, 1976.
[7] Ostrowski, A., Solution of Equations in Euclidian and Banach Spaces, Academic Press, New York and London, 1973.
[8] PĂVĂLoiv, I., La résolution des equations par interpolation, Mathematica, 23(46), no. 1, pp. 61-72, 1981.
[9] PĂVĂLOIU, I. and ŞERB, I., Sur des méthodes de type intérpolatoire à vitesse de convergence optimale, Rev. Anal. Numér. Théor. Approx., 12, no. 1, pp. 83-88, 1983. ${ }^{\text {® }}$
[10] PĂVĂLOIU, I., Optimal efficiency index for iterative methods of interpolatory type, Computer Science Journal of Moldova, 5, no. 1 (13), pp. 20-43, 1997.
[11] Traub, J. F., Iterative Methods for the Solution of Equations, Pretince-Hall, Inc. Englewood Clifs, N.J., 1964.
[12] Turowicz, A. B., Sur les derivées d'ordre superieur d'une fonction inverse, Ann. Polon. Math., 8, pp. 265-269, 1960.

Received by the editors: January 21, 2004.

[^0]: *This work has been supported by the Romanian Academy under grant GAR 16/2004.
 \dagger "T. Popoviciu" Institute of Numerical Analysis, O.P. 1, C.P. 68, Cluj-Napoca, Romania, e-mail: pavaloiu@ictp.acad.ro.

