REVUE D’ANALYSE NUMERIQUE ET DE THEORIE DE L’APPROXIMATION

Rev. Anal. Numér. Théor. Approx., vol. 32 (2003) no. 2, pp. 193—202
ictp.acad.ro/jnaat

ON THE CONVERGENCE ORDER
OF SOME AITKEN-STEFFENSEN TYPE METHODS*

ION PAVALOIUf

Abstract. In this note we make a comparative study of the convergence orders
for the Steffensen, Aitken and Aitken—Steffensen methods. We provide some
conditions ensuring their local convergence. We study the case when the aux-
iliary operators used have convergence orders 71,72 € N respectively. We show
that the Steffensen, Aitken and Aitken—Steffensen methods have the convergence
orders r1 + 1, r1 + r2 and rire + r1 respectively.
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1. INTRODUCTION

It is well known that the Aitken—Steffensen type methods are meant to
accelerate the convergence of some sequences converging to the solutions of
operational equations [1, [2], [6]-[9], [12], [13] and [16].

Let X be a Banach space and F' : D C X — X a nonlinear mapping.
Consider the equation

(1.1) F(x)=0,

where 6 is the null element of X.
Additionally, consider the equations

(1.2) z =1 (z),

which are assumed to be equivalent to , i.e., they have the same solutions.

As usually, £ (X) stands for the set of linear operators from X into itself.
For z,y,z € X denote by [z,y; F] € L (X) the first order divided difference of
F' at the nodes = and y and by [z,y, z; F] the second order divided difference
of Frat z,y, z ([0-{9)).

For solving we consider the sequences (z,),~, generated by the fol-
lowing methods:

1. The Steffensen method:

(1'4) Tnt+l = Tp — [xm ¥1 (‘rn) ;F]_l F (xn) )
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n=20,1,..., g € D;
2. The Aitken method:
(1.5) Tna1 = @1 (n) = 01 () 02 () 1 F] 1 F (01 ()
n=0,1,..., xg € D;
3. The Aitken—Steffensen method
(1.6) Tpy1 = 01 (Tn) — [‘Pl (70) , @2 (01 (Tn)) §F]_1 F (o1 (xn)) .

n=0,1,..., xg € D,

Assume there exists z* € D, the common solution for (1.1]), (1.2)) and (1.3,
and that the mappings 1, @2 are Fréchet differentiable at * up to the orders
r1 and ro respectively, with

(1.7) W@ =0;, i=1,....r—1, & (@) £,
where 6;, ¢ = 1,...,r are the null ¢-linear mapping. Analogously, assume
(1.8) gogi) (*)=0;, i=1,...,79—1, gpgw) (x*) # O,.

It is well known that relations ((1.7) and ([1.8]) ensure that the iteration
processes of the form

(1.9) Tnr1 =1 (x), n=0,1,..., x9€ X,
and
(1.10) Tnt1 =p2(xn), n=0,1,..., 9 € X,

have the convergence orders 71, resp. ro.

In this note we show that the Steffensen method has the convergence or-
der r1 + 1, the Aitken method r1 + 79, while the Aitken—Steffensen method
r1 (ro + 1). We also provide conditions ensuring the local convergence of these
sequences.

2. LOCAL CONVERGENCE

Let S = {z € X : |z — 2| <r} be the ball with center at z* and with
radius r, and suppose S C D.
The mappings ¢1, 2 are assumed to obey the following hypotheses:
i) the mapping ¢ admits Fréchet derivatives up to the order 71 > 1 on
S, and
sup H(pg”) (z)]| = L1 < +o0,
z€S

ii) the mapping o admits Fréchet derivatives up to the order ro > 1 on
S, and

sup H(pQTQ) (z) || = L2 < +o0.
zeS

The mapping F' is assumed to obey



3 On the convergence order of some Aitken—Steffensen type methods 195

i;) the linear mapping [z, y; F] is invertible for all z,y € S, and
sup || [z, y; F]* | =m < +oc;
z,yEeS
ii;) the bilinear mapping [x,y, z; F| is bounded for all z,y,z € S:
sup || [z, y, 2 F]|| = M < 4o0.
z,y,2€S

Regarding the convergence of the Steffensen method, we obtain the following
result.

THEOREM 2.1. Assume that @1 obeys i) and (1.7)), F' obeys i1) and iiy), and
the initial approximation xg € S is chosen such that

a) mM |z* — xo| < 1;
b) f—ll, l|lx* — on”_l <1
Then the sequence (xn)n21 generated by remains in S and converges
to x*, satisfying

_1 n
1) llz* =z, < (Mf,?lLl) riph ., n=0,1,..., where

1
po = (ML) [la* — )| < 1

and p =11 + 1;

Proof. Since xg € S, then by the Taylor formula and by (|1.7)) and i) we get
(2.1) ler (z0) — 2% = lle1 (o) — @ ()| < B [l — 2*|™,
whence, by b) it follows that

le1 (zo) — 27| < [|l27 — moll <,
i.e., p1 (z9) € S. By the Newton identity,
0 = F (") =F (x0) + [0, ¢ (x0) ; F] (+" — o)
+ [z%, 20, ¢ (x0) ; F] (7 — ¢ (w0)) (2" — w0) ,
and taking into account iy), ii;) and (1.4)) for n = 0, we obtain
o — a1 = —[20, 0 (0); F] ' [2%, 0, ¢ (20) : F] (z* — ¢ (w0)) (" — w0)
whence, using (2.1]), a) and b), it follows that

(2.2) lo* — || < ME |2 — o < Jla* — @l <7,
ie,x1 €5.
Assume now that z1,...,x, € S and denote
1 .
(2.3) pi = (MmLU o* ||, i=0,1,...,n.

Relations a) and b) imply po < 1, while (2.2)) attracts
(2.4) p1 < pp-
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Assume now that
(25) pi+1<p§)> ZZO,,n—l

From and ( . we get

Pi Spﬁi, 1=1,...,n.

We prove now that z,+; € S and p,41 < pP. Applying the Taylor formula
and taking into account the hypotheses,
(2.6) o1 (wn) = 1 (@) < 2 llwm — 2™

The induction hypotheses also imply

n

P
2.7 Tn — 2| = o < o = [|lz* — xo]| -
BD o= e < =l
1! (r1h
Replacing (2.7)) in (2.6)) and taking into account b) leads to

lor (wn) — || < B [l — @™ <1,

which shows that 1 (z,,) € S.
The fact that z,, @1 (,), 2* € S implies

6 = F (") =F (20) + [ens 1 (20) 1 F] (2" — )
[, 21 (@) F) (2" — 1 (20)) (2" — )

whence
(2.8) 2% = @npa || < M 2" — 1P
Denoting p,1 = (Mle)”l |lx* — zp41]|, then by (2.8) we get
n+1
(2.9) P11 < ph < pg
It remains to show that =, € 5, Wthh follows by (2.9) and ([2.8):
pn+1
0
" — ) € L <« P2 < — g <
(MmL1 ) ™ (Mle)
rq! 1
Relation ([2.9)) implies conclusion (jji). O

We obtain the following result regarding the Aitken method.

THEOREM 2.2. Assume that the mappings @1, p2 obey i) and (L.7)), resp. ii)
and (1.8)), the mapping F obeys i1), i2) and the initial approximation xy € S
is chosen such that

-1
&) ;- Tll % — o™ < 15
-1
) 5 lla* = ol < 15
) Mm|jz* — zol] < 1.

Then the sequence generated by (L.5) remains in S, converges to x* and,

moreover, the following relations are true:
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. L n
jo) |lon —2*|| < (%)1—‘1;)8 , n=1,2,..., where
1
po = (MERE) 7T |la" = ol <1

and q =11 + T9;
jj2) limy, oo zp = ™.
Proof. From i), ii), (1.7) and ) it results
(2.10) % = 1 (fCo)H < Bl — o™

whence, by a) it follows that ¢ (o) € S. Analogously, for p2 we get
(2.11) l2* = @2 (xo) | < 12

< 4 Ml — ol

ie., p2(z0) € S.
The Newton identity for F',

0 =F(27) =F (1 (20)) + [¢1 (20) , 02 (w0) ; F] (27 — 1 (w0))
+ 27 1 (0) , 02 (20) ; F (27 = 2 (20)) (27 = 1 (20))

by (LF) for n = 0, [@10), (Z11), impies

(2.12) [z1 — 2| <Mm |z" — @2 (z0)| [|#" — ¢1 (o)l
SM:;'%;LQ H:L, 5130||T1+T2-

Denoting r1 + ro = ¢ and

(2.13) pr = (MmLil2) a1 |l ]| k= 0,1,
then, by we get
(2.14) p1 < pg-

From a'), b’) and ¢’) we obtain that z; € S and
(2.15) po < 1.

The fact that x; € S is implied by relations and :

q
(216) g —at|| < (Mm£2) < (MmLi)OLg) = oo — ¥ <7
71 1ra! 71 0r2!

It remains to show that ¢ (x1), ch (x1) € S. Using a’) and ([2.16)), we have

2" =1 (z1)]| < _m' la" =z
<7l = o™

<& |a* - ol (|2 — o)

<r

and, analogously, (|2 and b’) imply
% — @2 (1‘1)H < Bt —a|” < B

= ! — ra! ||SL‘ xOHT2 ST
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Assume xg,x1,...,2, € S and ¢; (z5) € S, i =1,2,s=0,...,k.
Denote

1
(2.17) pi = (MmIL2)a=T || 2% — gy, i=1,...,k

rilra!
and assume that
(2.18) piv1 <pl, i=1,....k—1.
Relations , together with show that the following inequalities
are verified:
(2.19) pi<pl, i=1,...k

We show now that xp1 € S. Similarly to (2.12)), one immediately deduces
that

(2.20) gy — ¥ < MmELE2 g — g9
Denoting
_1
(2.21) Pt = (MEEAPR) T 2" — anll

then by (2.20) and (2.19) we deduce

k+1
(2.22) Pet1 < PG
i.e., ([2.19) holds also for i = k + 1.
From ({2.20)), (2.21)) and ({2.22)) we get
qk+1
" P Lo *
(2'23) ka-l-l - || < . 1 < 1 < Hx _xOH <r,
MmLy Lo \ 751 MmLy Lo \ 753
( rilra! ) ( rilra! )

i.e., rxr1 € S. It remains to prove that ¢q (zx11), w2 (Tr11) € S.
The Taylor formula leads to the relations

lz* = o1 (@)l < 24 lla* — zpa |

and

lz* = @2 (@rsa) | < 73 2™ = wga ™

By (2.23), we get ||a* — xp11|| < ||Jz* — 20| and so, from a') and b’),

lz* — 1 (@)l < 2 lla* — o™ <7

and, analogously

lz* — 2 (zrs1)ll < 73 lla* — ol ™ <7

Le., o1 (Tht1), w2 (Th41) € S.
According to the induction principle, relations (2.19)) are true for all i € N,

SO
o 1 q"
|2 — 2| < (MleLg)ﬁ’OO
r1!rg!

whence, since py < 1, limy, o0 ||z, — 2*|| = 0, i.e., lim, o0 T, = z*. O
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Finally, the following result holds for the Aitken—Steffensen method.

THEOREM 2.3. Under the hypotheses of Theorem the sequence (xy),,~(,
generated by (1.6) remains in the ball S, and converge to x* such that:
1 on
is) lla* —all < L7705,
where pg = L1 ||z* — x|, L = mM(—l,)me—;!, n=20,1,..., and
§=1rir9 +171;
J.]3) limg, o0 7 = 2.
Proof. Assume that zg € S verifies a’)—c’). We show first that ¢ (z0),
@2 (1 (x0)) € S. For ¢1 we have

(2.24) lz* = 1 (wo)ll < 2 |2 — @o™ < [la* — ol <

= rq!

i.e., 1 (z) € S. Next, taking into account (2.24)), we get
|2 = @2 (1 (x0)[| <E3 l2* = @1 (o)

L
<La B |l — o7
1
=l e = ol — ol
<Ea||a* — o™
< |lz" — o]
<r.
We prove now that z; € S. Analogously to (2.11), we get
(2.25) 1 — 2| <Mm |[z* = @1 (zo) || [|[#™ — @2(p1 (o))

<Mm(L1 )T2+1 fj ||l'* - xOHT‘1T2+T’1 )

As it can be easily noticed, the previous relation may also be written as

(2.26) \|x1—x||<Mme—xo|H la* — @l 1"

1= 12

ro—1
ro! ||

i 2t = ol [[" = o[ [l2" = ol ,

whence, by a')—'), it follows that ||zq1 — 2*|| < r, i.e., z1 € S. Further, denote
s=rire + 11, L= ]\4’1’)1([/1)7‘2—’—1 Lz

Tol?

and so inequality ([2.25)) becomes

[z — 2™ < Lf|2* — o,
and, for L+ llz* — xol| = po, it reads as
(2.27) p1 < o

with p; = L1 |lx* — 1] .
Next, we show that ¢ (z1), @2 (1 (1)) € S. From (2.26) we have that

(2.28) la" = @1 < fla” — o]l -
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For ¢4 (1) we obtain

lo* — g1 (@Il € & ll2* — @l < B fla* — ol <,

while for 9 (¢1 (1)) we deduce

|2 — 2 (¢1 (21))] <L2 (Ll)m |2 — 2|7

_7.2
ro—1 [ T‘171j|7'2

=4 llz* = 2] [ = ]|

whence, taking into account (2.28]) and a’), b’), it follows

2" = 2]

[#% = @2 (p1 (z1)) | <7

ie., w2 (p1(71)) €S,
Assume now that xg,...,zx € S, 1 (20),..., 01 (k) €S, @2 (w1 (20)),. ..,

w2 (p1 (z)) € S. Denote p; = L1 |z* — z;]|, i = 0,...,k and also suppose
that

(2.29) pi1 < pf, i=0,...k—1
which, by (2.27), becomes
(2.30) pi < P8, i=1,... k.

We show now that xp; € S. Using the hypotheses of the theorem and the
Newton identity, it can be easily shown that

27 = x| <Mm 2" — @1 ()| |27 — w2 (@1 (21))]]

<M (L1)T2+1 Lo ||£U xOHT1T2+T‘1

ie., by denoting le»lLE HJJ* - xk+1” )

Pe+1 < PF.-
By , this leads to
prei1 <05
and since pg < 1, we get
Pk+1 < po-

Further,

[eh 41 = 27| < flzo — 27| <1,
which shows that zj1 € S. Now, we show that ¢ (zx+1), 92 (¢1 (xE4+1)) € S.
First, taking into account a’),

Hx* —¥1 (karl)H < fli Hl' — Tk HTl < 7{111 H$* — CL‘oHTl <r

and, finally,
2% = @2 (1 (@) | <E3(E)™ [l2" = wpga |7
<E2 (L) [la* — o7
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Inequalities j1), j2), j3) from this conclusions of Theorems resp.
characterize the convergence orders of the methods , (1.5), resp. (|1.6)).

The numbers 71, resp. 79 represent as we have already specified, the con-
vergence orders of the iteration methods given by , resp. (|1.10).

We also notice the following facts.

REMARK 2.1. If rq = r9 = 1, then the three studied methods have the same
convergence order: p=q = s = 2.

REMARK 2.2. Regarding method (1.6]), we may also consider the following
iterations instead:

(2.31) Ti1 = @2 (Tn) — [p2 (n) , @1 (92 (20))  F]' F (92 (22))
having the same convergence order riry + ro. Consequently, if ro > 71, then

(2.31)) is preferred instead of (|1.6}).
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