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AITKEN–STEFFENSEN TYPE METHODS

FOR NONSMOOTH FUNCTIONS (III)∗

ION PĂVĂLOIU†

Abstract. We provide sufficient conditions for the convergence of the Steffensen
method for solving the scalar equation f(x) = 0, without assuming differentia-
bility of f at other points than the solution x∗. We analyze the cases when the
Steffensen method generates two sequences which approximate bilaterally the
solution.
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1. INTRODUCTION

In this paper we consider the Steffensen method for approximating the
solutions of the equations of the form

(1) f (x) = 0

with f : [a, b] → R, a, b ∈ R, a < b. Let g : [a, b] → R be such that the
equation

(2) x− g (x) = 0

is equivalent to (1).
As it is well known, the Steffensen method consists in approximating the

solution x∗ of (1) by the sequence (xn)n≥1 given by

(3) xn+1 = xn −
f (xn)

[xn, g (xn) ; f ]
, n = 1, 2, . . . , x0 ∈ [a, b] .

We are interested in the following in the conditions under which the se-
quences (xn)n≥1 and (g (xn))n≥1 are monotone, and offer bilateral approxima-
tions to x∗. The importance of such sequences resides in the fact that at each
iteration step we obtain a rigorous error bound. We shall construct the func-
tion g without assuming that f is differentiable on the whole interval [a, b]. In
this sense, we shall use the divided differences of f .

Regarding the monotony and convexity of the function f we shall adopt the
following definitions.
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Definition 1. The function f is nondecreasing (increasing) on [a, b] if

[u, v; f ] ≥ 0 (> 0) ∀u, v ∈ [a, b], while f is nonincreasing (decreasing) if

[u, v; f ] ≤ 0 (< 0) ∀u, v ∈ [a, b].

Definition 2. The function f is nonconcave (convex) on [a, b] if

[u, v, w; f ] ≥ 0 (> 0), ∀u, v, w ∈ [a, b],

and is nonconvex (concave) if

[u, v, w; f ] ≤ 0 (< 0), ∀u, v, w ∈ [a, b].

Consider the function px0
: [a, b] \ {x0} → R given by

(4) px0
= [x0, x; f ] .

Recall the following result:

Theorem 3. [3, p. 290].

a) If f is nonconcave on [a, b] then px0
is nondecreasing on [a, b];

b) If f is convex on [a, b] then px0
is increasing on [a, b];

c) If f is nonconvex on [a, b] then px0
is nonincreasing on [a, b];

d) If f is concave on [a, b] then px0
is decreasing on [a, b].

Consider now u, v, w, t ∈ [a, b] such that u ≤ min{v,w, t} and t ≥ max{u, v, w}.
The following result is known:

Lemma 4. [8]. If f is nonconcave (convex) on [a, b] then the following

relation holds:

(5) [u, v; f ] ≤ (<) [w, t; f ] , ∀v,w ∈ [u, t] , v 6= w.

An inequality analogous to (5) holds when f is nonconvex (concave) on [a, b].

2. THE CONVERGENCE OF THE STEFFENSEN METHOD

We shall consider that f obeys the following hypotheses:

i. f is continuous at a and b;
ii. f (a) · f (b) < 0;
iii. f is increasing on [a, b];
iv. f is convex on [a, b] and f is continuous at a and b;
v. f is differentiable at x∗, the solution of (1), and x∗ ∈ (a, b).

Remark 1. Hypotheses iv. ensures the continuity of f on (a, b) (see, e.g.
[3, p. 295]). �

Remark 2. Hypotheses i.–iv. ensure the existence and the unicity of the
solution x∗ ∈ (a, b) of equation (1). �

Let α, β ∈ (a, b) be such that f (α) < 0 and f (β) > 0 (their existence is
ensured by hypotheses i.–iv.).
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Consider the function g : [α, β] → R given by

(6) g (x) = x−
f (x)

[a, α; f ]

By iii. and iv. and Lemma 4 it follows that

(7) [u, v; g] < 0, ∀u, v ∈ (α, β) ,

i.e., g is decreasing.
We shall make the following hypotheses regarding the initial approximation

x1 in (3):

a) f (x1) < 0;
b) g (x1) < β.

Regarding the convergence of the Steffensen method (3) we prove the fol-
lowing result:

Theorem 5. Assume that f obeys assumptions i.–v., that the function

g is given by (6) and x1 obeys a) and b). Then the sequence (xn)n≥1 and

(g (xn))n≥1 generated by (3) satisfy the following properties:

j. the sequence (xn)n≥1 is increasing and bounded;

jj. the sequence (g (xn))n≥1 is decreasing and bounded;

jjj. the following is true:

(8) xn < x∗ < g (xn) , ∀n ∈ N.

Proof. By (6) we get that x∗ = g (x∗). Since x1 < x∗, and g is decreasing,
it follows g (x1) > g (x∗) = x∗ and so x1 < x∗ < g (x1) .

We show now that x2 given by (3) verifies x1 < x2 < x∗. Since f (x1) < 0

and f is increasing, it follows x2 = x1 −
f(x1)

[x1,g(x1);f ]
> x1. Further, it can be

easily seen that the following identity holds:

x1 −
f (x1)

[x1, g (x1) ; f ]
= g (x1)−

f (g (x1))

[x1, g (x1) ; f ]
,

whence, by (3) for n = 1 it follows x2 < g (x1), since f (g (x1)) > 0 and
[x1, g (x1) ; f ] > 0.

From the identity

f (x2) =

= f (x1) + [x1, g (x1) ; f ] (x2 − x1) + [x2, x1, g (x1) ; f ] (x2 − x1) (x2 − g (x1))

taking into account (3) for n = 1 and the fact that f is convex, we get f (x2) <
0 and so x2 < x∗.

By x2 > x1 it results g (x2) < g (x1). We prove that g (x2) > x∗. Since
x2 < x∗, from the monotony of g it follows g (x2) > g (x∗) = x∗. In conclusion,
we get

(9) x1 < x2 < x∗ < g (x2) < g (x1) .



76 Ion Păvăloiu 4

Assume now that for some n ≥ 2, the elements obtained by (3) verify:

(10) x1 < x2 < · · · < xn < · · · < x∗ < · · · < g (xn) < · · · < g (x2) < g (x1) .

Repeating the above reason for x1 = xn we get

(11) xn < xn+1 < x∗ < g (xn+1) < g (xn) .

From (10) and (11) one obtains the monotony of the sequences (xn)n≥1

and (g (xn))n≥1. Obviously, these sequence are bounded, so there exists x̄ =

limn→∞ xn, and limn→∞ g (xn) = g (x̄), since g is continuous.

Passing to limit in (3) implies x̄ = x̄ − f(x̄)
[x̄,g(x̄);f ] i.e. f (x̄) = 0, and so

x̄ = x∗. �

Relations (11) imply the following a posteriori errors

(12) x∗ − xn ≤ g (xn)− xn, n = 1, 2, . . .

Remark 3. Consider in (3) the function g : [α, β] → R,

(13) g (x) = x−
f (x)

[β, b; f ]

If f is concave on [α, β], then [u, v; f ] > [β, b; f ], ∀u, v ∈ [α, β] and so g is
decreasing on [α, β]. Suppose now that hypotheses iv. and a) resp. b) imposed
on f and g are replaced by

iv′. the function f is concave on [a, b];

the initial value x1 in (3) is such that

a′). f (x1) > 0;
b′). g (x1) > α, with g given by (13).

Then the sequences (xn)n≥1 and (g (xn))n≥1 have the following properties:

j′. (xn)n≥1 is decreasing;

jj′. (g (xn))n≥1 is increasing;

jjj′. g (xn) < x∗ < xn, n = 1, 2, . . .

The proof of these properties is similar to that given for Theorem 5. �
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