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AITKEN-STEFFENSEN-TYPE METHODS
FOR NONSMOOTH FUNCTIONS (II)∗

ION PĂVĂLOIU†

Abstract. We present some new conditions which assure that the Aitken-Stef-
fensen method yields bilateral approximation for the solution of a nonlinear scalar
equation. The auxiliary functions appearing in the method are constructed under
the hypothesis that the nonlinear application is not differentiable on an interval
containing the solution.
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1. INTRODUCTION

In this note we continue the study of the convergence of the Aitken-Steffen-
sen-type iterations

(1) xn+1 = g1 (xn)− f (g1 (xn))
[g1 (xn) , g2 (xn) ; f ] , n = 0, 1, . . . , x0 ∈ I

for solving
(2) f (x) = 0,
where f : [a, b]→ R, a, b ∈ R, a < b.

The functions g1 and g2 in (2) are chosen such that equations
x− gi (x) = 0, i = 1, 2,(3)

to be equivalent to equation (1).
Under supplementary assumptions we shall show, as in [7], that (2) ge-

nerates three monotone sequences, converging to the solution x̄ of (1).
Regarding the monotonicity and convexity of f we shall consider the notions

introduced in [3]. We shall also use Theorem 1 and Lemma 2 from [8].
For defining the functions g1 and g2, we shall consider α, β ∈ R such that

a < α < β < b and f (α) < 0, f (β) > 0, defining then:

g1 (x) = x− f(x)
[β,b;f ] , x ∈ [α, β] ,(4)

g2 (x) = x− f(x)
[a,α;f ] , x ∈ [α, β] .(5)
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Regarding f we shall make the following assumptions.
i. f (α) · f (β) < 0;

ii. f is increasing on [a, b] ;
iii. f is convex on [a, b] and continuous at a and b;
iv. if x̄ ∈ (a, b) is the solution of (1), then f is differentiable at x̄.

Remarks. 1◦ Hypothesiis iii. ensures the continuity of f on [a, b], and
therefore the existence of x̄. Hypothesis ii. ensures the uniqueness of x̄.

2◦ From hypotheses ii, iii and [8, Lm. 1.1], it follows that for any u, v ∈
(α, β) one obtains

(6) [u, v; g1] > 0 and [u, v; g2] < 0,

i.e., g1 is increasing and g2 is decreasing on (α, β). �

Let x0 ∈ (α, β) be such that
a) f (x0) < 0
b) g2 (x0) < β.

2. THE CONVERGENCE OF THE AITKEN-STEFFENSEN-TYPE ITERATIONS

We shall study in the following the convergence of the sequences (xn)n≥0
(g1 (xn))n≥0 to the solution x̄. We obtain the following result.

Theorem 1. If the function f verifies assumptions i–iv., the functions g1
and g2 are given by (4) and (5), and x0 ∈ (α, β) verifies a) and b), then the
sequences (xn)n≥0 , (g1 (xn))n≥0 and (g2 (xn))n≥0, generated by (2) satisfy:

j. (xn)n≥0 is increasing;
jj. (g1 (xn))n≥0 is increasing;

jjj. (g2 (xn))n≥0 is decreasing;
jv. for all n ∈ N, one has

(7) xn < g1 (xn) < xn+1 < x̄ < g2 (xn) .

Proof. By [β, b; f ] > 0 and f (x0) < 0 it follows g1 (x0) > x0, while by
x0 < x̄ and the fact that g1 is increasing it follows g1 (x0) < g1 (x̄) = x̄, i.e.
g1 (x0) < x̄.

Now, since x0 < x̄, g2 is decreasing one gets g2 (x0) > g2 (x̄) = x̄, i.e. the
following relations hold:

(8) x0 < g1 (x0) < x̄ < g2 (x0) .

Let x1 = g1 (x0)− f(g1(x0))
[g1(x0),g2(x0);f ] , since f (g1 (x0)) < 0 implies g1 (x0) < x1.

From the identity
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f (x1) =f (g1 (x0)) + [g1 (x0) , g2 (x0) ; f ] (x1 − g1 (x0)) +
+ [x1, g1 (x0) , g2 (x0) ; f ] (x1 − g1 (x0)) (x1 − g2 (x0))

taking into account the convexity of f and relation (1), we get f (x1) < 0, i.e.
x1 < x̄.

By the above relations and by (8) it follows
x0 < g1 (x0) < x1 < x̄ < g2 (x0) ,

which shows that (7) is verified for n = 0.
Repeating this reason, the induction shows that (7) holds for n ∈ N. This

attracts in turn that the sequences (xn)n≥0 and (g1 (xn))n≥0 are increasing,
i.e., statements j and jj.

We show next that (g2 (xn))n≥0 is decreasing. Indeed, by xn < xn+1 for
n ∈ N we get g2 (xn) > g2 (xn+1) since g2 is decreasing. Inequalities xn < x̄,
n ∈ N, show that g2 (xn) > g2 (x̄) = x̄.

Let us notice that the sequences (xn)n≥0, (g1 (xn))n≥0, (g2 (xn))n≥0 are
monotone and bounded, so they converge. Let l1 = lim xn, l2 = lim g1 (xn)
and l3 = lim g2 (xn). We show that l1 = l2 = l3 = x̄.

We prove first that l1 = l2. Assume the contrary, l1 6= l2, e.g. l1 < l2.
Obviously, l1 = supn∈N {xn} and l2 = supn∈N {g1 (xn)} . Let 0 < ε < l2 − l1
be a positive number. Then there exists nε ∈ N such that g1 (xn) > l2 − ε for
n > nε.

This implies that
xn+1 > g1 (xn) > l2 − ε > l1

so l1 is not the exact upper bound of the elements of the sequence (xn)n≥0.
Hence, clearly, l1 = l2 = l,

l = lim xn = lim g1 (xn) = g1 (l) ,
i.e., l = x̄. Since lim xn = x̄, it follows that

lim g2 (xn) = g2 (x̄) = x̄,

since x̄ is the unique solution of equation x− g2 (x) = 0. �

The above relations show that we have a control of the error at each iteration
step, justified by
x̄− xn+1 < g2 (xn)− xn+1, or x̄− xn+1 < g2 (xn)− g1 (xn) , n = 0, 1, . . .

The identity
0 = f (x̄) =f (g1 (xn)) + [g1 (xn) , g2 (xn) ; f ] (x̄− g1 (xn)) +

+ [x̄, g1 (xn) , g2 (xn) ; f ] (x̄− g1 (xn)) (x̄− g2 (xn))

relation (7), and the hypotheses of the above theorem lead to

(9) x̄− xn+1 = − [x̄, g1 (xn) , g2 (xn) ; f ]
[g1 (xn) , g2 (xn) ; f ] (x̄− g1 (xn)) (x̄− g2 (xn)) .
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Further, by Lemma 2 from [8] we get
x̄− g1 (xn) = [xn, x̄; g1] (x̄− xn)(10)

x̄− g2 (xn) = [xn, x̄, g2] (x̄− xn)(11)
and, taking into account (4) and (5),

[xn, x̄; g1] = 1− [xn,x̄;f ]
[β,b;f ] < 1− [a,α;f ]

[β,b;f ] = 1− q < 1.

Analogously,

[x̄, xn; g2] = 1− [x̄,xn;f ]
[a,α;f ] > 1− [β,b;f ]

[a,α,;] = [β,b;f ]
[a,β;f ]

(
[a,α;f ]
[β,b;f ] − 1

)
= 1

q (q − 1)

where we have denoted [a, α; f ] / [β, b; f ] = q > 0 and by Lemma 2 from [8]
q < 1. This relation, together with the decreasing of g2 lead to − [x̄, xn; g2] <
1
q (1− q) , i.e.,

∣∣[x̄, xn; g2]
∣∣ < 1

q (1− q) .
Denoting M = maxu,v∈[α.β]

∣∣ [x̄, u, v; f ]
∣∣ and m = [a, α; f ], by (9) we get

|x̄− xn+1| < M(1−q)2

mq |x̄− xn|2 , n = 1, 2, . . .
which characterizes the convergence order of the studied methods.
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