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AITKEN-STEFFENSEN TYPE METHODS FOR
NONDIFFERENTIABLE FUNCTIONS (I)∗

ION PǍVǍLOIU†

Abstract. We study the convergence of the Aitken-Steffensen method for sol-
ving a scalar equation f(x) = 0. Under reasonable conditions (without assuming
the differentiability of f) we construct some auxilliary functions used in these
iterations, which generate bilateral sequences approximating the solution of the
considered equation.
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1. INTRODUCTION

In this note we shall deal with the construction of the auxiliary functions
appearing in the Aitken-Steffensen-type methods for solving the equation:

(1) f (x) = 0,

where f : [a, b] → R, a, b ∈ R, a < b. Since we shall not assume differen-
tiability conditions on f , we shall consider instead the first and second order
divided differences of f , denoted by [u, v; f ], resp. [u, v, w; f ], u, v, w ∈ [a, b].

Let g, gi : [a, b]→ R, i = 1, 2, be three functions such that the equations

x− g (x) = 0 and(2)
x− gi (x) = 0, i = 1, 2(3)

are equivalent to (1).
The following three Aitken-Steffensen methods are well known:
1. The Steffensen method, which generates two sequences, (xn)n≥1 and

(g (xn))n≥1, by

(4) xn+1 = xn −
f (xn)

[xn, g (xn) ; f ] , n = 1, 2, . . . , x1 ∈ [a, b] ,

where g is given by (2).
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2. The Aitken method, which generates the sequences (xn)n≥1, (gi (xn))n≥1
i = 1, 2, by

(5) xn+1 = g1 (xn)− f (g1 (xn))
[g1 (xn) , g2 (xn) ; f ] , n = 1, 2, . . . , xn ∈ [a, b] ,

with g1, g2 given by (3).
3. The Aitken-Steffensen method, which generates the sequences (xn)n≥1,

(g1 (xn))n≥1, and (g2 (g1 (xn)))n≥1, by

(6) xn+1 = g1 (xn)− f (g1 (xn))
[g1 (xn) , g2 (g1 (xn)) ; f ] , n = 1, 2, . . . , x1 ∈ [a, b] .

A certain method presents an important advantage particularly when it
yields sequences approximating the solution both from the left and from the
right. In such a case we obtain a rigorous control if the error at each iteration
step.

We shall study the choice of the functions g, g1, g2 such that the above
methods to yield bilateral approximations for the solution of (1).

Regarding the monotonicity and the convexity of the function f we shall
use the following definitions. The function f is nondecreasing (increasing) on
[a, b] if [u, v; f ] ≥ 0 (> 0) for all u, v ∈ [a, b]. The function f is nonconcave
(convex) on [a, b] if [u, v, w; f ] ≥ 0 (> 0) for all u, v, w ∈ [a, b].

Let x0 ∈ [a, b] and px0 : [a, b] \ {x0} → R, given by
(7) px0 (x) = [x0, x; f ] .

The following result was proved in [3, p. 290].
Theorem 1. a) If the function f is nonconcave on [a, b], the px0 is a

nondecreasing function on [a, b] \ {x0} .
b) If f is a convex function on [a, b], then px0 is an increasing function

on [a, b] \ {x0} .

In other words, if f is nonconcave (convex) on [a, b], then for all x′, x′′ ∈
[a, b] \ {x0} , x′ < x′′ one obtains
(8)

[
x0, x

′; f
]
≤ (<)

[
x0, x

′′; f
]
.

Consider now u, v, w, t ∈ [a, b] such that u = min{u, v, w, t} and t =
max{u, v, w, t}. The following lemma holds.

Lemma 2. If f is nonconcave (convex) on [a, b], then for all v, w ∈ (u, t),
v 6= w, one has
(9) [u, v; f ] ≤ (<) [w, t; f ] .

Proof. We shall consider only the case ” ≤ ”, since the other one is similarly
obtained. There an two alternatives:

Case I. u < v < w < t. Taking into account the symmetry of the di-
vided differences with respect to the nodes and Theorem 1 we get [u, v; f ] ≤
[u,w; f ] = [w, u; f ] ≤ [w, t; f ] .
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Case II. u < w < v < t. As above, we obtain: [u, v; f ] ≤ [u, t; f ] = [t, u; f ] ≤
[t, w; f ] = [w, t; f ] . �

2. THE CONVERGENCE OF THE AITKEN-STEFFENSEN-LIKE METHOD

We shall make the following assumptions on f :
i. f (a) · f (b) < 0;

ii. f is increasing on [a, b] ;
iii. f is convex on [a, b] and continuous in a and b;
iv. f is differentiable at x̄ ∈ (a, b), where x̄ is the solution of (1).

Remark 1. Hypothesis iii. ensures the continuity of f on [a, b] (see [3,
p. 295]). �

Remark 2. Hypothesis i.–iii. ensure the existences and the uniqueness of
the solution x̄ ∈ (a, b) of the equation (1). �

Let α and β be two numbers such that a < α < β < b, f (α) < 0 and
f (β) > 0. Consider the functions g1, g2 given by

g1 (x) = x− f (x)
[β, b; f ] , x ∈ [α, β] and(10)

g2 (x) = x− f (x)
[a, α; f ] , x ∈ [α, β] .(11)

From hypotheses ii. iii. and applying Lemma 2 it follows that for all
u, v ∈ (α, β)

(12) [u, v; g1] > 0 and [u, v; g2] < 0.

Consider now an initial approximation x1 ∈ (α, β) satisfying
a) f (x1) < 0;
b) g2 (g1 (x1)) < β.

The following result holds regarding the convergence of the sequence (6).

Theorem 3. If the function f obeys i.–iv., the functions g1 and g2 are
given by (10) resp. (11) and x1 satisfies the assumptions a) and b), then the
sequences (xn)n≥1, (g1 (xn))n≥1 and (g2 (g1 (xn)))n≥1 generated by (6) satisfy:

j. (xn)n≥1 is increasing;
jj. (g1 (xn))n≥1 is increasing;

jjj. (g2 (g1 (xn)))n≥1 is decreasing;
jv. for all n ∈ N, n ≥ 1, the following relations hold:

(13) xn < g1 (xn) < xn+1 < x̄ < g2 (g1 (xn)) .

Proof. By ii. and a) it follows that x1 < x̄, and from f (x1) < 0 and
[β, b; f ] > 0 we get g1 (x1) > x1. Since x1 < x̄ and g1 is increasing, one obtains
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g1 (x) < g1 (x̄) = x̄, i.e., x1 < g1 (x1) < x̄. On the other hand, by b) and (6)
it follows

(14) x2 = g1 (x1)− f (g1 (x1))
[g1 (x1) , g2 (g1 (x1)) ; f ] .

Since g1 (x1) < x̄ we get f (g1 (x1)) < 0 and hence x2 > g (x1) . The fact
that g2 is decreasing and g1 (x1) < x̄ imply that g2 (g1 (x1)) > g2 (x̄) = x̄. It
follows that f (g2 (g1 (x1))) > 0, and taking into account the equality

g1 (x1)− f(g1(x1))
[g1(x1),g2(g1(x1));f ] = g2 (g1 (x1))− f(g2(g1(x1)))

[g1(x1),g2(g1(x1));f ] = x2

it follows that x2 < g2 (g1 (x1)) and hence the following identity is true
f (x2) =f (g1 (x1)) + [g1 (x1) , g2 (g1 (x1)) ; f ] (x2 − g1 (x1))

+ [x2, g1 (x1) , g2 (g1 (x1)) ; f ] (x2 − g1 (x1)) (x2 − g2 (g1 (x1))) ,
whence, taking into account the following facts: f is convex, x2 > g1 (x1) ,
x2 < g2 (g1 (x1)) and (14), it follows that f (x2) < 0, i.e., x2 < x̄.

The inequality x1 < x2 and the fact that g1 is increasing imply that g1 (x1) <
g1 (x2). Since g2 is decreasing we get g2 (g1 (x1)) > g2 (g1 (x2)). From x2 < x̄
it follows that g1 (x2) < x̄ and g2 (g1 (x2)) > g2 (x̄) = x̄.

Obviously, the above reason may be applied for any xn, n ≥ 2, so that the
induction principle completes the proof. �

The sequences (xn)n≥1 , (g1 (xn))n≥1 and (g2 (g1 (xn)))n≥1 are monotone and
bounded, and therefore they converge.

Let x∗ = lim xn, hence x∗ = supn∈N {xn}, and let b = supn∈N {g1 (xn)} . We
shall prove that x∗ = b. The relations x∗ < b and x∗ > b cannot hold, since,
as implied by (13), we get

xn < g1 (xn) < xn+1 < g1 (xn+1) , n = 1, 2, . . .
which lead to conclusions contradicting the definition of the exact upper
bound. Therefore, the following relations are true: x∗ = lim g1 (xn) = g1 (x∗) ,
whence, taking into account the equivalence of (1) and (3), it follows that x∗ =
x̄. The equality x̄ = g2 (x̄) implies lim g2 (g1 (xn)) = g2 (g1 (x̄)) = g2 (x̄) = x̄.

The three sequences have the same limit x̄,which is the solution of (1).
By (13) we obtain

x̄− xn+1 ≤ g2 (g1 (xn))− xn+1,

and
x̄− xn+1 ≤ g2 (g1 (xn))− g1 (xn) , n ∈ N∗,

which provide a control of the error at each iteration step.
In a forthcoming work we shall present some results regarding the conver-

gence of the Steffensen and Aitken methods.
We end with some remarks.
Remark 3. Since f is convex, then in (10), resp. (11) we may replace the

divided differences [a, α; f ] and [β, b; f ] by f ′r (a), resp. f ′l (b) . �
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Remark 4. The following relations hold:

|x̄− xn+1| ≤
l3m [β, b; f ]

[a, α; f ]2
|x̄− xn|2 , n = 1, 2, . . . ,

where l = 1− [a,α;f ]
[β,b;f ] and m = sup

{
[u, v, w; f ] : u, v, w ∈ [α, β]

}
.

Proof. Consider the following identities:

f (x̄) =f (g1 (xn)) + [g1 (xn) , g2 (g1 (xn)) ; f ] (x̄− g1 (xn))
+ [x̄, g1 (xn) , g2 (g1 (xn)) ; f ] (x̄− g1 (xn)) (x̄− g2 (g1 (xn))) ,

whence, by (6) and f (x̄) = 0, we get

(15) x̄− xn+1 = − [x̄, g1 (xn) , g2 (g1 (xn)) ; f ]
[g1 (xn) , g2 (g1 (xn)) ; f ] (x̄− g1 (xn)) (x̄− g2 (g1 (xn))) .

Next, g1 and g2 obey the following identities:

x̄− g1 (xn) = g1 (x̄)− g1 (xn) = [xn, x̄; g1] (x̄− xn) ,(16)
x̄− g2 (g1 (xn)) = [g1 (xn) , g1 (x̄) ; g2] [xn, x̄; g1] (x̄− xn) .(17)

From the definitions of g1 and g2 we deduce

(18) 0 < [xn, x̄; g1] = 1− [xn, x̄; f ]
[β, b; f ] < 1− [α, a; f ]

[β, b; f ] = l < 1

and

[g1 (xn) , g1 (x̄) ; g2] = 1− [g1(xn),x̄;f ]
[α,a;f ]

> 1− [β,b;f ]
[α,a;f ] = [β,b;f ]

[α,a;f ]

(
[α,a;f ]
[β,b;f ] − 1

)
= −l [β,b;f ]

[α,a;f ] ,

whence − [g1 (xn) , g1 (x̄) ; g2] < l [β,b;f ]
[α,a;f ] .

Since g2 is nondecreasing we get

(19)
∣∣ [g1 (xn) , g1 (x̄) ; g2]

∣∣ < l
[β, b; f ]
[α, a; f ] .

According to Lemma 2

[g1 (xn) , g2 (g1 (xn)) ; f ] > [α, a; f ] , n = 1, 2, . . .

and by (15)–(19) we finally get

|x̄− xn+1| ≤
ml3 [β, b; f ]

[a, α; f ]2
|x̄− xn|2 , n = 1, 2, . . . �



114 Ion Pǎvǎloiu 6
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