AITKEN-STEFFENSEN TYPE METHODS FOR NONDIFFERENTIABLE FUNCTIONS (I)*

ION PǍVǍLOIU ${ }^{\dagger}$

Abstract

We study the convergence of the Aitken-Steffensen method for solving a scalar equation $f(x)=0$. Under reasonable conditions (without assuming the differentiability of f) we construct some auxilliary functions used in these iterations, which generate bilateral sequences approximating the solution of the considered equation.

MSC 2000. 65 H 05.
Keywords. Aitken-Steffensen method, bilateral approximations.

1. INTRODUCTION

In this note we shall deal with the construction of the auxiliary functions appearing in the Aitken-Steffensen-type methods for solving the equation:

$$
\begin{equation*}
f(x)=0 \tag{1}
\end{equation*}
$$

where $f:[a, b] \rightarrow \mathbb{R}, a, b \in \mathbb{R}, a<b$. Since we shall not assume differentiability conditions on f, we shall consider instead the first and second order divided differences of f, denoted by $[u, v ; f]$, resp. $[u, v, w ; f], u, v, w \in[a, b]$.

Let $g, g_{i}:[a, b] \rightarrow \mathbb{R}, i=1,2$, be three functions such that the equations

$$
\begin{align*}
x-g(x) & =0 \quad \text { and } \tag{2}\\
x-g_{i}(x) & =0, i=1,2 \tag{3}
\end{align*}
$$

are equivalent to (1).
The following three Aitken-Steffensen methods are well known:

1. The Steffensen method, which generates two sequences, $\left(x_{n}\right)_{n \geq 1}$ and $\left(g\left(x_{n}\right)\right)_{n \geq 1}$, by

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{\left[x_{n}, g\left(x_{n}\right) ; f\right]}, \quad n=1,2, \ldots, x_{1} \in[a, b] \tag{4}
\end{equation*}
$$

where g is given by (2).

[^0]2. The Aitken method, which generates the sequences $\left(x_{n}\right)_{n \geq 1},\left(g_{i}\left(x_{n}\right)\right)_{n \geq 1}$ $i=1,2$, by
\[

$$
\begin{equation*}
x_{n+1}=g_{1}\left(x_{n}\right)-\frac{f\left(g_{1}\left(x_{n}\right)\right)}{\left[g_{1}\left(x_{n}\right), g_{2}\left(x_{n}\right) ; f\right]}, \quad n=1,2, \ldots, x_{n} \in[a, b], \tag{5}
\end{equation*}
$$

\]

with g_{1}, g_{2} given by (3).
3. The Aitken-Steffensen method, which generates the sequences $\left(x_{n}\right)_{n \geq 1}$, $\left(g_{1}\left(x_{n}\right)\right)_{n \geq 1}$, and $\left(g_{2}\left(g_{1}\left(x_{n}\right)\right)\right)_{n \geq 1}$, by
(6) $\quad x_{n+1}=g_{1}\left(x_{n}\right)-\frac{f\left(g_{1}\left(x_{n}\right)\right)}{\left[g_{1}\left(x_{n}\right), g_{2}\left(g_{1}\left(x_{n}\right)\right) ; f\right]}, \quad n=1,2, \ldots, x_{1} \in[a, b]$.

A certain method presents an important advantage particularly when it yields sequences approximating the solution both from the left and from the right. In such a case we obtain a rigorous control if the error at each iteration step.

We shall study the choice of the functions g, g_{1}, g_{2} such that the above methods to yield bilateral approximations for the solution of (1).

Regarding the monotonicity and the convexity of the function f we shall use the following definitions. The function f is nondecreasing (increasing) on $[a, b]$ if $[u, v ; f] \geq 0(>0)$ for all $u, v \in[a, b]$. The function f is nonconcave (convex) on $[a, b]$ if $[u, v, w ; f] \geq 0(>0)$ for all $u, v, w \in[a, b]$.

Let $x_{0} \in[a, b]$ and $p_{x_{0}}:[a, b] \backslash\left\{x_{0}\right\} \rightarrow \mathbb{R}$, given by

$$
\begin{equation*}
p_{x_{0}}(x)=\left[x_{0}, x ; f\right] . \tag{7}
\end{equation*}
$$

The following result was proved in [3, p. 290].
Theorem 1. a) If the function f is nonconcave on $[a, b]$, the $p_{x_{0}}$ is a nondecreasing function on $[a, b] \backslash\left\{x_{0}\right\}$.
b) If f is a convex function on $[a, b]$, then $p_{x_{0}}$ is an increasing function on $[a, b] \backslash\left\{x_{0}\right\}$.
In other words, if f is nonconcave (convex) on $[a, b]$, then for all $x^{\prime}, x^{\prime \prime} \in$ $[a, b] \backslash\left\{x_{0}\right\}, x^{\prime}<x^{\prime \prime}$ one obtains

$$
\begin{equation*}
\left[x_{0}, x^{\prime} ; f\right] \leq(<)\left[x_{0}, x^{\prime \prime} ; f\right] . \tag{8}
\end{equation*}
$$

Consider now $u, v, w, t \in[a, b]$ such that $u=\min \{u, v, w, t\}$ and $t=$ $\max \{u, v, w, t\}$. The following lemma holds.

Lemma 2. If f is nonconcave (convex) on $[a, b]$, then for all $v, w \in(u, t)$, $v \neq w$, one has

$$
\begin{equation*}
[u, v ; f] \leq(<)[w, t ; f] . \tag{9}
\end{equation*}
$$

Proof. We shall consider only the case " $\leq "$, since the other one is similarly obtained. There an two alternatives:

Case I. $u<v<w<t$. Taking into account the symmetry of the divided differences with respect to the nodes and Theorem 1 we get $[u, v ; f] \leq$ $[u, w ; f]=[w, u ; f] \leq[w, t ; f]$.

Case II. $u<w<v<t$. As above, we obtain: $[u, v ; f] \leq[u, t ; f]=[t, u ; f] \leq$ $[t, w ; f]=[w, t ; f]$.

2. THE CONVERGENCE OF THE AITKEN-STEFFENSEN-LIKE METHOD

We shall make the following assumptions on f :
i. $f(a) \cdot f(b)<0$;
ii. f is increasing on $[a, b]$;
iii. f is convex on $[a, b]$ and continuous in a and b;
iv. f is differentiable at $\bar{x} \in(a, b)$, where \bar{x} is the solution of (1).

Remark 1. Hypothesis iii. ensures the continuity of f on $[a, b]$ (see $[3$, p. 295]).

Remark 2. Hypothesis i.-iii. ensure the existences and the uniqueness of the solution $\bar{x} \in(a, b)$ of the equation (1).

Let α and β be two numbers such that $a<\alpha<\beta<b, f(\alpha)<0$ and $f(\beta)>0$. Consider the functions g_{1}, g_{2} given by

$$
\begin{align*}
& g_{1}(x)=x-\frac{f(x)}{[\beta, b ; f]}, \quad x \in[\alpha, \beta] \quad \text { and } \tag{10}\\
& g_{2}(x)=x-\frac{f(x)}{[a, \alpha ; f]}, \quad x \in[\alpha, \beta] . \tag{11}
\end{align*}
$$

From hypotheses ii. iii. and applying Lemma 2 it follows that for all $u, v \in(\alpha, \beta)$

$$
\begin{equation*}
\left[u, v ; g_{1}\right]>0 \text { and }\left[u, v ; g_{2}\right]<0 . \tag{12}
\end{equation*}
$$

Consider now an initial approximation $x_{1} \in(\alpha, \beta)$ satisfying
a) $f\left(x_{1}\right)<0$;
b) $g_{2}\left(g_{1}\left(x_{1}\right)\right)<\beta$.

The following result holds regarding the convergence of the sequence (6).
Theorem 3. If the function f obeys i.-iv., the functions g_{1} and g_{2} are given by (10) resp. (11) and x_{1} satisfies the assumptions a) and b), then the sequences $\left(x_{n}\right)_{n \geq 1},\left(g_{1}\left(x_{n}\right)\right)_{n \geq 1}$ and $\left(g_{2}\left(g_{1}\left(x_{n}\right)\right)\right)_{n \geq 1}$ generated by (6) satisfy:
j. $\left(x_{n}\right)_{n \geq 1}$ is increasing;
jj. $\left(g_{1}\left(x_{n}\right)\right)_{n \geq 1}$ is increasing;
jjj. $\left(g_{2}\left(g_{1}\left(x_{n}\right)\right)\right)_{n \geq 1}$ is decreasing;
jv. for all $n \in \mathbb{N}, n \geq 1$, the following relations hold:

$$
\begin{equation*}
x_{n}<g_{1}\left(x_{n}\right)<x_{n+1}<\bar{x}<g_{2}\left(g_{1}\left(x_{n}\right)\right) . \tag{13}
\end{equation*}
$$

Proof. By ii. and a) it follows that $x_{1}<\bar{x}$, and from $f\left(x_{1}\right)<0$ and [$\beta, b ; f]>0$ we get $g_{1}\left(x_{1}\right)>x_{1}$. Since $x_{1}<\bar{x}$ and g_{1} is increasing, one obtains
$g_{1}(x)<g_{1}(\bar{x})=\bar{x}$, i.e., $x_{1}<g_{1}\left(x_{1}\right)<\bar{x}$. On the other hand, by b) and (6) it follows

$$
\begin{equation*}
x_{2}=g_{1}\left(x_{1}\right)-\frac{f\left(g_{1}\left(x_{1}\right)\right)}{\left[g_{1}\left(x_{1}\right), g_{2}\left(g_{1}\left(x_{1}\right)\right) ; f\right]} . \tag{14}
\end{equation*}
$$

Since $g_{1}\left(x_{1}\right)<\bar{x}$ we get $f\left(g_{1}\left(x_{1}\right)\right)<0$ and hence $x_{2}>g\left(x_{1}\right)$. The fact that g_{2} is decreasing and $g_{1}\left(x_{1}\right)<\bar{x}$ imply that $g_{2}\left(g_{1}\left(x_{1}\right)\right)>g_{2}(\bar{x})=\bar{x}$. It follows that $f\left(g_{2}\left(g_{1}\left(x_{1}\right)\right)\right)>0$, and taking into account the equality

$$
g_{1}\left(x_{1}\right)-\frac{f\left(g_{1}\left(x_{1}\right)\right)}{\left\lfloor g_{1}\left(x_{1}\right), g_{2}\left(g_{1}\left(x_{1}\right)\right) ; f\right\rfloor}=g_{2}\left(g_{1}\left(x_{1}\right)\right)-\frac{f\left(g_{2}\left(g_{1}\left(x_{1}\right)\right)\right)}{\left\lfloor g_{1}\left(x_{1}\right), g_{2}\left(g_{1}\left(x_{1}\right)\right) ; f\right\rceil}=x_{2}
$$

it follows that $x_{2}<g_{2}\left(g_{1}\left(x_{1}\right)\right)$ and hence the following identity is true

$$
\begin{aligned}
f\left(x_{2}\right)= & f\left(g_{1}\left(x_{1}\right)\right)+\left[g_{1}\left(x_{1}\right), g_{2}\left(g_{1}\left(x_{1}\right)\right) ; f\right]\left(x_{2}-g_{1}\left(x_{1}\right)\right) \\
& +\left[x_{2}, g_{1}\left(x_{1}\right), g_{2}\left(g_{1}\left(x_{1}\right)\right) ; f\right]\left(x_{2}-g_{1}\left(x_{1}\right)\right)\left(x_{2}-g_{2}\left(g_{1}\left(x_{1}\right)\right)\right),
\end{aligned}
$$

whence, taking into account the following facts: f is convex, $x_{2}>g_{1}\left(x_{1}\right)$, $x_{2}<g_{2}\left(g_{1}\left(x_{1}\right)\right)$ and (14), it follows that $f\left(x_{2}\right)<0$, i.e., $x_{2}<\bar{x}$.

The inequality $x_{1}<x_{2}$ and the fact that g_{1} is increasing imply that $g_{1}\left(x_{1}\right)<$ $g_{1}\left(x_{2}\right)$. Since g_{2} is decreasing we get $g_{2}\left(g_{1}\left(x_{1}\right)\right)>g_{2}\left(g_{1}\left(x_{2}\right)\right)$. From $x_{2}<\bar{x}$ it follows that $g_{1}\left(x_{2}\right)<\bar{x}$ and $g_{2}\left(g_{1}\left(x_{2}\right)\right)>g_{2}(\bar{x})=\bar{x}$.

Obviously, the above reason may be applied for any $x_{n}, n \geq 2$, so that the induction principle completes the proof.

The sequences $\left(x_{n}\right)_{n \geq 1},\left(g_{1}\left(x_{n}\right)\right)_{n \geq 1}$ and $\left(g_{2}\left(g_{1}\left(x_{n}\right)\right)\right)_{n \geq 1}$ are monotone and bounded, and therefore they converge.

Let $x^{*}=\lim x_{n}$, hence $x^{*}=\sup _{n \in \mathbb{N}}\left\{x_{n}\right\}$, and let $b=\sup _{n \in \mathbb{N}}\left\{g_{1}\left(x_{n}\right)\right\}$. We shall prove that $x^{*}=b$. The relations $x^{*}<b$ and $x^{*}>b$ cannot hold, since, as implied by (13), we get

$$
x_{n}<g_{1}\left(x_{n}\right)<x_{n+1}<g_{1}\left(x_{n+1}\right), \quad n=1,2, \ldots
$$

which lead to conclusions contradicting the definition of the exact upper bound. Therefore, the following relations are true: $x^{*}=\lim g_{1}\left(x_{n}\right)=g_{1}\left(x^{*}\right)$, whence, taking into account the equivalence of (1) and (3), it follows that $x^{*}=$ \bar{x}. The equality $\bar{x}=g_{2}(\bar{x})$ implies $\lim g_{2}\left(g_{1}\left(x_{n}\right)\right)=g_{2}\left(g_{1}(\bar{x})\right)=g_{2}(\bar{x})=\bar{x}$.

The three sequences have the same limit \bar{x}, which is the solution of (1).
By (13) we obtain

$$
\bar{x}-x_{n+1} \leq g_{2}\left(g_{1}\left(x_{n}\right)\right)-x_{n+1},
$$

and

$$
\bar{x}-x_{n+1} \leq g_{2}\left(g_{1}\left(x_{n}\right)\right)-g_{1}\left(x_{n}\right), n \in \mathbb{N}^{*}
$$

which provide a control of the error at each iteration step.
In a forthcoming work we shall present some results regarding the convergence of the Steffensen and Aitken methods.

We end with some remarks.
REmark 3. Since f is convex, then in (10), resp. (11) we may replace the divided differences $[a, \alpha ; f]$ and $[\beta, b ; f]$ by $f_{r}^{\prime}(a)$, resp. $f_{l}^{\prime}(b)$.

Remark 4. The following relations hold:

$$
\left|\bar{x}-x_{n+1}\right| \leq \frac{l^{3} m[\beta, b ; f]}{[a, \alpha ; f]^{2}}\left|\bar{x}-x_{n}\right|^{2}, \quad n=1,2, \ldots,
$$

where $l=1-\frac{[a, \alpha ; f]}{[\beta, b ; f]}$ and $m=\sup \{[u, v, w ; f]: u, v, w \in[\alpha, \beta]\}$.
Proof. Consider the following identities:

$$
\begin{aligned}
f(\bar{x})= & f\left(g_{1}\left(x_{n}\right)\right)+\left[g_{1}\left(x_{n}\right), g_{2}\left(g_{1}\left(x_{n}\right)\right) ; f\right]\left(\bar{x}-g_{1}\left(x_{n}\right)\right) \\
& +\left[\bar{x}, g_{1}\left(x_{n}\right), g_{2}\left(g_{1}\left(x_{n}\right)\right) ; f\right]\left(\bar{x}-g_{1}\left(x_{n}\right)\right)\left(\bar{x}-g_{2}\left(g_{1}\left(x_{n}\right)\right)\right),
\end{aligned}
$$

whence, by (6) and $f(\bar{x})=0$, we get
(15) $\bar{x}-x_{n+1}=-\frac{\left[\bar{x}, g_{1}\left(x_{n}\right), g_{2}\left(g_{1}\left(x_{n}\right)\right) ; f\right]}{\left[g_{1}\left(x_{n}\right), g_{2}\left(g_{1}\left(x_{n}\right)\right) ; f\right]}\left(\bar{x}-g_{1}\left(x_{n}\right)\right)\left(\bar{x}-g_{2}\left(g_{1}\left(x_{n}\right)\right)\right)$.

Next, g_{1} and g_{2} obey the following identities:

$$
\begin{align*}
\bar{x}-g_{1}\left(x_{n}\right) & =g_{1}(\bar{x})-g_{1}\left(x_{n}\right)=\left[x_{n}, \bar{x} ; g_{1}\right]\left(\bar{x}-x_{n}\right), \tag{16}\\
\bar{x}-g_{2}\left(g_{1}\left(x_{n}\right)\right) & =\left[g_{1}\left(x_{n}\right), g_{1}(\bar{x}) ; g_{2}\right]\left[x_{n}, \bar{x} ; g_{1}\right]\left(\bar{x}-x_{n}\right) . \tag{17}
\end{align*}
$$

From the definitions of g_{1} and g_{2} we deduce

$$
\begin{equation*}
0<\left[x_{n}, \bar{x} ; g_{1}\right]=1-\frac{\left[x_{n}, \bar{x} ; f\right]}{[\beta, b ; f]}<1-\frac{[\alpha, a ; f]}{[\beta, b ; f]}=l<1 \tag{18}
\end{equation*}
$$

and

$$
\begin{aligned}
{\left[g_{1}\left(x_{n}\right), g_{1}(\bar{x}) ; g_{2}\right] } & =1-\frac{\left[g_{1}\left(x_{n}\right), \bar{x} ; f\right]}{[\alpha, a, f]} \\
& >1-\frac{[\beta, b ; f]}{[\alpha, a ; f]}=\frac{[\beta, b ; f]}{[\alpha, a ; f]}\left(\frac{[\alpha, a ; f]}{[\beta, b ; f]}-1\right)=-l \frac{[\beta, b ; f]}{[\alpha, a ; f]},
\end{aligned}
$$

whence $-\left[g_{1}\left(x_{n}\right), g_{1}(\bar{x}) ; g_{2}\right]<l\left[\frac{[\beta, b ; f]}{[\alpha, a ; f]}\right.$.
Since g_{2} is nondecreasing we get

$$
\begin{equation*}
\left|\left[g_{1}\left(x_{n}\right), g_{1}(\bar{x}) ; g_{2}\right]\right|<l \frac{[\beta, b ; f]}{[\alpha, a ; f]} . \tag{19}
\end{equation*}
$$

According to Lemma 2

$$
\left[g_{1}\left(x_{n}\right), g_{2}\left(g_{1}\left(x_{n}\right)\right) ; f\right]>[\alpha, a ; f], \quad n=1,2, \ldots
$$

and by (15)-19) we finally get

$$
\left|\bar{x}-x_{n+1}\right| \leq \frac{m l^{3}[\beta, b ; f]}{[a, \alpha ; f]^{2}}\left|\bar{x}-x_{n}\right|^{2}, \quad n=1,2, \ldots
$$

REFERENCES

[1] Balázs, M., A bilateral approximating method for finding the real roots of real equations, Rev. Anal. Numér. Théor. Approx., 21, no. 2, pp. 111-117, 1992. [^
[2] Casulli, V. and Trigiante, D., The convergence order for iterative multipoint procedures, Calcolo, 13, no. 1, pp. 25-44, 1977.
[3] Cobzaş, S., Mathematical Analysis, Presa Universitară Clujeană, Cluj-Napoca, 1997 (in Romanian).
[4] Ostrowski, A. M., Solution of Equations and Systems of Equations, Academic Press, New York, 1960.
[5] Păvăloiv, I., On the monotonicity of the sequences of approximations obtained by Steffensens's method, Mathematica (Cluj), 35 (58), no. 1, pp. 71-76, 1993.
[6] PĂVĂLOIU, I., Bilateral approximations for the solutions of scalar equations, Rev. Anal. Numér. Théor. Approx., 23, no. 1, pp. 95-100, 1994. ©
[7] PĂVĂLOIU, I., Approximation of the roots of equations by Aitken-Steffensen-type monotonic sequences, Calcolo, 32, no. 1-2, pp. 69-82, 1995.
[8] Traub, F. J., Iterative Methods for the Solution of Equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.

Received by the editors: November 15, 2001.

[^0]: *This work was supported by the Romanian Academy under Grant GAR 45/2002.
 \dagger "T. Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, 3400 Cluj-Napoca, Romania, e-mail: pavaloiu@ictp.acad.ro.

