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APPROXIMATION OPERATORS
CONSTRUCTED BY MEANS OF SHEFFER SEQUENCES

MARIA CRǍCIUN

Abstract. In this paper we introduce a class of positive linear operators by
using the “umbral calculus”, and we study some approximation properties of
it. Let Q be a delta operator, and S an invertible shift invariant operator. For
f ∈ C[0, 1] we define

(LQ,Sn f)(x) = 1
sn(1)

n∑
k=0

(
n
k

)
pk(x)sn−k(1− x)f

(
k
n

)
,

where (pn)n≥0 is a binomial sequence which is the basic sequence for Q, and
(sn)n≥0 is a Sheffer set, sn = S−1pn. These operators generalize the binomial
operators of T. Popoviciu.

MSC 2000. 41A36, 05A40.

1. INTRODUCTION

Let P be the linear space of all polynomials with real coefficients, and Pn
the linear space of all polynomials of degree at most n.

We will consider some linear operators defined on P . We will denote by
I the identity and by D the derivative. The shift operator Ea : P → P is
defined by Eap(x) = p(x+ a).

A linear operator T which commutes with all shift operators is called a shift
invariant operator. In symbols, EaT = TEa, for all real a.

Let us remind that if T1 and T2 are shift invariant operators, then T1T2 =
T2T1.

Definition 1. A shift invariant operator for which Qx = const 6= 0 is
called a delta operator.

By a polynomial sequence we shall denote a sequence of polynomials pn(x),
n = 0, 1, 2, . . . where pn(x) is of degree exactly n for all n.
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A sequence of binomial type is a polynomial sequence (pn)n≥0 with p0(x) = 1
and satisfying the identities

pn (x+ y) =
n∑
k=0

(n
k

)
pk (x) pn−k (y) ,

for all x, y and n = 0, 1, 2, . . . .

Definition 2. Let Q be a delta operator and (pn(x))n≥0 a polynomial se-
quence. If

i) p0(x) = 1,
ii) pn(0) = 0, n = 1, 2, . . . ,
iii) Qpn = npn−1, n = 1, 2, . . . ,

then (pn) is called the sequence of basic polynomials for Q.

Proposition 1. [8].
i) Every delta operator has a unique sequence of basic polynomials.
ii) If pn(x) is a basic sequence for some delta operator Q, then it is

binomial.
iii) If pn(x) is a binomial sequence, then it is a basic sequence for some

delta operator Q.

Let X be the multiplication operator defined as (Xp)(x) = xp(x) for every
polynomial p.

For any operator T defined on P , the operator T ′ = TX −XT is called the
Pincherle derivative of the operator T .

Proposition 2. [8].
i) If T is a shift invariant operator, then its Pincherle derivative is

also a shift invariant operator.
ii) If Q is a delta operator, then its Pincherle derivative Q′ is an in-

vertible operator.

Proposition 3. [8], [11]. If (pn(x))n≥0 is a sequence of basic polynomials
for the delta operator Q then

i) pn(x) = X(Q′)−1pn−1(x), n = 1, 2, . . . ,

ii) pn(x) = x
n−1∑
k=0

(n−1
k

)
pn−1−k(x)p′k+1(0), n = 1, 2, . . .

Definition 3. A polynomial sequence (sn(x))n≥0 is called a Sheffer set
relative to the delta operator Q if:

i) s0 (x) = const 6= 0
ii) Qsn = nsn−1, n = 1, 2, . . .

An Appel set is a Sheffer set relative to the derivative D.
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Proposition 4. [11]. Let Q be a delta operator with basic polynomial set
(pn(x))n≥0 and (sn(x))n≥0 a polynomial sequence. The next statements are
equivalent:

i) sn(x) is a Sheffer set relative to Q.
ii) There exists an invertible shift invariant operator S such that sn(x) =

S−1pn(x).
iii) For all x, y ∈ R and n = 0, 1, 2, . . . , the following identity holds:

sn (x+ y) =
n∑
k=0

(n
k

)
pk (x) sn−k (y) .

From the previous Proposition it results that the pair (Q,S) gives us a
unique Sheffer set.

2. THE OPERATORS CONSTRUCTED BY MEANS OF SHEFFER POLYNOMIALS AND

THEIR CONVERGENCE

In 1931 in [9] Tiberiu Popoviciu has used binomial sequences in order to
construct some operators of the form

(1) (Lnf)(x) = 1
pn(1)

n∑
k=0

(n
k

)
pk(x)pn−k(1− x)f( kn)

where f ∈ C[0, 1] and x ∈ [0, 1]. These operators are called binomial operators.
Such operators and their generalizations have been studied by the Roma-

nian mathematicians as: D. D. Stancu, A. Lupaş, L. Lupaş, G. Moldovan, C.
Manole, O. Agratini, A. Vernescu, and others.

Let Q be a delta operator and S an invertible shift invariant operator.
Let (pn(x))n≥0 be the sequence of basic polynomials for Q, and (sn(x))n≥0 a
Sheffer set relative to Q, sn = S−1pn with sn(1) 6= 0 for any positive integer
n.

In this note we want to study the operators LQ,Sn : C[0, 1]→ C[0, 1],

(2) (LQ,Sn f)(x) = 1
sn(1)

n∑
k=0

(n
k

)
pk(x)sn−k(1− x)f

(
k
n

)

Because pk(0) = δk,0 (from the definition of basic polynomials), we have
(LQ,Sn f)(0) = f(0).

In order to evaluate expression (LQ,Sn em)(x), where em(x) = xm we shall
make use of C. Manole’s method for binomial operators (see [5]) which we
have adapted to our purposes.
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Let us introduce the polynomials

(3) Sm(x, y, n) =
n∑
k=0

(n
k

)
pk(x)sn−k(y)

(
k
n

)m
From Proposition 4 iii) we have S0(x, y, n) = sn(x+ y).
In the following we consider that x is the variable. Let us denote θ =

X(Q′)−1.
From Proposition 3 i) it results that θpk(x) = pk+1(x) and consequently the

linear operator θ is called the shift operator for the sequence (pn)n≥0 (see [10]).
Therefore θQpk(x) = θ(kpk−1(x)) = kpk(x); consequently k is an eigenvalue
for the operator θQ, with its eigenvector pk(x). We have

(4) (θQ)m = kmpk(x)

for every positive integer m, and then

Sm(x, y, n) = 1
nm (θQ)m

n∑
k=0

(n
k

)
pk(x)sn−k(y)

= 1
nm (θQ)mS0(x, y, n) = 1

nm (θQ)msn(x+ y).

In this way we obtain

(5) Sm(x, y, n) = 1
nm (θQ)mEysn(x)

Using the operational formula (see for instance [10])

(θQ)m =
n∑
k=0

S(m, k)θkQk,

where S(m, k) = [0, 1, . . . , k; em] are the Stirling numbers of the second kind,
relation (5) becomes:

(6) Sm(x, y, n) = 1
nm

n∑
k=0

S(m, k)θkQkEysn(x).

Because Q is shift invariant and Qksn(x) = n(n−1) . . . (n−k+1)sn−k(x) =
n[k]sn−k(x) we obtain

(7) Sm(x, y, n) = 1
nm

n∑
k=0

(n
k

)
k!S(m, k)θkEysn−k(x), ∀m ∈ N∗
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Theorem 1. If LQ,Sn is the linear operator defined by (2) then

(LQ,Sn e0)(x) = e0(x)
(LQ,Sn e1)(x) = ane1(x)(8)
(LQ,Sn e2)(x) = bnx

2 + x(an − bn − cn),

where

an = [(Q′)−1sn−1](1)
sn(1) ,

bn = n− 1
n

[(Q′)−2sn−2](1)
sn(1) ,(9)

cn = n− 1
n

[(Q′)−2(S−1)′Ssn−2](1)
sn(1)

Proof. Using the notation (3) we can write

(10) (LQ,Sn em)(x) = Sm(x, 1− x, n)/sn(1).

Because S0(x, 1− x, n) = sn(1) we have (LQ,Sn e0)(x) = e0(x).
As we have

(11) θEysn−1(x) = X(Q′)−1Eysn−1(x) = XEy(Q′)−1sn−1(x),

we obtain from (7): S1(x, 1− x, n) = x[(Q′)−1sn−1](1); consequently we get:

(LQ,Sn e1)(x) = [(Q′)−1sn−1](1)
sn(1) x.

Using the Pincherle derivative of the shift operator Ey

(12) (Ey)′ = yEy = EyX −XEy

we can write

θEysn−k(x) = EyX(Q′)−1sn−k(x)− yEy(Q′)−1sn−k(x)

Then

(13) θ2Eysn−k(x) = XEy(Q′)−1EyX(Q′)−1sn−k(x)− yXEy(Q′)−2sn−k(x)

Because sn−k = S−1pn−k, XS
−1 = S−1X − (S−1)′ (from the definition of

Pincherle derivative) and (Q′)−1pn−k(x) = pn−k+1(x)/x (from Proposition 3
i), we obtain

θ2Eysn−k(x) =XEy(Q′)−1sn−k+1(x)−XEy(Q′)−2(S−1)′Ssn−k(x)−(14)
− yXEy(Q′)−2sn−k(x).
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Replacing (11) and (14) in (7) we can write

S2(x, y, n) =xEy(Q′)−1sn−1(x)− n−1
n

[
xEy(Q′)−2(S−1)′Ssn−2(x)−

− yxEy(Q′)−2sn−2(x)
]

From (10) and the previous relation one obtains expression LQ,Sn e2 from
theorem’s conclusion. �

Lemma 1. Let Q be a delta operator and S an invertible shift invariant oper-
ator. Let (pn(x))n≥0 be the sequence of basic polynomials for Q and (sn(x))n≥0
a Sheffer set relative to Q, sn = S−1pn with sn(1) 6= 0 for any positive integer
n. If p′k(0) ≥ 0 and sk(0) ≥ 0 for n = 0, 1, 2, . . . then the operator LQ,Sn defined
by (2) is positive.

Proof. If p′k(0) ≥ 0 using Proposition 3 ii), it is easy to prove by induction
that pk(x) ≥ 0, ∀ k ∈ N and ∀x ∈ [0, 1].

If we consider x = 0 in Proposition 4 iii) we obtain

sn (x) =
n∑
k=0

(n
k

)
pk (x) sn−k (0) ;

accordingly, for sk(0) ≥ 0 and pk(x) ≥ 0, ∀ k ∈ N, ∀x ∈ [0, 1], we have
sk(x) ≥ 0, ∀ k ∈ N and ∀x ∈ [0, 1]. Therefore the operator LQ,Sn is positive. �

Lemma 2. If the operator LQ,Sn is positive, then an ∈ [0, 1], bn ≤ 1 and
0 ≤ cn ≤ min{1−bn

2 , an − a2
n},∀n ∈ N, where an, bn and cn are defined by (9).

Proof. Since 0 ≤ e1(t) ≤ 1, ∀ t ∈ [0, 1] and the operator LQ,Sn is positive,
we have 0 ≤ (LQ,Sn e1)(x) ≤ 1, ∀ x ∈ [0, 1], and as (LQ,Sn e1)(x) = anx, we
get an ∈ [0, 1].

From t(1− t) ≥ 0 it results that (LQ,Sn e1)(x)− (LQ,Sn e2)(x) ≥ 0, which leads
to x(1− x)bn + xcn ≥ 0,∀ x ∈ [0, 1] and choosing x = 1, we get cn ≥ 0.

Since t2− t+ 1/4 ≥ 0, we obtain (LQ,Sn e2)(x)− (LQ,Sn e1)(x) + (LQ,Sn e0)(x)/4
≥ 0, ∀ x ∈ [0, 1], relation equivalent to x2bn− xbn− xcn + 1/4 ≥ 0,∀x ∈ [0, 1].
If we consider x = 1/2, it results that cn ≤ (1− bn)/2 and because cn ≥ 0 we
get bn ≤ 1.

Finally, from the Schwarz’s inequality,

[(LQ,Sn e1)(x)]2 ≤ (LQ,Sn e2)(x)(LQ,Sn e0)(x),
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we have a2
nx

2 ≤ bnx
2 + x(an − bn − cn), ∀x ∈ [0, 1]. For x = 1 that implies

cn ≤ an − a2
n. �

Theorem 2. Let Q be a delta operator and S an invertible shift invariant
operator. Let (pn(x))n≥0 be the sequence of basic polynomials for Q, with
p′n(0) ≥ 0, ∀n ∈ N, and (sn(x))n≥0 a Sheffer set relative to Q, sn = S−1pn
with sn(1) 6= 0 and sn(0) ≥ 0, ∀n ∈ N. If f ∈ C[0, 1] and limn→∞ an =
limn→∞ bn = 1, where an and bn are defined by (9), then the operator LQ,Sn

converges to the function f , uniformly on the interval [0, 1].

Proof. If limn→∞ an = 1 then limn→∞(LQ,Sn e1)(x) = e1 (x). From Lemma
2, cn ≤ an − a2

n so we have limn→∞ cn = 0,and as limn→∞ bn = 1, we get
limn→∞(LQ,Sn e2)(x) = e2 (x). Therefore limn→∞(LQ,Sn ei)(x) = ei (x) for i =
0, 1, 2 so we can use the convergence criterion of Bohman–Korokvin. �

3. REPRESENTATIONS OF THE OPERATOR LQ,Sn

Theorem 3. The operator LQ,Sn can be represented in the form

(15) (LQ,Sn f)(x) =
n∑
k=0

k!
nk

(n
k

) [
0, 1

n , . . . ,
k
n ; f

]
dk,n(x),

where

dk,n(x) = 1
sn(1)(θkE1−xsn−k)(x).

Moreover LQ,Sn (Pm) ⊆ Pm,∀m ∈ N.

Proof. From the Newton interpolation formula we have

f
(
k
n

)
=

k∑
j=0

j!
nj

(k
j

) [
0, 1

n , . . . ,
j
n ; f

]

If we denote wk,n(x, y) =
(n
k

)
pk(x)sn−k(y) then

n∑
k=0

wk,n(x, y)f
(
k
n

)
=

n∑
k=0

k!
nk

[
0, 1

n , . . . ,
k
n ; f

] n∑
j=k

(j
k

)
wj,n(x, y).

But
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n∑
j=k

(j
k

)
wj,n(x, y) =

(n
k

) n∑
j=k

(n−k
j−k
)
pj(x)sn−j(y)

=
(n
k

) n−k∑
j=0

(n−k
j

)
pj+k(x)sn−k−j(y)

=
(n
k

)
θk

n−k∑
j=0

(n−k
j

)
pj(x)sn−k−j(y)

=
(n
k

)
θkEysn−k(x)

Since (LQ,Sn f)(x) = 1
sn(1)

∑n
k=0wk,n(x, 1− x)f( kn) we obtain (15).

In order to show that LQ,Sn (Pm) ⊆ Pm we shall prove that deg(dk,n(x)) = k.
We remind that if (pn) is a basic sequence for Q = q(D) and h(t) is the

compositional inverse of q(t), then the generating function for (pn) is

(16)
∞∑
k=0

pk(x) t
k

k! = exh(t)

and if sn = S−1pn, with S = s(D) then

(17)
∞∑
k=0

sk(x) tkk! = 1
s(h(t))e

xh(t)

If we differentiate the relation (16) m times with respect to t, we get

(18)
∞∑
k=0

pk+m(x) tkk! = dm

dxm (exh(t)) = (xh1(t) + x2h1(t) + · · ·+ xmhm(t))exh(t),

where every hi(t) is a product of derivatives of h(t).
Let us denote r(k,m, x) =

∑k
j=0

(k
j

)
pj+m(x)sk−j(1− x). Expanding

1
s(h(t))hi(t)e

h(t) =
∑
k≥0 αik

tk

k! , from (17) and (18) we get r(k,m, x) = xα1k +
x2α2k + · · ·+ xmαmk.

Because dk,n(x) = r(n− k, k, x)/sn (1) we obtain deg(dk,n(x)) = k.
Suppose that p ∈ Pm. Then

[
0, 1

n , . . . ,
k
n ; p

]
= 0 for k ≥ m + 1, and using

(15) we get LQ,Sn (Pm) ⊆ Pm. �
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Remark 1. For Q = D (it means that sn is an Appell set An) we have θ =
X, therefore in this case dk,n = An−k(1)

An(1) x
k. This representation for operators

constructed with Appell sequences was given by C. Manole in [5].

Theorem 4. Suppose that all the assumptions of Theorem 2 are true, then
there exists θ1n, θ2n, θ3n ∈ [0, 1] such that ∀x ∈ [0, 1] and ∀f ∈ C[0, 1] we have

(LQ,Sn f)(x) = f(anx) + α(x, n)[θ1n, θ2n, θ3n; f ]

where α(x, n) = x2(bn − a2
n) + x(an − bn − cn).

Proof. First we shall prove that f(anx) ≤ (LQ,Sn f)(x) for every convex func-
tion f .

Let us denote ck = 1
sn(1)

(n
k

)
pk(x)sn−k(1− x) and xk = k

n , k = 0, 1, . . . , n.
We have ck ≥ 0,

∑n
k=0 ck = 1 and xk > 0, ∀k ∈ N. If f is a convex function

then f(
∑n
k=0 ckxk) ≤

∑n
k=0 ckf(xk); but

n∑
k=0

ckxk = (LQ,Sn e1)(x) = anx and
n∑
k=0

ckf(xk) = (LQ,Sn f)(x)

therefore we get f(anx) ≤ (LQ,Sn f)(x).
If we consider the formula

f(anx) = (LQ,Sn f)(x) + (Rnf)(x)

we have (Rnf) ≤ 0 for every convex function f .
Since (Rnei)(x) = 0 for i = 0, 1, the degree of exactness of the previous for-

mula is one and then there exist θ1n, θ2n, θ3n ∈ [0, 1] such that the remainder
can be represented in the following form

(Rnf)(x) = (Rne2)(x)[θ1n, θ2n, θ3n; f ]

where (Rne2)(x) = x2(a2
n−bn)+x(bn+cn−an), so we obtain the conclusion. �

4. EXAMPLES

1. If S = I then sn = pn and in this case the operator defined by (2)
becomes the binomial operator (1) introduced by Tiberiu Popoviciu in [9].
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1.1. For Q = D the basic sequence is pn(x) = xn and LD,In is the
Bernstein operator Bn.

1.2. If Q is Abel operator A = E−βD we have pn(x) = x(x + nβ)n−1

and LA,In is the second operator introduced by Cheney and Sharma in [1],

(LA,In f)(x) =

= 1
(1+nβ)n−1

n∑
k=0

(n
k

)
x(x+ kβ)k−1(1− x)(1− x+ (n− k)β)n−k−1f

(
k
n

)

1.3. For Laguerre delta operator L = D
D+I the basic sequence is ln(x) =∑n

k=0(nk) (n−1)!
(k−1)!x

k and the coresponding binomial operator has been considered
by T. Popoviciu.

1.4. The delta operator Q = 1
α∇α = 1

α(I−E−α) has the basic sequence
pn(x) = x[n,−α] = x(x + α) . . . (x + (n − 1)α) and in this case we obtain the
operator

(Snf)(x) = 1
1[n,−α]

n∑
k=0

(n
k

)
x[k,−α](1− x)[n−k,−α]f( kn)

which has been introduced and investigated in detail by D. D. Stancu in [14],
[16] and other papers.

1.5. The exponential polynomials tn(x) =
∑n
k=0 S(n, k)xk =

e−x
∑∞
k=0

knxk

k! , where S(n, k) denote the Stirling numbers of the second kind,
are basic polynomials for the delta operator T = ln(I+D). The approximation
operator construct by means of the exponential polynomials

(LTnf)(x) = 1
tn(1)

n∑
k=0

(n
k

)
tk(x)tn−k(1− x)f( kn)

was studied by C. Manole in [5].
1.6. If we take the delta operator Q = G = 1

αE
−β∇α = 1

α(E−β −
E−α−β) its basic sequence is pn(x) = x(x+ α+ nβ)[n−1,−α] and the operator

(LGn f)(x) = 1
(1 + nβ)[n,−α] ·

·
n∑
k=0

(n
k

)
x(x+ α+ kβ)[k−1,−α](1− x)(1− x+ (n− k)β)[n−k,−α]f

(
k
n

)

was investigated by D. D. Stancu, G. Moldovan. In [18] D. D. Stancu and M.
R. Occorsio have studied this operator with the nodes k+γ

n+δ , 0 ≤ γ ≤ δ.
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2. If Q = D and S is an invertible shift invariant operator then pn(x) = xn

and sn = An = S−1xn is an Appell set. The operator of the form

(LD,Sn f)(x) = 1
An(1)

n∑
k=0

(n
k

)
xkAn−k(1− x)f( kn)

was introduced and investigated by C. Manole in [5].
2.1. If S = (I+D)−1 the coresponding Appell set is An(x) = xn+nxn−1

and then

(LD,(I+D)−1
n f)(x) = 1

n+1

n∑
k=0

(n
k

)
xk(1− x)n−k(n− k + 1− x)f( kn).

3. If we take Q = A = E−βD and S = EβQ′ = I − βD then pn(x) =
x(x+ nβ)n−1 is the basic sequence for Q and sn(x) = (x+ nβ)n a Sheffer set
for Q we obtain the first operator introduced by Cheney and Sharma in [1]:

(LA,I−βDn f)(x) = 1
(1+nβ)n

n∑
k=0

(n
k

)
x(x+ kβ)k−1(1− x+ (n− k)β)n−kf

(
k
n

)

4. For Q = 1
αE
−β∇α = 1

α(E−β − E−α−β) and S = Eα+βQ′ = 1
α((α + β)I −

βEα) we have pn(x) = x(x + α + nβ)[n−1,−α] and sn(x) = (x + nβ)[n,−α]

therefore the operator LQ,Sn in this case is

(L[α,β]
n f)(x) =

= 1
(1+nβ)[n,−α]

n∑
k=0

(n
k

)
x(x+ α+ kβ)[k−1,−α](1− x+ (n− k)β)[n−k,−α] f

(
k
n

)

If we replace x with s(x) we obtain a operator which has been studied by G.
Moldovan in [6]. He has found the value of this operator for the monomials ei
for i = 1, 2 using some generalized identities of Vandermonde type.

We want to find the sequences an, bn, cn, which appears in (L[α,β]
n ei)(x),

using relations (9).
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The Pincherle derivative of Q is

Q′ = −β
αE
−β +

(
1 + β

α

)
E−α−β = E−α−β

(
I − β

α∆α

)
so

(Q′)−1 = Eα+β∑
k≥0

βk
(

∆α
α

)k
.

Since sn−1(x) = (x + (n − 1)β)[n−1,−α] = E(n−2)α+(n−1)βx[n−1,α] and x[n,α] =
x(x− 1) . . . (x− (n− 1)α) is the basic sequence for the delta operator ∆α

α , we

have
(

∆α
α

)k
sn−1(x) = E(n−2)α+(n−1)β

(
∆α
α

)k
x[n−1,α] = (n−1)[k]E(n−2)α+(n−1)β·

·x[n−1−k,α]. Because an = [(Q′)−1sn−1](1)
sn(1) we get

an =
n−1∑
k=0

(n−1
k

) k!βk

(1 + nβ)[k+1,−α] .

Since bn = n−1
n

[(Q′)−2sn−2](1)
sn(1) and

(Q′)−2 = E2α+2β
(
I − β

α∆α

)−2
= E2α+2β∑

k≥0
(k + 1)βk

(
∆α
α

)k
we obtain

bn = n−1
n

n−2∑
k=0

(n−2
k

) (k + 1)!βk

(1 + nβ)[k+2,−α] .

The Pincherle derivative of S−1 may be written in the form(
S−1

)′
=− (α+ β)E−α−β(Q′)−1 − E−α−β(Q′)−2Q′′

=− E−α−β(Q′)−2((α+ β)Q′ +Q′′).

Because Q′′ = 1
α(β2E−β − (α+β)2E−α−β) and (α+β)Q′+Q′′ = −βE−β this

implies

(Q′)−2(S−1)′S = β(Q′)−3E−β

= βE3α+2β(I − β
α∆α)−3

= E3α+2β∑
k≥0

(k+1)(k+2)
2 βk+1

(
1
α∆α

)k
.
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From (9) and the previous relation we get

cn = n− 1
2n

(
(1 + nα+ nβ)

n−3∑
k=0

(n−2
k

) (k + 2)!βk+1

(1 + nβ)[k+3,−α] + n!βn−1

(1 + nβ)[n,−α]

)
.

5. EVALUATION OF THE ORDERS OF APPROXIMATION

Now we establish some estimates of the order of approximation of a function
f ∈ C[0, 1] by means of the operator LQ,Sn , defined by (2).

According to a result of O. Shisha and B. Mond [13], we can write∣∣∣f(x)−
(
LQ,Sn f

)
(x)
∣∣∣ ≤ [1 + 1

δ2L
Q,S
n

(
(t− x)2 ;x

)]
ω1 (f ; δ) , δ ∈ R+

Using the relations (8) we have

LQ,Sn

(
(t− x)2 ;x

)
= x2(bn − 2an + 1) + x(an − bn − cn)

so we get∣∣∣f(x)−
(
LQ,Sn f

)
(x)
∣∣∣ ≤ [1 + 1

δ2

[
x2(bn − 2an + 1) + x(an − bn − cn)

]]
ω1 (f ; δ) .

One observes that if bn−2an+1 < 0 then x2(bn−2an+1)+x(an− bn− cn)
≤ (an−bn−cn)2

4(2an−bn−1) , ∀x ∈ [0, 1].
By choosing δ = 1√

n
we can state

Theorem 5. If f ∈ C[0, 1] and ∃k ∈ N such as bn − 2an + 1 < 0, ∀n ≥ k,
then we can give the following estimation of the order of approximation, by
means of the first modulus of continuity∥∥∥f − LQ,Sn f

∥∥∥ ≤ (1 + n
4

(an−bn−cn)2

(2an−bn−1)

)
ω1
(
f ; 1√

n

)
, n ≥ k,

where an, bn, cn are defined by (9).

In the case of binomial operators of positive type defined by (1), since
S′ = I ′ = O we have

(19) an = 1, cn = 0, bn = n− 1
n

[(Q′)−2 pn−2](1)
pn(1) .
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Then bn − 2an + 1 = bn − 1 < 0, ∀n ∈ N therefore the previous inequality
reduces to

‖f − Lnf‖ ≤
(

5
4 + n

4dn
)
ω1
(
f ; 1√

n

)
,

where

(20) dn = n− 1
n
− bn = n− 1

n

(
1− [(Q′)−2 pn−2](1)

pn(1)

)

We mention that this inequality was established by D. D. Stancu in [18].
In order to find an evaluation of the order of approximation using both

moduli of smoothness ω1 and ω2 we can use a result of H. H. Gonska and R.
K. Kovacheva included in the following

Lemma 3. [2]. If I = [a, b] is a compact interval of the real axis and I1 =
[a1, b1] is a subinterval of it, and if we assume that L : C(I) → C(I1) is a
positive operator, such that Le0 = e0 and 0 ≤ δ ≤ 1

2(b− a), then we have

|f(x)− L(f(t);x)| ≤ 2
δ |L(t− x;x)|ω1(f ; δ) +

+3
2

[
1 + 1

δ |L(t− x;x)|+ 1
2δ2L((t− x)2 ;x)

]
ω2(f ; δ).

Using the relations (8) we obtain the inequality

∣∣∣f(x)−
(
LQ,Sn f

)
(x)
∣∣∣ ≤ 2

δ |(an − 1)x|ω1(f ; δ) +

+3
2

[
1 + 1

δ |(an − 1)x|+ 1
2δ2

[
x2(bn − 2an + 1) + x(an − bn − cn)

] ]
ω2(f ; δ).

If bn − 2an + 1 < 0 the previous inequality implies

∥∥∥f − LQ,Sn f
∥∥∥ ≤ 2

δ (1−an)ω1(f ; δ)+ 3
2

[
1 + 1

δ (1− an) + 1
8δ2

(an−bn−cn)2

(2an−bn−1)

]
ω2(f ; δ).

By choosing δ = 1√
n

we get

∥∥∥f − LQ,Sn f
∥∥∥ ≤ 2

√
n(1− an)ω1(f ; 1√

n
) +

+3
2

[
1 +
√
n(1− an) + n

8
(an−bn−cn)2

(2an−bn−1)

]
ω2(f ; 1√

n
).
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If we consider the binomial operator introduced by Tiberiu Popoviciu, using
(19) and the previous relation, we arrive at an inequality which has found by
D. D. Stancu (see [18])

‖f − Lnf‖ ≤ 3
16 (9 + ndn)ω2(f ; 1√

n
),

where dn is defined by (20).
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