REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

Tome XXVI, ${ }^{\text {os }} \mathbf{1 - 2 , 1 9 9 7 , ~ p p . ~ 1 7 9 - 1 8 3 ~}$

ON AN APPROXIMATION FORMULA

ION PĂVĂLOIU

1. INTRODUCTION

This Note contains some remarks concerning an approximation formula for functions, which is a generalization of some interpolation formulae given in [2] and [4]. In particular, we shall show that only one of the formulae of this type, mentioned in [4], has a maximal degree of exactness. Some particular cases of such formulae were also mentioned in [4, p. 163].

Denote by I_{x} the closed interval determined by two distinct points x_{0}, x in \mathbf{R}. For a $(2 n+1)$-times derivable function $f: I_{x} \rightarrow \mathbf{R}$ and $n \in \mathbf{N}$, consider the class G of functions given by

$$
\begin{align*}
G=\{g: g(t)= & f\left(x_{0}\right)+\left(t-x_{0}\right) \sum_{i=1}^{n} a_{i} f^{\prime}\left(x_{0}+b_{i}\left(t-x_{0}\right)\right), \tag{1.1}\\
& \left.a_{i}, b_{i} \in \mathbf{R}, i=\overline{1, n}, t \in I_{x}\right\} .
\end{align*}
$$

Consider the following problem: Find a function $\bar{g} \in G$ such that

$$
\begin{equation*}
f^{(i)}\left(x_{0}\right)=\bar{g}^{(i)}\left(x_{0}\right), i=\overline{1, m} . \tag{1.2}
\end{equation*}
$$

In [4] this problem was solved in some particular cases. We shall show that, for $m=2 n$, this problem has a unique solution and we shall give a representation for the remainder.

2. DETERMINATION OF THE APPROXIMATING FUNCTION

For $m=2 n$, we are looking for a function \bar{g} in G. verifying conditions (1.2) and having a maximal degree of approximation.

It is easily seen that conditions (1.2) lead to the following system, having the real numbers $a_{i}, b_{i}, i=\overline{1, n}$, as unknowns:
(2.1)

$$
\sum_{i=1}^{n} a_{i} b_{i}^{k}=1 /(k+1), k=0,1, \ldots, 2 n-1
$$

Consider now a continuous function $\varphi:[0,1] \rightarrow \mathbb{R}$ and let

$$
\begin{equation*}
\int_{0}^{1} \varphi(t) \mathrm{d} t=\sum_{i=1}^{n} a_{i} \varphi\left(b_{i}\right)+R[\varphi] \tag{2.2}
\end{equation*}
$$

be a quadrature formula, having $\left\{b_{i}\right\}_{1}^{n}$ as knots and $\left\{a_{i}\right\}_{1}^{n}$ as coefficients. Asking that $R\left[\varphi_{k}\right]=0$ for $\varphi_{k}(t)=t^{k}, k=\overline{0,2 n-1}$, formula (2.2) becomes the classical Gauss quadrature formula.

On the other hand, the conditions $R\left[\varphi_{k}\right]=0$, for $\varphi_{k}(t)=t^{k}, k=\overline{0,2 n-1}$, lead again to the system (2.1), implying that b_{i} must be the roots of the Legendre polynomial w_{n} of degree n, i.e., the roots of the equation

$$
\begin{equation*}
w_{n}(t):=\frac{n!}{(2 n)!} \frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}}\left[t^{n}(t-1)^{n}\right]=0 \tag{2.3}
\end{equation*}
$$

The coefficients a_{i} are given by the following formula

$$
\begin{equation*}
a_{i}=\frac{(n!)^{4}}{[(2 n)!]^{2} b_{i}\left(1-b_{i}\right)\left[w_{n}^{\prime}\left(b_{i}\right)\right]^{2}}, i=\overline{1, n} \tag{2.4}
\end{equation*}
$$

(see [1], p. 261).
Now, it is clear that the following theorem holds:
THEOREM 2.1. If $f: I_{x} \rightarrow \mathbb{R}$ is a $(2 n+1)$-times derivable function on $I_{x^{\prime}}$ then there exists only one function $\bar{g} \in G$ verifying conditions (1.2) for $m=2 n$. The parameters $\left\{a_{i}\right\}_{i=1}^{n}$ are given by formula (2.4), where $\left\{b_{i}\right\}_{i=1}^{n}$ are the roots of equation (2.3).

3. DETERMINATION OF THE REMAINDER

Consider the approximation formula

$$
\begin{equation*}
f(x)=\bar{g}(x)+r[f] \tag{3.1}
\end{equation*}
$$

where $\bar{g} \in G$ is a function verifying (2.1) and $r[f]$ is the remainder.
In the conditions of Theorem 2.1, it follows that

$$
\begin{equation*}
f^{\prime}\left(x_{0}+b_{i}\left(x-x_{0}\right)\right)=\sum_{j=1}^{2 n} \frac{f^{(j)}\left(x_{0}\right)}{(j-1)!} b_{i}^{j-1}\left(x-x_{0}\right)^{j-1}+r_{i}(x) \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{i}(x)=\frac{f^{(2 n+1)}\left(\theta_{i}\right)}{(2 n)!} b_{i}^{2 n}\left(x-x_{0}\right)^{2 n} \tag{3.3}
\end{equation*}
$$

and θ_{i} is a number contained in the open interval determined by x_{0} and $x_{0}+$ $+b_{i}\left(x-x_{0}\right), 1 \leq i \leq n$.
From (3.2) we obtain the equalities

$$
\begin{equation*}
f(x)-f\left(x_{0}\right)-\left(x-x_{0}\right) f^{\prime}\left(x_{0}+b_{i}\left(x-x_{0}\right)\right)= \tag{3.4}
\end{equation*}
$$

$$
=f(x)-f\left(x_{0}\right)-\sum_{j=1}^{2 n} \frac{f^{(j)}\left(x_{0}\right)}{(j-1)!} b_{i}^{j-1}\left(x-x_{0}\right)^{j}-r_{i}(x)\left(x-x_{0}\right), i=\overline{1, n}
$$

Multiplying equalities (3.4) by a_{i}, taking into account solutions (2.1) and summing up, we obtain 3,?

$$
\begin{equation*}
f(x)-\bar{g}(x)=f(x)-\sum_{j=0}^{2 n} \frac{f^{(j)}\left(x_{0}\right)}{j!}\left(x-x_{0}\right)^{j}-\sum_{i=1}^{n} a_{i} r_{i}(x)\left(x-x_{0}\right) . \tag{3.5}
\end{equation*}
$$

Now, using (3.3) and Lagrange form of the remainder in the Taylor formula, we get

$$
\text { (3.6) } \quad f(x)-\bar{g}(x)=\left[\frac{f^{(2 n+1)}(\eta)}{(2 n+1)!}-\sum_{i=1}^{n} a_{i} b_{i}^{2 n} \frac{f^{(2 n+1)}\left(\theta_{i}\right)}{(2 n)!}\right]\left(x-x_{0}\right)^{2 n+1},
$$

where $\eta \in I_{x}$.
Setting $\varphi(t)=t^{2 n}$ in (2.2) and taking into account the form of the remainder term in the Gauss quadrature formula [1, p. 259], we get

$$
\sum_{i=1}^{n} a_{i} b_{i}^{2 n}+\frac{[n!]^{4}}{[(2 n)!]^{2}(2 n+1)}=\frac{1}{2 n+1}
$$

implying

$$
\text { (3.7) } \sum_{i=1}^{n} a_{i} b_{i}^{2 n}=\frac{[(2 n)!]^{2}-[n!]^{4}}{(2 n+1)[(2 n)!]^{2}} \text {. }
$$

Suppose now that the $(2 n+1)$-order derivative of f is bounded on I_{x} and let

$$
\begin{equation*}
M_{2 n+1}=\sup _{t \in I_{x}}\left|f^{(2 n+1)}(t)\right| . \tag{3,8}
\end{equation*}
$$

Taking into account relations (3.6) and (3.7), one obtains the following delimitation for $r[f]$

$$
\begin{equation*}
|r[f]| \leq \frac{M_{2 n+1}}{(2 n+1)!} \cdot \frac{2 \cdot[(2 n)!]^{2}+[n!]^{4}}{[(2 n)!]^{2}}\left|x-x_{0}\right|^{2 n+1} \tag{3.9}
\end{equation*}
$$

4. Particular cases

a) $n=1$. In this case, $b_{1}=1 / 2, a_{1}=1$ and

$$
g(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}+\frac{1}{2}\left(x-x_{0}\right)\right)
$$

From (3.9) we get

$$
|f(x)-g(x)| \leq \frac{7 M_{3}}{24}\left|x-x_{0}\right|^{3}
$$

where $M_{3}=\sup _{t \in I_{x}}\left|f^{\prime \prime \prime}(t)\right|$.
b) $n=2$. In this case, $b_{1}=\frac{3-\sqrt{3}}{6}, b_{2}=\frac{3+\sqrt{3}}{6}, a_{1}=a_{2}=\frac{1}{2}$ and
$g(x)=f\left(x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right)\left[f^{\prime}\left(x_{0}+\frac{3-\sqrt{3}}{6}\left(x-x_{0}\right)\right)+f^{\prime}\left(x_{0}+\frac{3+\sqrt{3}}{6}\left(x-x_{0}\right)\right)\right]$.
One also obtains the evaluation

$$
|f(x)-g(x)| \leq \frac{71 M_{5}}{4320}\left|x-x_{0}\right|^{5},
$$

where $M_{5}=\sup _{t \in I_{x}}\left|f^{(5)}(t)\right|$.
Remark. Approximation formula of the type considered in this Note could be useful for the approximate calculation of the values of some functions having rational functions as derivatives.

REFERENCES

1. C. I. Berezin and N. Jidkov, Metody vychisleny, Fizmatgiz, Moscow (1962)
2. P. M. Humel and C. L. Seebeck Jr., A generalization of Taylor's expansion, Amer. Math. Monthly 56 (1949), 243-247.
3. A. Lupas, Calculul valorilor unor funcfii elementare, Gazeta Matematică (Ser. A) VII, 1 (1986), 15-26.
4. J. F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964

Received March 15, 1996
Institutul de Calcul "Tiberiu Popoviciu"
Str. G. Bilascu, nr. 37
C.P. 68, O.P. 13400 Cluj-Napoca România

