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NUMERICAL MODELING OF CASTING PROCESS
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1. INTRODUCTION

The numerical modeling of casting must take into account the physical
phenomena occurring from the beginning of mold filling to the final casting. The
mold filling with melt is modeled as a viscous flow with free boundary. Then the
cooling phase follows, over which a distinct period is the solidification accompa-
nied by the latent heat release. The shrinkage occurs during the cooling, leading to
different defects of the casting.

The most difficult problem is the existence of two moving boundaries. The
first one is the free boundary of the liquid metal during the mold filling, The
second moving boundary is the solidification front. So far no general numerical
methods to solve satisfactorily the free boundaries evolution have been elaborated
[1], [4]. For casting modeling, specialized numerical models exist [81, [9].

In this paper we present a three-dimensional numerical model based on the
SOLA-VOF technique [3]. We have brought some improvements to the evolution -
of the melt free boundary and to the shrinkage modeling. We have applied this
numerical model to the steel ingot casting and the results obtained allow a new
interpretation of the casting technology. In our approach the superficial pheno-
mena are neglected.

2. FORMULATION OF THE MATHEMATICAL PROBLEM

The description of the physical phenomena implied into the casting process
can be found in [10], {11]. In this section we present the mathematical problem
which must be solved numerically.

There are three space domains in which different physical phenomena occur,
The bounded domain of the mold 2, < R3 is constant in time. The bounded
domain filled with liquid metal is denoted by 2,(t) < R? and that filled with
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solidified metal by & (1) < R3. These two domains depend on time. At the initial
time there is no melt in the mold cavity, so @,(0) =@ and implicitly 2 (0) = 9.
The rest of the space contains air under normal conditions of pressure and tem-
perature. Since the density and specific heat of the air is much smaller than the
density and specific heat of the metal and the mold material, we neglect the me-
chanical and thermal phenomena occurring in the mold environment. Thus the
modeling is confined only to the three bounded domains defined above.

The phenomena occurring at the separating surfaces between these domains
have a particular importance. If we denote by 0%, , 0%, and 69, the domains
boundaries, then the separating surfaces are given by

(2'1) '%ls(t) = a@l ma@s; g‘im(z) = 5@ ﬂa@n; ‘%ns(’) : 6@1: na@s

Obviously these surfaces depend on time. The boundaries of the domains with the

environment are

(1) = 09 \ (69, U 8%R); B(1) = 0% \ (69 U %),
R, (t) = 09, \ (69 U %)

The mechanical state at a point of radius vector x = (x;, x,, x;) at the time 7 is
given by the velocity field v (x, #) = (v}, v,, v3) and the pressure field p (x, f). The
velocity does not vanish and the pressure is different from the atmospheric pres-
sure p, only into the liquid metal. Then for x € @, we have the continuity equation

2.2)

(2.3) divv =0
and the Navier-Stokes equation
(2.4) T gradv = g — Ak grad p + vAv
g L
ot Py

where g is the gravitational acceleration, p, is the melt density and v is the melt
dynamical viscosity. The thermal state of the three domains is described by the
temperature field 7 (x, 7) satisfying the Fourier equation

(2.5) pc[—c% + (v - grad T)—‘ = kAT + g
0

where p is the mass density, c is the specific heat and & the thermal conductivity of
the material in the domain where (2.5) holds. The term ¢ represents the heat sources
per unite of mass and time such as the heat released by chemical reactions.

Equations (2.3) — (2.5) have to be completed by the constitutive relations,
We use the simplest assumption that the material constants do not depend on tem-
perature. Their values for each domain are denoted by the indexes: m for mold, /
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for the liquid metal, and s for solidified metal. So we neglect both the convection
due to the non-homogeneous heating of the melt and the change of the metal chemi-
cal composition on a side and the other of the solidification surface &, .

The initial and boundary conditions should be added to the Jvsystcm of
equations (2.3) - (2.5). We have initial conditions only for the temperature field

(2-6) T(X,O) = Tm for x e @m

where T, is t‘he ‘initial temperature of the mold. The condition at the boundary
between the liquid metal and the mold wall is the usual one

2.7) v(x,1) =0 for xe9,.

;ll"lléc S(')hfh(?catllon ofthe meta'l on the surface %, is accgmpanied by the increase of
mass density. So, there is a mass flux from the liquid state to the solid one
through the surface 43, implying the condition

(2.8) v(x,t)=V(x,1) for xeB, .

The Veloc'ity V can be determined in terms of the displacement of %, but we shall
not use this expression in the following. Condition (2.8) expresses ’:he shrinkage
process. The free boundary 23, has two parts. Oneis the ingate of the melt ¥ 2

for which we have ;

W(e)qieif y paglish
(2.9) Vix,t) =
0 it 1>1"

where 'U(t)'is a given function of time and represents the pouring velocity and £* is
thg filling time of the mold. For x € %,\ &, the condition represents the conti-
nuity of the interaction force and has the form ;

3 -
; 0V
(2.10) pr; — pv SA{INAL = :
i ];1 6xk axi g Poty.

where n = (1, n,, n,) is the exterior normal.

For the temperature field, the conditions on Ky, By and FB,. represent
the equality of the heat fluxes

o7 oT.
= kZ_l =9

on on
where indexes refer to the media separated by the surface with the normal vector n

The .tenn 9, is nonvanishing on.ly for x € &, where it represents the heat released
per time unit and per surface unit by the metal solidification. It can be expressed in

(2.11) ky
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terms of the displacement of %, but we shall not use this approach. In addition to
(2.11), the continuity of temperature must also be imposed. For x eB,UBI(H\T),
the boundary condition expresses the heat flux towards the environment

(2.12) kaTT— = —o(T - Ty)

cn
where a. is the global coefficient of the heat transfer and T}, is the air temperature.
Condition (2.12) also holds for & if # > ¢*. During the casting filling

(2.13) T(x,t)=1, for x €4 and 1< "

where Tp is the pouring temperature.

The separating surface &3, between the liquid metal and the solidified one
has a very intricate form. The phases are interpenetrated by lengthened forma-
tions with dimensions extended over some magnitude orders. The calculation of
the shape of this surface in macroscopic volumes, like those of castings, goes
beyond the capacity of the existing computers. In order to eliminate the micro-
scopic details of %3, we use a spatial averaging analogous to thatused for turbulent
flows [2]. If the microscopic structure of &, is homogeneous in the averaging
volume, then a new variable representing the volume fraction occupied by the
solidified metal is defined as

0 if T>T1
(2.14) 5(x,1) = MQ"_’Q A< T < T
T =T,
1 if T<T

where T is the liquidus temperature and 7, the solidus temperature. By averaging,
equations (2.3) - (2.5) keep their form but they refer to averaged fields denoted by
v,p and T .

The averaging, also induces the change of the _onstitutive relations. For
5(x,1) €(0,1), about the point x there is a mixture o1 liquid and solidified metal
called mushy region. The mechanical properties of this mixture are complex but
we have adopted the usual simple solution. If § > 0.3, the mixture is considered
arigid solid. For § < 03 the melt may tflow through the microscopic structures of

the solidified metal and an additional drag is included in an averaged viscosity [7]
I \Y

(1-5)"

where n € [5, 30]. Itis assumed that the solidified metal does not participate to the
flow and the density in the averaged equation (2.4) is equal to p, not to the mixture

V=

density. This interpretation also implies that the mean velocity v is defined by
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averaging only the melt velocities, without taking into account the solidified metal.
In the averaged equation (2.5), the material constants have averaged values.
For example for mass density we have

p=(1=-5)p; +5p,.

The same expression is used for ¢ and k. By averaging the heat source g, in
(2.11), it is changed into an internal heat source

os

where L is the latent heat of fusion.
The initial condition (2.6) is not modified by averaging, but the boundary
conditions are, because now the averaged domains are defined as

(2.16) Di(1) = {x eGUg]s(x,1) <03}

Ds (1) ={x eGUZ|s(x,2) > 0.3}.

Using 9; and % in (2.1) and (2.2) instead of @, and 9, the averaged boundaries
are obtained. The only unmodified boundary is the ingate surface . Excepting
some situations discussed below, the averaged conditions (2.7) — (2.13) have the
same form if the averaged fields, domains and boundaries are used. The term g, in
the averaged condition (2.11) vanishes. The condition (2.8) takes the form (2.7)
and the shrinkage has to be modeled in a global way. The variation rate of the melt
volume

(2.17) V(1) = _pe d

SR J.QT,U@,S(X’ 1)dx

is compensated by the displacement of &, Therefore we add to condition (2.10) a
velocity normal to 4, derived from (2.17).

3. THE NUMERICAL ALGORITHM

We use the finite difference technique applied on a staggered mesh rectan-
gular cells Cy; . These cells are the averaging volumes defined in the previous
section, Since in the following we shall refer only to the mean fields, we renounce
to the bar above them. -

According to VOF technique [3], an additional ﬁeldj:_.].k is introduced to de-
scribe the amount of metal in the cell Cjy. If ful\ = 1, then the cell is completely
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filled and iff,_./.k =0, the cell is empty. 1f0 <f,.jk <1, then the metal occupies a domam
CycCy and the cell must have an adjacent completely filled cell. The domain
C’.. has common faces with the adjacent filled cells and its thickness is constant.
The volume of C', is the [, fraction of the cell volume. The field s € [O’fyk]
represents the fraction of the cell volume occupied by solidified metal. We also
introduce a field 0y t0 describe if the material in C!.].k is solid or fluid. If 0 = 1,
then the cell €, belongs to the mold or S 2 O.3f,jk. Otherwise O = 0. Now we
can define the discrete analogues of the averaged domains (2.16) and &

Dm ={x ecgkloy-k =1 and f;'/'k =0}
(B.1)  Dy={xeCyloy =0 and fi =}U{x eCjylo =0 and 0< fiz <1}
D.S‘ = {X GCUk|OUk :1 and f;Jk = I}U{x ecl_;kloljk :1 alld O<_/;jk % 1}

Using these domains in (2.1) and (2.2) we obtain the corresponding boundaries.
We note that the boundaries B, B,, B,,, and B are formed only by faces of the
cells C,, whereas B, and B_ are formed by the intemal faces of C e

The velocity components are defined at the center of the corresponding faces
of the cells and the temperature and pressure at the center of the cells. To describe
the pressure and velocity fields in all the mesh we have to use the averaged bound-
ary conditions (2.7) - (2.10). The velocity components on the faces in B, and B, |
vanish according to (2.7) and the average of (2.8). The velocity components on
the faces normal to B, or B, and included into D, or D, are equal to the compo-
nents on the adjacent cell in D, multiplied by numerical coefficient y [12]. The
cells having a face included in the ingate surface have a special treatment.  Not
only the velocity components corresponding to faces in %, but also those corres-
ponding to the opposite faces are given by (2.9). In addition, the pressure of these
cells is all the time equal to the atmospheric pressure p, and their temperature is T
for 7 < t*, according to (2.13). Condition (2.10) has to be applied to obtain the
velocity components on the faces of the cells with Jix € (0,1) which are not com-
mon with a completely filled cell. But the estimation of the normal vector n is
difficult in the general case and condition (2.10) has tu be formulated separately
for different types of flows.

For temporal integration we use the explicit finite difference approximation
of Euler type. In the following we describe how the fields at time step # are
obtained if the fields at the previous step 2 ~1 are known. To simplify the formulae we
consider the bidimensional case, i.e. v = (&, 0, w) and the independent variables are
denoted by x and z. We also assume that the cells are squares of side A/,

The Navier-Stokes equation (2.4) has been integrated using the “upstream”
approximation [6]. The velocity field obtained does not satisfy the continuity equa-
tion (2.3). According to SOLA technique [3] the fields v and p** D are iteratively
modified for the cells with f;, =1 such that the continuity equation (2.3) should be
satisfied below an limit error g,.. We denote by
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o Ly 1
(3.2) divy’ = E(uin:]l,k = uz‘(l:)) + Xl(wf(,’/gl = Wi(lf))
the divergence of the cell C,. Ifthere is at least a cell for which ldiV,%')' > €, then
for each cell which is not adjacent to a rigid obstacle the velocity components and
the pressure are changed by the amounts

1 .
5u§f3, o =—oul) = awl.{’,'jﬂ =— 8w = —ZAI- div(p)

(3.3) 1
()il P :
5[)1-]( = —ZEAIZdIVI(}?)

If C, 1s adjacent to a rigid obstacle on which the velocity vanishes, then the varia-
tion of the corresponding velocity component is assigned to the opposite face of
the cell. The iterations continue until all the cells with Jx =1 have the divergence
smaller than €, or the number of iterations is greater than a given maximum value.
In this way we obtain the solution of the Poisson equation for the pressure field
Summing up (3.2) on the cells with S =1, we obtain ‘

2 , )
ST 1Y YD 350 i (NN R )
1 20

>

where the two sums in the right hand side refer to the velocity components normal
to the cell faces forming the ingate surface & and the free boundary B,. The terms
corresponding to B, and B, are zero because of the condition at the solid boundaries
We multiply (3.4) by the time step Az. Then the sum for & is the melt flux entcrin_g;
the mold during a time step. The sum for B, represents the melt flux in the partially
filled cells (0 <f< 1), i.e. it gives the displacement of the free boundary. Normally
these tyvo fluxes should be equal. But the divergences vanish only with the
approximation &,. Therefore the left hand side of (3.4) is nonzero and implies a
loss of mass. To eliminate this error, the left hand term is distributed in the sum for
B, by changing the velocity on the cells with _fﬂi”_” <1,

Using the velocity field v we compute the melt flux in the cells with
7"V <1 and then the new values of M 1tis possible that i <0 or £ >1
This means that the free boundary B ;1s displaced from that cell and the ﬁe]ld S
must be modified. First the fluid in excess (/~ 1) is distributed from the cells vxth

J>1to the adjacent cells with f<1. Then the missing fluid in the cells with f<O0is
extracted from the completely filled adjacent cells. F inally the fluid in cells with
/<1 which have not adjacent completely filled cells is redistributed. This displace-
ment technique of the free boundary conserves the mass but not the nmomentum
and the energy. This is the reason why it is applicable only to the flows with
streamlines almost normal to the free boundary, like the filling of the mold cavity.
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The numerical computation of the temperature field is based on the equality
of the heat Tuxes on the cell faces [5]. According to (2.14) a new field s,.(}:,’) corre-
sponds to 7}};”) and the volume of the liquid metal is diminished by (see (2.17)):

Av= &AIZZ(SI-({.'_I) —s,-(,:')> )

Py ik
This volume is eliminated from the cells with fl.g,”) <1 and s‘,-(",') <03 f,}.") . From each
cell of this type a volume proportional to the mass in that cell p( f,-,((") - s,-(,:') ) +p sz-,:')

is eliminated.

4. A SIMULATION OF AN INGOT CASTING

We applied the numerical model described in the previous sections to steel
ingots casting. We used a mesh of 7 x 7 x 20 cubical cells with side of 0,112 m.
The ingot mold has the wall thickness equal to one cell. The domain D, is formed
by the cells in the mesh boundary without the cells of the superior side of the mesh
and without the melt ingate cell Cian in the center of the inferior wall. The infe-
rior face of this cell represents the ingate surface & . The upwards directed pour-
ing velocity was constant U = 0.098 m/s, so that 17 rows of cells were filled in #* = 9
min. The free boundary B, of the melt was quasihorizontal. Then condition (2.10)
was verified taking the pressure and the velocity components continuous on B ,[12].

A vertical, upwards directed jet is a very unsteady flow, therefore the first
row of cells was filled with melt at rest and the temperature varied only because of
thermal conduction. Then the whole numerical procedure was used and a flow
with a constant pattern during the process of filling occurred. It is a vortex
comprising the whole volume of melt, formed by an ascending vertical stream in
the middle of the ingot mold above the ingate and by four descending streams at
the comers of the ingot mold.

The results obtained allow an effective optimization of the ingot casting
technology. Usually the melt in the ingot mold is considered at rest, but our simu-
lation shows that the temperature distribution is essentially affected by the melt
flow. Using the numerical simulation, the optimum values of the technological
parameters (the pouring velocity and temperature, the initial mold tempera-
ture, the variation of the pouring velocity, etc.) can be determined such that
the ingot quality should be improved (e.g. the volume of the shrinkage fault).
The use of the thermoreactive powder can also be improved such that a maxi-
mum amount from the released heat should remain at the ingot top. A detailed
description of the simulation results and of their technological importance will be
made in other articles,
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