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Biological and artificial agents are facedwithmany of the same computational andmechanical
problems, thus strategies evolved in the biological realm can serve as inspiration for robotic
development. The octopus in particular represents an attractivemodel for biologically-inspired
robotic design, as has been recognized for the emerging field of soft robotics. Conventional
global planning-based approaches to controlling the large number of degrees of freedom in
an octopus armwould be computationally intractable. Instead, the octopus appears to exploit
a distributed control architecture that enables effective and computationally efficient arm
control. Here we will describe the neuroanatomical organization of the octopus peripheral
nervous system and discuss how this distributed neural network is specialized for effectively
mediating decisions made by the central brain and the continuous actuation of limbs
possessing an extremely large number of degrees of freedom. We propose top-down
and bottom-up control strategies that we hypothesize the octopus employs in the control of
its soft body.We suggest that these strategies can serve as useful elements in the design and
development of soft-bodied robotics.
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INTRODUCTION

The octopus’s movement is not limited by joints or a rigid skeleton. With the ability to bend its eight
arms in any direction at any point along their length, the octopus’s space of possible configurations
vastly exceeds that of skeletal animals such as vertebrates or arthropods.

The octopus brain outsources much of the circuitry necessary to control its arms into the arms
themselves, where a network of ganglia coordinates sucker and arm behavior with limited feedback
from the brain (Young, 1971).

Scientific interest in the octopus has found an application in the development of flexible, adaptable
robots (Walker et al., 2005; Calisti et al., 2011; Margheri et al., 2012; Walker, 2013; Nesher et al., 2014;
Krieg et al., 2015; Nakajima et al., 2017; Mazzolai et al., 2019). Like the octopus arm, the movement of
such robots is hyper-redundant—the high number of degrees of freedom for the robot vastly exceeds
those necessary to accomplish most tasks (Walker et al., 2005; Trivedi et al., 2008).

With its ability to combine extreme flexibility with precise manipulation and locomotion, the
octopus represents an effective solution for the significant control problems facing soft robotics
(Walker et al., 2005; Calisti et al., 2011; Levy et al., 2019). Much of the modern work in octopus motor
control has been focused on understanding how the octopus controls its arms despite their vast
configuration space, and how this can be applied in the development of soft robotic controllers
(Walker et al., 2005; Calisti et al., 2011; Nesher et al., 2014; Mazzolai et al., 2019).
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Here we will describe the neuroanatomical organization of the
octopus peripheral nervous system and discuss how this
distributed neural network is specialized for effectively
mediating decisions made by the central brain and the control
of limbs possessing an extremely large number of degrees of
freedom. We will describe the hierarchical organization of
information in this system (Wells, 1978; Zullo et al., 2009),
and propose three neuromechanical mechanisms within this
organization that reduce the computation necessary for
generation of the octopus’s arm behavior: 1) Hierarchical
hybrid action selection, which allows for simple motor
commands from the brain to be integrated with sensory
information from the arms, 2) ascending recruitment, a
mechanism of multi-sucker and multi-arm coordination which
serves as a strategy for novelty-detection and as an adaptive filter
for mechanosensory input, and 3) contact-based navigation and
manipulation, which, along with other sensory cues, constrain the
degrees of freedom of the octopus’s limbs to a limited range of
configurations. We will likewise discuss how these mechanisms
can serve as control strategies in soft-robotics.

EXISTING APPROACHES IN ROBOTICS

Robotics Terminology
Typical rigid robots are described in terms of rigid links
connected by joints, which allow motion. Rotary joints, for
example, allow the angle between links to change, while
prismatic joints allow the length of a link to change. If a
robot has N joints, then the pose (or configuration) of the robot
can be described using a vector of N values, each representing
one of the robot’s joint values. The task space or the work space
of the robot is the three dimensional space in which it operates.
The configuration space is an N-dimensional mathematical
space whose axes represent the potential values of the robot’s
joint angles. Each pose of the robot can be represented as a
single point in this space. A robot’s trajectory through time can
be represented as the motion of this point through the
configuration space. Kinematics refers to computing the
position and orientation of all the robot’s joint angles;
inverse kinematics means computing the joint angles
necessary to bring the robot’s end effector (for example) to
a particular position and orientation (or pose) in the
workspace. Obstacles that have a simple geometry in task
space, such as a flat table surface or a wall, lead to
constraints in configuration space with very complex
geometries. The high dimensionality of configuration space,
together with the complex geometry of constraints in
configuration space, makes robotic planning (the selection
of sequences of actions) a difficult computational problem.
For an octopus with a very large number of degrees of freedom,
the conventional robotics approach to planning and control
appears to be computationally intractable. The process of
modeling and predicting motion at higher velocities where
inertia must be considered is referred to as dynamics in the
robotics literature. The computational challenges posed by the
octopus are great even using a simplified kinematic framework

that ignores dynamics; the computational problems that arise
when dynamics is considered become even more challenging.

How Many Degrees of Freedom Does an
Octopus Arm Have?
It is usual to categorize a rigid robot arm by the number of joints
or degrees of freedom, or using the terminology above, the
dimensionality of its configuration space. Therefore it is
natural for roboticists to wonder about the configuration space
of an octopus arm: how many dimensions is it? How many
degrees of freedom does an octopus arm have? We suggest that
the question must be refined. We will propose to discuss the
octopus arm in terms of several types of degrees of freedom. The
octopus arm is highly compliant: it can be deformed
simultaneously at a vast number of independent locations.
Thus we might say that it has a very large number of passive
degrees of freedom. These are not actuated or directly
controllable; rather, when the arm presses against a rigid
object, the passive degrees of freedom allow the arm to
conform to that object at a large number of points. At another
extreme, the octopus exhibits certain arm-scale behaviors that are
analogous to robot arms: it bends at a small number of pseudo-
joints, which are analogous to rotary joints in a robot arm; and
sections of the arm can elongate or shorten, which could be
modeled as a small number of prismatic joints. Thus the arm
could potentially be characterized by a relatively small number of
global arm state degrees of freedom, which would be analogous to
the configuration space of a conventional rigid robot arm (One
significant difference, however, is that the octopus can change the
number of rotary joints dynamically). The octopus arm is also
capable of mechanical impedance modulation: adjusting its
stiffness above and below a bend. And it can control torsion,
rotating around the arm’s axis.

The octopus also has a large number of locally controlled
degrees of freedom. Each sucker is controlled by local neural
circuitry within the arms. In addition to controlling the sucker
pose, this circuitry also innervates and activates the surrounding
arm musculature (Gutfreund et al., 2006), which generates the
forces and shape of the arm (Kier and Smith, 1985).

We believe that the large number of locally controlled degrees
of freedom is a key feature of the octopus that is not present in
today’s robots; the primary inspiration for robots we propose to
take from the octopus is the use of locally controlled degrees of
freedom to simplify planning and control for the arm.

Like the octopus, today’s soft robots have a large number of
passive degrees of freedom. Thus this feature of the octopus is
known in parts of robotics (specifically, in soft robotics). There
are also many rigid robots which use long range visual sensing
followed by planning to generate reaching and grasping behaviors
in an arm with a small number (often seven or less) of active
degrees of freedom. The problem of using long range visual
sensing to plan for a small number of active degrees of
freedom is computationally tractable; the problem of using
vision and planning to control a large number of active
degrees of freedom is much harder (apparently intractable)
computationally. Controlling a large number of degrees of
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freedom becomes computationally tractable by making them
passive and using contact-based interaction to control them.
Thus the octopus’s centrally planned behaviors also are similar
to known techniques in robotics. The feature of the octopus that
differentiates it most clearly from today’s robots is the use of a
large number of locally controlled degrees of freedom. Challenges
for robotics include the mechanics and sensing required to build
such systems, as well as understanding their function at an
algorithmic level.

Task Domains in Robotics
Robotics can be divided into task domains and capabilities which
are necessary to perform these tasks. Grasping typically means
using a robot hand or gripper to immobilize an object relative to
the robot arm, so that the robot can move the object.
Manipulation is a more general term that indicates any robot-
induced change to the state of one or more objects. The sequence
of operations of grasping, lifting, moving, and setting down are
examples of a manipulation procedure. In-hand manipulation
means changing the pose or state of an object (for example by
rotating it) without setting it down. Manipulation operations
often involve multiple objects, such as inserting a peg in a hole or
a key in a lock.

The task domain of navigation and locomotion encompasses
moving within an environment. For example, a wheeled robot
might navigate using the following capabilities: sensing the
environment with lidar to determine the locations of obstacles,
the perceptual process of building a map of the environment,
planning a route on the map that brings the robot to the target
location without collision, and executing the plan. Executing the
plan involves actuation, the generation of the locomotive force
using electric motors, and low level feedback control to overcome
errors such as wheel slippage.

The field of soft robotics aims to create robots with mechanical
properties and actuation capabilities that are similar to the
octopus, in particular compliance. This paper does not focus
on actuation per se; this topic is covered thoroughly in reviews on
soft robotics (Kim et al., 2013; Galloway et al., 2016; Manti et al.,
2016; Polygerinos et al., 2017; Cianchetti et al., 2018; Whitesides,
2018). The paper also does not focus on sensing; since the
technological substrates are so different, it is difficult to extract
inspiration for today’s engineered systems from octopus sensing.
Instead, the paper focuses on the computational level: planning
and control, where we believe that system-level inspiration can be
most readily extracted today.

Behavioral Architectures for Robotic
Systems
The most widely accepted architecture for robotic systems is
known as “sense, plan, act” (Nilsson, 1982). In this paradigm,
sensors transduce physical signals, perceptual processes build
models of the physical world, planning processes search through
the space of potential actions to generate sequences expected to
lead to favorable outcomes, and then the best sequence of actions
is executed. In the “purest” form of sense-plan-act, the entire plan
would be executed “open loop,” in other words without further

sensing or control. The main disadvantages of an open loop
approach are that the perceptual and planning processes are
computationally demanding and brittle or error prone. A closed
loop control process is able to compensate for sensing or
actuation errors, ideally overcoming perturbations to restore
the robot’s state to the planned trajectory.

Proposed alternatives to the sense-plan-act approach include the
more biologically inspired subsumption architecture (or reactive or
behavior-based robotics) (Brooks, 1986; Payton, 1986; Agre and
Chapman, 1987; Firby, 1987; Brooks, 1990). This approach couples
sensors more directly to actuators in tight control loops while higher
level computational processes modulate and compose these lower
level behaviors. Advantages of this approach include fast and
dynamic robot behavior, the ability to respond to dynamically
changing environments, lower computational requirements, and
insensitivity to modeling errors, since the robot does not
construct an explicit model of the environment. In the purest
form of this approach, the environment functions as its own
representation; rather than the robot considering its own internal
computational model of the environment, the robot would consult
its own sensors to collect required information about the state of the
world at the present moment. Disadvantages of this approach are
that the behaviors tend to be “greedy,” and thus less intelligent than
approaches that are able to avoid local minima. Greedy is a term
used in computer science to describe an algorithm in which, at each
time step, the action is selected that provides the greatest reward in
that time step. Explicit planning approaches are able to delay
gratification, selecting actions in the present with lower
immediate rewards, but with higher rewards predicted later. For
example, consider a simple robotic scenario in which a robot, which
knows its position, is attempting to navigate to a goal by following a
map. Faced with a branch in the road, the greedy approach is to
always select the road that (at the particular location where the
choice must be made) heads most closely in the direction of the goal.
However, without the capability to look ahead on the map, this can
lead to the robot becoming stuck in a dead end. A smarter, non-
greedy approach would consider the future benefits of choosing a
particular sequence of road choices. This can allow the robot to avoid
getting stuck in dead ends.

Low level fast reactive control has been explored for
integration with robot manipulators in proximity perception
(Mayton et al., 20102010; Navarro et al., 2021) as well as
visual servoing (Espiau et al., 1992).

Recently Model Predictive Control (MPC) has seen a
resurgence in robotics. MPC is a version of the sense-plan-act
approach but modified to be more reactive and dynamic. InMPC,
the sensing and planning steps occur as usual, but only the first
step of the action plan is executed. Then the sense-plan-act cycle
starts again. The frequent sensing and re-planning allow the robot
to react dynamically to changes in the environment, while still
making more intelligent choices than a purely reactive system
(Erez et al., 2011; Lenz et al., 2015; Zhang et al., 2016; Liu et al.,
2017;Williams et al., 2017; Gillespie et al., 2018; Amos et al., 2019;
Kabzan et al., 2019). In terms of computational resources, it
requires even more than the conventional sense-plan-act cycle,
since plans are being constantly generated and re-generated. We
will discuss how the control architecture of the octopus may

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 8623913

Sivitilli et al. Octopus Soft Robotic Control

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


provide benefits reminiscent of MPC but with lower
computational costs.

Underactuated Robotics
Underactuated robotics (Spong et al., 1998; Reyhanoglu et al.,
1999; Birglen et al., 2008) makes use of systems in which the
number of individually controllable degrees of freedom is less
than the number of degrees of freedom of the mechanism. For
example, robot hands have been designed with just one actuated
degree of freedom (one motor), but multiple joints (Odhner et al.,
2014; Deimel and Brock, 2016). When the robot contacts an
object to be grasped, it conforms to the object’s shape. We will
discuss ways that the octopus uses an analogous strategy.

Contact-Rich Dynamics
It is typical in robotics to sense and plan in order for the robot to
avoid collisions with obstacles or objects. There are some
exceptions which explicitly consider planning and control
through contact. In manipulation, contact is necessary, but is
avoided as long as possible, and the planning process tends to
focus on the motions before contact. Legged locomotion is
another area in which contact (between the leg and the
ground) must be considered, and most of the robotics work
that considers contact originates from legged locomotion (Erez
et al., 2011; Posa et al., 2014; Marcucci et al., 2017; Pace and
Burden, 2017; Deits et al., 2019).

Planning on Constraint Manifolds
Even simple motion constraints, such as a planar table top or
wall, produce complex geometries in the configuration space of
a robot arm with several degrees of freedom. A robot arm
moving its end effector along a table top corresponds to
motion within a lower dimensional sub-space of the arm’s
full configuration space; this subspace is known as a constraint
manifold. The general problem of generating motion plans
that remain within such a constraint manifold is a challenging
computational problem because of the high dimensionality of
the space and the complexity of the geometry (Berenson et al.,
2009; Berenson et al., 2011). For an octopus to use a centralized
approach to generate a motion plan that moves its arm along a
complex surface would likely be computationally infeasible:
the number of degrees of freedom of the octopus arm is much
higher than a typical articulated robot arm and many parts of
the octopus arm touch the surface simultaneously. In the next
section we describe the approach that appears to be used by the
octopus, and discuss the potential for robots to make use of this
strategy.

Hybrid Control
Hybrid control refers to hierarchically organized systems that
choose among discrete control modes at higher levels, and for
each of these modes, different continuous controllers operate at
lower levels (Branicky et al., 1998; Goebel et al., 2009). The term
hybrid refers to the combination of discrete and continuous
dynamics. The control strategy of the octopus shares some
features with hybrid control.

MECHANICAL PROPERTIES OF THE
OCTOPUS

The octopus’s arms, like elephant trunks, earthworm bodies, and
vertebrate tongues, are muscular hydrostats (Kier and Smith,
1985; Kier and Stella, 2007). Unlike skeletal muscle, which relies
on skeletal elements to support the generation of movement,
muscular hydrostats generate force and serve as the support for
movement. In the octopus arm these muscles are arranged in
transverse, longitudinal and oblique (helical) orientations. The
requirement of the hydrostat to maintain constant volume
ensures that when the transverse muscles decrease the cross-
sectional area of the arm, the arm increases in length. Likewise, as
the longitudinal muscles contract and the arm shortens, the cross-
sectional area increases. The interplay of the three muscle groups
and the lack of inherently rigid structure equips the arm with its
remarkable flexibility (Kier and Smith, 1985; Kier and Stella,
2007; Kennedy et al., 2020).

The capacity for robots to generate adaptive behavior can be
facilitated by exploiting their material properties. Elasticity,
for instance, can stabilize the body during motion, while
compliant properties can allow an effector to adapt to the
shape of an object for grasping and manipulation (Pfeifer et al.,
2014). These characteristics can be both energetically and
computationally favorable. As muscular hydrostats capable
of complex motion over a vast range of configurations, the
octopus arm serves as a particularly interesting model for the
study and implementation of material properties in control
architectures.

Within the arrangement of the arm’s muscles are embedded
arrays of collagenous connective tissue fibers (Kier and Stella,
2007; Fossati et al., 2011). The material properties of the
collagen fibers give this tissue inherent stiffness, and to
some degree extensibility and elasticity (Gutnick et al.,
2011). In muscular hydrostats, these properties can transmit
stress during motion, store elastic energy, and provide
structural reinforcement (Di Clemente et al., 2021). Di
Clemente et al. (2021) investigated the contribution of these
properties to the arm’s elasticity and stiffness and the possible
roles they play in the arm’s motion. The distinct formation of
the fibers within the longitudinal and transverse muscles were
shown to give the two muscle groups different mechanical
properties. Di Clemente et al. suggest that these properties
indicate a possible role of longitudinal muscles in energy
storage and shock absorption, and transverse muscles in
maintaining posture and resisting deformation. Overall such
passive properties can locally modulate behavioral responses
while minimizing their energetic cost and alleviating the
computational need for neural feedback (Di Clemente et al.,
2021). Not only can mechanical properties of the arm facilitate
computation, some evidence points to the potential of these
properties to serve a direct computational role (Nakajima et al.,
2013; Nakajima et al., 2014; Nakajima et al., 2015). This
potential role of both biological and artificial material
properties presents fascinating directions for the field of
robotics.

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 8623914

Sivitilli et al. Octopus Soft Robotic Control

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


ARCHITECTURE OF THE OCTOPUS’S
CONTROL SYSTEM

Most of the octopus nervous system exists within its eight arms
(Young, 1971). Down the center of each arm, a nerve cord
(known as the arm or axial nerve cord) runs parallel to the
suckers, 200–300 of which are staggered down the ventral side of
the arm (Young, 1965; Gutfreund et al., 2006). The nerve cord
consists of a dense, continuous network of neural circuitry
(neuropil) which projects from a surrounding layer of unipolar
nerve cell bodies. The neuropil enlarges at the base of each sucker.
These enlargements are commonly referred to as ganglia and the
sections between them as the interganglionic regions. As with
other elements of the octopus’s peripheral anatomy, there has
been some inconsistency in the terms used for these elements.
Such terms include arm ganglia (Zullo et al., 2011), axial ganglia
(Rowell, 1963; Rowell, 1966), brachial ganglia (Graziadei, 1965b;
Graziadei and Young, 1971; Gutfreund et al., 2006), sucker
ganglia (Young, 1963; Young, 1965; Altman, 1968), and
medullary cord (Zullo et al., 2019). We will refer to these
elements as brachial ganglia. These ganglia serve as local
sensorimotor integration centers for their corresponding
suckers and nearby arm musculature, and account for about
350 million of the octopus’s over 500 million neurons (Young,
1963; Rowell, 1966; Budelmann and Young, 1985). Two bundles
of nerve fibers called the axonal tracts run along the nerve cord
dorsal to the ganglia. At the base of the arm the axonal tracts fuse
and continue to the brain as the brachial nerve, which serves as a
pathway through which the ganglia communicate with the brain
via the axonal tracts. The brachial ganglia are connected to their
immediately distal and proximal neighbors through the neuropil

(Graziadei and Young, 1971), and there is some evidence
suggesting a connection through the axonal tracts (Altman,
1968). The eight brachial nerves of the arms converge on the
brachial lobe of the brain. Where the brachial nerve and the nerve
cord meet, the interbrachial commissure interconnects the nerve
cords of the arms into a neural ring, allowing communication
between arm networks independent of the brain (Altman, 1968).

Figure 1 shows the neural architecture of the octopus with
estimated neuron and axon numbers indicated. Consistent with
ganglia being sensorimotor integration centers, the vast majority of
their neurons (120,000 of 130,000) seem to integrate sensory and
motor information (Young, 1963; Young, 1965; Rowell, 1966).
Following sensory integration in the ganglia there is a dramatic
reduction in the number of sensory pathways between the suckers
and the brain, with an estimated reduction from 18million sensory
neurons within the suckers to 140 thousand neurons entering the
brain from the brachial nerves (Young, 1965).

Similarly, the pathways through which the brain
communicates motor commands to the arms are orders of
magnitude smaller than the local innervation of the
musculature by the ganglia. Collectively, the brachial nerves
contain an estimated 32 thousand efferent (outbound) axons,
while an estimated 3 million motor neurons terminate on the
musculature of the arms and suckers from the neuropil of the
nerve cords (Young, 1965; Matzner et al., 2000; Rokni and
Hochner, 2002; Nesher et al., 2019).

Sensing and Perception
The octopus’s distributed nervous system supports a complex
chemotactile system within its arms and suckers. Each sucker
contains a dense array of mechanical and chemical receptors,

FIGURE 1 |Numbers of neurons and axonal connections in the octopus nervous system. Left: The octopus nervous system is composed of two large populations
of neurons, the central brain (optic lobes and brain, 170 million neurons) and peripheral ganglia (350 million neurons) that are connected by orders of magnitude fewer
neurons (140 thousand afferent and 32 thousand efferent), creating a bottleneck that requires enormous compression of sensory and motor signals. Right: Numbers for
each component of the nervous system on an anatomical diagram.
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estimated at a density of several tens of thousands of receptors on
a sucker 3 mm in diameter (Graziadei, 1965a). By comparison,
the human fingertip has a few hundred mechanical receptors in a
similar area (Johansson and Vallbo, 1979).

Chemoreceptors are the most abundant of these receptor types,
outnumbering the other cell types by a factor of ten (Graziadei,
1965a). These cells aggregate along the rim of the sucker disk, where
they are appropriately placed for contact with dissolved substances in
the surrounding water. Chemical information is transmitted to
higher neural centers after ascending through multiple levels of
integration (Graziadei and Gagne, 1976).

While the outer rim of the sucker is specialized for the
transduction of chemical information, the sucker disk is
specialized for transduction of mechanical information,
including texture, shape, and perhaps the integrity of adhesion
(Graziadei and Gagne, 1976).

Information acquired by the suckers have been shown to
follow two primary pathways (Rowell, 1963; Rowell, 1966;
Altman, 1968; Gutfreund et al., 2006; Zullo et al., 2011). These
pathways run through the neuropil between the ganglia and
through the axonal tracts.

The pathway through the neuropil seems to carry information
proximally and distally, and transmit information from the
sucker sensory fields and proprioceptive information from
local musculature between brachial ganglia (Young, 1963).
This pathway is evidently polysynaptic, such that information
along this pathway is subject integration with other sources of
sensory and motor information. This pathway seems to be able to
relay signals over long distances of the arm provided intermediate
ganglia aid in propagating the signal (Altman, 1968).

The neuropil pathway likely supports the ability of suckers to
recruit their neighbors. This recruitment behavior, retained in
isolated arm preparations (Rowell, 1963; Altman, 1968;
Gutfreund et al., 2006; Zullo et al., 2011), enables sensory
input to a given sucker to result in neighboring suckers and
musculature bending toward the activated sucker, an effect which
can propagate along the arm if these neighboring suckers are
likewise activated. This mechanism has several advantages that
we will discuss throughout the text.

The second pathway along the axonal tract seems to also transmit
information proximally (Zullo et al., 2011) and distally (Rowell,
1966). The proximal signal appears to carry information to the brain
while the distal-traveling signal is believed to recruit the distal arm
toward proximal stimuli (Rowell, 1966). Rowell (1966) reports a
considerable range of spatial representation and sensitivity among
the afferent units in this pathway (Rowell, 1966). Some units
responded to input to single suckers, while others responded to
input to all suckers or specific groups of suckers.

The extreme sensory compression that occurs from ganglia to
brain suggests that the ganglia may actively filter sensory input to
determine which signals reach the brain. Since stimulus relevance
depends on context, such as ambient fluid turbulence or substrate
irregularity, the peripheral network may contain a mechanism of
normalization by which sensory input is weighted
proportionately to the global level of input for the entire
animal. A rock encountered on a flat surface, for instance,
would be more likely to induce a behavioral response than a

rock encountered on a rocky surface. A possible mechanism to
accomplish this could be a mutually inhibitory signal sent
between suckers that is proportionate in strength to the level
of stimulation of the suckers. This could serve as a useful
mechanism to work in parallel to sucker recruitment to
determine and prioritize the most relevant information
encountered by the suckers.

Proprioceptive Information Is Locally
Integrated in Ganglia
Octopuses possess multipolar cells that resemble muscle
receptors seen in other species (Graziadei, 1964). While
proprioceptive information about local movement and muscle
position is found within the ganglia, this information, including
the relative position of the suckers, has not been demonstrated
within the afferent pathways in the axonal tracts or the brain
(Wells and Wells, 1957; Wells, 1964; Rowell, 1966). Wells (1964)
suggested that mechanical transduction occurs through the
degree of distortion of the suckers upon a surface and
regularity of the surface’s texture. It is possibly due to this
mechanism that the octopus is not able to distinguish
orientations of textures and the octopus’s ability to distinguish
simple three-dimensional shapes is inhibited by cutting grooves
into their surface (Wells, 1964). The axonal tract evidently does
not communicate autonomous movement by the suckers or the
arm (Rowell, 1966). Wells also found evidence that octopuses
failed to learn to discriminate the weight of objects handled by the
arms (Wells, 1961), suggesting that this information is also absent
from the higher neural centers.

Despite these findings, Gutnick et al. (2020) showed a form of
proprioceptive learning based on octopus’s increased preference
in reaching for the rewarded side of a confined two-choice arm
maze, suggesting that the brain has some representation of and
control over the directionality of the arm during extension (i.e.
the arm’s horizontal and vertical angle or yaw and pitch) without
visual information. Octopuses can also learn to open jars
containing a food reward more efficiently over multiple trials
(Fiorito et al., 1990) and adapt their feeding technique with clams
through trial-and-error (Anderson andMather, 2007), suggesting
the retention of some proprioceptive information from this kind
of task.

Proprioceptive information is evidently exchanged between
arms through the interbrachial commissure (Graziadei, 1965b;
Altman, 1968), revealing a potentially important role of this
pathway in the arms’ ability to coordinate during movement.
This is especially interesting given that this information is largely
absent from the brain.

ACTION SELECTION

In “sense, plan, act” models motor signals would originate
centrally and precisely control movement. However, rather
than generating motor output as specific patterns of muscle
activation, the central brain of the octopus seems to broadly
transmit general behavioral programs (Zullo et al., 2009). While
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behaviors are seemingly decided in the brain, the motor circuitry
for executing these behaviors exist within the arm nerve cords.
The details of where and how to execute these behaviors may then
be locally determined by integrating mechanical, chemical, and
proprioceptive information within the brachial ganglia (Zullo
et al., 2019). Consistent with this model, motor pathways within
the arms are largely autonomous. Reaching, sucker adhesion,
probing, recoiling from aversive stimuli, and sucker recruitment
can all be readily evoked in arms separated from the brain
(Rowell, 1963; Graziadei, 1965b; Rowell, 1966; Altman, 1968;
Sumbre et al., 2001; Gutfreund et al., 2006; Zullo et al., 2011;
Hague et al., 2013; Katz et al., 2021) and movement in these
isolated arms kinematically resembles that seen in whole animals
(Sumbre et al., 2001).

This peripheral organization of motor circuitry bears some
resemblance to the spinal cord in vertebrates. Here neural circuits
responsible for rhythmic movement such as locomotion, and
reflexes which, for example, lead to avoiding tissue damage and
maintaining posture, can operate with little to no intervention
from the brain (Lemon, 2008). On the other hand, an adaptation
unique to primates of a monosynaptic pathway from the motor
cortex to densely organized motor neurons allows for a unique
capacity for dexterity among their hands and fingers (Pearson
and Gordon, 2013). This example is seemingly antithetical to the
organization of the octopus, for which efferent pathways from the
brain appear to innervate large pools of motor neurons along the
length of the nerve cord (Zullo et al., 2019). The differences in
degrees of freedom, stereotypy, feedforward versus feedback
activation, generation of rhythmic movement, the role of top-
down and bottom-up modulation, and the levels of polysynaptic
integration present interesting points of comparison between
these two control systems that we hope will be explored in
depth in the future.

During the generation of movement, the octopus brain
appears to send signals to the nerve cords that activate the
motor circuits for different behaviors (e.g. reach, fetch, reject),
and these behaviors may then be modified based on peripheral
sensory information. For example, bend propagation (see
Figure 2) has been shown to begin mid-way down the arm if
the arm is reaching through a narrow opening (Richter et al.,
2015), and the bend location during fetching behavior is
seemingly determined by where the object of interest is along
the arm (Sumbre et al., 2006). The amount of information that
these behavioral signals carry with them appears to vary between
behaviors. The reaching signal, for example, seems to include yaw
and pitch of the arm (Gutfreund et al., 1998; Sumbre et al., 2001;
Gutnick et al., 2020) while behaviors that are retained in isolated
arms, such as sucker recruitment, may rely primarily on sensory
feedback from the suckers and require less information from the
brain. Recent work has shown efferent pathways of the axonal
tract making broad, non-specific contacts with ganglia along the
arm, supporting the idea that the brain does not precisely control
specific segments of the arms (Zullo et al., 2019). The control of
sucker movement and adhesion is also a local operation of the
peripheral ganglia, though is subject to broad, top-down
regulatory signals from the brain that are not directed to
specific suckers (Altman, 1968). Together, this evidence

suggests that the brain is limited in its ability to precisely
control the arms, and relies on behaviors that are coordinated
locally within the arms with minimal feedback from the brain.
Figure 2 summarizes the examples of these behaviors that have
been described. We predict that the brain may initiate and recall
combinations of behavioral signals that lead to more complex
sequences of behavior, such as manipulation (Fiorito et al., 1990;
Anderson and Mather, 2007).

Fine-scale local control through sucker recruitment (section
below) enables precise grasping and manipulation of objects
when they are encountered by the suckers. As suckers are
recruited to collectively adhere to an object, the control the
arm has over the object is compounded. Through locally
recruiting suckers to interact with an object, this mechanism
adaptively scales the number of afferent pathways for sensory
information and efferent pathways for manipulation, all without
precise central control.

LOCOMOTION

Despite the limited bandwidth through which the brain and arms
communicate, the arms together demonstrate remarkable
coordination during locomotion (Levy et al., 2015). This
movement is independent of the orientation of the body: the
octopus can change direction of crawling without changing
orientation of its body and vice versa. Although arms were
found to individually generate rhythmic patterns of movement,
the pattern between arms showed no obvious consistency. The
octopus appears to lack the rhythmic motor output that
characterizes central pattern generator-driven locomotion of
other animals. The recruitment of the pushing movement in the
arms to generate locomotion may result from a moment-to-
moment pattern of activation from the brain, allowing the
octopus to immediately adjust its direction (Levy et al., 2015).

Coordinated behavior between arms has been shown to be retained
following isolation from the brain (Graziadei, 1965b; Altman, 1968),
and severing an arm’s connections to the interbrachial commissure
has shown to affect the arm’s ability to coordinate with the other arms
during locomotion (Altman, 1968). These observations suggest that
the peripheral nervous system is to some degree responsible for
coordinating arm behavior. The interbrachial commissure, which
connects the nerve cords into a ring, is the primary pathway by
which information from the arms bypasses the brain (Altman, 1968)
and information carried by the interbrachial commissure evidently
includes a representation of the spatial arrangement of the arms
(Graziadei, 1965b; Altman, 1968). These findings suggestion that this
pathwaymay play an important role in the ability of the arms to work
in cooperation during complex behaviors, including the pattern of arm
recruitment during locomotion.

OCTOPUS-INSPIRED ROBOTICS

While, like any natural system, there is a considerable nuance to
the octopus’s control system, we would like to propose three
broad control strategies that the octopus appears to be employing,
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FIGURE 2 | Octopus arm control strategies. Fetching: from the base of the arm, an outbound wave of muscle activation converges with another inbound wave
determined by the location of the object (Sumbre et al., 2006). Armmusculature is activated at this midpoint, bending the arm appropriately to pass the object proximally.
Sucker recruitment: in response to a stimulus, suckers recruit their neighbors to bend toward this stimulus. These suckers can then recruit their neighbors as this
mechanism continues down the arm (Rowell, 1963; Altman, 1968; Gutfreund et al., 2006; Zullo et al., 2011). Arm recruitment: in response to stimulation of one arm,
the corresponding suckers on neighboring arms orient toward the site of stimulation (Graziadei, 1965b; Altman, 1968). Grasping: as suckers collectively adhere to an
object, sucker recruitment provides multiple afferent pathways for sensory input and multiple efferent pathways for manipulation. If the suckers find prey during foraging,
the suckers will recruit their neighbors to capture and immobilize the animal (Rowell, 1963; Altman, 1968; Gutfreund et al., 2006; Zullo et al., 2011). Surface conformation:
as suckers recruit their neighbors toward encountered surface features, the arm’s shape conforms to that of the surface (Altman, 1968; Kennedy et al., 2020). Reaching:
using visual information the brain determines the horizontal and vertical angle (yaw and pitch) of the arm. The arm then extends by a wave of muscle contraction
resembling a propagating bend toward the visual target (Gutfreund et al., 1998; Sumbre et al., 2001; Richter et al., 2015).

FIGURE 3 | Hypothetical pipeline of hybrid hierarchical action selection. For each arm, the brain determines an action over a discrete domain (e.g. fetch, reach,
push, reject, etc.). For each discrete action, the arm is allowed a subset of continuous stereotyped actions executed based on peripheral proprioceptive information and
sensory information from the environment. The actuation of these continuous action subsets overlap within the arm’s configuration space. Most of the arm’s
configuration space is dominated by the possible arm shapes resulting from sensory-guided sucker recruitment (e.g. surface conformation). Some behaviors, such
as reach, have some continuous parameters that the brain may be able to set (Gutnick et al., 2020).
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and which are applicable to the current field of robotics:
hierarchical hybrid action selection, used as a top-down
control strategy, ascending recruitment, used as a bottom-up
control strategy, and contact-based navigation and manipulation
which emerges from recruitment.

Hierarchical Hybrid Action Selection
The octopus controls a soft body with a large number of passive
degrees of freedom, complex musculature, and highly
concentrated sensory fields. We propose that this control
problem is simplified by organizing motor commands into a
hierarchical structure of action selection (Zullo et al., 2009; Merel
et al., 2019), thereby reducing the state space tomanageable levels.
As the high-level controller, the brain of the octopus selects from
among actions over a discrete domain. The brain then sends a
general signal to the peripheral network of ganglia, which is
composed of subordinate semi-independent agents (the ganglia).
These agents then select from a subset of actions (local motor
control) over a continuous domain as defined by the action
decided by the brain, similar to hybrid control strategies
(Branicky et al., 1998). Figure 3 illustrates this form of control
in the octopus. The control problem inherent in the octopus’s
large number of degrees of freedom could be further simplified by
relying on feedforward movement strategies in unconstrained
(high-dimensional) conditions (e.g. reaching toward a visual
target (Sumbre et al., 2001)), and feedback strategies when
operating in a lower-dimensional constrained environment
(Gutnick et al., 2011), in which the arm can use the
mechanical and chemical composition of its surroundings as a
reference [e.g. searching through crevices (Mather and O’Dor,
1991; Forsythe and Hanlon, 1997)]. It is tempting to identify
exploration as the default motor strategy of the arms based on
observations of denervated arms readily engaging in probing and
sucker recruitment. These mechanisms may be overridden in
favor of locomotory behaviors.

Hierarchical control has been suggested as a general
framework for the control of complex systems (Barto and
Mahadevan, 2003), and the octopus is an exemplar of this
form of control (Zullo et al., 2009; Wayne and Abbott, 2014).
While hierarchical control theory is an attractive framework for
understanding motor control across numerous species (Merel
et al., 2019), a striking feature of the octopus is that the putative
levels of hierarchical control are physically separated and
connected by distinct axonal pathways.

Ascending Recruitment and Contact-Based
Control
Sucker recruitment serves as an effective mechanism in
foraging, exploration, and manipulation. We propose that
by relying on this simple sensory-motor reflex across such a
breadth of behaviors, the octopus can simplify the control of its
highly flexible arms.

Suckers that encounter a stimulus recruit unoriented suckers,
and in conflicting situations where two or more stimuli are
recruiting a shared set of suckers, presumably the stronger

stimulus will send the stronger signal and override the
competing stimuli. Although unknown, a mechanism for such
“winner-take-all” sucker recruitment could be realized by a
mutually inhibitory signal sent between suckers proportionate
to the strength of the stimulus that they have encountered.

FIGURE 4 | Sucker recruitment used to grasp shrimp meat during
foraging. Consistent with localized spread of sucker recruitment, orientation
and movement of suckers towards the food occurs in waves propagating
from the point of food contact. See also Supplementary Video S1.
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The suckers may therefore act as an adaptive sensory filter by
locally prioritizing stimuli, providing a peripheral mechanism for
determining which signals are sent across the narrow bandwidth
through which the brain and the arms communicate. While the
representation of a stimulus encountered by a single sucker is
limited in higher neural centers, a stimulus that successfully
attracts the attention of multiple suckers by eliciting a
recruitment signal would be represented through multiple
afferent pathways. Engaging multiple suckers with a stimulus
both maximizes the amount of information acquired from the
stimulus and the amount of control the suckers have over it.
Spreading sucker recruitment could also determine which of the
suckers on a given arm act as the end effectors during
manipulation and locomotion. This mechanism also works as
an effective hunting strategy: if a sucker finds prey, it will recruit
its neighbors to efficiently capture and immobilize the animal.
This may be particularly effective if the less prominent distal
suckers find prey and recruit larger proximal suckers to aid in
capture. This mechanism can additionally benefit foraging by
conforming the arm to surface features of the environment. In
this case, recruitment could lead the arm around corners or into
crevices to find prey (Mather and O’Dor, 1991; Forsythe and
Hanlon, 1997), enabling an exhaustive search over even the most
complex surfaces. See Figure 4 and Supplementary Video S1 for
an example of sucker recruitment during food detection and
retrieval.

Traditional robotics expends a great deal of computation to
avoid collisions with obstacles. The vast configuration space of
the octopus arm appears to compound this problem, providing a
nearly infinite number of configurations for which a collision
with environmental features must be considered. However,
behavioral and neural evidence suggests that the octopus
avoids this seemingly intractable computational problem;
instead, the octopus’s reliance on contact as a result of sucker
recruitment could simplify its control strategy, mechanically
restricting its configuration space to the contraint manifolds
defined by obstacles, dramatically reducing the computational
complexity of its control scheme.

Two additional varieties of sensory input have been shown to
possibly restrict the arms’ degrees of freedom. Nesher et al. (2014)
discovered that a chemical in the octopus’s skin prevents the
suckers from attaching to it. This mechanism is evidently
peripheral—it is retained in the arms when severed, but can
seemingly be overridden by the brain when the arms are left
intact. Katz et al. (2021) found that arm tips reflexively withdraw
from light, a response which is likely mediated by the brain but
acts independently of visual feedback. Both chemical and
photosensory feedback therefore seem to play a similar role as
mechanical input in limiting the arms’ range of possible
configurations.

Graziadei (1965b) and Altman (1968) noted that stimulation
of one arm will cause the nearest arm to turn toward the site of
stimulation, even without innervation from the brain. This
represents a possible second level of recruitment (Byrne et al.,
2006) that could result in the same benefits of sucker recruitment.
Recruitment of neighboring arms, like that of the suckers, could
rally multiple effectors for handling objects and immobilizing

prey, and compound the strength of the afferent signal
communicated to the brain. The brain could then update the
motor plan across multiple arms based on this locally-filtered and
amplified signal. The pathway through the brain provides an
additional means by which suckers may recruit each other. In this
case, the brain may be considered another recruitable winner-
take-all node in this ascending recruitment mechanism that
influences behavior across the entire network by generating a
renewedmotor plan. At this level, additional factors such as visual
information, memory, and internal state also contribute to
updating the motor plan.

Afferent pathways within the arms carrying mechanical
information are fast adapting and habituate quickly to
unchanging stimuli (Rowell, 1966). Dynamic mechanical
stimuli are thus preferentially communicated between ganglia
and along the axonal tract to the brain. Novelty, possibly
representing fluid motion, surface irregularity, or prey
movement, could therefore serve as a strong ascending
recruitment signal across the hierarchy of the octopus nervous
system. This may represent a neural mechanism for the notable
curiosity the octopus displays (Mather and Anderson, 1999; Kuba
et al., 2003; Kuba et al., 2006a; Kuba et al., 2006b), and the
motivational connection between exploration and foraging (Kuba
et al., 2006a). The octopus’s nervous system supports seeking out
and assessing the novelty of information in the environment,
which is an area of active research in robotics (Grizou et al., 2020).
We suggest it is appropriate, therefore, that particular attention is
given to the octopus in the design of robotics for the purposes of
exploration, with application to projects such as the Honda
Curious Minded Machine program.

CONCLUSION

Lessons From the Octopus for Robotics
An underactuated robot hand can bring multiple joints into a
configuration that closely mirrors the object’s geometry,
despite not having enough control degrees of freedom to
generate this pose in the absence of the object. Octopuses
appear to make even more extensive use of under-actuation
and compliance: they are underactuated at both the
mechanical level and the control level. Mechanically, the
body of the octopus is highly compliant, enabling it to
conform to complex geometries with computationally
simpler control than would be required for active control of
non-compliant mechanisms.

Unlike most rigid robots, which are usually programmed to
avoid collisions with obstacles, the octopus arm appears to seek
out contact with surfaces or other nearby objects. We hypothesize
that contact with external rigid objects allows the arm to localize
itself with respect to the environment. This is similar to a strategy
called coastal navigation that has been employed in mobile
robotics to reduce positional uncertainty (Roy et al., 1999).
Due to the arm’s many passive degrees of freedom (i.e. its
mechanical compliance), the same set of motor commands
resulting in sucker recruitment can cause the arm to conform
to a large number of different surface geometries. Thus one
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simple motor program could potentially produce arm shapes that
mirror a wide variety of surfaces.

The reliance on contact with the environment, its local
distributed control of suckers, and a highly compliant body,
enables the octopus to accomplish complex behaviors using
much less computation than would be required by a brute
force sense-plan-act approach to planning and control for its
large number of actuated degrees of freedom. The octopus
generates motor commands via a hierarchical process, with
higher level motor commands originating in the brain and
lower level closed loop control processes occurring at the
suckers. At the lowest, mechanical level, the octopus makes
use of underactuation via its highly compliant body; this is
analogous to some work in underactuated hands, and soft
robotics. The local control of suckers, including recruitment,
appears to be an intermediate strategy between passive
mechanical compliance and global computational planning
that may be the most novel compared to conventional
robotics. While it is common for robots to use a slower
planning process to choose position, velocity, or torque
commands for joints, and faster control loops to implement
those commands while rejecting disturbances, the octopus has
a more complex layer of distributed, local control, which allows it
to control thousands of actuated degrees of freedom, namely the
sucker and arm musculature. The octopus’s highly capable
distributed control layer appears to be quite distinct compared
to conventional robotics. Even though it is not possible today to
build a robot with as many locally controlled degrees of freedom
as an octopus, the architecture of the octopus could be
implemented today in a robot with a smaller number of

locally controlled degrees of freedom. Achieving a better
understanding of the functional capabilities provided by the
octopus’s hierarchical control scheme, as well as
understanding the limitations of its local distributed layer,
suggests new approaches to planning and control of robots,
approaches which have the potential to provide more
capability with less computation.
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