
AModular Vision LanguageNavigation
and Manipulation Framework for Long
Horizon Compositional Tasks in
Indoor Environment
Homagni Saha1,2†, Fateme Fotouhi1,2†, Qisai Liu1 and Soumik Sarkar1,2*

1Department of Mechanical Engineering, Iowa State University, Ames, IA, United States, 2Department of Computer Science, Iowa
State University, Ames, IA, United States

In this paper we propose a new framework—MoViLan (Modular Vision and Language) for
execution of visually grounded natural language instructions for day to day indoor
household tasks. While several data-driven, end-to-end learning frameworks have
been proposed for targeted navigation tasks based on the vision and language
modalities, performance on recent benchmark data sets revealed the gap in
developing comprehensive techniques for long horizon, compositional tasks (involving
manipulation and navigation) with diverse object categories, realistic instructions and visual
scenarios with non reversible state changes. We propose a modular approach to deal with
the combined navigation and object interaction problem without the need for strictly
aligned vision and language training data (e.g., in the form of expert demonstrated
trajectories). Such an approach is a significant departure from the traditional end-to-
end techniques in this space and allows for a more tractable training process with separate
vision and language data sets. Specifically, we propose a novel geometry-aware mapping
technique for cluttered indoor environments, and a language understanding model
generalized for household instruction following. We demonstrate a significant increase
in success rates for long horizon, compositional tasks over recent works on the recently
released benchmark data set -ALFRED.

Keywords: ALFRED, vision and language module, graph convolutional mapping, NLP language parser, depth and
mask estimation, BERT, long horizon compositional tasks, robot navigation and manipulation

1 INTRODUCTION

Vision language navigation is interesting in its inherent Cross-Modal nature in anchoring natural language
commands to visual perception, being highly relevant for practical robotic applications. Recent progress in
deep learning for visual and linguistic representations pushed for ever more complex, close to real-life
situations involving realistic simulators, longer execution trajectories, diverse object categories and natural
language descriptions. Current techniques are being proposed for better visual navigation, improved
language understanding, vision language grounding, and end-to-enddifferentiable planning.However, there
remains a lack of holistic approaches to combine these elements in solving long horizon, compositional tasks
with diverse object categories and irreversible state changes that require dynamic planning. Imagine having
to follow a set of instructions in a visual environment as shown in Figure 1. While very intuitive for a
human, generalization on such tasks in unseen environments has remained a hard problem.
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Several past studies have tried to learn input language and
action demonstrations through a joint action mapping using
reinforcement/sequence-to-sequence learning techniques.
However, judging from the nature of the language instructions
used in these studies (e.g., usually using R2R (Anderson et al.,
2018) data set), most often, agents are only required to identify a
target location on the map and navigate to it. This situation can
become much more complicated with compositional instructions
common in household robotics, such as-“open the microwave,
put the coffee, and wait for 5 s”. Although the number of expected
actions from the language is not immense, the complexity of this
joint mapping from vision and language to action may
unnecessarily increase drastically. This in turn making existing

reinforcement learning/sequence-to-sequence techniques much
harder to learn.

A challenging benchmark data set, ALFRED, was proposed
recently for vision language navigation and manipulation in
household tasks (Shridhar et al., 2020). The initial study on
this work achieved a very poor success rate, as low as 4%,
even when deploying state-of-the-art learning frameworks
(Supplementary Table S1 in Supplementary shows the
difficulty level of this dataset compared to other datasets).
Also, the recently published studies on the ALFRED dataset
have not achieved a success rate of more than 30% on unseen
environments. These works generally proposed various end-to-
end deep learning approaches to train an agent to complete the

FIGURE 1 | Example of a long horizon compositional task. An overall goal is provided to the robot through a sequence of instructions. Combining these with vision
at the current time step, it must execute actions to satisfy the goal. Example: Goal: “Pick up a box, put it on a chair, put a credit card inside and close it.” (A): “Turn towards
the other side of the roomwith the blue chair in corner.” (B) “Walk across the room to the small box and pick it up.” (C) “Turn right and walk to the front of the blue chair in
the corner.” (D) “Put the box down on the blue chair.” (E) “Turn around and walk to the front of the TV stand.” (F) “Pick up the credit card from the TV stand.“ (G)
“Turn left and walk back to the blue chair in the corner, put the credit card in the box.” (H) “Close the box.“
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defined tasks in instructions, which results in updating lots of
model parameters in each training iteration. On the other hand,
to predict the series of output actions more precisely, we proposed
a modular-based deep learning framework in which each module
focuses on executing specific intermediate information (e.g., the
language module predicts the target object and navigation/
manipulation commands from instructions which will be used
in other modules). These modules are then connected to fulfill the
whole task expressed in the instruction. In this paper, we make
the following key contributions:

1) We propose a novel mapping scheme based on graph
convolution networks to approximate the geometry of
observed objects and navigable space around an agent in
cluttered indoor environments, enabling improved
navigation.

2) We propose a new application of state of the art natural
language understanding models to better understand vision
language instructions.

3) We extract depth andmask images of the robot’s environment
panoramic image using adaptive depth estimation, and
weighted semantic segmentation models.

4) Finally, we combine mapping and language understanding
along with recent developments in semantic segmentation,
monocular depth estimation and Cross-Modal grounding to
arrive at a modular approach for state-of-the-art success rate on
the newly released significantly challenging ALFRED dataset.

Here we present a review of all approaches used in vision
language instruction following, divided into domains based on
mapping, language understanding and end-to-end approaches,
along with comparisons highlighting our novelty.

1.1 Mapping Based Approaches
Central to many robotic tasks is to learn and maintain a metric map
to rely on for navigation. Early work by the authors (Smith and
Cheeseman, 1986; Leonard and Durrant-Whyte, 1991), laid the
foundations for the probabilistic formulation of building globally
consistent maps, which is now widely known as Simultaneous
Localization and Mapping (SLAM). Over potentially long
explorations by the robot, data from a variety of sensors are
integrated (Bongard, 2008; Fuentes-Pacheco et al., 2015). SLAM
can be broadly divided into filter-based and graph-based. In the
former, the temporal aspect of consecutive measurements is
emphasized, whereas in the latter spatial aspects such as robot
poses and visibility of landmarks are important (Grisetti et al., 2010).

In recent works for vision language navigation (Anderson et al.,
2019), authors use a metric map as memory architecture for
navigating agents. In topological maps, the graph convention
can be used to represent environments with nodes representing
free space with edges between the nodes connecting the free spaces
by traversable paths. While metric maps focus on the geometry of
the surrounding space of the agent, topological maps are more
geared toward the connection between robot poses and trajectories
in the environment, which often provides simpler solutions to
route-based navigation (Werner et al., 2000). The introduction of
semantics in graph-based maps can provide powerful solutions to

encode relative locations of objects of interest in persistent memory
(Pronobis and Jensfelt, 2012; Lang et al., 2014) and is useful when a
higher level understanding of the surrounding is necessary. Deep
learning approaches have also been proposed in this context, as in
neural SLAM (Zhang et al., 2017) that tries to mimic the SLAM
procedures into soft attention-based addressing of external
memory architectures. Authors in (Chaplot et al., 2020) also
extend upon these approaches in a modular and hierarchical
fashion.

Several studies have also used differentiable and trainable
planners for navigation (Tamar et al., 2016; Khan et al., 2017;
Lee et al., 2018). There is another branch of work that focuses on
accurately navigating to a location once a map has already been
provided. They mainly focus on “targetted-navigation” and do not
deal with the complexities of natural language. A major challenge
they try to solve is to separate uncertain part from the certain part
(e.g., for a given room layout where you already know the position of
big items of furniture, where might small things like keys, remote
control, etc exist) (Sünderhauf, 2019). This is an important concept
when instructed language involves interaction with small objects in
certain parts of an environment (not observable from far away, or
may need to perform some actions to observe; such as open a
drawer), not just navigating to a place. Although detailed topological
maps may be provided, localization in dynamic settings may not be
trivial. Authors in (Chen K. et al., 2019) explore a behavioral
approach to navigation using a graph convolution network over a
topological map. In this regard, our contribution is mainly
constructing dense semantic topological maps from panorama
images, specialized for cluttered indoor environments.

1.2 Approaches Based on Language
Understanding
The earliest works on interpreting natural language commands for
navigation have used statistical machine translation methods for
mapping instructions to formal language (Matuszek et al., 2010;
Chen and Mooney, 2011). In (Matuszek et al., 2010), the authors
had used general purpose semantic parser learner (WASP) (Wong
andMooney, 2006) in order to learn semantic parser and constrain
it with the physical limitations imposed by the environment. With
the recent success of neural networks in natural language
processing (Goodfellow et al., 2016), several techniques have
been developed for interpreting user commands framed as a
sequence prediction problem (Mei et al., 2016; Anderson et al.,
2018). Such machine-level translation of natural language
instructions has also been explored in the context of automatic
question answering (Seo et al., 2016; Xiong et al., 2016). Following
up, recently, authors in (Zang et al., 2018) use attention
mechanisms to learn the alignment of language instructions
with a given topological map and output high-level behaviors.

In contrast, we adopt a completely unique approach that
associates semantics to each word of the language instruction
using a semantic slot filling model. We find that the semantics
we define are easy to learn and general enough to encompass various
kinds of household instructions. This significantly reduces the
complexity of input language instructions, allowing simple search
techniques to execute these instructions on a semantic topological
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map (which we also learn using our new proposed technique-see
mapping section). We will release the training data for this semantic
slot filling model (that we use to fine-tune BERT). We believe that
this will help researchers develop advanced techniques on top of our
proposed instruction simplification mechanism.

1.3 End-to-End Learning Approaches
Several recent deep learning approaches propose to learn amapping
directly from inputs to actions, whether structured observations are
provided (Mei et al., 2016; Suhr and Artzi, 2018) or the agent deals
with raw visual observations (Misra et al., 2017; Xiong et al., 2018).
Proponents of this approach argue about the simplicity of these
models in outperforming a combination of models that require
engineering hand-crafted representations. Cross-Modal grounding
of language instructions to visual observations is often used in
several works, via e.g., reinforcement learning (Wang et al., 2018,
2019), autoencoder architectures that impose a language
instructions-based heat map on the visual observations (using
U-net architectures (Misra et al., 2018), attention mechanisms
(Zhu et al., 2020), or implementation of nonlinear differentiable
filters (Anderson et al., 2019)). However, as we show later in the
results, going end-to-end may not be best for generalizing to
perform compositional tasks in unseen environments. Moreover,
these frameworks often may not combine depth sensing and
semantic segmentation, which are extremely valuable sources of
information, and can be easily transferred from pre-trained
frameworks. Also, keeping depth sensing and segmentation
modules separate helps to incorporate knowledge about new
unseen object categories into the framework in an easier fashion
than in end-to-end models.

Recent attempts at using modular architectures for Alfred
dataset include a research by Corona et al. (2020). In this study,
the modular architecture consists of a high-level controller and
eight independent modules for each subgoal task, which all have
the same recurrent neural network architecture as Shridhar et al.
(2020)’s monolithic model. Moca (modular object-centric
approach) method (Singh et al., 2020) is also proposed on
ALFRED dataset which two visual perception module (VPM)
and action policy module are trained in an end-to-end manner.
The VPMmodule in this study executes the interactionmask of the
target object, and the APM module predicts the action sequence.
HiTUT method (Zhang and Chai, 2021) tries to increase the
success rate of the ALFRED dataset by decomposing task
learning into three sub tasks; sub-goal planning, scene
navigation and object manipulation. All three sub tasks share
the similar input form; therefore they solve together by applying
an unified model upon on multi-task learning. In HSLM (Blukis
et al., 2022) paper, the proposed model architecture contains an
observation model, high-level controller and low-level controller.
The obsevation model constructs a semantic voxel map based on
the RGB images of the environment which takes computation time.
However, the step-by-step instructions in the dataset which are a
useful source for accomplishing tasks are not used. Also, a hurdle in
many end-to-end frameworks is combining all modules into end-
to-end planning. Our modular consideration has a distinct
advantage as it allows to incorporate several recovery strategies
out of failure modes. Consider the connection from instructions

(A-F) to instruction G in Figure 1. Having an independent
mapping module communicating to an independent language
and Cross-Modal understanding module allows to precisely
relocate the blue chair in Figure 1 from instruction A in
instruction G. In general, by quantitatively comparing these
methods results with ours, we show that going end-to-end may
not be best for generalizing to perform compositional tasks in
unseen environments.

In this work we proposed a new vision and language framework
to navigate a robot to accomplish the household tasks of the
challenging dataset—ALFRED. This framework contains six
different modules; Mask and Depth module, Mapping module,
Languagemodule, Cross-Modal Groundingmodule, Disambiguate
module, and Planning module as illustrated in Figure 2 (more
detailed framework is represented in Supplementary Figure S1 in
Supplementary). The functionality of each module, and how they
build up the overall framework is explained in Section 2. Then the
success rate of our framework for the whole task and for each
subtasks besides comparison with related works are presented in
Section 3. Finally, conclusion, limitations, and future works can be
found in Section 4.

2 MATERIALS AND METHODS

In Figure 2, we provide a summary of our modular approach to
solve this problem that can be broken down into six major
parts as:

2.1 Mask and Depth Module
As agent can navigate in the rooms virtually, it can capture a RGB
image xr ∈ Rh×w×3 of its current observation. From the perspective
of a robot, detecting objects and depths cannot happen without
prior knowledge. Therefore, a need to give the robot perception to
recognize the segmentationmasks and depth of objects from a seen
RGB image is called. This in turn helps robot to figure out which
object it needs to interact and how far the objects are in the room.
The first module in this work is presented to fulfill this need by
using trained deep learningmodels which convert an RGB image xr
to corresponding depth map xd ∈ Rh×w×1 and segmentation mask
xs ∈ Rh×w×n (each pixel stores a one hot encoding denoting one
out of n possible object classes). Here, h is the height of the RGB
image, w is the width, n is the number of object classes of interest.

In the depth prediction used in this work, we borrowed Bhat et al.
(2021) study on monocular depth prediction where the network
adaptively concentrates on the region of the depth range which is
more probable to occur. This depth prediction technique dividing
the depth values into bins with flexible width. Then, the depth center
values are adaptively estimated and depth values are calculated based
on linear combinations of the bins center values. The output depth
map xd in our modular framework will be used in mapping module
to generate navigation map as illustrated in Figure 3.

Semantic segmentation mask xs, another part of the Mask and
Depth Module, is used as the input of three other modules
(Disambiguate, Mapping, and Cross-Modal), indicating the
importance of this model in our framework as it is shown in
Figure 3. There are plenty of objects in all rooms of Ai2thor;
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however, we are looking for some special target objects which the
robot interacts. Therefore, all 80 target objects from Alfred
instructions were extracted and considered as corresponding
classes for semantic segmentation. DeeplabV3 (Chen et al.,
2017) is a semantic segmentation architecture that is used in
this work because of its ability to handle the issue of segmenting
objects at multiple scales. Some classes such as “Pot” or “Wine
Bottle” are rare in the Alfred data, resulting in data imbalance
problem. To address significant class imbalance in training data,
we use a weighted loss function (Dice Loss). The weights are
added based on the inverse numbers of objects in each class.

2.2 Mapping Module
Given an RGB image xr, a corresponding segmented image xs, and
a corresponding depth image xd, this module first constructs an
explicit Birds Eye View (BEV) map of the environment around

the agent by approximate projection using geometric transforms
and camera intrinsic parameters. Then, this map is refined to
centimeter precise egocentric projection using our proposed
filtering algorithm based on node classification using graph
convolution. It considers the navigable space discretized in
unit steps corresponding to the discrete step size taken by the
agent at each time step. The steps of this module is represented in
Figure 4.

2.2.1 BEV Projection Map
Our goal is to obtain a projection p ∈ Rs×s×n by considering
having the segmentation mask and depth map of robot’s current
observation image using the Mask and Depth Module. Here, s is
the size of the spatial neighborhood around the agent where we
are projecting to obtain a map. Each grid of the s × s
neighborhood contains a 1 × n dimensional feature vector

FIGURE 2 | MoViLan overview: All six modules are shown in boxes. Arrows show how modules transfer information to achieve a set of actions (Pick up here).

FIGURE 3 | Mask and Depth Module: Predicts segmentation mask and depth map from robot’s current observation.

FIGURE 4 |Mapping Module: Given depth map and segmentation mask, this module creates a projection (BEV) map and then it refines the map using the trained
graph convectional network. The generated navigation map will be used further in the Planning Module.
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denoting one out of n possible object classes occupying the grid
(including navigable space). Standard image segmentation and
monocular depth estimation frameworks can be used to provide
xs and xd from xr with relative ease. Each pixel value of depth
image can be multiplied with pixel indices, camera focal length
and calibration matrix to obtain x, y and z distance of the pixel
with respect to the agent, which is then rescaled and normalized
to lie in any of the s × s grid around the agent.

Let K ∈ R3×3 be the agent camera calibration matrix. Let dij
denote the (i, j) pixel in the depth normal image xd and q denotes
camera focal length. Let px(i, j) denote the x distance (relative to
agent) of the (i,j)th pixel in the RGB image, accordingly, py(i, j)
and pz(i, j). They can be obtained using the following formula.

px i, j( )
py i, j( )
pz i, j( )

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � K
i
j
q

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦dij, i ∈ 1, . . . , h{ }, j ∈ 1, . . . , w{ } (1)

Let V denote the maximum range of vision of the depth
camera or depth estimation method, D denote the maximum
pixel value of xd, and r denote the edge length of each small grid in
the projection map (or resolution). A contributing element of the
projection map p ∈ Rs×s×n can be obtained from the pixel (i, j) as
follows:

u i, j( ) � V

D × r
px i, j( ) − s + 1

2
(2)

v i, j( ) � V

D × r
pz i, j( ) − s + 1

2
(3)

Therefore, pixel i, j in xr, xs and xd get assigned to the grid
location u(i, j) and v(i, j) around the agent in p ∈ Rs×s×n. Let
(u, v) be the shorthand for each grid location which now stores
a (1 × n) vector. Here n is the number of objects of interest.
Now, let each element position l in the (1 × n) vector store 1 if
the grid location was mapped from the contributing pixel in
RGB image which belonged to class n, and 0 otherwise.
Therefore, puvl can either store 1 or 0. Furthermore, we are
using a panorama image for mapping, which means puvl is
obtained for each small rotation of the agent θ that is taken to
complete a full rotation 2π. Therefore puvl at a relative rotation
of the agent becomes pθ

uvl. Let R(θ) be the transformation
matrix that rotates a competing element by the angle θ. Then
the final (1 × n) dimensional grid element of the projected
map with grid index u(i, j), v(i, j) is given by:

puvl � θ

2π
∑
θ

R θ( )pθ
uvl (4)

2.2.2 Graph Convolution for Projection Refinement
The graph convolution algorithm we propose is essentially a
filtering algorithm for refining obtained projection elements puvl
in an (s × s) grid around the agent. (Figure 5).

FIGURE 5 | Schematic of mapping using graph convolution: (A) the agent obtains input panorama images in RGB, segmentation and depth modalities to construct
a birds eye view (BEV) projection map of objects of interest around the agent using geometric transforms with camera intrinsic parameters (e.g., Bed (green), Dresser
(light blue), and Desk (blue) and the navigable space (white) are the semantic objects of interest here). (B) Supervised training is used with the help of a true map (obtained
by placing agent at each position in the room) for a select few rooms and agent locations. (C) the initial projection gets refined using a trained graph convolution
network. Each grid node represents 0.25 × 0.25 m space.
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2.2.2.1 Preliminaries on Graph Convolution Networks (GCN)
GCN learns a function of signals or features on a graph
G � (V, E). The graph G takes as input:

1) A description of feature xi for every node i, which can be
summarized as an N × D feature matrix X, where N is the
number of nodes and D is the number of input features.

2) A graph structure description in matrix form, supplied as an
adjacency matrix A.

The graph G produces a node level output Z (an N × F feature
matrix, where F is the number of output features per node). Let
H(0) = X, Hl = Z, and L be the number of layers of convolution,
then the operation of neural network in the graph structure can be
written as:

H l+1( ) � fl H l( ), A( ), l ∈ 1, . . . , L{ } (5)
Implementation of different frameworks for graph convolution
chiefly differs on the choice and parameterization of the function
that needs to be learned f = {f1, . . . , fl}.

2.2.3 Problem Specific Formulation
The graph structure we use is derived from the action space of the
navigating agent in the form of a grid lattice (e.g., (Zhang et al.,
2019)). Entire (s × s) space around the agent is converted to a grid
topology with N = s2 nodes with a connection between two nodes
if the Manhattan distance between them is equal to 1. Two nodes
are connected to each other irrespective of whether there exists a
path between them or not. For our case, the path is a unit step that
can be taken by the agent in any of the four directions. The input
feature at each node xi is equal to the (1 × n) dimensional grid
element puvl discussed earlier, with number of input features D =
n. The expected output at each node is a one hot encoding class
wise representation for the following 4 possibilities (F = 4): Unk
(e.g.,- beyond a visible wall)- encoded as [1, 0, 0, 0] Nav-encoded
as [0, 1, 0, 0],Target-encoded as [0, 0, 1, 0] andObstacle-encoded
as [0, 0, 0, 1],

Applying graph convolution technique results in sharp and
precise prediction of node (grid) coordination which is required
for navigation. Moreover, by using GCN we can understand the
relationship between nodes whether the path between them are
navigable or not.

2.2.4 Supervised Training
Algorithm 1 shows the details of forward computation and
update of neural network parameters f for our proposed GCN.
Let L be the total number of graph convolution layers, fl denote
neural network parameters at a particular layer of GCN, V and E
denote the collection of vertices and edges in the graph
structure. First the node level features xi are aggregated
(summed together) over its connecting neighbors, after which
a global function for that layer fl is applied to get global feature of
the graph for that layer l as Zl. The final global feature ~Z is
compared to the problem specific global feature labels (see
paragraph above) using negative log likelihood loss function
(NLLLoss), later all the parameters in all the layers f are updated

using backpropagation with Stochastic Gradient
Descent (SGD).

Algorithm 1. GCN computation + parameter update

2.3 Language Module
This module takes the natural language instructions input to
the agent. We propose generalized semantic labels for parsing
sentences which can be trained using transfer learning from
BERT with as few as 1,000 examples. This step helps the agent
to decide targets for navigation, objects to interact with as
well as relationship of the objects to each other with regards
to fulfillment of the task (as understood from the language
only).

2.3.1 Contextual Understanding of Natural Language
Instructions
We extract relevant interpretations of the input instructions that
could be pieced together with information from the other
modules. We focus on extracting two types of interpretations
for the instructions simultaneously. First, each sentence is
classified as either a navigation task or a non-navigation task
denoted by li (known as intent classification, with
labels—navigation and non-navigation). Second, each word in
these instructions is classified into a semantic category (slot
labels), which indicate the role of a word and its semantic
relations to the other words in the sentence (this is a sequence
labeling task known as slot filling). Thus, the sequence of words in
the input x = {x1, . . . , xT} is labeled with the slot label sequence
ls � {ls1, . . . , lsT} in the output. In the proposed language
understanding module, two labels for intent classification and
12 labels for slot filling (word level semantics) are considered (see
Figure 6). To simultaneously classify the intent and the label
sequence of an instruction, we leverage the recently proposed
Bidirectional Encoder Representations from Transformers
(BERT) (Vaswani et al., 2017) approach. This model is used as
a source model for transfer learning purposes (Chen Q. et al.,
2019).

The input representation to BERT is a concatenation of
WordPiece embeddings (Wu et al., 2016), positional, and
segment embeddings. With a special classification embedding
([CLS]) inserted as the first token and a special token ([SEP]) as
the final token, BERT takes the token sentence x = (x1, . . . , xT) as
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input and output hidden statesH = (h1, . . . , hT). Based on hidden
state of [CLS], the intent of a sentence is predicted as li =
softmax(Wih1 + bi). The final hidden states of other tokens h2,
. . . , hT can be fed into a softmax layer to assign slot labels to
words. Each tokenized input word is fed to the WordPiece
tokenizer and the hidden state for the first sub token (call it

hn corresponding to xn) is input to a softmax classifier to get the
label of the nth word. Let N be number of tokens, then:

lsn � sof tmax Wshn + bs( ), n ∈ 1, . . . , N (6)
The following objective models the joint task of intent

classification and slot filling

FIGURE 6 | Defined labels for intent classification and slot filling tasks for ALFRED dataset.

FIGURE 7 | Language Module: The extracted intent and slot-filling from the fine-tuned Bert model is used in Cross-Modal grounding, Disambiguate and Planning
modules.
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p li, ls|x( ) � p li|x( )∏N
n�1

p ys
n|x( ) (7)

Finally, we maximize the conditional probability p(li, ls|x),
using Cross Entropy loss to train/fine-tune the model.

Further, using the trained BERT-based language model, the
intent li and slot-filling ls of each language instruction are
imported in Planning, Cross-Modal and Disambiguate
modules (Figure 7).

2.4 Cross-Modal Grounding Module
This module identifies regions of the input RGB image that
coincide with the natural language descriptions. This is
achieved by combining image segmentation technique with
word level semantics obtained from language understanding.
Using such keywords from language to identify regions in
image is known as referring expression image segmentation
(e.g., (Ye et al., 2019)). We propose a simple restructuring of
language inputs to LingUNet (Misra et al., 2018) and retrain it

conditioned on semantic word labels provided by the language
understanding module.

2.4.1 Vision Language Grounding
A major challenge in vision language navigation is making the
connection between language instructions and observed visual
inputs. A technique that segments images based on key words in a
natural language expression is known as referring expression
image segmentation.We adapt the LingUNet learning framework
(Misra et al., 2018) for predicting a probability distribution over
input pixels of RGB image. We take a slight departure from the
original formulation for presenting instruction encodings to a
UNet architecture (Ronneberger et al., 2015).

As shown in Figure 8, we pass the text instruction through the
language understanding module which assigns slot labels to each
word in the sentence according to the labels proposed in this paper (as
shown in Figure 6). The words that get assigned labels are converted
to embedding vectors through a learnable embedding layer. The
embedding obtained for each slot label are reshaped into a kernel and

FIGURE 8 |Cross-Modal grounding framework adapted from LingUNet. Res(i-j) denotes pretrained layers of ResNet starting from layer number i to layer number j.
Output of softmax is intersected with output of UNet based class segmentation map to arrive at final map.

FIGURE 9 |Cross-Modal Grounding Module: This module detects the pixels of object of interest extracted from language instruction using a vision languagemodel
(U-NET). The output of this module is further used for manipulation and navigation in Planning Module.

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 9304869

Saha et al. MoViLan

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


stacked together as a set of filters (Ronneberger et al., 2015). Each of
these stack of filters (K1, K2, K3, K4) are called slot kernels and are
convolved over feature representations obtained from forward pass
through the pretrained ResNet (He et al., 2016) layers. In the example
shown in Figure 8, an image is extracted from the ALFRED dataset
withAi2Thor simulator. The input image gets a forward pass through
the pretrained ResNet layers- Res(i − j), where i, and j are the layer
numbers, and i− j implies the network formed by the layers i through
j. Before upsampling through convolution filters H1 to H4, they are
convolved with slot kernels to obtainG1 toG4. The final featuremap,
after application of Softmax operation, assigns a probability
distribution which highlights regions/pixels Pc having a high
probability of being the object mentioned in the text instruction.

This prediction is further combined with segmentation mask to
get the desired object segmented pixels. ts is the object in the mask
image xs which its pixels in the mask image Ps mostly matches with
the high probable pixels Pc extracted fromUNet model. Moreover, ts
is then evaluated with the “target-object” tl obtained from the
Language Module. If ts and tl are not matched, the second most
probable semantic mask is selected as ts. If no object is found, this
instruction is reported as failure. The output of this module Ps is
further used in Planning Module as it is shown in Figure 9.

2.5 Disambiguation
Image semantic segmentation is used alongside depth maps and
RGB images in our algorithm. However, ambiguous natural
language descriptions of a task can occur when an agent fails to
recognize a different name for the same object visible in the scene.
Ambiguous description can also occur when an object category
which is completely new to a trained semantic segmentation model
is expected to be related to a “target-object” mentioned in the
language instruction. We propose a 2-way Disambiguation for
these cases. This technique relies on the agents ability to connect to
an online image database (eg-google image search) and download
images corresponding to a specified keyword. Lets say for example,
a language instruction specifies the agent- “Go to a dogbed”, but the
image semantic segmentation model recognizes the object
“beanbag”, and “beanbag” is visible to the agent. The 2-way
Disambiguation can be briefly summarized below:

1) Disambiguate by pixel comparison
a Download N images for the query object specified by the
user in natural language (eg-“dogbed”)
b Let there be K objects visible in the scene. For all objects
visible in the scene, extract the group of pixels in the image

corresponding to its object category as recognized the
semantic segmentation framework.
c Forward pass N images for query object through pretrained
ResNet and obtain the feature vector as an embedding for the
image. Call itNf= {Nf1, . . .NfN}. Forward passK images for visible
objects through pretrained ResNet to obtain Kf = {Kf1, . . . KfK}
d Calculate pairwise cosine similarity between each element of
Nf and Kf, and chose Kfi that has the highest value with all the
elements of Nf. The disambiguated object is the object
corresponding to Kfi.

2) Disambiguate by label comparison
a Download N images for the query object specified by the
user in natural language (eg-“dogbed”)
b Let there be K objects visible in the scene. For all objects
visible in the scene, query the name for the object category as
recognized the semantic segmentation framework.
c Download 1 image for each recognized object category with
the query name as the segmentation class name (eg-
“beanbag”), downloading a total of K images.
d Forward pass N images for query object through pretrained
ResNet and obtain the feature vector as an embedding for the
image. Call itNf= {Nf1, . . .NfN}. Forward passK images for visible
objects through pretrained ResNet to obtain Kf = {Kf1, . . . KfK}
e Calculate pairwise cosine similarity between each element of
Nf and Kf, and chose Kfi that has the highest value with all the
elements of Nf. The disambiguated object is the object
corresponding to Kfi.

Therefore, using this module results in extracting the
consistent object name lt (which is similar to the segmentation
labels) from the ALFRED complex instructions. This, in turn, is
helpful to reduce confusion in interacting with correct objects in
future steps. Figure 10 shows the schematic of this module.

2.6 Planning
The goal of this step is to combine outputs from other modules and
output a sequence of low level actions (Figure 11). First, it takes
word level semantic parsing from the language module as input.
After mining for associations across a large corpus of word slot
labels this module assigns “semantic object priors” to each object
identified in the language. This lets the agent understand for
example, that small objects like “pen” are to be picked up using
“Pickup” actions, whereas large objects like “table”might be suited
for “Place” operation and so on. Output of semantic object prior
along with the navigation map from the mapping module and

FIGURE 10 | Disambiguate Module: This module searches for images of unclear object labels and try to assign recognized labels to the objects to reduce
ambiguation.
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matched pixels from Cross-Modal grounding module help the
agent choose a high level behavior (such as “Pick up pen from
table”). It is then converted to a sequence of low level actions using
A* search algorithm with area (of the object of interest)
maximization heuristic. Examples of low level actions would be-
“MoveAhead”, “RotateRight”, “PickObject”, and “PutObject”, etc.

2.6.1 Extracting Semantic Object Priors
The Language understanding module also provides a method to
construct semantic relationships in between common household
objects with regards to fulfillment of common household tasks
which is used in the Planning Module. This kind of “common
sense” relationships can be obtained in form of a densely connected
knowledge graph (a small part of which is illustrated as an example
in Supplementary Figure S8 in Supplementary). For example, this
graph shows semantic relationships of the household object
“Drawer” with several other household objects all of which are
specified as nodes of the graph and edges describe the relationship
between them. We propose a simple technique for automated
extraction of these relationship patterns purely from language
instruction data. Let L � {l1, l2, l3, . . . , ln} denote a corpus of
language instruction data involving execution of tasks in indoor
household environments. Let each li = {si1, si2, . . . , si12} contain a list
of slot labels (sij) for each word in the instruction (Figure 6 for list of
12 slot labels). Our algorithm makes two passes over the corpus L.
In the first pass, it identifies unique objects mentioned in the
language by querying the slot label for “target-obj” and
“refinement-obj” which are extracted by BERT. Each unique
object is added as a node in the graph. For the same instruction,
it also queries the slot labels “action-n-navi” and “action-desc” to
determine the behavior of the agent expected towards the object
such as whether it is generally something to be picked up (e.g., pen),
or something which serves as a big landmark for the agent to
navigate (e.g., bed). The words obtained by querying the slot labels
for the instruction are added to a list of possible edge relationships
which would be added later to connect the nodes of the graph. Same
query can be made for the slot labels “refinement-rel” and “target-
rel” to determine the location relationship (e.g., beside, above,
below, and together) of the “target-obj” and the “refinement-
obj”. The words obtained by querying the slot labels are again
added into the list of possible edge relationships. In this way, after
the first pass, the list of all nodes of the graph is obtained along with
the possible edge relationships. However, these edge relationships
can be highly repetitive, for e.g., the words “pick”, “grab”, and “take”

describe the same relationship in the sentence “pick up the
cellphone from the desk” for the node pair “cellphone” and
“desk”. This is why we need to condense the edge relationships
into as few distinct patterns as possible. For this, we use
combination of several word embeddings and compare pairwise
similarity. Although very rudimentary, this technique tends to work
best for our scenario. A threshold value is determined based on
repeated trials for a fixed corpus L and relationship pairs that have
similarity values above the threshold are renamed into a common
name (e.g., “pick” = “grab” = “take”). In the second pass of the
algorithm, the nodes are then connected to each other through the
refined relationships.

2.6.2 Modular Planning for Execution of Low Level
Actions From High Level Behaviors
In the final task for executing natural language instructions
through low level actions, we propose a generic condition based
planner.We proposed these conditions based on extensive study of
25,000 + natural language instructions and incorporated human
like common sense reasoning through the conditions. Most of the
components of the planer leverage specialized modules that can be
trained independently using state of art deep learning models or
customized using additional user specified domain knowledge.
Because each of the tasks of visual perception, language
understanding, as well as Cross-Modal Grounding and
Disambiguation operate and can be trained independently, the
bulk of planning boils down to choosing a high level agent behavior
at a time step which is executed as a sequence of low level actions
over several time steps. Here we provide a complete visualization of
all the high level behaviors that are available to the agent in
Supplementary Figure S9 in Supplementary.

The planner consists of two main modules—the navigation
stack and the manipulation stack. Any instruction that has both
navigation and manipulation components can be executed part by
part as navigation andmanipulation instructions. In the navigation
stack, input navigation instruction can specify the agent to execute
either a hard instruction such as “turn around”, “walk 2 steps
forward”, arbitrary instructions, such as “walk forward a few steps”
or targeted navigation such as “walk over to the desk”. These are
high level behaviors which are exactly determined by querying slot
labels corresponding to the parse of the instruction by the language
understanding module. Hard and arbitrary instructions can be
executed by direct application of low level commands as extracted
by querying slot labels of the instruction.

FIGURE 11 | Planning Module: Given the navigation map, desired object pixels, and slot filling words from language instruction, this module can predict low level
actions through two planning strategies: High level behavior and semantic object priors.
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On reaching targeted navigation, the agent utilizes the mapping
module which relies on graph convolution filtering to provide an
explicit BEV map of agent surroundings. However the number of
targets t can be greater than 1, equal to 1, or even 0 when it is
beyond depth perception or not visible to the agent, or is assigned a
different object category (ambiguous instruction). When t > 1 the
Cross-Modal Groundingmodule is invoked whichmatches groups
of pixels in image to object descriptions in language to reduce the
number of targets to 1. If t = 1, a straightforward A* planning can
be invoked to enable the agent to reach the target location. If there
is an obstruction not accounted for by the Mapping module (or
moving objects), path planning may fail to execute, in that case, a
small allowance is provided to the agent for a fixed number of
collisions during which it remaps its surroundings. Popular
techniques like Kalman filters can also be used to fuse different
map readings over time. If the number of allowances is exceeded,
the agent can try to face the target in a different direction (all
objects have 4 different planning targets because of box like BEV
approximation). Finally, when t = 0, the first check is done to
ensure the object is visible in RGB frames (if its too far for depth
perception). If visible in RGB, the agent makes a move in the
general direction of the object considering the mapped navigable
space around it. If the object is not RGB visible, a small
neighborhood random exploration is done to make sure the
object has not been cut off from visibility due to walls or other
obstructions. If the object then becomes visible, Mappingmodule is
called again to receive a new map. However, if the object is still not
visible, the Disambiguation module (“Resolve”) is invoked, which
relies on an internet connection to an online image search database
to disambiguate objects and provide a valid target that matches
language description. After navigation succeeds, a unit refinement
step is executed in which the agent takes a unit step in the direction
of the object which maximizes the segmented area of the object.

For the manipulation stack, the slot labels for the instruction is
analyzed to decide whether the number of interaction objects i > = 2
(for example “Place the book on the table to the right of the lamp”)
or i = 1 (for example “turn on the light”) or i = 0 (for example “gaze
upwards”). In case i > = 2 an entity association is done based on slot
labels which places objects in a hierarchy of interaction (for example
table is level 0, lamp is level 1, book is level 2). After that, for both i >
= 2 or i = 1, a check is done to make sure the objects mentioned in
language are visible in RGB frame. If multiple objects of same
category are present, Cross-Modal Grounding module is invoked,
however if none of the objects are found to match with object
categories for image segmentation, then Disambiguate module is
invoked. Finally, after making sure the objects are visible, grounded
and disambiguated, low level actions such as “pick (book, table)” or
“turn-on(lamp)” can be executed.

3 RESULTS

In this paper, we use the recently proposed ALFRED data set
(Shridhar et al., 2020) built upon the Ai2Thor simulator (Kolve
et al., 2017) to demonstrate the efficacy of our proposedMoViLan
framework. Contrary to most other simulators, it features
extremely long execution trajectories (some requiring upto 100

low level actions) and an immense object interaction diversity
featuring compositional tasks such as in Figure 1, thereby
allowing us to demonstrate performance in significantly harder
and closer to real life scenarios.

Tasks Description—Scenarios are divided into collection of
compositional tasks (language instructions with expert
demonstrated sequence of low level actions -producing RGB
images) over 120 different rooms including kitchens, living
rooms, bedrooms and bathrooms (30 rooms each). Tasks
demonstrated in ALFRED can be classified into 7 different
types—Pick and Place, Stack and Place, Pick two and Place,
Clean and Place, Heat and place, cool and place and examine in
light. More closely, these tasks are a combination of 8 fundamental
high level “sub-goals”- GoTo (navigate to some place), Pickup (pick
up small objects like a pen), Put (place objects that have been picked
up in a certain receptacle), Cool (cool an object), Heat (heat up an
object), Clean (remove objects on a surface), Slice (cut an object)
and Toggle (turn appliances on and off).

Training, Test, and Parameters—The available ALFRED
dataset comes divided in train, test and validation folders over
kitchens (1–30), living rooms (201–230), bedrooms (301–330),
and bathrooms (401–430). We select language instruction data
from the train folders to train our language module. Remaining
modules (Cross-Modal grounding and mapping) do not require
expert demonstrated actions to train upon and we simply collect
RGB and depth data from each position of all the rooms for
training our modules (rooms basic architecture remain
unchanged across train and test, but language instructions and
scene setup with placement of objects changes).

We compare performance with five other major baselines
mentioned in baseline methods. While the baselines are tested
on the tasks in the test folder, they are allowed to train on the
remaining data set (train and validation folders). Across all the
test folders, roughly 24,000 language instructions have been
encountered.

Mask and Depth Predicition—RGB, mask and depth images
extracted from training and testing data and different image
augmentation techniques are used on training data for training
this module. 8560 RGB images and their corresponding depth
images are collected from 20 random locations in each room for
training and testing. We provide further information regarding
the training process and the outcome results in Supplementary
(Supplementary Figures S2, S3).

Language Understanding—From our training data, we hand
label 1,000 language instructions using our proposed labeling
scheme and finetune on a pretrained BERT model for slot filing
and intent detection tasks. Training parameters are the same as in
(Monologg, 2020).

Mapping—On train rooms we scan panorama images at each
navigable position in the room, approximate projection maps,
and simultaneously form ground truth occupancy/collision maps
(upon placement of an agent at each point in the room). The
training of the graph convolution is to input approximate
projections and estimate the corresponding collision grid map
around the agent. (navigable space, obstacle, target, and
unmappable (beyond wall)). Training parameters are same as
in (Dgl, 2020).
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Vision Language Grounding—BERT provides semantic slot
labels for each word of the sentence. Therefore during test,
instead of natural instructions, structured words can be
provided as in Figure 8. Therefore to train LingUNet with our
proposed input restructuring, human level natural language is not
required. We can automatically generate training data as follows.
Images (300 × 300 pixels) are extracted from each position of
training rooms. From the ground truth segmentation of the image
upto 3 objects can be selected randomly and their contours and
center points are extracted. Their names are collected from the
metadata of the simulation. Using a random ordering now each
object can be referred to the other based on relative locations of
their center points. Training parameters are same as in (Lil lab,
2020). No training is required for Disambiguation and Planning
modules. To highlight our modules performance, qualitative
results for Language, Mask and Depth, Mapping and Planning
modules are mentioned in Section 3.2.

Agent Observation Space—Since Ai2Thor does not support
panorama images during test time our agent acquires panorama
images just as in the top left corner of Figure 5. Instance
segmentation (middle) is estimated using UNet, and depth
estimation (bottom) is used as provided by the simulator, which
can also be replaced by off the shelf monocular depth estimation
frameworks. The agent maintains a persistent map throughout
execution of the provided instructions updated every time it takes
an action using our proposed graph convolution filtering approach.
On encountering collisions, it is registered into the persistent map
and is recognized while taking subsequent actions.

Agent Action Space—From the simulator we chose a
multitude of low level actions as listed in- (AI, 2020). Total of
13 discreet actions available each time step. For example,
movement actions like—MoveAhead, RotateRight, LookUp,
LookDown, and interaction actions like - Pickup, Put, Open,
Close, ToggleOn, etc. Interaction actions require to either provide
an interaction mask over input RGB image, or provide the
complementary interacting object on which to act. While the
baseline chose the former approach, we adopt the latter approach.

Metrics—We use the same metrics used for evaluating the
baseline in (Shridhar et al., 2020): Task Success is a binary metric
tracked for each task. Value is set to 1 if all the “sub-goals” that
constitute execution of a complete task specified by the entire
language instruction have been fulfilled. Otherwise this is set to 0.
“Success-rate” of an algorithm is then calculated by taking the
average of all task success values over all the tasks. Goal-
Condition Success is the ratio of “sub-goals” completed
successfully out of all the goals in the task. The sub-goal
success of an algorithm is similarly an average over all tasks.
Path weighted success rate and goal-condition success are
computed as multiplying the task success and the goal-
condition success rates respectively by the ratio r

R, where R is
the maximum of number of required actions (expert
demonstrated) and number of low level actions executed by
the agent, and r is the number of agent actions. Finally, Sub-
Goal success rate is the ratio between the number of times a sub-
goal is achieved and the total number of sub-goals.

3.1 Benchmark Comparison
Tables 1, 2 provide performance comparison for complete tasks
and modular sub tasks respectively. In “MoViLan + PerfectMap”,
ground truth BEV maps are provided to the agent as an ablation
study for removal of our mapping module. Our framework
demonstrates superior performance compared to the baseline
(Shridhar et al., 2020) algorithms, Moca (Singh et al., 2020),
HiTUT (Zhang and Chai, 2021), HLSM (Blukis et al., 2022),
and LWIT (Nguyen et al., 2021) on complete tasks. For sub-
goal tasks, our framework has significantly higher path weighted
success rates for “GoTo” compared to previous works (language
instructions requiring pure navigation) because of novel mapping
module, and hence higher overall success rates due to better
positioning. With perfect map, our other subgoals are

TABLE 1 | Task and Goal-Condition success percentages (rounded to nearest
integer percentage). Results for the corresponding path weighted metrics are
provided in parenthesis.

Test (unseen) (%) Task Goal-Cond

SEQ2SEQ Shridhar et al. (2020) 0.5 (0.2) 7.1 (4.5)
SEQ2SEQ + PM Shridhar et al. (2020) 0.4 (0.1) 7.0 (4.3)
Moca Singh et al. (2020) 5.3 (2.7) 14.3 (10.0)
LWIT Nguyen et al. (2021) 8.4 (5.1) 19.1 (14.8)
HiTUT Zhang and Chai (2021) 13.8 (5.8) 20.31 (11.51)
HLSM Blukis et al. (2022) 20.3 (5.5) 30.3 (9.9)
MoViLan 27.1 (12.4) 35.2 (20.6)
MoViLan + PerfectMap 45.2 (21.8) 55.7 (28.3)

TABLE 2 | Sub-Goal success rates (rounded to nearest integer percentage) on validation set.

Validation
(unseen)
(%)

GoTo Pickup Put Cool Heat Clean Slice Toggle

SEQ2SEQ Shridhar et al. (2020) 21 20 51 94 88 21 14 54
SEQ2SEQ + PM Shridhar et al. (2020) 22 21 46 92 89 57 12 32
Moca Singh et al. (2020) 32 44 39 38 86 71 55 11
LWIT Nguyen et al. (2021) 39 79 66 85 94 95 68 66
HiTUT Zhang and Chai (2021) — 71 69 100 97 91 78 58
HLSM Blukis et al. (2022) — 57 — 39.6 17.0 25.8 — —

MoViLan 45 50 50 66 68 50 57 60
MoViLan + PerMap 70 80 70 81 90 88 55 62
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comparable to SOTA, but have lower scores without in some cases
(e.g. “Put”, “Pick up”) because of additional checks required by our
planning algorithm to ensure better connection between individual
sub tasks forming a major task (see Supplementary Figure S9).
Note that with PerfectMap, task success rate increases significantly
without any considerable increase in sub-goal success rate for
“Slice”, and “Toggle”. This is because without good positioning, the
agent would fail on many manipulation tasks.

Anecdotally, Figure 12 demonstrates a failure case (top row) for
baseline and a corresponding success case (bottom row) for our
framework. It is observed that the baseline exhibits a behavior of
“memorizing” trajectories from training data. While it leads to
trajectory lengths close to expert demonstration in a small number
of success cases, it also succumbs to failure in unseen rooms and for
unseen object interactions. This conjecture is further supported by
the fact that we observe baseline success rate as high as 25% on the
training set. Authors in (Shridhar et al., 2020) have also highlighted
the higher success rates for baseline on sub-goal tasks. This is an
indicator that models using modularity or hierarchy would be
favorable as we find in our case which is also obvious from our
performance in Table 1 comparing to other methods.

3.2 Ablation Studies
Besides our framework’s overall success rate on the ALFRED
dataset, here we report outcomes of some ablation studies to
understand the roles of different modules. We perform these
studies by replacing the modules with their corresponding
ground truth, extracted from ALFRED. Small improvement
using ground truth suggests strong performance by the
corresponding module.

FIGURE 12 | Comparison of trajectories for the baseline and our methods; agent shown by green circle, with starting orientation shown by brown arrow; relevant
subgoals corresponding to instructions are shown in yellow (ours) and orange (author) colored circles; trajectory for our method shown by dotted blue line (success) and
that for baseline shown by dotted red line (failure).

TABLE 3 | Ablation study on validation unseen dataset.

Validation (unseen) (%) Task Goal-Cond

MoViLan + PerfectMap 43.5 (25.7) 56.1 (30.2)
+ gt depth 46.7 (23.7) 59.8 (31.1)
+ gt mask 57.8 (28.9) 68.1 (36.2)
+ gt mapping 49.0 (26.6) 61.3 (32.2)
+ gt language 50.6 (24.8) 64.2 (31.2)
+ gt cross-modal 53.3 (25.3) 68.5 (33.6)
− disambiguate 40.5 (24.6) 52.2 (28.5)

Comparing the performance of our framework with the case where the ground truth
values for each module are replaced. Results for the corresponding path weighted
metrics are provided in parenthesis.

TABLE 4 | Table showing comparison of performance improvement in predicting the class of each node in grid projection map when using Graph convolution filtering over
approximate projection map as compared to only approximate projection map.

Map accuracy Navigable space Big targets Medium target Small targets

Approx. projection 65.1 ± 10 62.3 ± 7 60.2 ± 5 55.3 ± 5
Graph convolution filtering 95.5 ± 2 93.2 ± 2 91.4 ± 3 89.6 ± 5

Values are shown in mean accuracy in percentage of correctly assigned grids followed by standard deviation values. Four major categories are investigated (along columns)- navigable
space, identifying grids containing big targets like Bed, identifying medium sized targets like Desk, dresser, and identifying small targets like SideTable, Stool.
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Ground truth depth map and segmentation mask are replaced
in our framework and denoted as “+ gt depth” and “+ gt mask” in
Table 3. Based on the results, the ground truth depth does not
change the success rate significantly (3.2% on validation unseen)
which means our predicted depth images are close to the ground
truth. Given the high number of objects in the images and
unbalanced class distribution of objects, the ground truth
segmentation provides 14.3% improvement compared to our
segmentation model. Also, the performances of depth and
mask models are computed and shown in Supplementary
Table S2 in Supplementary based on IOU metric for
segmentation and RMS metric for depth.

Ground truth BEV view or projection map is extracted from the
ALFRED dataset by considering the actual location of objects in the
room.Using the ground truthmapping results in 5.5% improvement
in task success rate. Although the diversity of objects/obstacles in the
rooms of ALFRED dataset is high, this improvement is partial. This
means our proposed mapping module predicts the maps which is
similar to the oracle maps. Also, in Table 4 we conversely compare
performance gains provided by our mapping module compared to
pure geometric projection for targeted navigation tasks. These results
represent quantitative analysis of how much better a graph
convolution projected map can obtain compared to pure
approximate projection.

Moreover, as mentioned in Section 2.3.1, the intent and slot
filling of each sentence is predicted using the language module. To
examine the performance of the language module, instead of
predicting the instructions intents and target objects (which are
the ground truth of our language module that can be extracted from
the ALFRED dataset), the ground truth information is replaced in
our framework. Even in ground truth data, the target objects of some
sentences are not mentioned in the sentence, or some equivalent
names are mentioned instead of them. For instance, in the sentence
“look left”, the ground truth target object in the ALFRED dataset is
considered “Toilet paper hanger”; however, our model predicts
nothing for the target object, which actually is correct just by
looking at the instruction sentence. Moreover, we prepared a
dictionary that links the name mentioned in the sentence to the
corresponding ground truth target object when equivalent names are
used instead of target objects. Despite the existence of these
challenges in predicting the target objects, using the ground truth
target objects only improve success rate by 7.1%; proving the
promising performance of our Language Module. The accuracy
of this model is also reported in Supplementary Table S2 in
Supplementary.

Also, the ground truth segmentation mask (pixels) of the
target object is replaced with the output of the Cross-Modal
Grounding Module. This, in turn, increases mostly the
manipulation instructions and causes 9.8% improvement in
the task success rate. Disambiguate Module is evaluated by
removing this module from the whole framework (since
removing this module does not cause missing information and
it is basically used to revise the name for target object). As it is
shown in Table 3, removing this module results in around 3.0%
reduction in task success rate. Thus, among the successful tasks,
3.0% of them contained confused target object names which our
Disambiguate module can find their corresponding labels.

4 DISCUSSION

A major reason for the significant improvement shown by our
modular framework compared to the seq-to-seq models can be
attributed to the disentangled manner in which important
features of each modality are extracted and combined to obtain
high level behaviors. Many end-to-end frameworks, even with
sophisticated attention mechanisms, struggle to learn these
disentangled representations. This is primarily because of the
inherent many-to-one nature of the problem - a language
description and a sequence of visual observations can
jointly lead to multiple long sequences of action outputs.
Therefore, a modular approach that encodes human-level
expert semantic knowledge and a generalized understanding
of word level semantics can pave the way to train agents with
more human like understanding of the tasks and hence, better
success rates. Although our technique for finding the slot
filling helps our framework to achieve significant
performance in finding target objects and navigation
commands, we needed to label some instructions for
training the language module, which can be considered a
limitation. However, we believe our labels would be helpful
for other researchers working on ALFRED dataset. As a future
work, we will apply popular reinforcement learning techniques
for the Planning module by choosing the high-level action
given as the input state (outputs of Mapping, Language
Understanding, and Cross-Modal Grounding components),
and executing a sequence of low level actions.
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