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Shock is one of the major killers in intensive care units, and early interventions can
potentially reverse it. In this study, we advance a noncontact thermal imaging modality for
continuous monitoring of hemodynamic shock working on 1,03,936 frames from
406 videos recorded longitudinally upon 22 pediatric patients. Deep learning was used
to preprocess and extract the Center-to-Peripheral Difference (CPD) in temperature values
from the videos. This time-series data along with the heart rate was finally analyzed using
Long-Short Term Memory models to predict the shock status up to the next 6 h. Our
models achieved the best area under the receiver operating characteristic curve of 0.81 ±
0.06 and area under the precision-recall curve of 0.78 ± 0.05 at 5 h, providing sufficient
time to stabilize the patient. Our approach, thus, provides a reliable shock prediction using
an automated decision pipeline that can provide better care and save lives.

Keywords: hemodynamic shock, deep learning, ICU—intensive care unit, artificial intelligence, thermal imaging,
computer vision

1 INTRODUCTION

Hemodynamic shock is an acute and initially reversible condition that can act as an early signal to
future-end organ failure (Herget-Rosenthal et al., 2018). It manifests due to inadequate blood
perfusion than what is essentially required. Such a condition could cause tissue malfunction leading
to rapid organ deterioration which can eventually result in death. The mortality rate due to delay in
detection and treatment of such shock is as high as 34% in ICU patients admitted in developing
countries (Divatia et al., 2016). Thus, proactive monitoring and therapy of hemodynamic shock can
prevent the risk of impending organ failure and mortality (Rivers et al., 2001; Early Goal-Directed
Therapy Collaborative Group of Zhejiang Province, 2010; Vincent and De Backer, 2013). However,
delayed or insufficient monitoring can increase the risk of hemodynamic shock. Modern ICUs are
equipped with a large number of sensors that generate humongous amounts of data besides a large
number of clinical investigations. ICU clinicians and nursing staff are exposed to this large quantity
of data on a real time basis. The overall burnout can go as high as 80.5% which can contribute to
delayed or insufficient care (Rotenstein, 2018). Moreover, the resource-limiting areas have a higher
risk of shock ignorance mainly due to a lack of technological advancement and a low doctor-to-
patient ratio (Bagcchi, 2015). Most of the methods dealing with the shock in current times are
invasive or require repeated contact, making the patient prone to hospital-acquired infections. The
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noninvasive ways such as Noninvasive Blood Pressure
monitoring and Ultrasonography are not continuous but
require contact with the delicate skin of infants which are
infection-prone too (Oranges et al., 2015). Techniques such as
Electrocardiography (ECG) and photoplethysmography (PPG)
(Liu et al., 2020; Nachman et al., 2020) can also provide
cardiovascular parameters such as the respiratory rate and
heart rate in a noninvasive and wireless way to serve as
important factors for shock monitoring. However, their
contact-based approach can prove to be distressing and
epidermal damaging for the fragile skin of neonatal patients
(Barbosa Pereira et al., 2018). Thus, the use of artificial
intelligence (AI) and frugal open-source technologies such as
low-cost noncontact thermal monitoring can be effective for
shock management.

We have created a body thermal imaging data cohort for the
pediatric population under the Safe ICU initiative which
warehouses 1.5 million hours of physiological vital data,
laboratory investigation, treatment charts, doctors, and nurse
investigation charts (Sethi et al., 2017). We have used these
data to build automated hemodynamic monitoring and
prediction of the future onset of the hemodynamic shock
pipeline. Nowadays, nonintrusive vital monitoring measures
have been gaining popularity because of their feasibility.
Measures such as quantified capillary refill time (Q-CRT) and
peripheral perfusion index (PPI) are being used for hemodynamic
monitoring as noninvasive and transmitted light-based methods
for assessing peripheral perfusion (Falotico et al., 2020). Vitals
such as respiration and heartbeat have been known to be
measured noninvasively using a twin-core fiber (TCF)-based
sensor (Tan et al., 2019). Some studies have been successful in
tracking peripheral blood oxygen saturation (SpO2) using broad-
band lighting and an RGB camera (Guazzi et al., 2015).
Balakrishnan et al. (2013) take just an RGB video as input and
are able to detect heart rate and beat lengths by monitoring the
subtle head movements. Heart rate can also be measured through
videos using DeepPhys (Chen and McDuff, 2018) and Eulerian
video magnification (EVM) combined with wavelet
transformation (Froesel et al., 2020).

Thermal imaging, another nonintrusive and noncontact
modality, is now increasingly being used in medical literature
to extract the temperature information from the body and used
for studies such as breast cancer detection (Ng, 2009; Mambou
et al., 2018) and even diabetes mellitus (type 1) detection
(Selvarani and Suresh, 2019). Thermography of the skin
surfaces to study blood flow, cardiac pulse, and breath rate
(Pavlidis et al., 2007) is being used as a basis for broader
works such as preliminary hypertension assessment
(Thiruvengadam and Mariamichael, 2018). Thermography of
the human hand and foot skin surfaces has also been used to
study blood flow using spectral filtering (Sagaidachnyi et al.,
2017). A similar use of the thermography sensor has been
proposed to make the disease activity detection in rheumatoid
arthritis patients (Pauk et al., 2019). Lately, thermal imaging has
also been used to detect the respiratory rate of humans (Liu et al.,
2019). For instance, in cardiorespiratory signal monitoring,
Barbosa Pereira et al. (2018) use thermal fluctuations beneath

the nostrils for measuring the respiratory cycle. Since human
bodies can be considered black bodies with an emissivity value of
the skin close to 0.98 (Bagavathiappan et al., 2009), the infrared
energy, and hence temperature information, can be suitably
tapped by IR detectors such as Thermovision-550
(Thiruvengadam and Mariamichael, 2018), MWIR-Pheonix-
FLIR (FLIR Systems, 2016), and SeekThermal®(Seek Thermal,
2022) easily available in the market. Even though some of the
aforementioned techniques might incur a higher cost due to the
nature of the thermal imaging sensors used, our study uses a
simple SeekThermal smartphone camera attachment which can
feasibly be used to capture the thermal context of the body.
During hemodynamic instability, redistribution of blood occurs
which causes a temperature difference in the center and periphery
of the body, which acts as one of the first possible indicators of the
advent of shock (Lima and Bakker, 2005; Lima et al., 2009; van
Genderen et al., 2012; Ortiz-Dosal et al., 2014). Our study
leverages this temperature difference, that is, Centre-to-
Peripheral Difference (CPD) (Bourcier et al., 2016; Houwink
et al., 2016), to study hemodynamic shock with the abdomen as
center and feet as peripheral regions (Lima and Bakker, 2005;
Hasanin et al., 2017). The difference observed is more in the case
of a shock than of no-shock (Lima and Bakker, 2005; Nagori et al.,
2019). We chose SeekThermal® Camera for our study as it has
affordable, minimal hardware architecture and can be easily
mounted on a smartphone. CPD has been exploited along
with some vitals and the use of machine learning methods
such as Histogram of Oriented Gradients features with
Random Forest classifier for detection and prediction of shock
with a single snapshot of an image at a time point (Nagori et al.,
2019), but a single image snapshot would present only limited
information as it may be an outlier caused by random fluctuation.
This may reduce the robustness and reliability of the model
output. In addition, using the handcrafted features for machine
learning algorithms might cost us time. To expand upon the
study, we aim to reduce the manual tasks performed to calculate
the features using deep learning methods and work on the
continuous time-series data, improving the efficacy of
detection and prediction.

In this study, we developed a future risk prediction model
(Figure 1) using continuously streamed videos of body infrared
patterns and state-of-the-art computer vision (CV) and deep-
learning (DL) techniques. Thus, the aim of our work was to build
an automated, minimal contact pipeline for proactive
hemodynamic monitoring. Automated detection and
prediction will help prevent the adverse outcomes related to
hemodynamic instability. Hence, the impact this problem
creates and the scope of extending the solution make this
study worthwhile in saving the lives of many pediatric patients.

2 MATERIALS AND METHODS

For this study, we carried out thermal monitoring as a part of the
SafeICU (Sethi et al., 2017) warehouse. We constructed an
automated CPD extraction pipeline by body part segmentation
on thermal videos using deep-learning models. Each time-point
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was labeled for shock and non-shock using an age-specific shock-
index (Acker et al., 2017). The time-series data of the extracted
CPD signals, combined with the heart rate and the labels, were
preprocessed for case-control cohort design. We constructed
cohorts at 0 h for detection and 1–6 h lead-time for prediction
tasks. We then used multivariate Long Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) models to detect
and predict the future onset of the shock. We finally evaluated the
performance metrics of the models using a 10-fold cross-
validation method.

2.1 Data Collection and Study Design
2.1.1 SafeICU Framework
All the data reported in this research were collected from the
Pediatric ICU of AIIMS, New Delhi, a tertiary care hospital in
India. There were eight beds including neonatal beds in the
pediatric ICU. We set up our servers to collect the real time
physiological vitals periodic data. Vitals (heart rate, respiratory
rate, and blood pressure) were routinely monitored using
electronic sensors, that is, the heart rate was measured by
ECG sensors, blood pressure was measured using arterial
catheters, and respiratory rate and oxygen saturation were
measured using pulse oximeter probes. Socket programming
(network protocol) based on in-house software applications
was used to extract the data from the Mindray™ central
monitoring station (CMS). However, with an exception of
heart rate, our study does not require these contact-based
vitals for shock prediction, thus making the study of minimal
contact. We also warehoused laboratory investigations, daily
doctor and nurse notes, treatment charts, and thermal imaging.

2.1.2 Ethical Approval and Patient Consent
The study was carried out with the approval of the Pediatric
Intensive Care Unit of All India Institute of Medical Sciences,
New Delhi, India. Since thermal images only capture infrared
radiation, these did not reveal the patient’s identity and the study
did not involve any contact or change in routine patient care.
Hence, a waiver of consent was sought and granted by the

Institute Ethics Committee (Ref. No. IEC/NP-211/08.05.2015,
AA-2/09.02.2017). All experiments were performed in
accordance with relevant guidelines and regulations as
approved by the ethics committee.

2.1.3 Cohort Based on Binary Shock Index
The SAFE-ICU described earlier has warehoused over 1.5 million
patient hours of the monitoring data from the PICU. It is used to
extract the time-stamped vital data for the patients at 0–6 h heart
rate and blood pressure recordings. The shock index (SI) was
calculated as the ratio of the median heart rate and median
arterial systolic blood pressure, considered the gold standard for
BP measurement in critical care settings (Pittman et al., 2004;
Lehman et al., 2013). SI was computed over the median of moving
sequential windows of 30 data points at a resolution of 15 s.
Shock-index pediatric age-adjusted (SIPA) is used to compute
shock/no-shock age-specific binarized outcomes for each patient
(Acker et al., 2017).

2.1.4 Thermal Imaging
Seek Thermal Compact (UW-AAA) with a resolution of
480*640 was used to capture thermal videos at 15 fps on iron
theme settings. The camera, having a thermal sensor of
206*156 pixels was kept at a median (IQR) distance of
2.0828 m (0.1524) for long beds and 1.524 m (0.2665) for
small beds. The ICU room temperature was maintained at
25°C. Temperature calibration was performed by matching the
imager temperature with other known sources. Temperature
from the thermal camera was found to be accurate with
temperature measurement from other sources such as
temperature probes and thermometers. Standard thermal video
capturing and operating procedures were followed in order to
ensure minimal disturbances by the extraneous factors, say,
patient positioning, device handling, etc. (Supplementary
Methods S1). Thermal cameras only capture infrared radiation
so as to make sure that study does not reveal the patient’s identity.
The camera was placed properly and at a good distance from the
patient so that there was neither direct contact involved nor any

FIGURE 1 | Shock prediction steps. The summary of the shock pipeline shows the steps from video frame extraction to shock prediction. Step 1 comprises
sampling videos to extract frames. Step 2 classifies frames into covered or uncovered, while also finding the presence of multiple people in the frame and mask them, to
avoid confusion. The masked images are then input to the ResUNet based segmentation model and CPD is hence extracted. The series of CPDs are then passed
through a time-series sequence classifier, and finally, the predictions are made for shock for the next 6 h.
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change in patient routine care. The thermal videos were captured
in a standard color scale guaranteeing that the full body of infants
was visible. Thermal videos of every single patient were collected
at different time points on different days. Thus each patient
possibly has different values for shock status, which in turn
eliminates bias due to the patient’s propensity characteristics,
say gender, age, etc. Thermal artifacts were a lesser concern as we
were calculating the relative gradient of temperature instead of
the absolute temperature. Vital data with respect to the time-
stamp of the videos were extracted from the data warehouse at 15-
s intervals (SAFE-ICU) (Sethi et al., 2017). A comparison was
made between the shock and non-shock groups using either the
Wilcoxon rank-sum test or two-tailed Student’s t-test after testing
for normality by the D’Agostino-Pearson normality test using
GraphPad Prism version 6.00, GraphPad Software, La Jolla
California USA.

2.2 Classification Into Covered and
Uncovered
The patients in ICU are kept under observation for a long
duration. Being a very critical area, the patients are kept
covered by a blanket most of the time, which is removed only
for a short period, generally when a nurse/doctor comes to
provide care. A ResNet-152 (He et al., 2016) architecture was
trained using PyTorch (Paszke et al., 2019) framework in Python3

(Python Software Foundation, 2018) to classify each frame into
covered and uncovered, i.e., abdomen and feet are visible
(Figure 2). To train the data, images were augmented and
normalized by their mean and variance especially extracted
out to suit the thermal data. The model was finally
implemented on videos sampled at 1 fps.

2.3 Multiple Person Detection
In the ICUs, caregivers providing care to the patient might come
into the field of the camera mounted over the bed. For the CPD
extraction task, bounding-box detection of multiple persons was
used to filter out this additional presence so as not to confuse the
algorithm. To avoid loss of crucial data where the caregiver and
patient may be in the same frame, the bounding box
corresponding to the larger area, that is, the patient was kept
and the rest was masked. This region of interest was used for CPD
extraction. For training purposes, a variety of images of the
patient alone and along with the caretaker were manually
annotated with bounding boxes using Yolo-Annotation-Tool-
New (Murugavel, 2019) and augmented with linear
transformations and Gaussian noise and passed through
YOLOv3 (Redmon and Farhadi, 2018) based on Darknet-53
with a confidence threshold of 0.4.

The architecture had to be retrained from scratch as thermal
data are very different from the COCO dataset, used in the
original YOLOv3 manuscript. The YOLOv3’s output was the

FIGURE 2 | Shock prediction pipeline. Illustration of the pipeline followed for the detection and prediction of shock and no-shock. Each frame of the video was
examined for uncovered/covered. The uncovered frames were then filtered off the presence of people other than the patient present in the frame. The frame was finally
passed from the segmentation and CPD extraction model, further collecting the sequences used for LSTM time-series classification. The time sequences had CPD and
heart rate as features and an appropriate window length of 256 s was chosen. Since the data were highly imbalanced, the SMOTE upsamplingmethod was used in
training the LSTM model. The detection and prediction of shock were carried out at 0 h and for the next 6 h, respectively.
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dimensions and position of the predicted bounding boxes
detecting the people present in the frame, the correctness of
which was verified through Intersection over Union (IoU) metric
by calculating the ratio of overlapping of the predicted and
ground truth bounding boxes with their union area.

2.4 Segmentation and CPD Extraction From
Abdomen and Feet
Nagori A. et al. proved that the probability of shock depends
directly on CPD. For this study, the abdomen was taken as the
center and the peripheral was the foot. Images were annotated
manually pixel-wise using js-annotator-tool. The target maps
contained three one-hot encoded layers corresponding to the
abdomen, feet, and background. The input images were
normalized with mean and variance especially extracted from
the distribution of the dataset in use. Appropriate image padding
was carried out to ensure that the aspect ratio of images remains
the same in case of any change in the input dimension. To
account for a low dataset of pixel-wise segmented images for
training, a ResUNet with ResNet-18, pretrained on ImageNet,
was used as an encoder. UNet (Ronneberger et al., 2015) is
specifically introduced to segment the less abundantly found
medical data, helps to gather more local and global
information even in the dearth of data, and thus efficiently
segmenting out the images. A cutoff threshold was set on the
predicted outputs to remove any weakly predicted pixels. The
area detected was used as a region of interest in the original image
and the mode of the detected probabilities was taken as the point
of temperature extraction from the segmented-out abdomen and
feet. The difference was divided by the abdomen value to keep
CPD robust from thermal noise.

Difference percent � (AbdomenIntensity − FootIntensity)

AbdomenIntensity
× 100.

2.5 LSTM Time Series Sequence
Classification
The videos were sampled at 1 fps to extract the CPD data from
every uncovered window possible. Windows of 256 data-points
corresponding to 256 s (4.26 min, padded, if necessary) were
taken as an input to the LSTM-based classifier. The windows
greater than 256 were split in an overlapping fashion. Each CPD,
along with the heart rate at its corresponding time point was
taken to finally label it with the shock index, and hence, the
presence of shock/no-shock. The missing heart rate data at
certain points were imputed with linear interpolation if the
missing data were less than 10% of the time series length.
Since the data are highly imbalanced with more non-shock
sequences, the train-set is augmented with SMOTE (Chawla
et al., 2002). The LSTM sequence classifier was followed by a
series of dense layers with a dropout of 0.2, which then passed
through a sigmoid layer to output binary shock index, and hence,
shock/no-shock.

Experiments on tsfresh (Christ et al., 2016) feature
classification with linear-mixed-effects models (Bates et al.,
2015) and random-forests (Cutler et al., 2012), and the direct
end-to-end classification of images/videos are shown in
Supplementary Methods S2.

2.6 Outcome Variable—Binary Shock Index
The SAFE-ICU initiative has enabled this research to gather
the PICU data and extract vitals and corresponding
timestamps at the 0th hour (time of video capturing) and
the next 6 h. The shock index was taken as the median heart
rate and the median arterial systolic blood pressure, for
moving sequential windows of 30 data points at a resolution
of 15 s. SIPA (Acker et al., 2017) was then used to compute the
age-specific binary outcome for each patient.

2.7 Model Evaluation
The video data were first partitioned patient-wise such as to keep
train, validation, and test sets unseen from each other. For the 10-
fold cross-validation, the data were partitioned with a ratio of 60:
20:20 into these three sets in a stratified manner, that is, keeping
the distribution of low-percentage shock class comparable in all
three sets. Training data was augmented for the low-found shock
class using SMOTE; the validation and test sets remain
unchanged in their size in each respective fold. The model
analysis was mostly conducted on the area under precision-
recall curve (AUPRC) and the area under receiver operating
characteristic (AUROC) curve. Other standard metrics like F1-
score, PPV, NPV, specificity, and sensitivity were evaluated at the
Youden’s Index (J) (Ruopp et al., 2008). Since there is a high
significance of prevalence in the medical domain, calculating the
metrics at the Youden’s Index becomes important.

3 RESULTS

3.1 Patient Characteristics, Preprocessing,
and Cohort Building
Statistical inferences of the cohort characteristics between shock
and non-shock groups are depicted in Table 1. Shock and Non-
shock conditions were derived using the age-specific shock index
cutoff values. It can be observed that the most significant
difference between the two categories is in the heart rate, as
expected, along with the respiratory rate. We obtained a median
length of stay of 6.808 days with a total of 132 shock instances and
274 non-shock instances. The study uses arterial systolic blood
pressure, the gold standard for BP measurement in critical care
settings (Pittman et al., 2004; Lehman et al., 2013), from
22 patients monitored longitudinally as a required vital for the
calculation of shock index for the training purposes which is
available for only a small subset of patients. However, once the
model is trained, this is no longer a limitation at inference time as
the trained model does not require blood pressure for inference
(making a prediction of shock status). The pipeline
uses >1,00,000 frames and the corresponding shock indices for
training the prediction models.
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3.2 Segmentation of Abdomen and Feet
Achieved a Total Dice Loss of 0.0391 Using
ResUNet
Since thermal images lack texture, it is important for the model to
recognize the structural shape features. ResUNet was specifically
used to make the task possible on relatively less available thermal
data and to capture both the local and global information from
the image. A dice loss of 0.0391 (dice coefficient = 0.9609) with a
Binary Cross-Entropy loss of 0.0692 was achieved for segmenting
out the abdomen, feet, and background. The mode intensities of
segmented areas were then used to find out CPD and hence build
the longitudinal models from continuous long-duration videos.
The results are showcased in Supplementary Table S1.

3.3 The LSTM Model Was Found to be the
Best Performing
We compared three models to finally arrive at the best-
performing one. Linear-Mixed Effects (Bates et al., 2015),
Random Forest (Cutler et al., 2012), and LSTM (Hochreiter
and Schmidhuber, 1997) were tested at various time points
from the observation taken. Based on various metric
evaluations, LSTM was found to be the best performing on

our given time series data and hence was chosen as the
primary choice for our study. The F1 score comparison of the
three models is shown in Figure 3, and the rest of the evaluations
are shown in Supplementary Figure S1.

3.4 Evaluation of the LSTM Model at
Different Lead Times Reveals That CPD
Increases the Model Performance
The SAFE-ICU resources allowed us to match the time sequences
with their corresponding states of shock/non-shock for the next 6 h
since the observation was taken. We tested the LSTM model
performance for 1–6 h of lead time on CPD and the heart rate as
shown in Table 2. As shown in Figure 4, we got the best
performance at AUROC 0.81 ± 0.06 and AUPRC 0.78 ± 0.05 at
5 h. This gives a good time window to alert the medical practitioners
to start the therapy for preventing the advent of shock.

4 DISCUSSION

The study presents a computer vision and deep-learning-based
continuous and noncontact shock detection and prediction

TABLE 1 | Cohort characteristics and statistical significance of control (non-shock) vs. affected (shock) classes. The p-values were calculated using either the Wilcoxon rank
sum test (W) or Student’s t-test (t) after testing for normality by the D’Agostino-Pearson normality test. (n, number of sequences; IQR, interquartile range).

Variable Non-shock
seq (n = 274)

Shock seq (n = 132) Statistical tests

Median (IQR) Median (IQR) p-value (W/t)

Age (months) 60.12 (36.07) 75.89 (107.02) 0.6087 (W)
Arterial systolic blood pressure, mm Hg 131.94 (19.56) 128.09 (25.21) 0.0014 (t)
Systolic blood pressure, mm Hg 106.00 (20) 102.00 (5.00) 0.002 (W)
Heart rate, per min 106.16 (19.14) 143.17 (63.81) <0.0001 (t)
Respiratory rate, per min 32.34 (13.14) 22.87 (13.20) <0.0001 (W)
O2 saturation (SpO2)% 97.50 (2.68) 98.32 (3.45) 0.9932 (W)

The bold values symbolize statistically significant characteristics.

FIGURE 3 |Quality assessment of models. The F1 score comparison for the three models (i.e., Linear Mixed-Effects model, Random Forest, and LSTM) tested on
(A) CPD and heart rate and (B) CPD parameter only. It can be observed that the LSTM model outperforms the other two models in both cases, making it the primary
choice of this research. The rest of the comparison plots are depicted in Supplementary Figure S1.
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model which leverages Center-to-Peripheral Difference (CPD) as
one of its main parameters. Care needs to be taken to evaluate the
parameters in a noninvasive way such as not to cause infections
by contact. The role of noncontact, wireless health monitoring
has gained much importance, especially during the times of the
COVID-19 pandemic. The noncontact estimation of multiple
physiological parameters can enable telediagnosis and remote
management of patients, at the same time decreasing the contact-
based infection risk. Among the available noncontact modalities,
recent advancements in thermal imaging have made thermal
imaging a key technology. Affordable smartphone thermal
cameras have been used to detect the breathing rate and hence
the perceived mental stress (Cho et al., 2019) and even help
identify sports injuries (Quintana et al., 2015). In ICUs, studies
providing noncontact measurements such as ECG (Majumder
et al., 2018) and other physiological measurements using
noncontact cameras (Jorge et al., 2022) have been explored.
Wireless sensors have shown potential for the detection of
complex underlying neurological disorders, such as Shah et al.
(2019) use wireless sensor networks (WSN) for monitoring pill-
rolling tremors which can be proven to be a precursor to
Parkinson’s disease. Similarly, Liu et al. (2018) use WSN to

detect and monitor abnormal breathing patterns as an
underlying condition for more gruesome diseases like
hyperthyreosis and sleep apnea. Since the field of thermal
image inspection has only started to be explored, it can thus
be leveraged, along with some noninvasively monitored vital
parameters, for the prediction of shock. The use of deep
learning methods proves to be really beneficial in reducing
manual preprocessing and increasing the accuracy of methods.

In this study, we have extended our previous study on
hemodynamic shock prediction with longitudinal continuous
monitoring of body thermal patterns which are found to be
predictive for future shock prediction (Nagori et al., 2019).
Longitudinal monitoring of temperature gradient opens up a
rich source of information about patient physiology. The
underlying stochastic patterns can have a discriminative value
for future hemodynamic shock risk. We leveraged these
reasonings to extract the center-to-peripheral intensity
difference from the thermal images in a time-series fashion.
We do so by applying our data-specific trained screening
filters for covered and uncovered patient detection models,
and multiple person detection models, which are followed by
segmenting the body parts into abdomen and foot using artificial

TABLE 2 | Performance of the proposed model predicting the presence of shock/non-shock using automated CPD and heart rate. The time pt. column depicts the
subsequent hours from the time of taking the observation, at which the results were recorded. The unequal number of shock and non-shock sequences is due to the
absence of patient data with the increasing number of hours. (S/NS, number of shock/non-shock sequences present; AUPRC, area under precision-recall curve; AUROC,
area under receiver operating characteristics; PPV, positive predictive value; NPV, negative predictive value; D, detection; P, prediction).

Time
pt.

S, NS AUPRC AUROC Accuracy Sensitivity Specificity PPV NPV Youden

Mean (SE) Mean

0 h (D) 132, 274 0.79 (0.06) 0.78 (0.05) 0.85 (0.03) 0.74 (0.06) 0.92 (0.02) 0.86 (0.05) 0.84 (0.03) 0.50
1 h (P) 115, 271 0.71 (0.06) 0.76 (0.04) 0.83 (0.04) 0.83 (0.04) 0.82 (0.06) 0.80 (0.06) 0.88 (0.02) 0.42
2 h (P) 125, 253 0.56 (0.05) 0.69 (0.04) 0.83 (0.02) 0.72 (0.06) 0.90 (0.03) 0.82 (0.05) 0.84 (0.04) 0.56
3 h (P) 133, 232 0.67 (0.06) 0.74 (0.06) 0.83 (0.04) 0.69 (0.08) 0.93 (0.04) 0.88 (0.06) 0.82 (0.04) 0.57
4 h (P) 123, 242 0.75 (0.05) 0.75 (0.05) 0.81 (0.04) 0.70 (0.06) 0.94 (0.03) 0.90 (0.05) 0.78 (0.06) 0.64
5 h (P) 120, 247 0.78 (0.05) 0.81 (0.06) 0.84 (0.04) 0.76 (0.07) 0.94 (0.02) 0.88 (0.05) 0.84 (0.05) 0.62
6 h (P) 124, 228 0.66 (0.10) 0.73 (0.06) 0.89 (0.03) 0.82 (0.08) 0.92 (0.04) 0.81 (0.09) 0.95 (0.02) 0.62

FIGURE 4 | Quality evaluation on the LSTM model. (A) Quality evaluation of the LSTM time-series classification models at lead points of up to 6 h. The best
performance of (B) AUPRC and (C) AUROC was obtained at a 5-h prediction. The rest of the performance metric results are demonstrated in Supplementary Figure
S2. The results of all are shown in Table 2. The standard error (SE) for each is calculated from cross-validation, by taking k = 10.
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intelligence–based models. The extracted CPD time series along
with vitals were used to predict the future (1–6 h) hemodynamic
shock using sequence models (LSTM). This model was also
compared with Random-Forest and Linear Mixed-Effects
models, known for working with longitudinal data but LSTM
outperformed the other two. We compared the results of our
method with Nagori A. et al.’s study too and observable
improvement can be seen in the majority of the metrics
(Supplementary Table S2). We also trained and checked the
performance of models that can classify the length of videos and
images for the future risk of hemodynamic shock. CNNs, which
have shown state-of-the-art performance for image classification,
were used for the task. However, we found that domain features,
such as CPD, performed better than direct image and video
classification for the future risk of shock. Even after many
experiments performed for a direct classification of images
using the concepts of TV-Chambolle (Condat, 2013)
denoising, data augmentation, and undersampling/
oversampling, we were able to get the best AUROC of only
0.60 for shock detection using ResNet-50. This can be because of
the cluttered background with diapers and tubes, and an
increased region of interest for the information extraction
from a limited variety of images. This also tells the importance
of the domain-specific features over end-to-end CNN-based
approaches. We built the models for multiple time points till
6 h which showed the best performance at a lead time of 5 h. The
metric AUPRC and F1 scores are most significant for an
imbalanced dataset such as ours as it does not get biased by
the presence of true negatives and thus gives a clearer perspective
of a classifier’s utility. The results till 6 h show a promising
window with a good prediction rate which can prove to be
helpful for the doctors to help find a buffer time prior to the
shock event and therefore start the treatment.

Our study currently applies to cold shock as neonates, and young
children are more commonly present with “cold shock”—a state of
elevated systemic vascular resistance (SVR) and low cardiac output
with cold extremities due to vasoconstriction and delayed capillary
refill (Martin and Weiss, 2015). The peripheral vasoconstriction can
be identified with the center to peripheral temperature difference
using thermal imaging that we leveraged in our study to identify the
cold shock. We also acknowledge the limitations and uncertainty
caused by using skin temperature and core-peripheral temperature
gradient in isolation (Schey et al., 2010); therefore, we introduced the
heart rate as a crucial cardiovascular parameter (Table 1) in our CPD-
based method for shock prediction. Respiratory rate (RR) is also an
important indicator of cardiorespiratory status (Liu et al., 2020) as
indicated in Table 1. However, we did not encapsulate RR in our
models owing to its limited availability at all-time points in our dataset
and in a bid to keep the method parsimonious. Nevertheless, we did
study the effects of including RR with the available measurements till
6 h, and it showed promising results as demonstrated in
Supplementary Table S5, which can be taken up in our future
research. Models that are predictive of future occurrence of events
suffer from lower model performance indicators and a trade-off is
needed between sensitivity and specificity. While probability
thresholds can be easily set to decrease the false positives (at the
cost of sensitivity), ourmodel is intended to be used as a screening tool

as a shock is a potentially lethal condition. Moreover, the FPR varies
between 10 and 15% at different time points and certainly can be
improved further with the incorporation of additional features. We
will be taking up further performance improvement in our future
research to bring it down to less than 5%. The other limitations of our
method arise during the quality data procurement. Monitoring
thermal patterns could be hard at times when the patient is being
covered or being operated on; caregivers can also block the recordings.
However, these issues can be resolved by keeping ~4.3min of
uncovered slots for monitoring. Nevertheless, we have built an AI
system that is efficient enough to identify the covered and uncovered
images and can remove the caregiver or person other than the patient.
Thus, our system is able to extract the thermal patterns efficiently.
Using CPD as a co-acting parameter eliminates the use of invasive
arterial monitoring and cuff-based blood pressure monitors which
can cause infections due to the repeated use onmultiple patients. Our
models require thermal recordings which do not identify an
individual’s identity, hence are safe for patient privacy and do not
take much time away from the time assigned for care. Our methods
can be extended beyond the intensive care settings, that is, to help in
the community-based monitoring by the developing countries’ rural
healthcare workers, such as the Accredited Social Health Activist
(ASHA), run by the women promoting accessible healthcare in rural
Indian settings. This can be made possible by training them to use a
specifically designed frugal mobile app for thermal shock detection
and prediction, which can work with readily available Android/iOS
smartphones, with onlymodel weights preinstalled. The results can be
made more robust by expanding the dataset by including more
patients in the study. Also, the dataset can be made varied and
generalized by including observations from multiple other clinical
sites. Thus, the study performed illustrates a great noninvasive and
minimal feature architecture that promises to be a life-saver by
informing the clinicians about shock well in advance.
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