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Background: Cognitive impairment in late−life depression (LLD) is considered

to be caused by neurodegenerative changes. Elevated homocysteine (Hcy)

levels may be linked to cognitive abnormalities associated with LLD. The

important role of white matter (WM) damage in cognitive impairment and

pathogenesis in patients with LLD has been widely reported. However, no

research has explored the interrelationships of these features in patients with

LLD.

Objective: The goal of the study was to examine the interrelationship between

Hcy levels, cognition, and variations in WM microstructure detected by

diffusion tensor imaging (DTI) in patients with LLD.

Methods: We recruited 89 healthy controls (HCs) and 113 patients with LLD;

then, we measured the plasma Hcy levels of participants in both groups.

All individuals performed a battery of neuropsychological tests to measure

cognitive ability. Seventy-four patients with LLD and 68 HCs experienced a

DTI magnetic resonance imaging (MRI) scan.

Results: Patients with LLD showed significantly lower fractional anisotropy

(FA) values in the bilateral inferior longitudinal fasciculus than those of

healthy participants. Only in LLD patients was Hcy concentration inversely

associated to FA values in the forceps minor. Finally, multiple regression

analyses showed that an interaction between Hcy levels and FA values in the

right cingulum of the cingulate cortex and right inferior longitudinal fasciculus

were independent contributors to the executive function of patients with LLD.

Conclusion: Our results highlight the complex interplay between

elevated homocysteine levels and WM abnormalities in the

pathophysiology of LLD-related cognitive impairment, consistent with

the neurodegeneration hypothesis.
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late-life depression, cognitive impairment, elevated homocysteine levels, white
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Introduction

Late-life depression (LLD) is related to a number of
neurocognitive deficits, including impaired global cognition,
executive functioning, memory, attention, and visuospatial
perception (Reinlieb et al., 2014; Zhang et al., 2021). It was stated
that cognitive impairment in LLD is thought to be related to
neurodegenerative changes (Invernizzi et al., 2021; Rhodes et al.,
2021). Cognitive impairments have been identified as essential
features of LLD, as they persist even after depressive symptoms
have subsided and are strongly linked to poor functional and
therapeutic results (Bhalla et al., 2006). Furthermore, according
to the findings of two large-sample prospective cohort studies,
older people with indications of depression had an estimated
twofold greater risk of developing dementia (Katon et al., 2015;
Kaup et al., 2016). Therefore, knowing the pathogenic cause of
cognitive deficits in patients with LLD is critical for dementia
prevention and for effective therapy.

According to an increasing number of studies, elevated
homocysteine (Hcy) levels are associated with cognitive
impairments and dementia (Setien-Suero et al., 2016; Smith and
Refsum, 2016; Kim et al., 2019). Furthermore, a prospective
cohort study meta-analysis identified that each 5 µmol/L rise
in homocysteine level increased the comparative Alzheimer’s
disease risk by 15 percent (Zhou and Chen, 2019). Since both
LLD and elevated Hcy levels make individuals susceptible to
cognitive deficits, comorbidity between these two disorders may
lead to an increased prevalence and extent of cognitive deficits.
A recent community-based cohort study discovered that there
was a significant inverse correlation between Hcy levels and
cognitive capability in elderly people with depressive symptoms
(Ford et al., 2013).

Our recent report demonstrated that LLD patients had
higher plasma Hcy levels and worse cognitive performance
than those of controls. Furthermore, in LLD patients, plasma
Hcy concentrations were observed to be negatively related to
global cognition, visual space, attention, and executive function.
More interestingly, when compared to those with LLD or high
Hcy concentrations alone, elderly people with both high Hcy
concentrations and LLD had more severe cognitive impairment
(Zhou et al., 2020). However, the mechanisms behind the
additive cognitive deficits caused by LLD and increased Hcy
levels are not fully understood.

Recently, numerous investigations have indicated that
abnormal white matter (WM) microstructure detected by means
of diffusion tensor imaging (DTI) is significantly associated
with LLD (Wen et al., 2014) and cognitive impairment (Li
et al., 2013). Fractional anisotropy (FA) values are susceptible
to changes in WM structure, such as axonal injury, myelin
loss, edema, and cell death (Tae et al., 2018). Many studies
have demonstrated that the FA value of LLD patients decreases
in a large variety of fiber bundles and brain areas, indicating
that the WM network of patients with LLD may be damaged,

potentially leading to poor connectivity with gray matter (Wen
et al., 2014; Harada et al., 2018). Moreover, WM fiber bundles
maintain high-speed signal connections across various areas
of the brain, and diminished WM integrity may contribute to
cognitive impairment and clinical symptoms in patients with
LLD (Shen et al., 2019; Rashidi-Ranjbar et al., 2020). Recently,
numerous DTI researches have shown that the integrity of the
WM was positively correlated with cognitive function in patients
with LLD (Shimony et al., 2009; Yuan et al., 2010; Alves et al.,
2012; Mettenburg et al., 2012). For instance, researchers have
identified that abnormal WM microstructure in patients with
LLD is connected with impairments in cognitive functions,
including cognitive processing speed (Shimony et al., 2009),
memory (Mettenburg et al., 2012), language (Alves et al., 2012),
and executive function (Mettenburg et al., 2012). These findings
imply that unconnected WM bundles or tracts may be involved
in cognitive abnormalities in patients with LLD.

Interestingly, numerous investigations have shown an
association between Hcy levels and WM abnormalities (Wright
et al., 2005; Feng et al., 2013; Lee et al., 2017; Tan et al., 2018;
Nam et al., 2019). For example, in people over 40 years old,
Hcy level is a potential risk for WM injury (Wright et al.,
2005). Another study showed that Alzheimer’s disease patients
with high Hcy levels had lower FA values of WM bundles (Lee
et al., 2017). Furthermore, a recent study illustrated that higher
Hcy level was related to decreased WM volume and cognitive
deterioration in healthy elderly individuals (Feng et al., 2013),
implying that higher Hcy levels can affect cognitive performance
and WM structure.

All of the above evidence indicates that either elevated Hcy
levels or WM abnormalities may be correlated with cognitive
impairment in LLD patients. However, to the best of our
knowledge, the collaborative consequence of homocysteine and
WM microstructure on cognitive performance in this specific
population has not been investigated. Therefore, the current
investigation was aimed to ascertain (1) whether FA values of
WM fibers were altered in LLD patients and (2) the correlation
between Hcy concentration and the FA value of WM bundles, as
well as their combined effect on cognition in both patients with
LLD and healthy controls.

Materials and methods

Participants

Patients with LLD were enrolled at the Affiliated Brain
Hospital of Guangzhou Medical University. Advertisements
in the public were used to attract healthy elderly people.
All participants signed a written informed consent form after
getting a comprehensive overview of the study. The Ethics
Committee of the Affiliated Brain Hospital of Guangzhou
Medical University approved the study.
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The inclusion and exclusion criteria have been described
in previous studies (Zhou et al., 2020). Briefly, the inclusion
criteria were the following: (1) A DSM-IV Structured Medical
Interview-based diagnosis of major depressive disorder and (2)
age ≥ 60 years. The following were the exclusion criteria: (1) A
history of other serious mental illnesses; (3) a family history of
schizophrenia and/or bipolar disorder; (4) transcranial magnetic
stimulation and any electroconvulsive treatment in the last 6
months; (5) neurological disorders, for instance, brain tumor
and stroke; and (6) physical disorders, such as hypothyroidism
and anemia, that may cause emotional problems. Healthy
control (HC) individuals who were not depressed, who were at
least 60 years old and who had normal cognition were included.
They were all found to be free of psychiatric disease and had 17-
item Hamilton Depression Rating Scale (HAMD-17) scores of
less than 7 (Zimmerman et al., 2013). Other criteria for exclusion
were identical to those used for individuals in the LLD group.

A total of one hundred thirteen patients with LLD and
eighty-nine HCs were recruited. The demographic information
of the patients has been described in our previous studies
(Zhou et al., 2020). Briefly, no significant differences were found
in sex, age, or educational years between participants in the
HC and LLD groups.

Neuropsychological evaluations

All of the participants completed a comprehensive battery
of neuropsychological examinations as described in previous
studies (Zhou et al., 2020). Briefly, the tests included the
following six cognition domains: (1) Mini-Mental State
Examination (MMSE) for global cognition; (2) Rey-Osterrieth
Complex Figure (ROCF)-Delay Recall test and Auditory Verbal
Learning Test (AVLT) for memory; (3) Trail Making Test
(TMT)-B and Stroop Color and Word Test (SCWT)-C for
executive function; (4) TMT-A and Symbol Digit Modalities
Test (SDMT) for attention; (5) Verbal Fluency Test (VFT)
and Boston Naming Test (BNT) for language ability; (6) Clock
Drawing Test 4 (CDT4) and ROCF-Copy for visual space. The
cognitive domain scores were determined by converting each
test result to a standardized z score and taking the average
of the total. Particularly, low scores implied high performance
on exams that evaluate timing, such as SCWT-C, TMT-B,
and TMT-A. As a result, before being transformed to the
standard score, the scores were converted to the reciprocal
(Shu et al., 2016).

Plasma homocysteine concentration
measurements

The Hcy measurements have been described in previous
studies (Zhou et al., 2020). Briefly, fasting plasma Hcy

concentrations were assessed using the enzyme cycling assay by
automatic testers (AU5800 testers, Beckman Coulter, Brea, CA).
All of the samples were analyzed by a research assistant who was
blinded to the status of the subjects.

Magnetic resonance imaging
acquisition

Seventy-four patients with LLD and 68 HCs underwent MRI
scans. MRI data were collected within 1 month of completing
the neuropsychological evaluations. MRI data were obtained
by means of a 3.0-Tesla Philips Achieva scanner (Philips, Best,
Netherlands). Before DTI scanning, a T2weight image was taken
to rule out major white matter lesions, tumors, and cerebral
infarction. The participants were subjected to DTI with the
following settings: Direction = 32, b0 = 1,000 s/mm2, echo time
(TE) = 92 ms, repetition time (TR) = 10,015 ms, flip angle = 90◦,
field of view (FOV) = 256∗256 mm2, imaging matrix = 128∗128,
voxel dimension of 2∗2∗2 mm3, and 75 contiguous slices.

Data processing

All of the DTI images were obtained via the standard
procedure PANDA software (a pipeline tool for analyzing
brain diffusion images).1 PANDA is a MATLAB toolbox that
incorporates FSL,2 Diffusion Toolkit3 and MRIcron4 (Cui et al.,
2013). Each subject’s diffuse tensor data were skull-stripped and
subjected to eddy current and head movement rectification.
The directions of the diffusion gradients were adjusted. After
that, each subject’s FA was calculated on a voxel-by-voxel
basis. Individual FA pictures in native space were non-linearly
registered to the FA template in Montreal Neurological Institute
(MNI) space by means of the FNIRT command of FSL for
normalization. After that, the mean of all aligned FA pictures
was computed. We used an atlas-based segmentation strategy to
examine diffusion changes in the major WM tracts. The FA maps
of each subject were registered into the JHU WM Tractography
Atlas (Hua et al., 2008). Twenty WM pathways were examined.

Statistical analysis

The 20 WM tracts’ mean FA values of the were compared
using analysis of variance (ANOVA), with age, education, and
sex included as covariates. Partial correlation was used to
discover the interrelationships between Hcy levels, cognition

1 http://www.nitrc.org/projects/panda/

2 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

3 http://www.trackvis.org/dtk

4 https://www.nitrc.org/projects/mricron
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FIGURE 1

Group comparisons of the mean FA value of each tract in HCs and LLD patients. Each bar represents the mean ± SD. Analysis of covariance
(ANCOVA) using age, sex, and education as covariates. *** indicates q< 0.05 after FDR correction. HC, healthy control; LLD, late-life depression;
FA, fractional anisotropy; L, left, R, right; ATR, anterior thalamic radiation; CST, corticospinal tract; CgC, cingulum of the cingulate cortex; CgH,
cingulum of the hippocampus; Fma, forceps major; Fmi, forceps minor; IFO, inferior fronto-occipital fasciculus; ILF, inferior longitudinal
fasciculus; SLF, superior longitudinal fasciculus; Unc, uncinate fasciculus; tSLF, superior longitudinal fasciculus (temporal part).

and FA values of the WM tracts, and control variables
included age, sex, and years of education. Furthermore, stepwise
multiple regression analysis was performed to explore the
associations between Hcy levels, FA values, their interaction
(Hcy × FA values) and cognitive functioning after adjusting
for education, sex, age, and HAMD-17 scores. All data were
examined by means of SPSS version 23.0 (IBM, Chicago,
Illinois, United States). The significance levels were set at 0.05,
and two-tailed significance values were used. False discovery
rate (FDR) corrections described by Benjamini and Hochberg
(1995) were used for multiple test corrections. After utilizing
the Benjamini and Hochberg (1995) procedure, FDR-corrected
p-values (i.e., q-values) lower than 0.05 were considered
statistically significant.

RESULTS

Group differences in fractional
anisotropy values of atlas-based tracts

Participants in the LLD group had significantly lower FA
values in the left inferior longitudinal fasciculus (F = 6.17,
p = 0.014, q = 0.014) and right inferior longitudinal fasciculus
(F = 5.75, p = 0.018, q = 0.019) after adjusting for age, sex,
and education than those of controls (Figure 1). However, there
were no significant differences in the bilateral anterior thalamic
radiation, bilateral corticospinal tract, bilateral cingulum of

the cingulate cortex, bilateral cingulum of the hippocampus,
forceps major, forceps minor, bilateral inferior fronto-occipital
fasciculus, bilateral superior longitudinal fasciculus, bilateral
uncinate fasciculus, or bilateral superior longitudinal fasciculus
(temporal part) between participants in the HC and LLD groups
(all q > 0.05).

Relationships between cognitive
deficits, homocysteine levels and
fractional anisotropy values in healthy
controls and patients with late−life
depression

Hcy levels were significantly inversely correlated with FA
values in the forceps major (Fma) only in patients with LLD
after controlling for age, sex, and education (r = –0.31, p = 0.009,
q = 0.009) (Table 1).

As shown in Figure 2A, the left cingulum of the cingulate
cortex (r = 0.32, p = 0.008, q = 0.008) displayed positive
associations with global cognition in patients with LLD after
adjusting for age, sex, education, and HAMD-17 scores. As
shown in Figure 2B, the forceps major (r = 0.26, p = 0.033,
q = 0.034) displayed positive associations with global cognition
in patients with LLD after controlling for age, sex, education,
and HAMD-17 scores. The left anterior thalamic radiation
(r = 0.26, p = 0.029, q = 0.030) displayed positive associations
with executive function in patients with LLD after adjusting for
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covariates (Figure 2C). The right anterior thalamic radiation
(r = 0.27, p = 0.024, q = 0.025) displayed positive associations
with executive function in patients with LLD after adjusting for
covariates (Figure 2D). There was no correlation between FA
values and other cognitive domains.

Furthermore, no correlation between FA values and Hcy
levels or between FA values and cognitive performance was
found in HCs (all q > 0.05).

Interaction of homocysteine level and
fractional anisotropy values with
cognition in patients with late−life
depression and healthy controls

Multiple regression analysis displayed that the Hcy × FA
interactions in the right cingulum of the cingulate cortex
(beta = –0.24, t = –2.06, p = 0.043, q = 0.044) and right
inferior longitudinal fasciculus (beta = -0.24, t = -2.12, p = 0.038,
q = 0.038) were independent predictors for executive function
only in patients with LLD. No association between the Hcy
level × FA interaction in any of the 20 WM fiber tracts and other
cognitive domains was found in patients with LLD (all q > 0.05).

Furthermore, no association between the Hcy level × FA
interaction in any of the 20 WM fiber tracts and cognition was
found in HCs (all q > 0.05).

Discussion

The findings from the current study showed (1) significantly
lower FA values in the bilateral inferior longitudinal fasciculus
in patients with LLD than those in HCs; (2) disruption of
WM structure was linked to elevated Hcy concentrations
and cognitive impairments in global cognition and executive
function in LLD patients; and (3) the interaction between
elevated Hcy concentrations and structural destruction of WM
may affect executive deficits in patients with LLD.

Elevated homocysteine concentrations
and white matter abnormalities in
patients with late−life depression

Our previous report demonstrated that LLD patients had
higher plasma Hcy levels and worse cognitive performance
than those of healthy controls. Furthermore, higher plasma
homocysteine levels were associated with poorer cognition
in patients with LLD (Zhou et al., 2020). In the current
study, we discovered lower FA values in the bilateral inferior
longitudinal fasciculus in LLD patients, which is consistent
with the majority of prior findings on FA values in patients

TABLE 1 Correlation of Hcy levels with FA values of WM tracts in
patients with LLD.

Hcy Hcy

r p q r p q

ATR.L –0.13 0.281 0.468 IFO.L –0.11 0.348 0.773

ATR.R –0.13 0.301 0.602 IFO.R –0.08 0.527 2.108

CST.L –0.11 0.363 0.908 ILF.L –0.14 0.241 0.321

CST.R –0.14 0.263 0.376 ILF.R –0.13 0.267 0.411

CgC.L –0.18 0.139 0.164 SLF.L –0.19 0.110 0.116

CgC.R –0.17 0.173 0.216 SLF.R –0.10 0.406 1.160

CgH.L 0.00 0.998 19.960 Unc.L –0.06 0.602 3.010

CgH.R –0.18 0.125 0.139 Unc.R –0.05 0.674 4.493

Fma –0.08 0.49 1.633 tSLF.L –0.01 0.937 9.370

Fmi –0.31 0.009 0.009 tSLF.R –0.13 0.290 0.527

The false discovery rate (FDR) was adjusted using the Benjamini–Hochberg procedure,
and q-values are reported; q-values less than 0.05 were considered significant. Adjusted
for age, sex, and years of education. Hcy, homocysteine; L, left; R, right; ATR, anterior
thalamic radiation; CST, corticospinal tract; CgC, cingulum of the cingulate cortex;
CgH, cingulum of the hippocampus; Fma, forceps major; Fmi, forceps minor; IFO,
inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; SLF, superior
longitudinal fasciculus; Unc, uncinate fasciculus; tSLF, superior longitudinal fasciculus
(temporal part).

with LLD (Alves et al., 2012; Mettenburg et al., 2012; Guo et al.,
2014; Li et al., 2014, 2020; Wen et al., 2014; Emsell et al.,
2017), confirming the LLD disconnection theory. Furthermore,
we recognized a reverse relationship between plasma Hcy
concentrations and FA values in the forceps minor in patients
with LLD, suggesting that Hcy level is related to the WM
structure. Because this is the first study to explore the increased
homocysteine level and WM abnormalities of patients with LLD,
any causal inferences are speculative.

Previous reports revealed that high Hcy concentrations
inhibit mitochondrial activity in brain cells (Zhang et al., 2020),
which might explain the link between hyperhomocysteinemia
and cognitive impairment. In the developing brain,
homocysteine induces cell cycle disruption and reactive
gliosis (Cecchini et al., 2019). Data from animal studies
demonstrate that even a slight increase in serum homocysteine
levels upregulates matrix metalloproteinase-9 expression levels
and disrupts blood–brain barrier integrity (Chu et al., 2021). In
addition, endothelial dysfunction may result from an elevation
in Hcy levels by enhancing oxidation and endothelial cell
activation (Faverzani et al., 2017), increasing levels of adhesion
molecules and proinflammatory cytokines (Barroso et al.,
2016), and decreasing vascular wall integrity (Jakubowski,
2001). Endothelial cell damage causes a disruption in the
tissue milieu, which leads to subsequent myelin injury and
neurodegeneration. Moreover, a recent study demonstrated
that increased Hcy levels were related to the imaging burden
of cerebral small vessel disease (Cao et al., 2021). Taken
together, animal and human research has suggested that high
Hcy levels may affect adult neurogenesis as well as neuronal
structure and function.
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FIGURE 2

The FA value in CgC.L and Fma displayed positive associations with global cognition (A,B). The FA value in ATR.L and ATR.R displayed positive
associations with executive function (C,D).

Interaction of elevated homocysteine
levels and white matter abnormalities
in cognitive deficits in patients with
late−life depression

Our findings revealed a negative relationship between
plasma Hcy levels and FA values in the forceps minor in patients
with LLD, which reflects the interaction between elevated
Hcy levels and abnormal WM structure as the pathogenic
mechanism of LLD. Moreover, we found that the Hcy × FA
interaction in the right cingulum of the cingulate cortex and
right inferior longitudinal fasciculus contributed to executive
dysfunction in patients with LLD. Executive deterioration is
common in patients with LLD and predicts a worse response
to antidepressant therapy as well as a greater recurrence
risk (Alexopoulos et al., 2005). Growing evidence has shown
that high levels of homocysteine and WM degeneration are
associated with cerebrovascular disease (Kynast et al., 2018;
Cao et al., 2021). Therefore, elevated Hcy levels and WM
abnormalities support vascularity impairment in patients with
LLD. Although these correlations do not provide proof of
causality in pathophysiology, it is speculated that high Hcy
levels may disrupt WM microstructural connections and induce
cognitive impairment. Additionally, our findings showed that

there was a positive association between global cognition and FA
values in the left cingulum of the cingulate cortex or the forceps
major, as well as between executive function and FA values
in the bilateral anterior thalamic radiation in patients with
LLD. Several investigations have described that neurocognitive
impairment is related to WM abnormalities in LLD (Charlton
et al., 2014; Respino et al., 2019; Wang et al., 2020). These
findings support the hypothesis that damaged WM connections
are related to cognitive abnormalities in patients with LLD.

Limitations

This research investigation had several limitations that
must be noted. First, this was a case-control study. Thus, the
causal relationship between elevated Hcy levels, WM injury and
cognitive deficits in LLD patients is still uncertain. Therefore,
in the future, a longitudinal investigation with a larger sample
size will be required to obtain more persuasive and accurate
results. Second, our research only investigated changes in WM
structure; however, whether the change in WM structure is
related to a change in function must be further explored. Third,
the study did not assess diet, physical activity or lifestyle. All of
these factors may influence Hcy levels and WM, but they were
not controlled for in the present analysis.
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Conclusion

In conclusion, both increased Hcy levels and the disturbance
of WM structure may be involved in the cognitive impairment
observed in patients with LLD. Only in the patient group
was a negative relation between plasma Hcy levels and
WM disconnectivity identified, implying pathogenic processes
underlying the interaction between increased Hcy levels
and WM disconnection. Furthermore, because our current
investigation used a case-control methodology, a larger
longitudinal sample is needed to identify the causal relationship
among aberrant Hcy metabolism, WM disconnection, and
cognitive deficits in patients with LLD.
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