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The isolation, purification, and antioxidant activity of polysaccharides

extracted from elderberry fruits were studied. Two neutral polysaccharides

(EFP-0 and EFP-1) and three acidic polysaccharides (EFP-2, EFP-3, and EFP-

4) were isolated from elderberry. EFP-0, EFP-1, EFP-2, EFP-3, and EFP-4 all

contain arabinose, galactose, glucose, and mannose, with molecular weights

of 1.7981× 106, 7.0523× 106, 7.7638× 106, 4.3855× 105, and 7.3173× 105 Da,

respectively. Structural characterization showed that the backbone of EFP-2

consisted of →4)-Manp (1→4)-β-D-Glcp (1→ and →4)-β-D-Glcp (1→5)-

α-L-Araf (1→units, and T-α-L-Araf (1→ and T-β-D-Galp (1→ residues were

detected by methylation analysis and NMR analysis. In addition, the MTT assay

and zebrafish oxidative damage assay showed that EFP-2 had a protective

effect on H2O2-damaged RAW264.7 cells in a dose-dependent manner, and

zebrafish with the addition of EFP-2 would have low levels of ROS in vivo

which showed significant antioxidant activity. Therefore, the results showed

that the elderberry polysaccharides have antioxidant activity and can be used

as potential antioxidants in functional foods.

KEYWORDS

elderberry, polysaccharide, separation and purification, structural characterization,
antioxidant

Introduction

The Sambucus williamsii Hance (elderberry), which belongs to the family
Adoxaceae, is mainly distributed in Europe, Asia, and some parts of North Africa, and
consists of seven different genera, divided into 5 to 30 species and 6 to 11 subspecies
(1). Elderberry, black elderberry, European elderberry, and European black elderberry
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are common names for elderberry (2). Studies have shown that
elderberry was both an edible and medicinal plant, which was
the potential source of antioxidant ingredients (3) that can be
used as a healthy dietary supplement in the preparation of
jams and yogurt, and also applied in the treatment of common
symptoms related to colds, fevers, coughs, and influenza (4).
In addition, elderberry contains sugars, flavonoids, phenolic
acids, lignans, triterpenoids, and other bioactive substances, so
elderberries also have better physiological and pharmacological
effects in antioxidants (5), anti-influenza (6), antiviral (7), anti-
inflammatory (8), and anti-radiation (9).

Polysaccharides are a class of natural macromolecular
biopolymers composed of multiple monosaccharides through
glycosidic bonds (10). In recent years, plant, animal, and
microbial polysaccharides have received widespread attention
from the medical and food industries as bioactive ingredients
and food additives. It is widely believed that polysaccharides
extracted from natural products were less toxic and could
be used as raw materials or supplements for functional food
products (11), especially with antioxidants (12), anti-fatigue
(13), anti-tumor (14), modulation of human immune function
(15, 16), anti-inflammatory (17), hypolipidemic (18), and
inhibition of cell proliferation (19), it can prevent the harmful
effects of free radicals in the human body in terms of antioxidant
(20, 21). Studies have shown that oxidative stress leads to a
significant decrease in serum antioxidant activity and inhibition
of superoxide dismutase, glutathione (GSH), total antioxidant
activity, and glutathione peroxidase activities. Polysaccharides
play a key role as edible free radical scavengers in inhibiting
oxidative damage in organisms (22). Therefore, there was a need
to study the structural characteristics of polysaccharides and use
them as natural antioxidants to protect the body from excess
reactive oxygen species invasion.

Polysaccharides are one of the important active substances
of elderberry, with a total sugar content of 7.86∼11.50% and the
reducing sugar content of 2.8∼8.55% in elderberry fruits (20).
And elderberry fruits have a large yield, good color stability, and
potential health-promoting effects, with wide applicability in
different food applications, especially in products with long shelf
life. Up to now, although polysaccharides extracted from various
natural products had attracted significant research attention
worldwide, little research has been reported on elderberry
polysaccharides (23–25). Currently, only 10 saccharides or
glycosides have been isolated from elderberry (26), and
Liu et al. (27) and Wu (28) performed only preliminary
extraction and purification of polysaccharides from Elderberry
leaves and stems, and Song and Fu (29) concluded that
Elderberry polysaccharides regulate insulin secretion from
pancreatic islet cells and play a hypoglycemic role. The
immunomodulatory effects of elderberry fruit polysaccharides
were investigated by Lu et al. (30), who confirmed that
elderberry polysaccharides stimulate immune responses in
RAW 264.7 cells through the NF-kB pathway by the activity

of Escherichia coli lipopolysaccharides, and similarly Stich et al.
(31) who also demonstrated that polysaccharides in aqueous-
derived elderberry extracts induce effective immunomodulatory
effects. However, the isolation, purification, and structural
characterization of elderberry polysaccharides have not been
investigated. In this study, we isolated and purified elderberry
polysaccharides from elderberry fruit residues and investigated
their structural characteristics and antioxidant activity to
initially elucidate the relationship between their structure and
antioxidant activity.

Materials and methods

Materials and reagents

Elderberry fruits were harvested from the Qingzhou
Elderberry-nursery base in Shandong Province, China,
in August 2019, and the dark purple kernels growing
in clusters were obtained (Shandong, China). DEAE
cellulose 52 and Sephadex G-100 were provided by the
Shanghai Yuanye Biotechnology Co (Shanghai, China). The
monosaccharide standard methylation kit was provided
by the Borealis Biotechnology Co., Ltd (Jiangsu, China).
NaCl and trifluoroacetic acid (TFA) was provided by
ACROS (Belgium). ROS fluorescent staining reagent CM-
H2DCFDA was provided by the Beijing Biolab Biotechnology
Co. Glutathione (GSH) was provided by Wuhan Rongcan
Biotechnology Co., Ltd (Wuhan, China).

Preparation, isolation, and purification
of elderberry polysaccharides

Preparation of crude polysaccharides from
elderberry

The protocol of hot water extraction of polysaccharides
was according to the previous one with some modifications
(32). The extract was refluxed twice with hot water at
a material-to-liquid ratio of 1:20 (w/v) for 45 min each
time, and the clarified solution was combined and extracted
by filtration with a cloth funnel with diatomaceous earth
while hot, concentrated at 65◦C, alcoholic precipitation
in 95% ethanol solution, followed by centrifugation at
10,000 × g for 10 min and freeze-dried to collect the
precipitate. Then, the obtained polysaccharides were defatted
and deproteinated by petroleum ether and Sevage reagent
(chloroform: n-butanol volume ratio = 4:1). After that,
the polysaccharide was alcoholically precipitated in 95%
ethanol, centrifuged after 12 h in the refrigerator at 4◦C,
and the precipitate was used for freeze-drying to obtain
the defatted and deproteinized crude polysaccharide of
elderberry, which was EFP.
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Isolation and purification of elderberry
polysaccharides

The polysaccharide separation and purification process
were as shown in Figure 1. About 5.00 g of EFP was dissolved
thoroughly in 100 mL of deionized water, followed by
centrifugation at 10,000 × g for 10 min, and filtered
through a 0.45-µm microporous filter membrane. The
filtered crude polysaccharide solution was slowly added to a
pre-equilibrated DEAE-cellulose 52 anion-exchange column
(50 mm × 1,000 mm) and eluted with deionized water and
0.1, 0.2, 0.3, 0.4, and 0.5 mol/L NaCl solution, respectively,
(33). Each tube was 50 mL with a flow rate of 5 mL/min, and
50 tubes of each were collected. The polysaccharide content of
each tube was detected at 490 nm using the phenol-sulfuric acid
method according to Ji et al. (33), and the elution curve was
plotted with the number of tubes as the horizontal coordinate
and the absorbance value as the vertical coordinate, and the
polysaccharide eluates corresponding to the peaks (EFP-0,
EFP-1, EFP-2, EFP-3, and EFP-4) were combined according to
the peaks of the elution curve and spun off for concentration.
100 mL EFP-0 solution (0.5 mg/mL) was slowly added to
Sephadex G-100 Sephadex column (16 mm× 2000 mm), eluted
with deionized water, and 30 tubes of polysaccharide solution
were collected at 10 mL per tube. The collected polysaccharides
were lyophilized. EFP-1, EFP-2, EFP-3, and EFP-4 were purified
by the above method.

Molecular weight determination
As previously described and improved upon Olawuyi et al.

(34), the heavy mean molecular weight (Mw) distribution
and polydispersity (Mw/Mn) of the five polysaccharide
fractions were determined by high-performance gel permeation
chromatography (HPGPC; 35). The samples and standards were
weighed precisely, and the samples were prepared into a 5-
mg/ml solution, centrifuged at 12,000 rpm for 10 min, then
the supernatant was filtered through a 0.22-µm microporous
membrane and the samples were transferred into a 1.8-mL
injection vial. After that, 20 µL of sample solution was injected
into a BRT105-104-102 series gel column (8 × 300 mm) with
0.05 mol/L NaCl solution as the mobile phase and the column
temperature was 40◦C at a flow rate of 0.6 mL/min. Using the
detector RI-10A, the molecular weight size of each sample was
calculated based on the standard curve.

Analysis of monosaccharide composition
The monosaccharide composition of purified

polysaccharides was determined by ion chromatography
(Thermo Fisher ICS5000, United States; 36). About 10 mg of
lyophilized polysaccharide powder was placed in an ampoule,
10 mL of 3 mol/L TFA was added and hydrolyzed at 120◦C
for 3 h, and then the residual TFA was removed by rotary
evaporator. A 10-mL acid hydrolyzed solution was accurately
aspirated and blown dry in a tube, 10 mL of deionized water

was added with vortex mixing, 100 µL of deionized water was
aspirated, and 900 µL of deionized water was added and then
centrifuged at 12,000 rpm for 5 min. The analysis was performed
on a Dionex CarbopacTMPA20 (3 × 150) column with H2O
and 15 mol/L NaOH and 100 mol/L NaOAC as mobile phases
at a flow rate of 0.3 mL/min, column temperature of 30◦C, and
injection volume of 5 µL. The retention times and peak areas
of the 16 monosaccharide standards were compared, and the
different sugars were identified and quantified separately.

Structure identification of elderberry
polysaccharide

Infrared spectral analysis
The infrared spectral analysis was conducted following the

methods described and improved by previous authors (20). The
extracted and isolated purified elderberry polysaccharide was
pressed into thin slices, and the slices were subjected to Thermo
Nicolet IS10 Fourier transform infrared spectroscopy (FT-IR)
with the setting of mid-infrared mode scan range of 4,000 to
400 cm−1, and the analysis was performed using OMSNIC 8.2
(Thermo ScientificTM, United States) software.

X-ray diffraction spectrum
The maximum purity of polysaccharides in EFP-2 was

obtained by isolation and purification, so the EFP-2 fraction
was selected to investigate the structure and antioxidant activity
of polysaccharides. As previously stated and modified (37), an
X’Pert Pro X-ray diffractometer (PANalytical, Netherlands) was
used to measure the crystallization properties of EFP-2 under
40 kV and 40 mA of radiation at Cu Kα (λ = 0.154 06 nm)
on a copper target. The X-ray intensity was measured using a
NaI crystal scintillation counter (scintillation counter) with a
scanning range of 5◦ to 60◦, a step size of 0.02◦, and a scanning
speed of 4◦/min.

Scanning electron microscope
The study of the microstructure of elderberry

polysaccharides was conducted by scanning electron
microscopy (38). About 5 mg of the dried sample was taken,
adhered to a conductive carbon film containing a double-sided
adhesive, placed in the sample chamber of the ion sputterer, and
sprayed with gold for about 40 s. After the sample was removed,
it was placed in the scanning electron microscope observation
chamber with an acceleration voltage of 2 kV for observation.

Methylation analysis
The methylation steps were mainly referred to Yang et al.

(39) with some modifications. About 2 to 3 mg of EFP-2 sample
was added to 1 mL of anhydrous DMSO, then the anhydrous
base solution and iodomethane solution are quickly added and
reacted for 60 min at 30◦C in a magnetic stirring water bath,
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and finally 2 mL of ultrapure water was added to terminate the
methylation reaction. The methylated polysaccharide was taken
and hydrolyzed by adding 1 mL of 2 M TFA for 90 min and
evaporated dry by a rotary evaporator. About 2 mL of double-
distilled water and 60 mg of sodium borohydride have been
added to the residue to reduce for 8 h, then, glacial acetic acid
was added to neutralize the residue, 1 mL acetic anhydride was
added to acetylate the reaction at 100◦C for 1 h, and cooled.
After that, 3 mL of toluene was added to remove the excess
acetic anhydride. The acetylated product was dissolved with
3 mL of CH2Cl2 and the upper aqueous layer was removed.
After, the CH2Cl2 layer was dried with an appropriate amount
of anhydrous sodium sulfate, and the volume was fixed at 10 mL
and put into a liquid phase vial. Finally, an RXI-5 SIL MS
column of 30 m × 0.25 mm × 0.25 µm was used, the starting
temperature was 120◦C, ramped up to 250◦C/min at 3◦C/min,
and held for 5 min. The injection port temperature was 250◦C,
the detector temperature was 250◦C/min, and the carrier gas was
helium at a flow rate of 1◦mL/min.

Nuclear magnetic resonance spectroscopy
About 40 mg of EFP-2 was dissolved in D2O and

then loaded in an NMR tube. The NMR spectra were
scanned on a high-resolution 700 MHz Bruker AVANCE
III NMR spectrometer (Bruker, Germany). One-dimensional
NMR spectra (1H and 13C) and two-dimensional NMR
spectra [correlation spectroscopy (COSY), heteronuclear single
quantum coherence (HSQC), and heteronuclear multiple bond
coherence (HMBC)] were adopted to analyze the structural
features of polysaccharides (40).

Effect of polysaccharides on the
antioxidant activity of H2O2-induced
oxidative damage in RAW264.7 cells

Cell culture
RAW 264.7 cell line was obtained from the Institute of Cell

Biology, Chinese Academy of Sciences (Shanghai, China) and
cultured in DMEM medium (with 10% fetal bovine serum and
100 U/ml each of penicillin and streptomycin) at 37◦C, 5% CO2,
and saturated humidity in an incubator (41).

MTT test
The viability of RAW 264.7 cells was determined by a

standard assay using the MTT method (42). Cells of logarithmic
growth phase were collected, washed with PBS buffer, trypsin
digested, and centrifuged after the termination of digestion, and
the cells were made into cell suspension with culture medium,
inoculated into 96-well plates at a density of 5 × 104 cells/well,
and cell dilution was added at 100 µL/well and incubated
for 24 h at saturated humidity, 37◦C, and 5% CO2. The
samples were diluted with culture medium separately, and

100 µL was added to each well; the solvent model group
and control group (EFP-2 solution with different solubility)
were also set up, and the final concentration of 1.2 mM
H2O2 was added, respectively. After 4 h incubation, MTT
solution was taken and added to the cells at 10 µL/well,
and incubation was continued in the incubator for 4 h. After
4 h, the liquid in the wells was discarded, and 150 µL
DMSO was added to each well to dissolve it. The absorbance
at 490 nm was measured with an enzyme marker, and
the survival rate was calculated according to the following
Eq. (1).

Survival rate (100%)

= 1−

100% Absorbance value of control group−
Compound absorbance value

100% Absorbance value of control group−
Absorbance value of blank group

(1)

Morphological observation
The differences in cell morphology and number between

the different treatment groups were compared by fluorescence
microscopy. RAW264.7 cells were inoculated in 6-well plates
(5 × 105 cells/mL) at 1 mL per well, and blank, VC
(100 µg/mL), and control (12.5–200 µg/mL) were set up in
the same way as the MTT assay, and after 24 h of incubation,
respectively. Cells were observed and photographed under a
200 × microscope using a fluorescent microscope to compare
differences in cell morphology and number between different
EFP-2 concentrations.

Flow cytometric analysis of apoptosis
The 12-well plates were seeded with good cells plastered

overnight (5 × 105 cells/well), and VC, EFP-2 in concentration
gradient, and 1.2 Mm H2O2 were added. Another sample was
set as blank control and 1.2 mM H2O2 was used as the positive
control, and the cells were incubated in the incubator for 4 h.

We transferred the collected cells to a 1.5 mL EP tube with
PBS and divided it into two parts, one for the blank control
group and the other part for the same volume as the sample tube,
as the No stain group. Dilute 10 × Binding Buffer with PBS,
dilute BV421 Annexin V with Binding Buffe: BV421 Annexin
V = 50:1 volume ratio, add 70 µL per tube to the sample
tube, and place on ice for 30 min away from light. The nucleic
acid dye 7-AAD was added to 1 µL per tube and left for
10 min at room temperature and protected from light (BV421
Annexin V and 7-AAD can also be stained at the same time,
considering that BV421 Annexin V’s staining ability is lower
than that of 7-AAD, BV421 Annexin V is stained first). Add
PBS 800 µL/tube, centrifuge, discard the supernatant, and add
200 µL PBS to make cell suspension. Filter on the machine and
flow cytometry for testing.
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FIGURE 1

Flow chart of elderberry polysaccharide extraction, separation, and purification.

Protective effects of EFP-2 in a zebrafish model
of oxidative damage

Zebrafish parents are kept in the zebrafish breeding system,
quality control reference “B/T 39649-2020 experimental animals
Experimental fish quality control.” Ten pairs of parental
fish, male and female, were temporarily reared in 3 L
paired boxes, and fertilized eggs with basically synchronized
development were obtained using the photoinduction method;
3 dpf embryos were selected as experimental organisms. The
experiment was set up the control group (blank control
group), the GSH group (positive drug control group, 100 µM)
and the subject group (200 µg/L). The incubation was
continued for 24 h after administration. The rest of the
operation was performed according to the standard “Rapid
assay for zebrafish model of antioxidant function of T/ZHCA

health food (ROS method).” After the experiment, the live
imaging of each group of pups was performed using a
Nikon fluorescence microscope (Ci-S), and no less than 10
fish were imaged in each group; the image grayscale values
were extracted using ImageJ software, and the ROS clearance
rate was calculated.

Statistical analysis

Data were expressed as the mean ± standard deviation
(SD) of three measurements. Statistical analysis was performed
by one-way analysis of variance (ANOVA) and t-test in SPSS
software to assess the significance of differences, and p < 0.05
was considered significant.
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Results and discussion

Elderberry polysaccharide isolation
and purification

The crude polysaccharide (EFP) was extracted from
elderberry fruits in 2.2 ± 0.4%. Then five polysaccharides were
isolated, two neutral polysaccharides (EFP-0 and EFP-1) and

three acidic polysaccharides (EFP-2, EFP-3, and EFP-4), and

were obtained by passing through a DEAE-52 cellulose ion-
exchange column (Figure 2A), with recoveries of 6.74, 6.03,
5.83, 4.69, and 7.24%, respectively. Yuan et al. (43) reported
that five polysaccharides were also isolated and purified from
blackened jujube. These five polysaccharide fractions were
then further purified on a Sephadex G-100 column, and the
purified five polysaccharide fractions all showed single peaks
(Figure 2B), and the purity of polysaccharides was 77.86± 0.63,
81.67 ± 0.43, 90.65 ± 0.57, 81.77 ± 0.83, and 82.25 ± 0.56%,
respectively, measured by phenol-sulfuric acid method.

FIGURE 2

Isolation and purification of five polysaccharide fractions from elderberry fruits. (A) Elution profile of elderberry polysaccharides on a DEAE
cellulose-52 column. (B) Elution profiles of five fractions (EFP-0, EFP-1, EFP-2, EFP-3, and EFP-4) on a Sephadex G-100 column.
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Molecular weight analysis

The molecular weight of EFP was determined by HPGPC,
and the molecular weight distribution of polysaccharides
is critical for biological activity (44). The results were
shown in Table 1, and based on the standard curve
equation: lgMw = −0.1889 t + 12.007 (R2 = 0.9943), it
was calculated that among the five polysaccharides, EFP-
2 had the highest heavy average molecular weight of
7.7638 × 106 g/mol, followed by EFP-1 (7.0523 × 106 g/mol),
EFP-4 (7.3173 × 105 g/mol), and EFP-0 (1.7981 × 106 g/mol)
and the lowest heavy average molecular weight was EFP-
3 (4.3855 × 105 g/mol) with retention times of 27.088,
32.518, 27.309, 33.695, and 30.451 min. Among them, the
polydispersity index (Mw/Mn) of EFP-0, EFP-1, and EFP-
2 are 1.931, 2.132, and 2.147, respectively, close to 2,
indicating that the molecular weight distribution of EFP-0,
EFP-1, and EFP-2 were relatively narrow and the polymer
structure was more homogeneous, so we speculate that
EFP-0, EFP-1, and EFP-2 had better hydrophilicity and
solubility (45).

Analysis of monosaccharide
composition

Monosaccharide composition analysis is a basic step in
determining the structural characterization of polysaccharides,
and Table 2 showed that the five polysaccharides are
heteropolysaccharides, of which EFP-0 and EFP-1 do not
contain galacturonic acid as neutral sugars, EFP-2, EFP-3,
and EFP-4 all contain galacturonic acid as acidic sugars, and

the proportion of galactoalic acid is 6.90%:22.70%:30.60%,
respectively. EFP-0, EFP-1, EFP-2, EFP-3, and EFP-4 all
contain Arabia (47.70%:55.00%:41.40%:19.20%:23.20%),
Glucose (15.00%:16.30%:18.00%:15.40%:19.40%), Galactose
(14.10%:22.30%:24.80%:10.10%:16.10%), Mannose (4.10%:
2.40%:6.60%:7.50%:8.70%), and glucosamine hydrochloride
(1.50%:4.00%:2.30%:1.10%:2.00%), except that EFP-0 and
EFP-3 both contain fucose (17.60%:24.10%). Notably, although
rhamnose is widely found in plant polysaccharides and
pectins, none of the five polysaccharide fractions contained
rhamnose. At the same time, the five components contain
mannose and glucose, indicating that the polysaccharides
isolated and purified by EFP have antioxidant activity and
are all polymer heteropolysaccharides (46). Ferreira et al. (3)
concluded that elderberry contains glucose, fructose, and a small
amount of sucrose. This was similar to the monosaccharide
composition of straw mushroom polysaccharides derived by
Tian et al. (47), as they are all mainly composed of arabinose,
mannose, glucose, and galactose. Data were suggesting
that the combinations and ratios of monosaccharides were
different, as they were not always the same even in the same
genus (48).

Structural identification of elderberry
polysaccharides

Fourier transform infrared spectroscopy
Fourier transform infrared spectroscopy spectra revealed

the main functional groups of polysaccharides. The FT-IR
spectra as shown in Figure 3 indicated that the IR spectra of
all five components contained similar absorption peaks in the

TABLE 1 Molecular weight characteristic parameters.

Sample RT (min) Mw (g/mol) Mn (g/mol) Mp (g/mol) Mw/Mn

EFP-0 30.451 1.7981× 106 9.3108× 105 1.8289× 104 1.931

EFP-1 27.309 7.0523× 106 3.3072× 106 1.2336× 104 2.132

EFP-2 27.088 7.7638× 106 3.6156× 106 1.7536× 104 2.147

EFP-3 33.695 4.3855× 105 2.5156× 105 2.2593× 104 1.743

EFP-4 32.518 7.3173× 105 4.0443× 105 5.0097× 104 1.809

TABLE 2 Composition and percentage of monosaccharides.

Sample Arabinose
(%)

Galactose
(%)

Glucose (%) Mannose
(%)

Fucose (%) Galacturonic
acid (%)

Glucosamine
hydrochloride

(%)

EFP-0 47.70 14.10 15.00 4.10 17.60 0.00 1.50

EFP-1 55.00 22.30 16.30 2.40 0.00 0.00 4.00

EFP-2 41.40 24.80 18.00 6.60 0.00 6.90 2.30

EFP-3 19.20 10.10 15.40 7.50 24.10 22.70 1.10

EFP-4 23.20 16.10 19.40 8.70 0.00 30.60 2.00
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FIGURE 3

Infrared spectra of the five polysaccharide fractions of elderberry fruits and (A–E) represents the infrared spectra of EFP-0, EFP-1, EFP-2, EFP-3,
and EFP-4, respectively.

range of 4,000 to 500 cm−1, only the absorption intensities
differ. EFP-0, EFP-1, EFP-2, EFP-3, and EFP-4 can observe
a broad and intense stretching peak in all FTIR spectrum
around 3,200 to 3,400 cm−1, which was mainly caused by

polysaccharide molecules or intermolecular O-H stretching
vibrations, indicating the presence of intermolecular hydrogen
bonds (49, 50). The weak absorption bands around 2,900 to
2,800 cm−1 (Figures 3A–E) were attributed to C-H, -CH2-, and
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-CH3- asymmetric stretching vibrations (51), and the presence
of these two absorption peaks suggests that all five components
purified from elderberry polysaccharides are carbohydrates, but
EFP-0 is relatively strong (43). The absorption peak near 1,400
to 1,700 cm−1 was due to the -COOH bending vibration or
symmetric stretching vibration of C-O, indicating the presence
of glucuronic acid in EFP and the presence of -COOH groups;
in particular, EFP-2 has the largest carboxyl peak (52–54). EFP-
3 has an absorption peak at 1,597.92 cm−1, indicating the
presence of N-H variable angle vibration in EFP-3 (49). The
absorption peaks at 1,000 to 1,200 cm−1 were related to the
C-O-C stretch of the glycoside bonds, which have different
spectral shapes for polysaccharides composed of different
monosaccharides, where multiple absorption bands appeared
in EFP-2, EFP-3, and EFP-4, but only 1–2 absorption bands in
EFP-0 and EFP-1 (Figures 3A,B); and it is noteworthy that EFP-
0, EFP-2, EFP-3, and EFP-4 (Figures 3A,C–E) have absorption
peaks at 1,000 to 1,050 cm−1, indicating the presence of the
pyranose ring in these four polysaccharide fractions (55), and
1,024 cm−1 is the peak of C-O-C stretching vibration (56).
A peak around 900 cm−1 indicates the presence of β-glycoside
bonds in the polysaccharide chain, but the peaks of EFP-0
and EFP-1 are weaker, and there is an absorption peak around
850 cm−1 indicating the presence of α-glycoside bonds in
polysaccharides, but only EFP-0 has no absorption peak here
(45, 57, 58) and (59). Thus, the FTIR spectra of these purified
polysaccharide components all have typical absorption peaks of
heteropolysaccharides.

X-ray diffraction analysis
EFP-2 was determined by X-ray diffraction to be an

amorphous or crystalline structure. Generally, polysaccharides

with sharp narrow diffraction peaks are crystalline structures,
while polysaccharides with broad diffraction peaks are
amorphous structures (60). As shown in Figure 4, the XRD
profile of EFP-2 has a strong broad peak at 2θ = 20◦, and a
similar peak pattern was observed in the 2θ region by Zhao et al.
(61) and Ji et al. (50). A new sharp crystal peak at approximately
2θ = 32, 46, and 56◦ each indicates that EFP-2 had an ordered
crystal conception, and similar results were observed by Yuan
et al. (62) and Bai et al. (63), which may be related to the content
of glyoxylate, an acidic polysaccharide containing three peaks
with sharp and narrow diffraction (64). This inference was
consistent with the results for monosaccharide composition.

Scanning electron microscope
Scanning electron microscopy can be used as a qualitative

tool to analyze the surface morphology of polysaccharides (64).
As can be seen from Figure 5, the polysaccharide structure
appears fragmented at 500 × magnification and had a rough
surface, which may be caused by various hydroxyl and carboxyl
groups (64). At 1,000×magnification, the EFP-2 polysaccharide
surface showed agglomerates or lamellar aggregates, but no
regularity overall, which may be due to the magnetic field
enhancement leading to different degrees of cellular tissue
damage, resulting in wrinkling, cracking, and rupture (21). At
3,000 × magnification, the surface of EFP-2 polysaccharide was
a smooth sheet-like structure with tighter binding and surface
distribution, possibly due to stronger interactions between
polysaccharide molecules (65, 66).

Methylation analysis
Methylation analysis is the most widespread and effective

method for determining the type and linkage of polysaccharide

FIGURE 4

X-ray diffraction curve of EFP-2.
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FIGURE 5

SEM photo of the surface structure of EFP-2.

glycosidic bonds (44, 67). To analyze the linkage mode of
monosaccharides in EFP-2, the polysaccharide structure was
analyzed by methylation, the reaction products were hydrolyzed
and acetylated sequentially, and the resulting final products were
analyzed by GC-MS to obtain information on the linkage mode
of monosaccharides.

Figure 6 showed that the total ion flow diagram of the
methylation products and the analysis of the polysaccharide
methylated glycol acetates results were listed in Table 3. It can
be seen that EFP-2 included 12 glycosidic bond types, and 1,4-
Glcp (34.90%), 1,4-Manp (32.70%), and 1,4,6 -Glcp (10.80%)
were the three major glycosidic bond linkage mode, with small
amounts of t-Galp (5.10%), t-Manp (4.40%), t-Araf (2.50%),
t-Glcp (2.40%), 1,4,6-Galp (1.90%), 1,5-Araf (1.90%), 1,3-Galp
(1.30%), 1,6-Galp (1.00%), 1,3,6-Galp (1.00%), and 1,3,6-Galp
(0.50%) residues. It can be seen that the EFP-2 backbone may
be joined by 1,4-α-Glcp and 1,4-α-Manp, and that 1,4-α-Glcp
produced a branched chain at the C-6 position.

As can be seen in the methylation results, the number
of glycosidic bonds differs from the composition of the
monosaccharides measured, mainly due to the fact that
methylation analysis is more qualitative than quantitative, and
the percentage content of GC-MS is different due to the lower
sensitivity of ion chromatography. In addition, EFP-2 has
good solubility, and the use of DMSO reagents can avoid the
problem of insufficient methylation of polysaccharides, so the
glycosidc bond type determined by the methylation experiment
is reliable (68).

NMR spectroscopy analysis of EFP-2
According to the 1H NMR spectrum (Figure 7A), EFP-2 had

five main anomeric proton signals at δ 5.22, 5.10, 5.09, 4.70,
and 4.45, which were labeled A, B, C, D, and E, respectively.
The chemical shifts from 3.21 to 4.44 ppm in the 1H NMR
spectrum were assigned to protons from C-2 to C-6 in the
residues. The corresponding anomeric carbon signals in the
13C NMR spectrum were labeled with reference to the HSQC
data. All the 1H and 13C NMR (Figure 7B) of labeled residues
were assigned with data from the 1H-1HCOSY (Figure 7C) and
HSQC spectra (Figure 7D). In 13C NMR spectrum(Figure 7B),
four isomers with heteropolycarbon resonance signals were at
δC 90 to 110 ppm (107.30, 101.59, 107.48, 104.03, and 102.91
ppm). This indicated that EFP-2 contained both α and β

configurations in its structure (69), which was consistent with
the results of the FTIR spectrum. All the 1H and 13C signals
were assigned as completely as possible according to 2D NMR
analysis and literature values. The chemical shift in the anomeric
proton of residue A was δ 5.22. The corresponding chemical
shift in the anomeric carbon was δ 107.30. The other protons
of residue A were assigned from the COSY spectrum. The other
corresponding carbon and hydrogen signals were δ 79.65 (4.30),
76.38 (4.11), 84.03 (4.10), and 62.54 (3.82, 3.72), determined
with HSQC (Figure 7D). Based on these NMR data, we inferred
that T-α-L-Araf (1→ was a constituent unit of EFP-2 Combined
with the analysis, we inferred that the →4) –Manp (1→ was
assigned as residue B, →5) -α-L-Araf (1→ as residue C, T-
β-D-Galp (1→ as residue D, and →4) -β-D- Glcp (1→ as
residue E (71–73). Taking the results of methylation analysis
into consideration, it was supposed that the presence of two
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FIGURE 6

Total ion chromatogram of the methylated production of EFP-2.

TABLE 3 Analysis of polysaccharide methylated glycol acetates (PMAA) results.

RT Methylated fragments Mass-to-charge ratio (m/z) Molar ratio (%) Glycosidic bond type

17.225 2,3,5-Me3-Araf 43,71,87,101,117,129,145,161 2.50 Araf -(1→

22.903 2,3-Me2-Araf 43,71,87,99,101,117,129,161,189 1.90 →5)-Araf -(1→

23.233 2,3,4,6-Me4-Glcp 43,71,87,101,117,129,145,161,205 2.40 Glcp-(1→

25.325 2,3,4,6-Me4-Manp 43,71,87,101,117,129,145,161,205 4.40 Manp-(1→

26.394 2,3,4,6-Me4-Galp 43,71,87,101,117,129,145,161,205 5.10 Galp-(1→

30.868 2,3,6-Me3-Manp 43,87,99,101,113,117,129,131,161,173,233 32.70 →4)-Manp-(1→

31.307 2,3,6-Me3-Glcp 43,87,99,101,113,117,129,131,161,173,233 34.90 →4)-Glcp-(1→

31.841 2,4,6-Me3-Galp 43,87,99,101,117,129,161,173,233 1.30 →3)-Galp-(1→

34.497 2,3,4-Me3-Galp 43,87,99,101,117,129,161,189,233 1.00 →6)-Galp-(1→

38.051 2,3-Me2-Glcp 43,71,85,87,99,101,117,127,159,161,201 10.80 →4,6)-Glcp-(1→

38.465 2,3-Me2-Galp 43,71,85,87,99,101,117,127,159,161,201,261 1.90 →4,6)-Galp-(1→

40.806 2,4-Me2-Galp 43,87,117,129,159,189,233 0.50 →3,6)-Galp-(1→

different terminal signals was suggested as T-α-L-Araf (1→ and
T-β-D-Galp (1→ in EFP-2, as well as comparing their NMR data
with those in references (Table 4; 70). In the HMBC spectrum,
some inter-residual cross-peaks were observed: B-H-1 to E-C-4
(Figure 7E). In the NOESY spectrum, some inter-residual cross-
peaks were observed: B-1 to E-4/D-3 and C-5; E-1 to C-5/D-3
and E 4; D-1 to C-5/D-3 and E 4 (Figure 7F). The determination
of the monosaccharide composition analysis confirmed that
EFP-2 was mainly composed of galactose, arabinose, glucose,
and mannose. Based on its monosaccharide composition and
1D and 2D NMR spectroscopy results, EFP-2 was proposed to
comprise two units of→4) –Manp (1→4) -β-D-Glcp (1→ and
→4) -β-D-Glcp (1→ 5) -α-L-Araf (1→.

Protective effect of H2O2-induced
oxidative stress

Effect of EFP-2 on H2O2-induced cell
competence in RAW264.7 cells

Compared with the model group (Figure 8A), the survival
rate of cells under 1.2 mM H2O2 conditions both increased

with the increase of polysaccharide concentration, which acted
as a protective anti-free radicals in vitro, indicating that EFP-
2 had a strong protective effect on RAW264.7 cells with
H2O2-induced damage. It was shown that cell viability was
enhanced with increasing concentrations, suggesting a dose-
dependent relationship between polysaccharide concentration
and cellular activity (12.5–200 µg/mL), which was consistent
with the studies reported by Wang et al. (74) and Xie et al.
(75). In Figure 8B, the cells were mostly round, with smooth
surfaces and uniform size in clusters (76). Cell density and
cell viability increased significantly after 24 h treatment with
EFP-2 (12.5–200 µg/mL), which became more pronounced
with increasing EFP-2 concentration, suggesting that FFP-
2 could inhibit morphological changes in RAW264.7 cells
and protect them from H2O2-induced oxidative stress. This
may be because the inhibitory effect of EFP-2 on cellular
death induced by H2O2 oxidative stress is determined by
monosaccharides, which can provide the ability of cells
or control oxidative stress (77). Studies have shown that
many plant polysaccharides can scavenge excess free radicals
and play an antioxidant role, and Li et al. (78) have
concluded that red mushroom polysaccharides also have
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FIGURE 7

NMR spectra of EFP-3 in elderberry. (A) 1H NMR; (B) 13C NMR; (C) 1H-1H COSY; (D) HSQC; (E) 5-HMBC; and (F) NOESY.

a significant protective effect on the activity of H2O2-
induced RAW264.7 cells.

Apoptosis analysis
Studies have shown that H2O2-induced oxidative stress

can induce DNA damage, inflammation, tissue damage, and
apoptosis, which is a key target of most chemotherapy drugs

because it is the primary mechanism for clearing damaged
cells (75). As shown in Figure 9, the percentage of apoptosis
in the H2O2 group was 0.56%, the percentage of apoptosis in
RAW264.7 cells treated with EFP-2 was significantly reduced to
less than 0.50%, and the percentage of apoptosis in RAW264.7
cells gradually decreased to 0.48, 0.46, and 0.37% with the
increase of EFP-2 concentration (12.5–50 µg/mL). Compared
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TABLE 4 Assignments of 1H and 13C NMR spectra for EFP-2.

1 2 3 4 5 6

A T-α-L-Araf
(1→

C 107.30 79.65 76.38 84.03 62.54

H 5.22 4.30 4.11 4.10 3.82/3.72

B →4)-Manp
(1→

C 101.59 68.69 71.10 76.49 75.77 61.16

H 5.10 4.24 3.76 3.98 3.46 3.86/3.76

C →5)-α-L-Araf
(1→

C 107.48 81.90 76.56 82.03 66.35

H 5.09 4.23 4.15 4.25 3.90

D T-β-D-Galp
(1→

C 104.03 72.01 73.59 69.15 75.12 61.16

H 4.70 3.58 3.84 4.02 3.72 3.86/3.76

E →4)-β-D-Glcp
(1→

C 102.91 76.27 74.31 82.10 72.43 61.16

H 4.45 3.42 3.58 3.85 3.72 3.86/3.76

with VC, RAW264.7 cells treated with EFP-2 (<25 µg/mL)
had a weaker apoptotic activity, which was enhanced when
the concentration of EFP-2 (50 µg/mL) was increased to
a certain concentration. These results suggested that EFP-
2 can participate in the process of programmed suicide to
remove non-functional, unwanted, abnormal, and harmful cells,
reducing the death of RAW264.7 cells. Thus, EFP-2 was shown
to protect cells from H2O2-induced oxidative stress.

Protective effect of EFP-2 polysaccharide on
oxidative damage model in zebrafish

Zebrafish are often used as biological models for in vivo
studies of small molecules and drugs because of their fast growth
rate, small size, transparency, and ease of handling (77, 78).
Glutathione, as a key antioxidant element, with the formation of
its disulfide dimer, can respond to chemical stress and clear ROS,
thereby balancing the intracellular redox homeostasis, helping
to prevent oxidative stress in cells, and maintain a normal
immune system (74, 79). The intensity of green fluorescence
is positively correlated with the level of ROS, and the higher
the brightness, the higher the level of ROS. When the level
of ROS increases in the body, it will consume the antioxidant
substances in the body and disrupt the homeostasis of the
antioxidant defense system in the body. If the synthesis rate
of antioxidant substances in the body is slow or the clearance
rate of ROS is not fast, it will cause the peroxidation level
of lipids and proteins in the body to increase, leading to the
occurrence of chronic diseases and causing aging and other
physiological phenomena related to peroxidation in the body
(22, 80). Compared with the blank control group (Control
group), both the positive drug control group (GSH group) and
the subject group (EFP-2 group) could significantly reduce the
overall ROS level of zebrafish litter, and the ROS clearance
rate was 50.51 and 44.62% (Table 5), respectively. After the
addition of EFP-2, the fluorescence intensity of zebrafish was

FIGURE 8

(A) Effect of EFP-2 on the survival rate of RAW264.7 cells with
H2O2-induced injury; (B) comparison of the differences in
morphology and number of RAW264.7 cells with H2O2-induced
injury at different EFP-2 concentrations. Significant differences
with model group were designated as *P < 0.05, **P < 0.01,
***P < 0.001.

significantly reduced (Figure 10), and the ROS level in zebrafish
was decreased, which improved its antioxidant level, directly
reflecting that EFP-2 has an antioxidant ability. In addition
to the direct antioxidant response, polysaccharides may also

Frontiers in Nutrition 13 frontiersin.org

https://doi.org/10.3389/fnut.2022.947706
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-947706 July 13, 2022 Time: 17:20 # 14

Wei et al. 10.3389/fnut.2022.947706

FIGURE 9

Effect of EFP-2 on H2O2-induced apoptosis in RAW264.7 cells.

FIGURE 10

Partial fluorescence map in zebrafish.
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TABLE 5 Fluorescence grayscale values for each group.

Serial
number

Blank group GSH group Subjects group

1 434309 290555 205835

2 442634 195570 273728

3 325941 156175 155579

4 337943 215241 226494

5 344125 142899 243585

6 474124 242847 165656

7 433179 197831 209262

8 482588 199821 283857

9 460675 257933 251640

10 553025 149162 231248

11 302460 174076 239522

12 307248 / /

Average
value

408188± 81619.53b 202010± 46949.15a 226037± 40112.29a

Values with different superscripts indicate significant differences (P < 0.05).

activate some signaling pathways that protect zebrafish from
oxidative stress damage. For example, Yang et al. (40) added
HJP-1a at doses of 5, 25, and 50 µg/mL, which can increase
the fluorescent spots of zebrafish embryos by 60.8 to 83.3%,
and then achieve the best effect on the protective effect of
oxidative damage cells.

Conclusion

Five polysaccharide fractions, including two neutral
polysaccharide fractions (EFP-0 and EFP-1) and three acidic
polysaccharide fractions (EFP-2, EFP-3, and EFP-4), were
isolated and purified from elderberry fruits using DEAE-
52 anion-exchange chromatography and Sephadex G-100
dextran gel chromatography columns, and they differed
in terms of monosaccharide composition and molecular
weight. Both EFP-0 and EFP-1 were mainly composed of
arabinose, galactose, and glucose, and fucose was also a major
component of EFP-0. EFP-2, EFP-3, and EFP-4 were all acidic
heteropolysaccharides, all containing arabinose (41.10, 19.20,
23.20%), galactose (24.80, 10.10, 16.10%), glucose (18.00,
15.40, 19.40%), and galacturonic acid (6.90, 22.70, 30.60%).
The molecular weights were 1.7981 × 106, 7.0523 × 106,
7.7638 × 106, 4.3855 × 105, and 7.3173 × 105 g/mol,
respectively. The backbone of EFP-2 consisted of two units,
→4) –Manp (1→4) -β-D-Glcp (1→ and →4) -β-D-Glcp
(1→5) -α-L-Araf (1→, and T-α-L-Araf (1→ and T-β-D-
Galp (1→ residues were detected by methylation analysis
and NMR analysis. In addition, the MTT method and
zebrafish oxidative damage assay showed that EFP-2 had
a protective effect on H2O2-damaged RAW264.7 cells in a
dose-dependent manner, and zebrafish with the addition of

EFP-2 would have low levels of ROS in vivo and also showed
significant antioxidant activity. Therefore, the elderberry
polysaccharide has antioxidant activity, which provides a
theoretical basis for further studying the relationship between
EFP-2 structure and antioxidant activity, and contributes to
the development of EFP-2 as the most novel antioxidant.
However, the disadvantage of this study is the lack of in-depth
understanding of the relationship between polysaccharide
structure and antioxidant activity.
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