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Sweetener type can influence sensory properties and consumer’s acceptance

and preference for low-calorie products. An ideal sweetener does not exist,

and each sweetener must be used in situations to which it is best suited.

Aspartame and sucralose can be good substitutes for sucrose in passion

fruit juice. Despite the interest in artificial sweeteners, little is known about

how artificial sweeteners are processed in the human brain. Here, we

applied the convolutional neural network (CNN) to evaluate brain signals

of 11 healthy subjects when they tasted passion fruit juice equivalently

sweetened with sucrose (9.4 g/100 g), sucralose (0.01593 g/100 g), or

aspartame (0.05477 g/100 g). Electroencephalograms were recorded for

two sites in the gustatory cortex (i.e., C3 and C4). Data with artifacts were

disregarded, and the artifact-free data were used to feed a Deep Neural

Network with tree branches that applied a Convolutions and pooling for

different feature filtering and selection. The CNN received raw signal as input

for multiclass classification and with supervised training was able to extract

underling features and patterns from the signal with better performance than

handcrafted filters like FFT. Our results indicated that CNN is an useful tool

for electroencephalography (EEG) analyses and classification of perceptually

similar tastes.
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Introduction

Sugar has been the main sweetener in human diet for
centuries. It represents a high percentage of the human daily
energy consumption, but it offers little additional nutritional
value (1–3).

Given that replacing sugar with non-caloric (or low-calorie)
sweeteners have become popular among consumers seeking to
lose or to maintain weight. Moreover, foods with the same
sweetening capacity might be perceived differently due to their
caloric content (4, 5), behavioral and physiological effects (6).
Additionally, the brain might respond distinctly to perceptually
similar and identical tastes (7).

Any study involving equi-intense sweeteners (i.e.,
sweeteners used in equivalent amounts) must consider
how sweeteners influence sensory properties and consumer’s
acceptance and preference for low-calorie products (8). An
ideal sweetener does not exist, so each sweetener is appropriate
for specific situations (9). Passion fruit is a popular tropical fruit
that has an important commercial variety named yellow passion
fruit, which is used to prepare juice that requires sweetening
(10). Aspartame and sucralose can be good substitutes for
sucrose in passion fruit juice (11, 12).

Gustatory stimuli are processed by the brain considering
their physical properties and chemical qualities. The ability of
electroencephalography (EEG) to access brain processes has
already been used in studies of a sensory nature (7, 13–17).
The EEG signal acquired with a single channel can be used to
monitor mental activity (17–19). Experiments using infrared
spectroscopy (20) and magnetoencephalography (MEG) (21,
22) have been carried out to locate possible taste areas of the
cerebral cortex and to analyze differences between stimuli. Other
methods, based on nonlinear dynamics, have shown that the
taste of chewing gum alters the nonlinear characteristics and
frequency domain of EEG (23).

In addition, from the food science standpoint, several
aspects must be considered when it comes to taste perception,
including the hypothesis that the taste perception threshold is
related not only to the sensitivity of the sensory organ—in this
case, the tongue—but also to a cognitive process in the brain (20,
24, 25).

Although EEG has been demonstrated to be a valuable
tool for research in various applications, it has several
limitations which affect analysis and processing performance.
Because of their outstanding robustness and adaptability, several
machine learning (ML) and deep learning (DL) models for
performing EEG signal classification have been reported (26).
DL is a new field of ML that allows computational methods
composed of multiple processing layers to be employed (27)
and Convolutional Neural Networks (CNNs) are a supervised
learning approach. CNN were first proposed by Fukushima
(27, 28), but this approach was not widely employed because
computation hardware was limited for training the networks.

Deep CNNs are typical feedforward neural networks to which
Backpropagation (BP) algorithms are applied to adjust the
network parameters (weights and biases), to reduce the cost
function value (29).

Two types of layers exist in the network low- and middle-
levels: convolutional layers and max-pooling layers. The output
nodes of the convolution and max-pooling layers are grouped
into a 2D plane called feature mapping. As the features
propagate to the highest layer or level, the dimensions of features
are reduced depending on the kernel size for the convolutional
and max-pooling operations, respectively. These hidden layers
allow nonlinear and complex problems to be handled (30, 31).

In this study, we employed CNN to classify EEG data
resulting from the consumption of drinks (passion fruit
juice) sweetened with caloric (sucrose) and non-caloric
sweeteners (sucralose and aspartame). Our goal is to test the
hypothesis that CNN is a useful tool to feature extraction
and classification of EEG data resulting from stimulation with
perceptually similar tastes.

Materials and methods

The methods used herein were divided into three main
sections: (1) Participant selection, (2) acquisition of EEG
signal from the selected group, and (3) signal processing and
Convolutional Neural Network (CNN) training and tests. Our
aim was to use a CNN to determine differences between stimuli.

Stimuli

The passion fruit juices were prepared in the laboratory;
unsweetened passion fruit pulp (DeMarchiTM) was employed.
The following ratio was used: one part of pulp to two parts
of water. The juice samples were sweetened with sucrose
(UniãoTM), aspartame (AjinomotoTM), or sucralose. Pure water
was considered as reference. The samples were prepared
1 day before the experiment, stored at 4–6◦C, and tested at
room temperature.

The sweetener concentration in the passion fruit juice
was chosen according to Rocha and Bolini’s study (11, 12),
who stated that 9.4/100 g was an ideal sucrose concentration
according to consumer’s acceptance. They also stated that the
equivalent aspartame and sucralose concentrations in passion
fruit juice were 0.0547 g/100 g and 0.0159 g/100 g, respectively.

Participant selection

A total of 105 volunteers were investigated in a single-
blind session. The volunteers comprised students, teachers, and
employees aged 19–55 years, recruited on campus. They did
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not have diabetes, smoke, or use medications that affect taste
or cognitive processes. Preference was given to volunteers that
were used to consuming passion fruit juice (or that at least had
no aversion to the fruit taste).

Our objective was to select individuals with a perception of
sugar ideal sweetness as close as possible to 9.4 g/100 g and,
among these individuals, to select those that had good ability
to order the samples according to the sugar concentration.
Volunteers who met these conditions and agreed to participate
in signal acquisition sessions were selected.

Each volunteer received samples containing 30 mL of
passion fruit juice sweetened with different amounts of sugar
(i.e., 4.7, 7.05, 9.4, 11.75, and 14.1 g). The samples were placed
in disposable cups and numbered randomly between 0000 and
9999 (e.g., A7932). The participants received samples in a
randomized sequence of concentrations and had to answer the
following question: “How much sugar did you have in your
juice?” Answers were collected in a 9.0-cm visual scale (VAS).
VASs are input mechanisms that allow users to specify a value
within a predefined range. The volunteers were instructed to
consider the center of the scale as ideal sweetness, 0 as less sweet
than ideal, and 9 as sweeter than ideal.

The volunteers were informed about the nature and aims of
the experiments and provided informed consent. The study was
approved by the Ethics Committee of the Animal Science and
Food Engineering College (FZEA) of the University of São Paulo
(USP) (CAAE 59017516.6.0000.5422).

Electroencephalography recording

Once finished the participant selection study, 11 individuals
(both sexes) agreed to participate in the following intervention
study. In this sense, EEG signals were acquired from individuals
while they were tasting passion fruit juice. The individuals had
signed an informed consent form (ICF).

Electroencephalography was carried out non-invasively on
the scalp surface; the participants wore an EEG cap. The signal
was acquired at positions C3 and C4 in the primary gustatory
cortex (17, 22) as defined by the international 10–20 electrode
disposal system (32). This electrode position was chosen on
the basis of the study by Kabayakawa et al. (22), who showed
magnetic fields recorded from the brain (i.e., MEG) in response
to two tastants: 1 M NaCl and 3 mM saccharin, one of which was
more activated in the central area of the head at positions C3
and C4. The ground electrodes were placed on the participant’s
ear lobes, and a reference electrode was placed on the forehead.
The signals were sampled at 512 Hz by using an iCelera digital
portable electroencephalograph. Each recording lasted 16 s.

The volunteers were accommodated inside a Faraday cage,
and the EEG signal started being recorded when the volunteer
drank the solution (juice). Subjects were investigated in three
single-blind sessions separated by an interval of at least 1 day.

Each volunteer received the samples (30 mL) in duplicate in the
following order: water (reference), passion fruit juice sweetened
with sucrose, passion fruit juice sweetened with sucralose, and
passion fruit juice sweetened with aspartame. The samples were
placed in disposable cups and numbered randomly between
0000 and 9999 (e.g., A7932). Each volunteer participated
on three different days of the experiment (repetitions). In
the intervals between the sweetened samples, the participants
received sparkling water to clean residues from their palate and
to reduce other interferences.

Signal processing and convolutional
neural network training

To illustrate the temporal dynamics of taste we averaged
electrical activity (averaged across participants) in response to
each stimuli (33).

The signal was processed by using the Python programming
language and the Pandas, NumPy, and SciPy libraries. These
libraries are employed to solve mathematical and scientific
problems, including signal processing. Initially, the data were
inspected, and the recordings with many artifacts were excluded
from the database. The remaining data consisted of signals
from 68 experiments lasting 16 seconds each, recorded in two
channels (i.e., C3 and C4). These signals came from one of four
stimuli (i.e., sucrose, sucralose, aspartame, or water) and were
captured across 3 days of repetitions per volunteer. The data
were bandpass-filtered from 8 to 40 Hz, and each signal was
divided into 2-s segments with a 0.1 s stride. This means that
16-s segments (512 samples per second) were resampled in 9,520
vectors at a length of 1,028. The EEG dataset and the processing
code that supported the findings of this study are available on
GitHub.1

When the vectors with length 1,028 were used as inputs for
the CNN, they were structured as a network consisting of three
parallel convolution processes merged into a fully two-layer-
deep connected network.

The deep learning model was built by using an open-
source Python library, i.e., Keras, which runs in a TensorFlow
background. Optimal performance (e.g., number of neurons
on a given layer and number of filters and kernel size on
the convolution layer) was determined by using manual fine
adjustment of the hyperparameters (e.g., number of neurons per
fully connected layer and number of filters and kernel size for
convolutional layers).

The last network layer contained four neurons, which were
responsible for mapping four possible results of an entry (water,
sugar, aspartame, or sucralose). A categorical cross-entropy loss
function was used.

1 https://github.com/Atzingen/EEG_Sweetners_AI
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Training was accomplished by using an Adam algorithm
with two-thirds of the data, while the test was performed with
the remaining one-third.

The problem presented here is a multiclass (water, sugar,
aspartame, or sucralose) classification task. Results of classifier
validation studies are often presented as confusion matrices.
A confusion matrix for k-class classification is a k × k
contingency table whose cells [i,j] (i = 1,. . .,k, j = 1,. . .,k) present
frequencies of observations with real class Ci and inferred class
Cj. A binary confusion matrix is a special case when there are
only two classes: C (positive class) and not-C (negative class).
A k× k confusion matrix can always be represented as a set of k
binary confusion matrices, one for each class Ci.

In a binary confusion matrix, observations classified
correctly into the positive class are called true positives and
observations classified correctly into the negative class are called
true negatives. Instances of the positive class classified falsely as
negative are called false negatives and instances of negative class
classified falsely as positive are called false positives. Numbers
of true positive, false positive, true negative and false negative
observations are notated by TP, FP, TN, and FN (34). From these
frequencies, performance evaluation metrics, such as accuracy,
precision, recall and F1 score were calculated as follows.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F11 score =
2
(
precision

)
∗ (recall)(

precision
)
+ (recall)

(4)

where TP (true positive), FP (false positive), TN (true negative)
and FN (false negative) are technical terms for binary classifier.
Specific, TP is the positive samples correctly classified, FP is
the positive samples misclassified, TN is the negative samples
correctly classified and FN represents the negative samples
misclassified. These performance indicators reflect how the
classifier performs in detecting the given class.

Results and discussion

Participant selection

We selected the groups according to two criteria,
namely, preference for the sample with a sucrose
concentration of 9.4 g/100 g and good ability to order
the sample concentrations. This means that the selected
participants indicated values around 4.5 cm on the VAS,
which was equivalent to a sucrose concentration of

9.4 g/100 g. Furthermore, they were able to order all the
concentrations properly. Of the individuals considered
fit, 11 agreed to participate in the brain signal acquisition
stage.

Figure 1A illustrates the scale presented to the participants.
Figure 1B shows participant A, who placed all the samples in
the correct sequence of concentrations and chose the sample
with sugar concentration of 9.4 g/100 g as his favorite. He was
selected for the next step. Participants B and C were not selected.
Participant B (Figure 1C) placed the samples correctly, but his
preferred sample was not the sample with sugar concentration
of 9.4 g/100 g. Although participant C (Figure 1D) preferred the
sample with a sugar concentration of 9.4 g/100 g, he was not able
to order the samples correctly.

Signal processing and convolutional
neural network training

Brain responses to the three taste stimuli (sucrose, sucralose,
and aspartame) and reference in temporal domain are presented
in Figure 2. As expected, (7) the activity of taste responses
increases after stimuli onset and decreases again.

Figure 3 shows the network architecture that achieved
the best performance. It is structured as a network consisting
of three parallel convolution and max-pooling processes.
Convolutional layer output is a feature map that has its
dimension reduced by pooling layers. Each branch produces
a different pattern array. Theses outputs are merged into a
fully two-layer-deep connected network. An additional layer
connects this combined result to output neurons (one for each
class). To reduce overfitting all these processes are followed
by dropout operation. The best number of neurons in input
layer (n) was 20, as can be seen by the input layer shape.
The other three fully connected hidden layers had 16, 16, and
64 neurons. Its dropout optimal value was 0.2. We used this
optimal architecture to train the CNN with 70% of the data,
while we employed the remaining 30% for the test.

For visualization, Figure 4 presents the confusion matrix
for this dataset. In the confusion matrix, the horizontal axis is
the predicted label, and the vertical axis is the true label. The
elements on the diagonal represent the numbers of correctly
classified samples.

In Figure 4, for the water class, 104 samples were correctly
predicted as water (67.1%), whereas 35 samples (22.6%) were
incorrectly predicted as aspartame and four samples (2.6%)
were incorrectly predicted as sucralose. For the sucrose class,
31 samples (20.0%) were correctly predicted as sucrose, whilst
25 samples (16.1%) were incorrectly predicted as aspartame,
and 91 samples (58.7%) were incorrectly predicted as sucralose.
As for the aspartame class, 119 samples (64.0%) were correctly
classified, while 67 samples (36.0%) were incorrectly predicted as
sucralose. Concerning the sucralose class, 186 samples (100.0%)
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FIGURE 1

(A) Participant selection form. (B) Participant selection form from a selected participant. (C) Participant selection form from a discarded
participant. (D) Participant selection form from a discarded participant. The star placed on the right side illustrates participant preferred sample.
In the original form, the volunteer marked the sample number on the scale. For didactic purposes, these codes were replaced with the sample
concentration in the figure.

FIGURE 2

Signal strength quantified as the average within-subjects over two electrodes for each of the tastants and water.

were correctly classified. The main difficulty lay in the classes of
water and sucrose.

Table 1 lists the metrics results for the four stimuli (classes).
As a result, the average metrics were: 0.823 for accuracy, 0.750
for precision, 0.628 for recall, and 0.611 for f1 score. There
are no studies using CNN in similar databases for comparison

purposes, but these values are compatible with those obtained
for studies involving brain signals to assess emoticons (35) and
cerebral dominance (36).

When we consider reference (water) only, the classification
in Figure 3 indicated that the average identification accuracy
is 91.4% compared to an overall classification of 82.3%. This
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FIGURE 3

The convolutional neural network (CNN) architecture that achieved the best performance.

work uses a drink instead of a solution and, in a first study
of this nature, it was important to be able to distinguish a
critical reference well.

Analyzing Figure 4 in more detail, suggests that the network
is more sensitive to the low-calorie sweetener classes than to
the sucrose class. By evaluating the false positives (FP) of the
classification, aspartame can be predicted to be sucralose, but
not sugar. In turn, sucralose had no false positives. The most
surprising result is that sucrose can be classified both as sugar
and low-calorie sweetener. In other words, evaluated low-calorie

sweeteners had not been confused with the caloric sweetener,
but the caloric sweetener can be confused with the low-calorie
sweetener. The explanation for this result may be a combination
of different factors that are able to influence gustation, as type
of tongue receptor, reward system, preference, and history of
consumption of non-caloric sweeteners.

Sweet sensation activates areas of the brain involved in food
memory and reward, but various sweet compounds differ in
their specific effects (6). Frank et al. (5) observed that only
sucrose, but not sucralose, stimulation engages dopaminergic
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FIGURE 4

Confusion matrix for the classes water, sucrose, sucralose, and aspartame. The horizontal axis is the predicted label, and the vertical axis is the
true label. The elements on the diagonal represent the numbers of correctly classified samples.

midbrain areas in relation to the behavioral pleasantness
response and states that this may suggest that sucralose activates
taste reward circuits but may not fully satisfy a desire for natural
caloric sweet ingestion.

Many artificial sweeteners have an aftertaste that is easily
detectable, which may induce a cognitive or affective bias toward
the substance ingested. Sucralose has a little bitter after taste
reported (6), in opposite to aspartame that has a prolonged
aftertaste response (7, 37). This may be one of the reasons why
low-calorie sweeteners were not misclassified as sugar.

Andersen et al. (7) observed that similar tastes that are
consciously indistinguishable can result in different brain
cortical activations. A similar result was obtained when
gustatory evoked potentials (GEPs) were used to assess the brain
response to sucrose, aspartame, and stevia in humans (14). The
authors stated that, although sucrose, aspartame, and stevia led
to the same taste perception, the GEPs showed that cerebral
activation by these different sweet solutions had different
recordings. They suggested that, besides the difference in taste
receptors and cerebral areas activated by these substances,
neural plasticity and changes in the synaptic connections related
to sweet innate preference and sweet conditioning could explain
the differences in cerebral gustatory processing after sucrose and
sweetener activation. The results presented herein agree with
what was pointed out by Andersen et al. (7).

Unlike Andersen et al. (7) and Mouillot et al. (14), in this
study we evaluated a beverage (i.e., passion fruit juice) with good
acceptance after it is sweetened with aspartame or sucralose (11,
12) as a stimulus instead of evaluating a sweet solution. This
may explain FP rates in classification. During tasting, the stimuli
came not only from the sweet solution, but also from the other

sensory characteristics of the beverage. Passion fruit gives a juice
with a very strong and acid exotic flavor (10) and this acid may
be an additional factor for misclassification, since among the five
basic taste qualities (sweet, bitter, umami, salty, and sour), acid
or sour sensing is particularly unique because it is mediated not
only by the taste system but also by the somatosensory system
via Trpv1-expressing neurons innervating the oral cavity (38).

Although the sweeteners were chosen in equi-intense
amounts (11, 12, 39), it is quite possible that the combination of
the unique characteristics of passion fruit juice, with each of the
sweeteners, including sugar, activates the reward systems and
the individual’s memories in a different manner. This could be
one of the factors that justify the FP in the sucrose classification.

Apart from using a beverage instead of a solution and from
dispensing a taste delivery system (5, 7, 15, 21, 22) that is
common in this kind of experimental design, we only placed
two electrodes near the gustatory cortex. While this is not a
new strategy (17–19), it is uncommon (5, 7, 15, 21, 22) and
has advantages and disadvantages. The main disadvantage is
that it reduces the amount of data and makes some feature
extraction techniques unfeasible. On the other hand, developing

TABLE 1 Results of the convolutional neural network (CNN)
classification performance for the four stimuli (classes).

Accuracy Precision Recall F1 score

Water 0.9135 0.9286 0.6710 0.7790

Sucrose 0.8123 0.8857 0.2000 0.3263

Aspartame 0.8138 0.6648 0.6398 0.6521

Sucralose 0.7507 0.5225 1.0000 0.6863
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commercial applications based on a single EEG channel, such
as the applications used by Hashida et al. (17) and Silva et al.
(40), is easy.

The process of food tasting starts from tongue, where
different taste receptors respond to various taste stimuli and pass
the signals to the cortex of the brain region. Several important
factors influence the taste perception and brain response, as age,
gender, ethnicity, habits, stimuli type, temperature, and state of
mind (41). Monitoring brain activity is an alternative to access
psychological factors.

This work presented a powerful application of the CNN
technique for EEG signal classification. The model used in this
study was able to understand most features that distinguish EEG
signal acquired during consumption of beverage sweetened with
caloric and non-caloric sweeteners. When we compare general
performance with reference performance, mainly F1 score that
consider recall and precision measures simultaneously we can
deduce that misclassifications in sweeteners classes are greater
than that in reference class.

Using a CNN for feature extraction has the advantage
of not needing a prior filter model or featured engineered
treatment as the kernel’s weights are obtained during training
and time dependent features will be extracted by the internal
structure of convolutional layer (42). However, DL demands
an extensively large amount of data to achieve a well-behaved
performance model, i.e., as the data increases, an extra well-
behaved performance model can be achieved (43). This is a
preliminary study, so we can improve the results of this study
by increasing the number of samples tested per individual and
also the number of individuals. This would allow us to train
the network for each participant, for instance. However, this
approach would involve the use of a taste delivery system to
facilitate the increase in the number of samples.

This fact does not invalidate the main contribution of this
study, which corroborates recent studies (5, 7, 14) stating that
similar stimuli, despite being consciously indistinguishable, may
result in different cortical responses.

We have compared brain signals acquired in response
to the consumption of passion fruit juice sweetened with
sucrose (caloric sweetener), sucralose, or aspartame (low-calorie
sweeteners). We used the artifact-free data to feed a CNN. The
results indicated that CNN received raw signal as input for
multiclass classification and with supervised training was able
to extract underling features and patterns from the signal with
0.823 accuracy. The main result presented here was precisely
the CNN’s ability to analyse and classify brain signals obtained
during tasting a sweetened beverage.
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