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Porcine reproductive and respiratory syndrome (PRRS) is an infectious

disease caused by the PRRS virus that leads to reproductive disorders and

severe dyspnoea in pigs, which has serious economic impacts. One of the

reasons PRRSV cannot be e�ectively controlled is that it has developed

countermeasures against the host immune response, allowing it to survive

and replicate for long periods. Transcription Factors acts as a bridge

in the interactions between the host and PRRSV. PRRSV can create an

environment conducive to PRRSV replication through transcription factors

acting on miRNAs, inflammatory factors, and immune cells. Conversely, some

transcription factors also inhibit PRRSV proliferation in the host. In this review,

we systematically described how PRRSV uses host transcription factors such as

SP1, CEBPB, STATs, and AP-1 to escape the host immune system. Determining

the role of transcription factors in immune evasion and understanding the

pathogenesis of PRRSV will help to develop new treatments for PRRSV.

KEYWORDS

transcription factors, PRRSV, miRNA, immune evasion, immune cell, phosphorylation,
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Introduction

Porcine reproductive and respiratory syndrome (PRRS) is a disease caused by PRRSV

that leads to typical reproductive disorders and respiratory diseases in pigs (Teuffert et al.,

1998; Montaner-Tarbes et al., 2019). PRRS affects pigs at each stage, causing slow growth

in finishing pigs, premature birth and miscarriage in sows and poor semen quality in

boars (Schulze et al., 2013; Olanratmanee et al., 2015; Helm et al., 2019). PRRS has greatly

affected the U.S. pig industry, which has an annual worth of $664 million, since it was

first identified (Holtkamp et al., 2013; Pileri and Mateu, 2016). It is considered one of

the major diseases threatening the pig industry globally (Butler et al., 2014; Dhakal and

Renukaradhya, 2019).
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PRRSV is a single-stranded positive-sense enveloped RNA

virus belonging to the genusArteritis (Dokland, 2010). The virus

particles are spherical with a diameter of 55–60 nm. The entire

length of the genome of PRRSV is ∼15.4 kb and contains a 5’

cap and 3’ poly tail structure. The PRRSV genome contains at

least 11 open reading frames (ORFs): ORF1a, ORF1b, ORF2a,

ORF2b, ORF3, ORF4, ORF5, ORF6, ORF7, ORF5a, and ORF2

(TF) (Johnson et al., 2011) (Figure 1). Among these ORFs,

ORF1a and ORF1b account for ∼75% of the viral genome,

encoding the proteins with apparent replication and polymerase

activities. ORF1a and ORF1b encode two large non-structural

polyproteins (pp1a and pp1ab) that play essential roles in the

replication process and are subsequently hydrolysed into 14

non-structural proteins (Li et al., 2014). Recently, the role

of the non-structural proteins (nsps: nsp1, nsp2, nsp4, and

nsp11) in the regulation of the host immune response after

PRRSV was explored (Fang and Snijder, 2010; Dong et al., 2018;

Jing et al., 2019). ORF2–7 are expressed from six subgenomic

mRNAs, which encode eight structural proteins, which include

nucleocapsid protein (N) and minor (GP2a, GP3, GP4, E, and

ORF5a) and major (GP5 and M) envelope proteins. The N

protein has the ability to inhibit interferon (Yoo et al., 2010)

whereas GP2, GP3, and GP4 form multiprotein complexes

during PRRSV infection by receptor binding (Das et al., 2010).

PRRSV only infects pigs, is characterized by a specific

tropism to differentiated macrophages and shows a minimal

ability to infect mononuclear cell lines (Duan et al., 1997a;

Lunney et al., 2016). In addition, dendritic cells have also

been reported to support PRRSV replication (Duan et al.,

1997a; Loving et al., 2007). PRRS infection is divided into

the three stages of acute infection, persistent infection, and

regression. In the acute infection stage, PRRSV replicates mainly

in macrophages and dendritic cells of the lung and upper

respiratory tract, resulting in viremia by 6–12 h postinfection.

The stage of persistent infection is divided into two phases: the

first phase is the peak of replication after 2 weeks of infection,

and the second stage is a lower level of replication during the

5th to 7th weeks of infection (Duan et al., 1997b; Labarque et al.,

2000). At this stage, virus replication is mainly confined to the

lymphatic organs (tonsils and lymph nodes) (Rowland et al.,

2003). PAMS, the first line of defense, are destroyed by apoptosis

within 2 weeks of PRRS infection, which increases the mortality

of infected pigs (Thacker, 2001; Ouyang et al., 2019). PRRSV-

infected pigs mainly show mild to severe interstitial pneumonia,

which later manifests as purulent bronchopneumonia. Extensive

bleeding and edema in the lungs leads to respiratory failure

in infected pigs (Morgan et al., 2016). The final disappearance

of the virus is the regression stage of infection and it is not

clear how long the PRRS infection will take to subside, although

replication of the virus and maintenance of PRRS can extend up

to 250 days following infection (Wills et al., 2003).

PRRS has not been effectively controlled because of two

major characteristics of PRRSV (Du et al., 2017). First, PRRSV

is a virus prone to mutation and has many strains, which has

resulted in vaccines that protect against homologous strains

in vaccinated animals but have limited protection against

heterogenic strains (Charerntantanakul, 2012; Renukaradhya

et al., 2015). Second, PRRSV has developed a countermeasures

against the host’s immune system that helps it survive and

replicate for a long time before the infection diminishes. In

the process of evolution, the continuous interaction between

the virus and host forms and determines their survival strategy

(Murtaugh et al., 2002; Ma et al., 2021). To replicate and spread

in the host, the virus has evolved a variety of immune escape

mechanisms, resulting in the subversion of a variety of cellular

immune signaling pathways (Du et al., 2017; Wang et al., 2021).

TFs are proteins that control gene expression by binding to

specific DNA sequences and thereby control gene transcription

via the up- and downregulation of RNA polymerase or other

regulatory proteins (Jolma et al., 2013). Transcription factors

play an important role in the interaction between the host and

PRRSV, whether by helping the virus escape host immunity

or by inhibiting PRRSV replication. In the present review, we

systematically described how PRRSV uses host transcription

factors to escape the host immune system. Determining the role

of transcription factors in immune evasion and understanding

the pathogenesis of PRRSV will help to develop new treatments

for PRRSV.

The function of transcription factors

TFs account for ∼8% of all human genes and are the center

of a wide regulatory network that regulates gene expression and

triggers different biological responses (Lambert et al., 2018).

TFs usually regulate gene expression by combining enhancer

elements and recruiting coactivators and RNA polymerase

II (Lelli et al., 2012; Spitz and Furlong, 2012). It is worth

mentioning that TFs can enhance the expression of a gene

from very remote positions even from several thousand base

pairs by up- or downstream of transcription initiation sites. The

core promoter elements also consist of sites where transcription

initiation occurs, which certain TFs bind to. The regulation of

gene expression by TFs is very complex, and the transcriptional

expression of many genes requires single to multiple TFs. The

mammalian TF NF-κB consists of P50, P52, REL, Rel-A, and

Rel-B, and these proteins dimerize to form functional NF-κB,

which is due to the specific expression pattern of TFs expressed

by specific genes of specific cell types at specific times (Stampfel

et al., 2015). In addition, the role of TFs in gene transcription is

uncertain; they can act as protein activators or suppressors due

to the presence (or absence) of other TFs.

TFs are present in virtually all cell types and are associated

with various cellular processes, such as cell proliferation, cell

differentiation, and host immune responses. Considering the

complexity and dynamic nature of the TF network, these
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FIGURE 1

The structure of the PRRSV genome, with di�erent colored boxes representing di�erent genes of the virus. The proteins translated by each gene

of PRRSV. The genes without boxes below are transcription factors, which can bind/interact with structural proteins and non-structural proteins

of PRRSV, thus a�ecting replication of PRRSV.

processes are easily disturbed by dysfunctional TFs, leading to

the occurrence and development of diseases. The deregulation

of TFs is characteristic of most human cancers, and a classic

example is the tumor suppressor gene p53, which is deregulated

in more than half of human cancers (Khoo et al., 2014). TFs are

at the core of multiple signaling pathways in eukaryotic cells;

therefore, these proteins must be targeted more specifically than

traditional targets. TF genes of the same family or from different

eukaryotic organisms show similar structural and functional

features, thus indicating the evolution of TFs from a common

ancestor. Some conserved features or sequences of TFs are found

in eukaryotes, including the TF dimerization network and TF

DNA binding motif preference.

The role of transcription factors in
PRRSV infection

Transcription factors regulate PRRSV
replication through miRNAs

In mammals, miRNAs control ∼50% of the activity of

protein-coding genes and participate in the regulation of cellular

activities. MiRNAs are widely expressed in a variety of innate

immune cells (PAMs, NK cells, and DCs), which are the first

line of defense during the occurrence of infections. MiRNAs

also play a crucial role in mediating host acquired immunity;

however, their abnormal expression results in the manifestation

of diseases (Krol et al., 2010). TFs and miRNAs are the two main

types of gene regulators, which jointly regulate gene expression

at the transcriptional and posttranscriptional levels and control

each other’s expression. The regulatory network formed between

TFs andmiRNAs is considered an effective method for analyzing

and studying the complexity of biological regulation (Barabasi

andOltvai, 2004). During viral infection,many viral elements act

on TFs which in turn negatively regulate the immune response

and promote viral replication.

SP1

Specific protein 1 (SP1) is a well-known member of the

transcription factor family that is involved in a large number of

important biological processes and can activate the transcription

of many cellular genes (Vizcaino et al., 2015). Studies have

shown that PRRSV nsp9 and N promote the expression of

miR-373 through SP1, and miR-373 directly regulates the

expression of nuclear factor IA (NFIA) and nuclear factor IA

(NFIB), which inhibits the expression of IFN-β and ultimately

PRRSV replication. The upregulation of miR-373 expression

can promote the replication of PRRSV (Chen J. et al., 2017).

In conclusion, PRRSV regulates miRNA by influencing the

expression of transcription factors, which in turn affects host-

related gene expression and creates an optimal environment for

virus replication.

IRF7

Interferon regulatory factors (IRFs) are a family of

transcription factors that includes 9 members. It regulates

many aspects of innate and adaptive immune responses,
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including driving antiviral responses, responding to pathogens,

driving proinflammatory responses and regulating immune

cell differentiation (Jefferies, 2019). Studies have found that

PRRSV-2 significantly increases the expression of miR-541-3p

and inhibits the expression of transcription factor interferon

regulatory factor 7 (IRF7) after infecting Marc-145 cells.

Additional, miR-541-3p negatively regulates the transcription

of type I interferon by targeting IRF7, resulting in evasion

of the host immune response by PRRSV and promotion of

virus replication (Shi et al., 2022). This indicates that PRRSV-

2 inhibits the host innate immune response by hijacking host

miR-541-3p, and the role of transcription factors in this process

cannot be denied.

IRF1

IRF1 is involved in various physiological and pathological

aspects, including viral infection, proinflammatory injury and

the development of the immune system. Studies have shown

that overexpression of miR-296-3p can promote the replication

of PRRSV by inhibiting the expression of IRF1 and TNF-

α. TNF is a pleiotropic cytokine that is closely related to

inflammation and innate and adaptive immune responses to

pathogens. Notably, IRF1 regulates the expression of TNF-α

by activating the TNF promoter via IRF1 response elements

(Zhang et al., 2021). TNF may be involved in IFN-β induction.

TNFR1 binding mediates IRF1, and IFN-β expression is

increased by prolonging the expression of proinflammatory

chemokines through STAT1 (Feng et al., 2021). HP-PRRSV

infection activates the IRF1/TNF-α signaling axis in PAMs

by downregulating host miR-296-3p. In addition, there may

be host factors involved in regulating the downregulated

expression of miR-296-3p, which inhibits replication of the

virus in vivo.

IRF8

miR-10a has been found to be significantly overexpressed

in PRRSV-infected PAM cells and inhibit viral replication

by inhibiting host molecule signal-recognition particle 14

(SRP14) protein (Zhao et al., 2017). In another study, PRRSV

infection reduced the expression level of IRF8 in PAMs,

leading to upregulation of miR-10a, which played an anti-

PRRSV role (Zheng et al., 2022). It is strange that the

transcription factor IRF8 is necessary for the development

and maturation of myeloid cells (dendritic cells, monocytes,

macrophages) and the expression of their internal antimicrobial

function (Salem et al., 2020). IRF8 plays an important role in

preventing infection through the activities of several immune

cell types. However, Zheng et al. (2022) found that the

transcription factor IRF8 promoted PRRSV replication by

inhibiting miR-10a.

STAT1

Our previous study showed that miR-210 directly targets

STAT1 to inhibit the expression of the lung injure-related

factors MCP-1, VCAM-1, and ICAM-1, while STAT1 also

acts on the TNF-α promoter region to regulate its expression

(You et al., 2020). Similar to our findings, a large number of

studies have shown that the transcription factor STAT1 plays

an important role in regulating the molecular mechanism of

lung injury.

Transcription factors exacerbate
inflammation and injury, which
responsibility for the additional morbidity
and mortality of the infected pigs

PRRSV infection causes severe lung inflammation and

injury with subsequent pulmonary edema, hemorrhage,

pneumonia, and peribronchitis (Han et al., 2017). Elevation of

proinflammatory cytokines in PRRSV-infected pigs is a part of

the pathogenesis of PRRSV. Previous studies also demonstrated

that the expression of IFNα/β, TNFα, IL-1β, IL-6, and IL-8 in

serum, BALF and tracheobronchial lymph node homogenates

increased after infection with PRRSV (Guo et al., 2013).

Studies have shown that the likely cause of death after infection

with HP-PRRSV is severe inflammatory damage, rather than

uncontrolled infection. Transcription factors exacerbate lung

inflammation and injury during PRRSV infection, which may

be responsible for the additional morbidity and mortality in the

infected pigs (Han et al., 2014).

CREB/CEBPB

CCAAT/enhancer binding protein (CEBPB) family

transcription factors are closely related to inflammation

observed in various viral and traumatic diseases. IL-17 is

a proinflammatory cytokine that is closely related to the

strong inflammation caused by PRRSV. Research has shown

that PRRSV nsp11 is involved in IL-17 production and

PRRSV replication. CEBPB exacerbates lung inflammation

by promoting IL-17 production during induced PRRSV

infection. In porcine IL-17 promoters, deletion of CEBPB and

the CREB binding motif inactivated PRRSV-induced IL-17

production, while deletion of CEBPB and CREB significantly

reduced PRRSV-induced IL-17 production, suggesting that

IL-17 expression is dependent on CEBPB and CREB (Wang

et al., 2019). In addition, CEBPB also plays a critical role in

macrophage production, activation and polarization, and it

has been observed that CEBPB knockout mice lack alveolar

macrophages (Cain et al., 2013).
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NF-κB

NF-κB belongs to a family of inducible transcription

factors involved in pathogen- or cytokine-induced immune and

inflammatory responses. Many viruses encode proteins that

activate or modulate NF-κB signaling pathways for their own

advantage (Santoro et al., 2003). The high expression of IL-

15 is responsible for the influx of NK cells and cytotoxic T

lymphocytes in the lungs, which in turn causes severe respiratory

distress in infected pigs (Fu et al., 2012). Deletion analysis

confirmed that the NF-κB motif is essential for the activation

of the porcine IL-15 promoter. NF-κB also regulates TNF-α

expression by binding to the TNF-α promoter (Subramaniam

et al., 2010). Studies have shown that TNF-α promotes

inflammation at the site of infection by inducing the production

of other proinflammatory cytokines in the vicinity of infection

(Toews, 2001).

AP-1

AP-1 is a ubiquitous family of dimeric transcription

complexes involved in a plethora of cellular and physiological

functions. AP-1 has also been associated with a variety of serious

diseases, including organ damage and various inflammatory

pathologies (Bejjani et al., 2019). IL-6 plays an important

role in the inflammatory response. Overexpression of IL-

6 can stimulate and activate the acute response leading to

inflammation and injury. The porcine IL-6 promoter contains

an AP-1 binding site, and the absence of the AP-1 binding site

can impair PRRSV activation of the IL-6 promoter, suggesting

that the expression of IL-6 depends on the activation of

AP-1 (Xu et al., 2021). In summary, IL-6 or AP-1 may be

possible targets for alleviating inflammation and injury caused

by PRRSV infection.

Phosphorylation and nuclear localization
of transcription factors a�ect PRRSV
replication

During PRRSV infection, the activation of specific TFs

causes the translocation of these factors to the nucleus

and initiates the transcription of genes encoding IFNs and

proinflammatory cytokines in the nucleus. It is well known

that type I IFNs play important roles in antiviral responses in

both virus-infected and uninfected cells (Chen et al., 2016). The

expression of type I IFN is influenced bymany TFs, such as IRF3,

IRF7, STATs and NF-κB.

IRF3

Innate immunity is an essential way for host cells to resist

viral infection through the production of interferons (IFNs).

Phosphorylation of IRF3 is a crucial step in the induction

of IFNs (Tailor et al., 2006). Previously, it was observed that

PRRSV non-tructural proteins (nsps) inhibit the production of

IFN by affecting the phosphorylation and nuclear localization

of IRF3. For instance, Li et al. showed that nsp2 strongly

inhibited IFN-β production and IRF-3 phosphorylation and

nuclear translocation (Beura et al., 2010; Li et al., 2010). IRF3

is constitutively expressed in most cell types and exists in

the cytoplasm in an inactive form. Upon stimulation, IRF3 is

phosphorylated and undergoes conformational changes leading

to the dimerization, which reveals the nuclear localization signal

and allows it to translocate to the nucleus (Lin et al., 1998;

Dragan et al., 2007).

STATs

There are seven members of the STAT family in mammals.

Phosphorylated STATs form homodimers or heterodimer

complexes and are then translocated into the nucleus by

importing proteins and bind with response elements in DNA

to activate or inhibit the transcription of a specific group of

genes (Yang and Zhang, 2017). nsp1β inhibits IFN-induced ISG

expression by blocking the nuclear translocation of STAT1 (Patel

et al., 2010). Similar to the nsps, structural proteins also affect

the production of IFN, such as N and GP5 proteins (Sagong and

Lee, 2011; Zhixuan et al., 2015). PRRSV inhibits the induction of

type I interferon, which delays the development of neutralizing

antibodies and deregulates cytokine expression. Interferon is an

important antiviral molecule whose expression is triggered by

pattern recognition receptors that recognize viral components

through a series of signaling molecules that viruses can target

to escape innate immunity. In addition, nsp12 of VRL-2385,

a strain with moderate virulence, increases the expression of

proinflammatory cytokines such as IL-1β and IL-8 by inducing

STAT1 phosphorylation of serine 727 (pSTAT1-S727) in Marc-

145 and PAMs (Yu et al., 2013).

RBM39

RNA binding motif protein 39 (RBM39) is a nuclear protein

that is involved in precursor mRNA splicing. Studies have

shown that PRRSV can significantly promote the expression of

RBM39 in PRRSV-infected 3D4/21 cells (Song et al., 2021). The

transcription factor RBM39 can evade the host immune system

in the following ways: first, RBM39 alters the phosphorylation

of the transcription factor c-Jun, and then inhibits the AP-

1 pathway to promote virus differentiation; second, PRRSV

infection causes RBM39 and c-Jun to migrate from the nucleus

to the cytoplasm. The transcription factor c-Jun is expressed at

low levels in a variety of cells and at high levels in response

to various stimuli such as growth factors, cytokines, foreign

substances and viral infection. In addition, RBM39 can bind to

PRRSV (nsp4, nsp5, nsp7, nsp10-12, M and N) and promote

PRRSV differentiation.
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Transcription factors regulate PRRSV
replication through host immune cells

After PRRSV infection, activation of the immune cells of

the host’s innate immune system is the key link to prevent

virus invasion and replication (Lunney et al., 2016). Immune

cells are divided into specific or non-specific immune cells,

and antigen-presenting cells. Non-specific immune cells include

macrophages, neutrophils, natural killer cells, and mast cells.

Whereas, specific immune cells include T cells and B cells.

The antigen-presenting cells include dendritic cells (DCs),

macrophages and B cells, and DCs are the most potent antigen-

presenting cells of the immune system.

SP1 and NF-κB

Previous studies have shown that CD83 inhibits DC-

mediated T-cell stimulation and interferes with DC cytoskeleton

maturation, which participates in immunosuppressive responses

in vivo (Chen et al., 2011). Interestingly, PRRSV infection

significantly enhances the activity of the CD83 promoter in

porcine monocyte derived DCs through the TFs SP1 and NF-κB

thus avoiding the host immune defenses by inducing persistent

infection (Chen X. et al., 2017).

T-Bet, Foxp3, and EOMES

CD4, CD25, and Foxp3 are important markers for

identifying T-regulated lymphocytes (Tregs). Numerous reports

have demonstrated that CD4+CD25+Tregs can inhibit host

antiviral immune responses. Induction of CD4+CD25+ Tregs

during an early stage of infection has been suggested to be the

mechanism for developing chronic or persistent viral infections

(Rouse et al., 2006). Earlier, it was found that PRRSV increases

the number of virus-specific CD4+CD25+Foxp3+ Tregs in vivo

and in vitro (Wongyanin et al., 2010). Foxp3 is a TF expressed

by Tregs and its expression promotes viral load (Ferrarini et al.,

2015). Another study showed that after infection with the Lena

PRRSV strain, the expression of T-bet, Foxp3, and EOMES

increased significantly, and at the same time, the expression

level of IFN-γ also increased significantly. Importantly, the

three significantly overexpressed transcription factors are closely

related to the polarization of immune cells (Th1 cells, T cells,

CD4+ cytotoxic T lymphocytes, and effector CD8+ T cells)

(Ruedas-Torres et al., 2021).

AP-1

PRRSV exploits various strategies to influence host immune

responses and the establishment of chronic persistent infections.

Previous studies have shown that PRRSV induces the production

of SOCS1 through TF AP-1 thereby inhibiting the expression of

IFN-β and IFN-stimulated genes and promoting the replication

of PRRSV (Luo et al., 2020). Intracellular SOCS protein is

involved in the regulation of innate immunity and adaptive

immunity, which negatively regulate the JAK/STAT and TLR

signaling cascades, dendritic cell activation, T-cell differentiation

and Th-cell regulation (Inagaki-Ohara et al., 2013; Linossi et al.,

2018; Yoshimura et al., 2018).

Other strategies for evading the host
immune system that are regulated by
transcription factors

TFDP2

Studies have found that some viruses can affect the process

of the host cell cycle to provide a cell environment conducive

to virus proliferation. It was found that TFDP2, a transcription

factor significantly overexpressed in PRRSV-infected 3D4/21

cells, can positively regulate the expression of cyclin A, reduce

the proportion of S-phase cells and promote the proliferation

of PRRSV (Zhu et al., 2021). The reduction in the number

of PRRSV cells in S phase was shown to be beneficial to

PRRSV proliferation, possibly because the S phase provided

fewer ribonucleotides for PRRSV RNA synthesis than the G0/G1

phase. This study provides a new mechanism by which PRRSV

uses host proteins to regulate the cell cycle to escape the host

immune system.

CEBPB

From the host perspective, previous studies have shown that

pigs of different genetic lines exhibit different virus clearance

capabilities and PRRSV resistances (Lunney and Chen, 2010),

and TFs seem to explain the underlying genetic mechanism of

PRRSV susceptibility differences. Moreover, Niu et al. reported

that overexpression of CXCL14 inhibits PRRSV replication;

in turn, PRRSV infection inhibits CXCL14 expression by

downregulating the expression of TF CEBPB. The binding

ability of the TF CEBPB to the CXCL14 promoter region of

TongCheng pigs was weaker than that observed in LW pigs;

therefore, the expression of CXCL14 in TongCheng pigs allowed

the maintenance of high levels of PRRSV infection following

exposure, and TongCheng pigs showed a certain resistance to

PRRSV (Niu et al., 2020). In addition, high fever, which is one of

the characteristics of PRRS during pathogen infection, and PGE2

are involved in inducing host hyperthermia. Bi et al. (2014)

reported that HP-PRRSV infection increases the production of

PGE2 by upregulating COX-1, and that the TF CEBPB works by

binding to the COX-1 promoter region.

STAT2

PRRSV infection has little effect on STAT2 transcription

levels, but interestingly, it can reduce STAT2 protein levels
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FIGURE 2

PRRSV escapes the host immune response through di�erent strategies. First, the regulatory network of transcription factors/miRNAs promotes

viral replication in vivo. Secondly, it acts on inflammatory factors, exacerbates inflammatory response. In addition, viral replication is promoted

by nuclear localization and phosphorylation of transcription factors.

in a dose-dependent manner. Further studies have shown

that PRRSV nsp11 can interact with STAT2, with the N-

terminal domain (NTD) of nsp11 being responsible for

STAT2 degradation, and also with the STAT2 NTD and core-

coil domain (Yang et al., 2019). STAT2 plays a key role

in the activation of host innate immune signals involving

IFN-interferon. PRRSV nsp11 antagonizes IFN signaling by

mediating STAT2 degradation, which provides new insights

into PRRSV’s avoidance of host immune responses. PRRSV can

also induce STAT3 degradation through nsp5 and antagonize

JAK/STAT3 signaling. Thus, PRRSV can spread and replicate

rapidly in the host (Yang et al., 2017).

NRF2

In addition, natural products inhibit the replication of

PRRSV through TFs. In this context, Liu et al. reported that

Xanthohumol extracted from Humulus lupus L. significantly

inhibited early PRRSV infection and virus-induced oxidative

stress by activating the NRF2-mediated pathway in PAMs and

Marc-145 cells (Liu et al., 2019).

Transcription factors databases

JASPAR

A database of TF binding profiles (Castro-Mondragon et al.,

2021), and JASPAR is a free and public database of TFs that

collects information on the binding sites and binding methods

of TFs and DNA. The database collects the data of six different

species of vertebrates, plants, insects, nematodes, fungi and

caudal chords which can be used to predict the binding regions

of TFs and sequences. In addition, there are nine subdatabases,

each of which contains information from different sources and

categories of TFs.

TransmiR

This TF-microRNA regulation database (Tong et al.,

2019) collects information on TF–miRNAs and identifies the

regulatory relationship between TFs andmiRNAs. This database

contains information that is validated or obtained by ChIP-

seq and predicts TF target genes. In addition, all TF-miRNAs
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were annotated in detail including enrichment analysis, disease-

specific TF-miRNAs and other resources.

AnimalTFDB

This is a comprehensive resource for annotation and

prediction of animal TFs (Hu et al., 2019). The AnimalTFDB

is a comprehensive database with 125,135 TF genes and

80,060 transcription cofactor genes at the genome-wide

level of 97 species that have been identified, classified

and annotated. TF was further divided into 73 families

according to the DNA binding domain of TFs, and 83

families and 6 categories according to the function of

TF cofactors. This database also provides a variety of

search and browsing methods, two online prediction tools

that predict TF and predict TFBS, blast tools and data

download functions.

hTFtarget

This is a comprehensive database for regulations of

human TFs and their targets (Zhang et al., 2020). This

database integrates 699 highly reliable DNA binding sequences

of TFs, including 2,737 TFBS motifs of 699 TFs. It is

the most comprehensive database of human TF targets

at present. In addition to integrating large-scale human

TF target gene data, an open-source human TF target

gene database has been constructed. The cell line specific

regulation of TFs and cooperative regulation among TFs

have been analyzed, which provides a similar one-stop

solution for research on TF target regulation. hTFtarget can

be applied in two different strategies to detect TF target

reliability, including chip SEQ data analysis and TF binding

site scanning.

Conclusions

The PRRSV has greatly affected pig breeders around

the world. Despite great advances in our understanding

of PRRSV, no effective means to induce broad protective

immunity is available. PRRSV infection affects both innate

and adaptive immune responses by delaying the formation of

neutralizing antibodies and deregulating cytokine expression.

The study of TFs has improved our understanding of the

underlying mechanisms for the regulation of abnormal gene

expression. In the case of PRRSV infection, TFs mediate

the structural and non-structural proteins of PRRSV for

the regulation of inflammatory gene expression, immune

cells, non-coding RNA and other related host factors and

also for evasion of host immune response, which in turn

promotes virus replication. TFs also help to clear viruses

that are not eliminated by the host immune system and

inhibit virus invasion (Figure 2). The use of small molecule

drugs targeting specific TFs is widely used in the treatment

of various human diseases; hence, due to their importance

in many biological processes and their abnormal activity

during PRRSV infection, TFs should be considered as future

therapeutic targets.
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