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Purpose: Cognitive impairment is generally found in individuals with type 2 diabetes

mellitus (T2DM). Although they may not have visible symptoms of cognitive impairment

in the early stages of the disorder, they are considered to be at high risk. Therefore,

the classification of these patients is important for preventing the progression of

cognitive impairment.

Methods: In this study, a convolutional neural network was used to construct a model

for classifying 107 T2DM patients with and without cognitive impairment based on T1-

weighted structural MRI. The Montreal cognitive assessment score served as an index

of the cognitive status of the patients.

Results: The classifier could identify T2DM-related cognitive decline with a classification

accuracy of 84.85% and achieved an area under the curve of 92.65%.

Conclusions: The model can help clinicians analyze and predict cognitive impairment

in patients and enable early treatment.

Keywords: type 2 diabetes mellitus, cognitive impairment, classification, convolutional neural networks, MRI

INTRODUCTION

Type 2 diabetes mellitus (T2DM) can disrupt the balance that the human brain constructs for
regulating blood glucose levels, which causes insulin resistance and elevated blood glucose levels.
This may result in an imbalance of energy supply in the brain tissue, which can lead to irreversible
damage over long term. During this process, some patients with T2DM may experience various
cognitive impairments (Srikanth et al., 2020; You et al., 2021), including memory, executive ability,
and affective disorders; T2DM is associated with a higher risk of dementia. Previous studies have
shown that T2DM is one of the main risk factors for Alzheimer’s disease (AD) (Biessels and Despa,
2018). Some patients with T2DM do not present cognitive impairment (T2DM-noCI); however,
they belong to high-risk groups. This stage is the best intervention period to prevent the progression
of cognitive impairment. Therefore, a classification model is important for clinicians to provide
early treatment.

Previous neuroimaging studies established that extensive structural damage occurred in
patients with T2DM. Geijselaers et al. (2015) confirmed that cognitive impairment in T2DM is
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associated with impaired brain structure and is closely related
to the stability of blood glucose levels and insulin resistance.
Espeland et al. (2013) conducted a 3–6-year follow-up study on
patients with T2DM, and they established that the probability
of gray matter volume decreasing gradually increased with time,
and the cortex gradually became thinner. Vergoossen et al. (2020)
demonstrated abnormal changes in the structure of the white
matter in patients with T2DM, and these abnormalities were
correlated with cognitive impairments. Espeland et al. (2016)
established that patients with T2DM had increased white matter
hyperintensities and decreased brain tissue volume. However,
the adverse effects of the brain structure could be reduced after
controlling body weight. Erus et al. (2015) revealed that lower
gray matter volumes are associated with long-term T2DM, and
intensive glycemic treatment could slow down this process. Yao
et al. (2021) established that the gray matter volume decreased in
the limbic system. Lee et al. (2018) proved that the brain volume
of patients with T2DM decreased to different degrees in subjects
with mild cognitive impairment and dementia, which was closely
related to the decrease in cognitive function. Sanjari Moghaddam
et al. (2019) established that the white matter microstructure
of some brain regions, such as the frontal lobe, temporal
lobe, parietal lobe, and cingulate gyrus, was damaged, which
was closely related to the decrease in memory and attention,
information processing ability, as well as executive ability. Based
on the results of previous studies on the structural abnormalities
of the brain in patients with T2DM, we used high-resolution
three-dimensional T1-weighted imaging (3D-T1) to obtain brain
structural images of patients and used them for image recognition
training of the classification model.

In recent years, the use of machine learning methods, such as
support vector machines (SVMs), k-nearest neighbors, random
forests, and other ensemble classifiers, to analyze MRI images
to predict the disease stage of patients has achieved good results
(Segar et al., 2019; Aminian et al., 2020; Gou et al., 2021; Huang
et al., 2021). However, these conventional machine learning
methods have significant limitations (Yamanakkanavar et al.,
2020). Before analyzing the features extracted from the brain
regions and predicting the results of patient status, it is necessary
for the machine learning methods to select the brain regions
with significant abnormalities manually. Artificial extractions
are based on existing clinical or experimental experience, and
they might overlook some useful areas that have not been
found at present. Moreover, when the number of layers of
the neural network is increased, the conventional network
encounters problems such as local optimization, overfitting, and
gradient diffusion.

Deep-learning technology is a branch of machine learning
that imitates the thinking of the human brain. It applies a back-
propagation learning algorithm to learn the parameters of a deep
neural network (Carin and Pencina, 2018) and has the ability
to represent learning and input information filtering layer-by-
layer, which can realize end-to-end supervised and unsupervised
learning. A convolutional neural network (CNN) is a deep neural
network with a convolution structure inspired by the receptive
field mechanism in biology (Qiu et al., 2018, 2020; Wen et al.,
2020). This is a deep learning model for image processing. The

CNN has two advantages over other machine learning methods.
First, in addition to the full connection layer and the output
layer, the neurons in the CNN use partial connections, whereas
those in the conventional neural networks are all connected.
Second, the CNN shares weights among the neurons in the same
layer to reduce the complexity of the network model. These
characteristics make the CNN more suitable for image feature
learning and expression, as compared to other deep learning
methods. To date, this model has been used for every major
breakthrough in the field of image recognition. The CNN and
many models derived from it have been used in classification
tasks of cognitive impairments and they have achieved excellent
results. Therefore, we used the CNN to construct a classification
model for cognitive impairment in patients with T2DM.

RESEARCH DESIGN AND METHODS

Participants
In this study, 107 participants (45 T2DM patients with cognitive
impairment and 62 without) from the Endocrine Department
in the first affiliated hospital of Guangzhou University of
Traditional Chinese Medicine were enrolled. T2DM was defined
according to the latest criteria published by the American
Diabetes Association: HbA1c ≥ 6.5% (48 mmol/mol); fasting
blood glucose ≥ 7.0 mmol/L (126 mg/dL); oral glucose
tolerance test 2 h postprandial blood glucose≥11.1 mmol/L (200
mg/dL); symptoms of hyperglycemia or hyperglycemic crises;
and random blood glucose≥11.1 mmol/L (200 mg/dL), without
symptoms of hyperglycemia, and the standard of 1 to 3 items
was reviewed. Participants were excluded if they had a history of
psychiatric diseases; stroke; epilepsy; head trauma; brain surgery;
cerebrovascular accidents; obvious cognitive impairment who
find it difficult to cooperate with the cognitive scale test; or had
severe liver, kidney, or heart disease (like coronary heart disease,
heart failure); and rheumatoid- and thyroid-related diseases
(especially hyperthyroidism). A transient ischemia attack in the
past 2 years, alcohol or tobacco abuse, severe hypertension
(systolic pressure ≥ 160 mmHg or systolic pressure ≥ 110
mmHg), and contraindications to MRI were also exclusion
criteria, as were specific brain abnormalities on conventional MR
scans. Moreover, the patients with T2DM were excluded if they
had unstable blood glucose control, acute or chronic metabolic
complications of clinical diabetes and severe hypoglycemia, or a
history of ketoacidosis.

Medical History and Biometric
Measurements
Medical history and medication use were recorded with a
standardized questionnaire, and patients in this study were
mainly treated with insulin and metformin. Systolic and diastolic
blood pressure, biometric examinations, and body mass index
(BMI) were measured. The biometric examinations, including
those of averaged fasting glucose, HbA1c, fasting C-peptide,
total cholesterol, triglycerides, and low density lipoprotein were
measured with standard laboratory testing.
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Data Augmentation
The sample size for the training dataset was 74. To design a
better model and improve the generalization ability of the model,
we used 3D random rotation for data augmentation. The steps
are as follows. First, MR images were normalized via nonlinear
transformation and picture size adjustment. Second, we obtained
the center coordinates of rotation, that is, the center coordinates
of the image. Third, the rotation matrix, rotation box, rotation
landmarks, and image rotation were achieved. Finally, the sample
number was amplified 10 times that of the original data.

Cognitive Assessment
All participants underwent a series of neuropsychological
tests that evaluated general cognitive function, memory,
attention, executive function, and visuospatial skills, including
the Montreal Cognitive Assessment (MoCA, Beijing edition),
the auditory verbal learning test, the trail-making test, Grooved
pegboard test, digit-symbol test, and digital sequence test.
MoCA scores served as an index of the cognitive status, which
divided our T2DM patients into two groups, T2DM patients
with cognitive impairment (T2DM-CI) group and T2DM-noCI
group. Participants whose MoCA score was less than 26 were
considered to have cognitive impairment. The AVLT contains
three parts, including immediate tasks, 5-min tasks, and 20-min
delayed recall tasks, which were used to assess short-term and
delayed memory, and the digital sequence test was used as a
simple method to assess immediate memory. The trail-making
tests were mainly used to evaluate attention and psychomotor
speed. All the tests took approximately 30min to administer.

MRI Dataset Acquisition
MRI 3D-T1 was acquired as the brain structural images to classify
T2DM patients with and without cognitive impairment. Model
training, internal validation, and testing were performed on
the dataset.

MR images were all acquired with a 3T Siemens Prisma
with an 8-channel head coil. Conventional brain axial T1-
weighted, T2-weighted, and FLAIR images were obtained for
every subject to exclude organic disease. Subjects were instructed
to keep their eyes closed but to remain awake and to keep
their heads still during the scan. Head motion was controlled
as much as possible using foam padding, and scanner noise was
reduced using earplugs. Structural images were acquired with the
following parameters: TR = 2,000ms, TE = 2.6ms, inversion
time = 450ms, flip angle = 12◦, matrix = 256×256, field of
view = 250 ×250mm, and 256 continuous sagittal slices with
1-mm thickness. The voxel of 3D-T1 image in this study was 1
×1×1mm.

Brain Extraction
Before extracting the brain tissues, MRI images were first
converted from DICOM format into ANALYZE in a recursive
routine using the Python language. The brain extraction tool
(BET) in the FMRIB Software Library was used to extract
the brain tissue. The BET algorithm is a common brain
tissue extraction method based on a deformable lattice model.
The algorithm has high robustness and accuracy, and is

computationally fast, making it a good method for extracting the
brain tissue. This method first calculated the gray-scale image
of MRI brain images and estimated three values, including the
gray threshold, the maximum value, and the maximum value
for distinguishing the brain and other tissues. Thereafter, the
algorithm estimated the focus of the brain tissue and obtained
the initial brain tissue according to the gray values. Finally, the
initial brain surface was constructed using a 3D triangle facet.
Tangential and smoothing forces were built in every triangle
facet, which caused the initial brain surface to maintain a fixed
distance and smoothness and made the brain surface sufficiently
smooth and stable.

Features Addition
We selected 21 features, including clinical data and
neuropsychological test scores. The clinical data included
HbA1c, fasting blood glucose, fasting insulin, systolic blood
pressure, total cholesterol, triglycerides, low-density lipoprotein,
fasting C-peptide, and BMI. Neuropsychological test scores
included the auditory verbal learning test (immediate, 5 mins,
delay, recall), the trail-making test, Grooved pegboard test, the
Mini-Mental State Exam, digit-symbol test, and digital sequence
test. The features above were then filled with null values and
normalized to 0–1, and then merged with the 3D image as an
additional layer.

CNN Construction and Training
We constructed an 11-layer 3D CNN. The steps for constructing
the network mainly included image input, convolution, rectified
linear unit, pooling, and image classification. The network
structures are listed in Table 1. In the table, the size of the input
layer was 64 × 64 × 11, wherein 64 × 64 refers to the size
of pixels, and 11 refers to the number of channels, which was
obtained by 3D scaling of 256 layer images. Starting from the
second row, the number in the second column represents that
corresponding to the third column. For instance, 11 in the second
row refers to 11 convolution layers. Subsequently, the model was
trained. We input the images and evaluated the network after
each loop, and training was stopped. The network was updated
after 10 iterations with no loss improvement. The samples were
normalized samples with mean 0 and var= 1 before being passed
to the net. Randomized samples were selected from the dataset
during training. We used a fold cross-validation to verify the
stability of the model. In this model, the precision, accuracy,
recall, F1 score, and area under the curve (AUC) were calculated.
The formulae are as follows.

Precision = TP/(TP+ FP)

Recall = TP/(TP+ FN)

Accuracy = (TP+ TN)/(TP+ FP+ TN+ FN)

F1 score = P x R/2(P+ R)

(TP: true positive, FP: false positive, TN:true negative, FN: false
negative, P: precision, R: recall).
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RESULTS

Characteristics of Patients
A total of 107 participants were recruited for this study, included
45 T2DM-CI and 62 T2DM-noCI. The average age of all patients
was 48.78 years, and 59.81% of patients were men (64 of 107).
Moreover, the average MoCA score of the patients was 25.15
(Table 2). Brain structural MRI data of the 107 patients enrolled.

Deep Learning Network Training and
Performance
In this study, 74 samples were the training set and 33 samples
were designed as the test set. The training set and the test set were
randomly assigned. The training set included 42 T2DM patients
with cognitive impairments and 32 without. The test set included
15 T2DM patients with cognitive impairments and 18 without.
Initially, only 3D-T1 images were used to construct the model.
The accuracy of the model was 75.80 % and it achieved an AUC
of 74.27%. After adding 21 clinical features, the accuracy of the
model was 84.85% (Figure 1A) and it achieved an AUC of 92.65%
(Figure 1B). On the other hand, the precision of this model was
86.67%, the recall was 81.25%, and F1 score was 83.87%. Ten-fold
cross validation was done and its AUC was 0.79231.

After the final training, we obtained the training curve
(Figure 2). The loss curves of the training dataset and the test

TABLE 1 | The information on the 11-layer 3D CNN.

Number of layers Layer category

Layer 1 1 input

Layer 2 11 conv

Layer 3 11 batchNorm

Layer 4 17 conv

Layer 5 17 batchNorm

Layer 6 34 conv

Layer 7 34 batchNorm

Layer 8 1,024 fc

Layer 9 2 fc

Layer 10 2 softmax

Layer 11 2 output

The input layer (Layer 1) size was 64 × 64 × 11.

TABLE 2 | Characteristics of included T2DM studies.

Characteristics T2DM patients (n = 107) (mean ± SD)

Age (year) 48.78 ± 9.24

Sex (male/female) 64/43

Education level 10.27 ± 4.09

HbA1c % (mmol/mol) 9.34 ± 2.45

BMI (kg/m2) 24.23 ± 2.80

MoCA 25.15 ± 3.61

SD, standard deviation; HbA1c, glycated hemoglobin; BMI, body mass index; MoCA,

Montreal Cognitive Assessment.

dataset showed a downward trend, and the overall success rate of
learning was on the rise.

DISCUSSION

In this study, we employed a deep learning method for the
classification of T2DM patients with and without cognitive
impairments based on MRI 3D-T1 brain structural images. After
brain extraction, data augmentation, and selection of 21 features
to help neural networks learn, CNN construction, and training,
we constructed a model for classification. After testing the test
set and performing model validation of the training set, the loss
curves showed a downward trend, and the overall success rate
of learning increased, which indicated that the model had good
discrimination ability. The model achieved performance with an
AUC of 0.9265. The accuracy of classification was 84.85%.

The Clinical Significance of the Model
Previous studies have shown that greater cognitive decline
occurs among patients with T2DM, as compared to the general
nondiabetic population of the same age; therefore, T2DM
patients may present cognitive disorders at an earlier age.
However, although the incidence rate of T2DM individuals
affected by cognitive dysfunction has gradually increased,
sufficient clinical attention has not been paid to the development
of cognitive impairments in patients with T2DM. Currently,
some cognitive tests, such as the MoCA scale, are widely
used in the clinical diagnosis of cognitive impairment. Many
previous neuroimaging studies have used the MoCA scale for
grouping. The MoCA scale can achieve relatively good accuracy
for multiple samples. Recognizing its important role, this study
used the MoCA scale for grouping. However, for individuals, it
may produce some bias, which is closely related to the tester’s
test level, test environment, and subject’s cooperation. Our model
aims to use images as amore objectivemethod to diagnose T2DM
cognitive impairment. A scanned image can more objectively
show pathological characteristics and significantly reduce human
bias than manual classification using a scale.

Since the cause of AD is irreversible (Yang et al., 2021)
and there is no cure, the early diagnosis of AD is crucial for
treatments to slow down the development of the disease. Various
studies have confirmed that T2DM is one of the main risk
factors for AD, and patients may experience various cognitive
impairments, such as memory loss, executive ability reduction,
and affective disorder. In contrast to the cognitive impairments
in AD, most of the cognitive dysfunctions in patients with
T2DM are reversible. Specifically, the best stage to implement
preventive measures is when T2DMpatients present no cognitive
impairment. However, in the research of classification and
prediction models of cognitive impairments, most of them focus
on AD, specifically the evolution and prediction of mild cognitive
impairment (MCI) in AD. Few studies have focused on T2DM-
related cognitive disorders. Lin et al. (2018) studied and classified
the features of brain MRI images in patients with MCI and
AD using multi-dimensional MRI information to establish an
AD prediction model. Zhu et al. (2021) proposed a temporally
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FIGURE 1 | The confusion matrix and the ROC curve of the test dataset. (A) The green boxes represent the true negative and positive rates, and the red boxes

represent the false negative and positive rates. The dark gray boxes in the lower right corner represent the accuracy. The accuracy was 84.85%. (B) The ROC curve

to classify cognition, the red line represented the ROC of T2DM-noCI, and the green line represented the ROC of T2DM-CI. The AUC was 92.65%.

structured SVM model to classify MCI and AD to achieve early
detection and diagnosis. Hett et al. (2021) presented a novel
graph-based grading framework to combine the features and a
multiscale approach that enabled the analysis of alterations of
whole-brain structures and classified MCI and AD with an AUC
of 85%. Jin et al. (2020) used a deep learning model (3D attention
network, 3DAN) to classify MCI and AD based on structural
MRI; the model demonstrated good performance in predicting
MCI subjects who will progress to AD with an accuracy of 72%.
Jie et al. (2020) designed a wc-kernel-based CNN framework for
learning the features ofMCI and AD diagnosis using fMRI. These
previous studies on cognitive impairment in AD can provide a
methodological and theoretical basis for this study.

In this study, we combined imaging and clinical objective
information and built a classification model using the CNN,
which achieved performance with an AUC of 0.9265. The
accuracy of classification was 84.85%. These results indicated
that the model has good discrimination ability in classifying
T2DM patients with and without cognitive impairments. It can
help clinicians objectively analyze and predict the cognitive
impairment of patients by combining imaging and clinical data,
not by using neurological test scales alone, which may cause
human error. In addition, according to the classification results,
clinicians can treat patients at an early stage, as it is important to
prevent the development of dementia and improve the quality of
life of patients.

The Superiority of the Model
Before constructing the final model, we attempted to use
3D-T1 images only to construct the model. The accuracy
rate reached 75.80%. As the sample size was not sufficiently

large, the accuracy rate did not attain our expected goal;
therefore, we added 21 clinical features to increase the stability
of the model. Further research will expand the sample size,
increase the accuracy of image diagnosis, and achieve an ideal
classification effect. In day-to-day clinical work, doctors can
make diagnoses using scanned images. The 21 clinical features
included HbA1c, fasting blood glucose, fasting insulin, and
systolic blood pressure. The selection of these clinical features
was based on the degree to which they may affect T2DM
or are closely related to the patient’s cognition. For instance,
the previous literature and our previous studies (Qin et al.,
2019; Tan et al., 2019; Li et al., 2020) have confirmed that
HbA1c is closely related to cognitive impairment in patients
with T2DM. The higher the level of HbA1c, the more serious
is the cognitive impairment of patients. In addition, cholesterol
and triglycerides were confirmed to be related to a reduction
in cognitive levels (Hakala et al., 2021). We did not consider
diabetes duration as a clinical feature. As type 2 diabetes is
a chronic disease with latent onset, we could not determine
the exact onset time of disease in the patients. The onset time
could be the time since the onset of the disease but not the
real illness time. Moreover, the time of onset of type 2 diabetes
can include the early asymptomatic stage. We believe that a
sufficiently accurate estimation of the duration of diabetes cannot
be achieved; therefore, we did not apply this index to the
prediction model.

Few studies have been conducted on the classification of
cognitive impairment in patients with T2DM. Most of these
studies used conventional machine learning methods, such
as the SVM classifier. Liu et al. (2019) marked whole-brain
resting state functional connections (RSFCs) and used SVM
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FIGURE 2 | The accuracy and loss value curves of the classification model. The top curve shows the overall success rate, the increasing success rate proves that its

accuracy is improving. The bottom curve shows the loss curves of the training and test sets, the loss value is decreasing, which proves that the model is converging

and has good stability.

to identify cognitive dysfunction in patients with T2DM. The
SVM is one of the most common machine learning models.
It can effectively distinguish features of different categories by
constructing high-dimensional decision planes in feature space.
It has an excellent performance in the case of small sample
sizes and high dimensions; however, some of its disadvantages
cannot be ignored. The extraction of image features is typically
based on prior assumptions. Abnormal changes caused by T2DM
might be overlooked because they are not considered in the
assumptions, and some brain regions related to T2DM might
not match the defined brain regions, resulting in a decline in
the expression of the extracted regional features. Conversely, the
features extracted by conventional machine learning methods
rely on image preprocessing, such as strict registration and
segmentation, and they need to go through various processing
steps based on image denoising and normalization, which usually
requires the guidance of experts in the field of brain science.

Deep learning is good at mining abstract-distributed feature
representations from the original input data, and these
representations have good generalization ability. Deep neural
networks are the main forms at present, and CNN is one
of the classic and widely used network structures. The CNN
can effectively reduce the complexity of the network; reduce
the number of training parameters; and make the model
invariant to translation, distortion, as well as scaling. Thus, it
has strong robustness as well as fault tolerance. Additionally,
it is easy to train and optimize the network structure. It has
significant advantages over shallow models in terms of feature
extraction and model fitting. In this study, we used a 11-
layer CNN to perform an automatic analysis of the whole-
brain structure of patients with T2DM without extracting the
relevant image features in advance, which reduced the experience
difference. Moreover, we appropriately increased the depth of the
network and added convolution layers, which extracted abstract

Frontiers in Neuroscience | www.frontiersin.org 6 July 2022 | Volume 16 | Article 926486

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Tan et al. CNN Classification of T2DM Brain

features and improved the accuracy of the classifier. Finally, a
classification model of cognitive impairment in T2DM patients
was constructed, and a good classification effect was achieved.

Our T2DM cognitive impairment classifier was a 3D-
CNN model. 3D-CNN achieves the automatic classification of
diagnostic images by capturing the anatomical shape changes
of MRI on strictly registered MRI data, combining three 3D
convolution layers with a two-layer fully connected network for
global fine-tuning training (Dolz and Desrosiers, 2017). Most
relative classification models used in previous studies were based
on the 2D-CNN method. However, when using 2D images
to study 3D neural images, the information between the 3D
structures in the images is usually ignored. The 3D-CNN is more
accurate in the feature extraction of spatial information, which
means that the network has higher accuracy (Singh, 2020; Singh
et al., 2020). In our CNN model, the features of the voxel model
were extracted using convolution layers; the extracted features
were integrated by pooling layers; and finally, the model was
classified in the full connection layers.

CONCLUSION

In this study, we constructed a 3D 11-layer CNNmodel to classify
T2DM patients with and without cognitive impairments. This
model achieved performance with an AUC of 0.9265 and the
accuracy of classification was 84.85%, which prompted to achieve
a good classification effect. It can help clinicians objectively
analyze and predict patients’ cognitive impairment and provide
treatments to the patients in the early stage. It is important to
block or delay the development of dementia.

LIMITATION

The limitations of this study are as follows. First, the sample size
of the current study may be relatively small, and future studies
with larger sample sizes are required. Second, because our sample
size was small, we could not group different ages, the degree
of cognitive impairments, and drug treatments separately. In
this study, we attempted to select patients with type 2 diabetes
who are below 70 years, and the average age of our patients
in this study was 48.78. However, the small sample size was
unsuitable for further grouping. Further studies with larger
samples can consider age grouping and have stricter control of
drug use, which may make the model more objective. Third,
brain structural images were used to construct a classification
model. However, previous studies have shown that functional

brain changes occur earlier than structural changes. Therefore,
future studies using brain function images or multimodal MRI
images of patients with T2DM to construct a classification model
are necessary.
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