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Ophiostomatoid fungi exhibit a complex relationship with bark beetles;

exhausting of host tree defenses is traditionally regarded as one of the

key benefits provided to beetle vectors. Ophiostoma bicolor is one of the

dominant species of the mycobiota associated with Ips genus bark beetles

which infect the spruce trees across the Eurasian continent. Host spruce

trees resist fungal invasion through structural and inducible defenses, but the

underlying mechanisms at the molecular level, particularly with respect to

the interaction between bark beetle-associated fungi and host trees, remain

unclear. The aim of this study was to observe the pathological physiology

and molecular changes in Picea koraiensis seedlings after artificial inoculation

with O. bicolor strains (TS, BH, QH, MX, and LWQ). This study showed that

O. bicolor was a weakly virulent pathogen of spruce, and that the virulent

of the five O. bicolor strains showed differentiation. All O. bicolor strains

could induce monoterpenoid release. A positive correlation between fungal

virulence and release of monoterpenoids was observed. Furthermore, the

release rate of monoterpenoids peaked at 4 days post-inoculation (dpi) and

then decreased from 4 to 90 dpi. Transcriptomic analysis at 4 dpi showed

that many plant-pathogen interaction processes and mitogen-activated

protein kinase (MAPK) metabolic processes were activated. The expression of

monoterpenoid precursor synthesis genes and diterpenoid synthesis genes

was upregulated, indicating that gene expression regulated the release rate

of monoterpenoids at 4 dpi. The enriched pathways may reveal the immune

response mechanism of spruce to ophiostomatoid fungi. The dominant

O. bicolor possibly induces the host defense rather than defense depletion,

which is likely the pattern conducted by the pioneers of beetle-associated

mycobiota, such as Endoconidiophora spp.. Overall, these results facilitate a

better understanding of the interaction mechanism between the dominant

association of beetles and the host at the molecular level.
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Introduction

Spruce is an evergreen woody plant that is distributed in
cold temperate and subalpine regions. The genus consists of
approximately 50 species, including 20 species and five varieties
found in China (Chen, 2013). In recent years, pest outbreaks
have been accelerated by climate change and increasing
international trade. Spruce forests in the Northern Hemisphere,
especially in Europe, have been severely affected by bark beetles
of genus Ips (Coleoptera: Curculionidae: Scolytinae) (Hlásny
et al., 2021). Bark beetles and fungi have formed complex
associations during long-term co-evolution, resulting in the
ability for the beetles to carry ophiostomatoid fungi (Six, 2012).
The combined impact of the association between beetle pests
and ophiostomatoid fungi has been studied for a long time
(Kirisits and Konrad, 2004; Wingfield et al., 2016) and has
received attention in China since the turn of the century, in view
of the successful invasion of Dendroctonus valens from North
America and the epidemic outbreak of indigenous Ips spp. and
Dendroctonus armandii (Lu et al., 2008; Sun et al., 2013; Wang
et al., 2022).

Both beetle and fungal partners have developed from
occasional and sporadic to relatively stable and intimate
relationship during their historical co-occurrence in the same
habits (Bleiker and Six, 2009; Biedermann and Vega, 2020;
Chakraborty and Roy, 2021; Singh et al., 2021). The benefits of
beetle vectors to fungi are evident; for example, beetles can bring
the fungi to new hosts and create inoculation holes. However,
the benefits of fungi to beetles are unclear and sometimes
disputed (Six and Wingfield, 2011). Nevertheless, substantial
evidences from studies in nutrition, chemical ecology, and
molecular biology have supported that fungi (particularly
ophiostomatoid fungi) can enhance the colonization success
of beetles in the following ways: by producing ergosterol,
which is indispensable for beetle development (Bentz and Six,
2006), improving food quality and availability (Davis et al.,
2019; Dzurenko and Hulcr, 2022), detoxifying tree defense
compounds (DiGuistini et al., 2011; Wadke et al., 2016; Itoh
et al., 2018; Davis et al., 2019; Zhao et al., 2019a), attracting
or repelling other individuals through semiochemicals (Zhao
et al., 2015, 2019b; Kandasamy et al., 2019), or competitive
exclusion of beetle pathogens (Davis et al., 2019). In addition,
many members of the ophiostomatoid fungi are pathogens
of forests and crops worldwide. Notorious diseases caused by
ophiostomatoid fungi include Dutch elm disease, laurel wilt, and
oak wilt on broadleaf trees, and stem canker stain and black
root disease on coniferous trees, leading to severe ecological and
economic losses (Henry, 1944; Brasier, 1986; Harrington et al.,
2008; Santini and Faccoli, 2015). Artificial inoculation of certain
ophiostomatoid fungi can generate inner bark necrosis and lead
to sapwood blue staining and drying within a few months,
severely hindering water transportation, affecting tree growth,

and even causing the death of host plants (Yamaoka et al., 1998;
Davydenko et al., 2017; Devkota and Eckhardt, 2018).

Conifers have evolved a combination of structural and
inducible defenses against bark beetles and their associated
fungi (Franceschi et al., 2005; Jones and Dangl, 2006; Celedon
and Bohlmann, 2019). Studies on the chemical defense of
conifers against bark beetle-ophiostomatoid fungal symbionts
have shown that terpenes are toxic to the symbionts (Phillips
and Croteau, 1999; Raffa et al., 2005; Keeling and Bohlmann,
2006; Pan et al., 2018; Celedon and Bohlmann, 2019; Ullah
et al., 2021). The phloem tissue of Pinus spp. contains
constitutive monoterpenes that provide immediate resistance
to bark beetle attacks (Boone et al., 2011; Raffa et al., 2013);
local concentrations of terpenes increase rapidly after beetle
attack. When the induced terpene concentration levels exceed
the beetle’s physiological tolerance threshold, they inhibit or
repel beetles that arrive subsequently and alter the growth of
fungi associated with beetles that are already present (Raffa
et al., 2005; Erbilgin et al., 2017). In vitro experiments also
confirmed that monoterpenes, such as pinene and limonene,
can inhibit the growth of fungi (Zhao et al., 2019b; Fang et al.,
2020; Wang et al., 2020a). Monoterpenes, such as α-pinene, with
stronger growth inhibitory ability against fungi, have a stronger
repelling effect on bark beetles (Fang et al., 2020). Long-term
production of monoterpenoids consumes a large amount of
carbon, which is essential for tree growth (Trapp and Croteau,
2001; Dai et al., 2022), impeding the growth of pest-infested
trees. In addition to terpenes, phenolics seem less important
in the induced defense against bark beetle-associated fungal
infestation (Erbilgin et al., 2017).

RNA-seq facilitates genome-wide assessment of gene
expression profiles in plants under various conditions,
such as biotic and abiotic stresses (Conesa et al., 2016). At
present, more and more studies have used this method to
analyze host plant resistance (Nibedita and Jolly, 2017). In a
transcriptomic comparison between healthy Gastrodia elata
and those infected with Penicillium oxalicum, 10 potential
resistance genes were identified, involving plant hormone
signal transduction, jasmonic acid signaling, and plant-
pathogen interaction pathways, revealing that the immune
response mechanism of G. elata to fungal disease is a complex
biological process (Wang et al., 2020b). In poplars infected
with canker disease in the early stage, most of the carbon
metabolism and transportation genes, aquaporin genes, and
genes related to secondary metabolites and phenylpropane
biosynthesis pathway were inhibited, while the expression of
resistance genes was promoted (Li et al., 2019). The transcript
abundance of Norway spruce leucoanthocyanidin reductase
(LAR) genes increased significantly during Endoconidiophora
polonica infection (Hammerbacher et al., 2014). Anthocyanin
monomers can mitigate the effects of various abiotic
stresses such as ultraviolet radiation and ozone by reducing
oxidative stress and inhibiting bacterial growth and fungal
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spore germination (Jaakola et al., 2004; Karonen et al.,
2006).

It is interesting to understand whether the beetle-vectored
fungi cause plant disease and whether the plants develop
resistance against them. Ophiostoma bicolor is one of the
dominant associate fungi with Ips spp. and Dendroctonus
micans, which attacked various spruce species in Europe and
north China (Giordano et al., 2013; Nève Repe et al., 2018;
Chang et al., 2019, 2020; Chakraborty et al., 2020; Wang
et al., 2020c, 2021). Previous studies have confirmed that the
pioneer species in the associated fungal community of Ips,
like Endoconidiophora spp., showed strong virulence, which
could cause severe host necrosis and induce a drastic resistance
response of host conifers. However, O. bicolor could cause a
small amount of spruce sapwood blue-staining and drying,
and form small necrotic lesions on the inner bark near
the inoculation site, accompanied by bits of resin outflow,
showing moderate to weak levels of virulence from a series
of pathogenicity tests in Europe and Japan (Christiansen and
Solheim, 1994; Yamaoka et al., 2000; Sallé et al., 2005; Repe et al.,
2015). The pathogenicity of O. bicolor isolated from China is
unknown, and whether O. bicolor can induce the host to produce
a resistance response like the pioneer species need to be further
investigated. In addition, the molecular mechanisms underlying
host resistance to ophiostomatoid fungi remain unclear.

In this study, the representative strains of O. bicolor
were inoculated on 4-year-old Picea koraiensis to observe the
differences in virulence between various strains, given that
different strains of the same pathogen species may have different
levels of virulence (Lieutier et al., 2003; Sallé et al., 2005).
Changes in host defense-related metabolites after inoculation
were also analyzed and the defense mechanisms of spruce
against O. bicolor were investigated at the molecular level.

Materials and methods

Plant materials and fungal strains

To compare the virulence of O. bicolor strains on spruces,
210 healthy 4-year-old P. koraiensis Nakai clonal seedlings were
used in this study. These seedlings, which were 31–50 cm in
height and 5.9–8.4 mm in diameter at the base of the plants,
were grown outdoors in 20 cm pots containing a mixture of turfy
soil and perlite (v:v = 4:1) in campus of Chinese Academy of
Forestry in Beijing. The seedlings were well watered throughout
the experiments.

Five O. bicolor strains, TS, BH, LWQ, QH, and MX
were inoculated into the spruces. These strains were originally
isolated from three Ips bark beetles (Ips typographus Linnaeus
from northeast and northwest China, Ips nitidus Eggers from
Qinghai-Tibet plateau, and Ips hauseri Reitter from northwest
China) (Table 1) and their breeding galleries in infested spruces

during the period from 2016 to 2018. Before inoculation, fungi
were incubated at 25◦C in darkness for 7 days.

Treatments

On July 15, 2020, the seedlings were randomly assigned
to seven different treatment groups with each treatment group
including 30 replicates. Among them, five treatment groups
were inoculated with TS, BH, LWQ, QH, and MX each, one
was inoculated with 2% MEA without fungus, and another
was a healthy control. Stems were drilled with a sterile 5 mm
cork borer into the surface of xylem to create a small hole,
and a 5 mm mycelium plug was placed in the hole using
a sterile toothpick. The wound was covered with bark and
wrapped with parafilm and tape to protect the wound against
contamination and drying.

Analysis of host monoterpenoids

At 4, 30, and 90 days post-inoculation (dpi), 10 seedlings
per treatment were used to evaluate host response. The crown
and stem of the seedlings were enclosed using a polyethylene
(PE) film (48 cm × 60 cm; Reynolds Consumer Products, Lake
Forest, IL, United States). Collection of volatile monoterpenoids
from P. koraiensis was performed using the closed circulation
dynamic headspace sampling system of Porapak-Q absorbent
(i.e., 200 mg, 50–80 mesh, 0.6 mm diameter, 160 mm long
glass tube, Merck KGaA, Darmstadt, Germany) through mini
vacuum pumps (Atmospheric Sampling Instrument, QC-1S,
Beijing Labor Protection Institute, China) at an airflow rate of
500 mL/min for 1 h. Sampling tubes containing volatiles trapped
on the Porapak-Q absorbent were then sealed at both ends with
aluminum foil and placed inside a warm box filled with dry
ice. The host tree headspace volatiles were extracted from the
sampling tubes with 2 ml of HPLC-grade n-hexane. Prior to gas
chromatography (GC), each sample was concentrated to 50 µl
with a mild nitrogen stream and stored at−20◦C.

Sample analyses were performed using a GC equipped with a
flame ionization detector (GC-FID) (Agilent Technologies, Palo
Alto, CA, United States) and an automatic sampler for liquid
sample injections to identify and quantify host monoterpenes.
For each sample run, 1 µl of extract was injected into an HP-5
column (Agilent Technologies, 30 m× 0.25 mm i.d.× 0.25 µm
film thickness). Analysis conditions were as follows: H2 as
carrier gas at 15 psi column head pressure; flame ionization
detector temperature 270◦C, and injector temperature 250◦C;
the oven temperature program started at 45◦C (kept isothermal,
1 min), and increased linearly to 105◦C at 2◦C min−1 (kept
isothermal, 1 min), and then to 250◦C at 15◦C min−1

(kept isothermal, 30 min). Data acquisition and subsequent
processing were performed using the Agilent ChemStation GC
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TABLE 1 The information ofO. bicolor isolate.

Strain no. Host Location Beetle

TS Picea schrenkiana Fischer Mey. Urumqi, Xinjiang Province Ips hauseri Reitter

BH P. koraiensis Nakai Erdao Baihe, Jilin Province I. typographus Linnaeus

QH P. obovata Ledeb. Qinghe, Xinjiang Province I. typographus Linnaeus

MX P. crassifolia Kom. Maixiu, Qinghai Province I. nitidus Eggers

LWQ P. balfouriana Rehd. et Wils Riwoqê, Tibet I. nitidus Eggers

Systems software. Absolute amounts of monoterpenes were
quantified according to the retention time using the following
standards: (-)-α-pinene, camphene, β-pinene, myrcene, 3-
carene, α-phellandrene, (-)-limonene, and γ-terpinene, and the
monoterpene concentrations in the samples were calculated
according to external standards.

Analysis of fungal pathogenicity

At 30 and 90 dpi, 10 seedlings per treatment were used
to evaluate fungal infection. All barks were removed from the
lesion area around the inoculation point with a knife, and the
length and width of each necrotic lesion were measured. Three
random replicates of every treatment were selected, to take
approximately 1 cm2 samples from the edges of each necrotic
lesion for re-isolation of the fungi.

Analysis of host transcriptome

The monoterpenoid release peak reached at 4 dpi and then
distinctly decreased at later two sampling time points (30 and
90 dpi). Thus, the early molecular changes of P. koraiensis
after infection by O. bicolor were analyzed. At 4 dpi, seedlings
inoculated with the most and least virulent strains were used
for transcriptome sequencing by Illumina. Phloem tissue was
collected from a 1 × 4 cm square at the disease/health
junction, wrapped in aluminum foil, and placed in dry ice.
These samples were stored at −80◦C in the laboratory prior to
transcriptomic analysis.

Ribonucleic acid from each treatment group with three
biological replicates was extracted using the RNAprep Pure
Plant Kit (Polysaccharides and Polyphenolics-rich, TIANGEN,
Beijing, China) by following the manufacturer’s protocol. RNA
concentration and purity were measured using NanoDrop 2000
(Thermo Fisher Scientific, Wilmington, DE, United States).
RNA integrity was assessed using the RNA Nano 6000 Assay Kit
on the Agilent Bioanalyzer 2100 system (Agilent Technologies,
Santa Clara, CA, United States). The obtained RNA was stored
at−80◦C.

The sequencing library was constructed using 1 µg
RNA from each sample, which was generated using the

NEBNext Ultra RN Library Prep Kit from Illumina (New
England Biolabs, Ipswich, MA, United States) by following
the manufacturer’s protocol. Briefly, mRNA was enriched
using magnetic oligo (dT) beads. Fragmentation was carried
out using divalent cations under elevated temperatures in
NEBNext First Strand Synthesis Reaction Buffer (5X). The
short mRNA fragments were used as templates, and the
first-strand cDNA was synthesized using a random hexamer
primer and M-MuLV reverse transcriptase. Buffer solution,
dNTPs, RNase H, and DNA polymerase I were added to
synthesize the second-strand cDNA. The remaining overhangs
were converted into blunt ends via exonuclease/polymerase
activity. After adenylation of the 3′ ends of the DNA fragments,
NEBNext Adaptor with a hairpin loop structure was ligated
for hybridization. The AMPure XP system (Beckman Coulter,
Beverly, MA, United States) was then used for fragment size
selection. Suitable fragments were used as templates for PCR
amplification to generate a final cDNA library. Finally, the
cDNA library was sequenced using the Illumina HiSeqTM 2000
system (Biomarker Technologies Co., Ltd., Beijing, China).
The entire set of raw reads was submitted to the Gene
Expression Omnibus (GEO) at NCBI under the accession
number PRJNA835255.

To obtain high-quality reads to ensure the accuracy of
the subsequent analyses, reads containing adapters and poly-
N, and low-quality reads (reads containing more than 50%
of bases with a Q-value of ≤ 10%) were removed from
the sequencing results. Cleaned reads were then mapped to
the reference genome of the Norway spruce using HISAT2
software (Kim et al., 2015). Mapped reads were assembled and
quantified using the StringTie software (Pertea et al., 2015).
The fragments per kilobase of transcript per million fragments
mapped (FPKM) measure was used to estimate gene expression
levels to determine significant changes in gene expression under
different treatments. Hierarchical cluster analysis was used to
evaluate the consistency of the sequencing data.

Gene functions were annotated based on the KEGG
Ortholog database (KO) and Gene Ontology (GO) databases.
Differential expression analysis was performed in the DESeq2
software (Love et al., 2014) for pairwise comparisons using
a model based on a negative binomial distribution. The
Benjamini–Hochberg method was used to control for the false
discovery rate (FDR), with a p-value < 0.01. KOBAS software
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(Mao et al., 2005) was used to test the statistical enrichment of
differentially expressed genes (DEGs) in KEGG pathways.

Quantitative real-time PCR

The CFX96TM Real-Time system (Bio-Rad, Hercules, CA,
United States) and SYBR Green FP205 Kit (TIANGEN, China)
were used to quantify the expression levels of eight genes in
the most and least virulent strain treatment and control. Primer
5.0 (Premier Biosoft) was used to design primer sequences
(Supplementary Table 1), and the primers were synthesized
by Sangon Biotech (Shanghai) Co., Ltd. Each sample contained
three technical replicates. The relative expression levels were
calculated using the 2−11 Ct method and normalized using the
actin gene (NCBI accession number: AAF03692) as the internal
reference (OuYang et al., 2015).

Data analysis

The area of the lesion was calculated by multiplying
the length by the width (mm2) (Rajtar et al., 2021). The
monoterpenoid release rate was analyzed based on the difference
(1) between the treated and healthy groups. Transcriptomic
analysis was performed using the BMK cloud platform.1

The lesion area generated by different strains in the same
time period and monoterpenoid concentrations from different
treatments at the same time or from same treatments at
different times were analyzed by one-way analysis of variance
(ANOVA). The relationship between the pathogenicity and
monoterpenoid changes and the relationship between RNA-seq
and quantitative reverse transcription PCR (RT-qPCR) were
analyzed by Pearson correlation. IBM SPSS Statistics 19 was
used to perform ANOVA (LSD test, α = 0.05) and Pearson
correlation analysis.

Results

Lesion area and fungal re-isolation

During the experiment, the inoculated P. koraiensis
seedlings had no visible disease symptoms or wilt on the
whole seedlings. After removal of the outer bark, all treatment
seedlings inoculated with O. bicolor strains showed evident
lesions on the phloem tissues of their stems (Figure 1).

As shown in Table 2 and Figure 1, at 30 dpi, the lesion
area caused by TS was the largest among the five strains
treatments (371.00 ± 37.45 mm2), followed by BH, QH,

1 www.biocloud.net

and MX. The lesion area caused by LWQ was the smallest
(143.90 ± 30.94 mm2). ANOVA results showed that the lesion
area of O. bicolor inoculation was significantly larger than
that of the control (85.63 ± 10.00 mm2), and the lesion area
caused by TS was significantly larger than that of other strains.
At 90 dpi, the lesion area caused by TS was consistently the
largest (432.72 ± 37.38 mm2) among the five strains treatments
(Table 2; Figure 1), followed by BH, QH, and MX. The lesion
area caused by LWQ was the smallest (160.53 ± 21.20 mm2).
ANOVA results showed that the lesion area of O. bicolor
inoculation was significantly larger than that of the control
(93.06 ± 13.26 mm2), and the lesion area caused by LWQ
was significantly smaller than that of other strains. The above
results indicated that the pathogenicity of the five strains was
differentiated, among which TS was the strongest, BH was the
second, QH and MX were the third, and LWQ was the least.
The mean re-isolation rate of the inoculated fungi from each
of the three random lesion samples was 88.7%, confirming that
necrotic lesions were caused by O. bicolor inoculation.

Analysis of host monoterpenoids

Due to the unavailability of α-phellandrene and γ-terpinene
for detection, we analyzed and quantified the release rates
of six different monoterpenes in whole seedlings, including
(-)-α-pinene, camphene, β-pinene, myrcene, 3-carene, and
(-)-limonene. From 4 to 90 dpi, the monoterpenoid release
rate of spruce was the highest at 4 dpi and decreased gradually
thereafter as shown in Figure 2. At 4 dpi, the release rates
of monoterpenoids were significantly different between
various strain treatments, particularly between the strains
that were highly pathogenic strains and those that were
the lowly pathogenic. For example, the six monoterpenes
release rate in TS treatment were significantly higher
than those in LWQ and control treatment (Figure 2;
Supplementary Table 2). After 30 dpi, the release rates of
the six monoterpenes among the inoculation treatments
varied marginally. For example, at 90 dpi, the release rates
of (-)-α-pinene, β-pinene, and myrcene were almost the
same under the treatment of five strains, and same as
the control as well (Figure 2; Supplementary Table 2).
In addition, the release rates of different monoterpenes
during the three time periods of the control treatments
showed no significant differences (Figure 2; Supplementary
Table 2). These results indicated that the changes in
monoterpenoid release rates were caused by fungal infection,
and not by wounding.

The release rate of monoterpenoids among five strain
treatments showed a similar trend with the virulence gradients
of five strains. In order to further analyze the relationship
between monoterpenoids release rate and fungal infection
ability, we conducted correlation analysis for the pathogenicity
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FIGURE 1

Disease development of P. koraiensis stems infected by O. bicolor at 30 and 90 dpi.

and monoterpenoid release rate at 30 dpi. As shown in
Table 3, (-)-α-pinene, β-pinene, 3-carene, and (-)-limonene
release rate were highly correlated with fungi pathogenicity
(Pearson correlation analysis, R-value ≥ 0.919, p ≤ 0.01).
Therefore, the amount of monoterpenoids released can be used
to indicate the virulence of fungal strains.

Global review of transcriptome
sequencing data

Based on the results of lesion area and monoterpenoid
release analyses, TS, LWQ, and control samples were selected
for transcriptomic analysis, of which TS was a highly virulent
strain and LWQ was a weakly virulent one. A total of 56.97 Gb
of clean reads with Q30 > 93.57% were obtained from nine
RNA-seq samples. The clean reads of each sample were aligned
with the Picea abies reference genome (GCA_900067695.1),
with efficiencies ranging from 79.23 to 80.55%, indicating

high-quality raw data (Table 4). In total, 37,965 functionally
annotated genes were identified (Supplementary Figure 1).
A total of 24,433 new genes were discovered in all samples,
of which 14,227 were sequenced and annotated to supplement
and improve the original genome annotation (Supplementary
Table 3). Pearson clustering analysis of the gene expression
results showed that all the biological repeats in TS, LWQ,
and control were clustered together (Figure 3A). The Pearson
coefficient of all three biological replications in all treatments
were ≥ 0.987, indicating that our sequencing data had high
reliability (Figure 3A).

Differentially expressed genes in
spruce infected by Ophiostoma bicolor

To explore the difference in the gene expression of
P. koraiensis in response to various O. bicolor strains with
different virulence, the transcriptomes of the seedlings in the
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TABLE 2 The area of necrotic lesions caused by differentO. bicolor isolate.

Strain no. Mean lesion of inoculation (mm2)

30 dpi 90 dpi

TS 371.00± 37.45a 432.72± 37.38a

BH 255.56± 24.79b 316.11± 25.17b

QH 169.31± 20.3c 237.29± 32.28bc

MX 148.33± 17.4c 272.35± 35.55c

LWQ 143.90± 30.94c 160.53± 21.20d

Control 85.63± 10.00d 93.06± 13.26e

The different letters within each column indicate statistically significant differences (p < 0.05).

FIGURE 2

Release rates of six monoterpenes in different treatments (µg/h, mean ± SE, N = 3).

TABLE 3 Correlation analysis for the pathogenicity and monoterpenoid changes at 30 dpi.

Pearson correlation with lesion (-)-α -pinene camphene β -pinene myrcene 3-carene (-)-limonene

R 0.921 0.792 0.919 0.89 0.97 0.922

p 0.009 0.061 0.010 0.017 0.001 0.009

TS, LWQ, and control treatment groups were compared. DEG
parameters were set as follows: fold change ≥ 4 and FDR
correction < 0.01. A total of 8,496 DEGs were detected in the
two comparisons (TS vs. control, and LWQ vs. control), of
which 5,300 DEGs were detected in the comparison of TS vs.
control and LWQ vs. control, simultaneously (Figure 3B). In
addition, 2,388 and 808 DEGs were detected in the comparison
of TS vs. control and LWQ vs. control, respectively (Figure 3B).
The number of upregulated genes accounted for more than

81.63% of the total DEGs, indicating that O. bicolor inoculation
increased the overall gene expression of spruce at the genomic
level (Figure 3C; Table 5, chi-square test, p-value < 0.0001).
Annotation analysis suggested that the DEGs comprised many
transcription factors (TFs), including AP2, RLK, NAC, C2H2,
SNF2, PHD, and WRKY (Figure 3D; Supplementary Table 4).
Compared to control, in TS- and LWQ-inoculated spruces, 281
and 353 TF-encoding genes were differentially expressed, among
which 251 and 271 genes were upregulated (Table 5).
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TABLE 4 Overview of the transcriptome sequencing dataset and quality check.

Sample ID Read sum number Base sum number Q30 (%) Total reads Mapped reads (%) Multi map reads

TS-1 20,136,203 6,021,668,790 94.88 40,272,406 32,438,452 (80.55%) 1,184,305 (2.94%)

TS-2 19,544,543 5,847,438,026 94.97 39,089,086 31,342,859 (80.18%) 1,153,232 (2.95%)

TS-3 20,900,628 6,253,541,488 94.42 41,801,256 33,512,254 (80.17%) 1,215,744 (2.91%)

LWQ-1 23,102,071 6,911,402,140 94.59 46,204,142 36,608,310 (79.23%) 1,368,647 (2.96%)

LWQ-2 20,447,827 6,115,226,536 94.77 40,895,654 32,782,193 (80.16%) 1,201,668 (2.94%)

LWQ-3 19,736,086 5,907,192,642 93.57 39,472,172 31,608,465 (80.08%) 1,152,093 (2.92%)

Control-1 21,604,871 6,463,536,296 94.43 43,209,742 34,288,798 (79.35%) 1,325,794 (3.07%)

Control-2 21,684,312 6,483,121,640 94.36 43,368,624 34,407,197 (79.34%) 1,318,281 (3.04%)

Control-3 23,305,398 6,970,566,612 94.31 46,610,796 37,068,186 (79.53%) 1,411,672 (3.03%)

FIGURE 3

Global evaluation of transcriptome sequencing data of spruce. (A) Hierarchical clustering analysis of gene expression shown the correlation
among samples. (B) Venn diagram of DEGs in compared between TS, LWQ, and control treatments. DEGs were selected using fold change ≥ 4,
FDR correction < 0.01. (C) Volcano plot of all detected genes. Red represents upregulation; green represents downregulation; black represents
non-differentially expression. (D) TFs differentially expressed under O. bicolor. X-axis represents the number of DEGs, and Y-axis represents the
number names of transcription factor family.

Gene Ontology enrichment analysis was used to assign
the DEGs to 46 GO terms. In biological processes, DEGs
involved in cellular, metabolite, and signal-organism
processes were enriched (Supplementary Figure 2).
In terms of molecular function, the DEGs involved in

regulated binding, catalytic activity, and transporter activity
were enriched (Supplementary Figure 2). In the cellular
component category, DEGs involved in cells, organelles,
and membranes were enriched (Supplementary Figure 2).
These results suggested that binding activity and high
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enzymatic activity were involved in the defense response
of P. koraiensis.

Kyoto encyclopedia of genes and genomes (KEGG) analysis
enriched these DEGs in 13 metabolic pathways in all treatments
(q < 0.05) (Figure 4; Supplementary Table 5; Kanehisa et al.,
2021). Some of the P. koraiensis DEGs were mutually enriched
in the TS and LWQ treatments, including RNA transport, starch
and sucrose metabolism, aminoacyl-tRNA biosynthesis, mRNA
surveillance pathway, ABC transporters, nucleotide excision
repair, and base excision repair. Nevertheless, some DEGs
were enriched only in one of the treatments. For example,
DEGs involved in protein processing in the endoplasmic
reticulum and other glycan degradation were enriched in
the TS treatment, whereas DEGs involved in homologous
recombination, ribosome biogenesis in eukaryotes, mismatch
repair, and RNA degradation were enriched in the LWQ
treatment (Figure 4 and Supplementary Table 5). DEGs
involved in the mRNA surveillance and base excision repair
pathways were upregulated, and DEGs in the remaining
pathways were both upregulated and downregulated.

Differentially expressed genes involved
in terpenoid biosynthesis

A total of 43 DEGs (24 upregulated and 19 downregulated)
involved in terpenoid biosynthesis and metabolism were
detected in TS vs. control and LWQ vs. control together
(Supplementary Table 6). In both comparisons, from the
viewpoint of terpenoid backbone biosynthesis pathway, key
enzymes including acetyl-CoA C-acetyltransferase (ACAT) and
hydroxymethylglutaryl-CoA reductase (HMGCR) involved in
the isopentenyl pyrophosphate (IPP) synthesis, 4-hydroxy-3-
methylbut-2-en-1-yl diphosphate reductase involved in the
synthesis of dimethylallyl pyrophosphate (DMAPP), and
farnesyl diphosphate synthase (FDPS) involved in the synthesis
of monoterpenoid precursors geranyl pyrophosphate (GPP)
from DMAPP, were activated, whereas isoprene synthase (ispS)
involved in the synthesis of isoprene from DMAPP, were
downregulated (Figure 5A; Supplementary Table 6). Enzyme
genes in the monoterpene synthesis pathway were nearly
unchanged, while ent-copalyl diphosphate synthase (ent-CPS)
and miltiradiene synthase/copalyl diphosphate synthase (MDS)
genes involved in the diterpenoid synthesis pathway were
upregulated (Supplementary Table 6).

The DEGs related to terpenoid backbone biosynthesis were
not identical in these two comparisons (Supplementary
Table 6). For example, in LWQ treatment, the
MA_1558499g0010 gene related to HMGCR synthesis was
downregulated and MA_70145g0010 gene related to ispS
synthesis was upregulated, while these two genes were not
differentially expressed in TS treatment. In TS treatment the
ispS synthesis related genes, Picea_abies_newGene_3028,

Picea_abies_newGene_32817, Picea_abies_newGene_41386,
MA_10435955g0010, and MA_17608g0020 genes were
downregulated, but they were not differentially expressed
in LWQ treatment.

Differentially expressed genes involved
in plant-pathogen interaction and
mitogen-activated protein kinase
signaling pathway

Of the 241 DEGs in the plant-pathogen interaction pathway,
212 DEGs were upregulated and involved in all changed
nodes except pathogenesis-related protein 1 (PR1) node
(Supplementary Figure 3; Supplementary Table 6). In TS vs.
control, TS treatment activated the nodes of enhanced disease
susceptibility 1 protein (EDS1) and elongation factor Tu (elf18).
In LWQ vs. control, LWQ treatment activated the nodes of
the molecular chaperone HtpG (HSP90A) and basic helix-loop-
helix TF Upa20 (UPA20). Notably, the expression of calcium-
binding protein (CML) nodes was activated by TS treatment and
inhibited by LWQ treatment (Supplementary Table 6).

In mitogen-activated protein kinase (MAPK) signaling
pathway, most of the 109 DEGs at 26 nodes were upregulated
(Supplementary Figure 4; Supplementary Table 6). In addition
to PR1, the catalase 1 (CAT1) gene also showed downregulated
expression. Compared with TS vs. control, LWQ vs. control
showed more downregulated DEGs in the MAPK signaling
pathway, including basic endochitinase B (ChiB), ethylene-
responsive TF 1 (ERF1), serine/threonine-protein kinase
(OXI1), protein phosphatase 2C (PP2C), and vegetative storage
protein 2 (VSP2).

Differentially expressed genes involved
in flavonoid and phenylpropanoid
biosynthesis

In samples treated with the two O. bicolor strains,
enzymes in the flavonoid biosynthesis pathway displayed
various expression patterns. Chalcone isomerase (CHI)
showed upregulated expression, trans-cinnamate 4-
monooxygenase (CYP73A) showed downregulated expression,
and flavonoid 3′-monooxygenase (CYP75B1) and bifunctional
dihydroflavonol 4-reductase/flavanone 4-reductase (DFR)
were both upregulated and downregulated (Figure 5B;
Supplementary Table 6). In addition, in the samples
inoculated with the low-virulence strain LWQ, the DEGs that
encoded chalcone synthase (CHS), flavonoid 3′,5′-hydroxylase
(CYP75A), naringenin 3-dioxygenase (F3H), flavonol synthase
(FLS), anthocyanidin synthase (ANS), leucoanthocyanidin
reductase (LAR), and anthocyanidin reductase (ANR) were
downregulated, whereas these DEGs were not detected in the

Frontiers in Plant Science 09 frontiersin.org

https://doi.org/10.3389/fpls.2022.944336
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-944336 July 19, 2022 Time: 11:15 # 10

Liu et al. 10.3389/fpls.2022.944336

TABLE 5 Statistical of differentially expressed gene (DEG).

DEG Set DEG
Number

Upregulated Downregulated Ratio of
up/down

Percentage of
upregulated
genes in total

(%)

Upregulated
TFs

Downregulated
TFs

Percentage of
upregulated genes

in total (%)

TS vs. Control 6,108 5,464 644 8.48** 89.46 251 30 89.32

LWQ vs. Control 7,688 6,276 1,412 4.44** 81.63 271 82 76.77

The DEGs were selected using fold change≥ 4, FDR correction < 0.01.Asterisks indicate the number of upregulated genes is more than that of downregulated genes (chi-square test, null
hypothesis is Nd = Nu; **p < 0.0001).

samples that were inoculated with high-virulence strain TS
(Supplementary Table 6).

The results also showed that O. bicolor inoculation altered
the expression of most genes encoding enzymes related to
phenylpropanoid biosynthesis in P. koraiensis (Figure 5C). For
example, the expression of genes encoding 4-coumarate CoA
ligase (4CL), caffeic acid 3-O-methyltransferase/acetylserotonin
O-methyltransferase (COMT), and cinnamoyl-CoA reductase
(CCR) was upregulated. Genes encoding cinnamyl-CoA
dehydrogenase (CAD), peroxidase (POD), and CYP73A were
also downregulated. However, the genes encoding scopoletin
glucosyltransferase (TOGT1) and beta-glucosidase (bglx) were
both upregulated and downregulated. While some DEGs of
P. koraiensis were enriched in the TS and LWQ treatment
groups, some were enriched in either TS or LWQ treatment
groups. For example, genes encoding coniferyl-aldehyde
dehydrogenase (REF1) were solely enriched and downregulated
with TS treatment, whereas genes encoding caffeoylshikimate
esterase (CSE) were only enriched and upregulated with LWQ
treatment (Supplementary Table 6).

RT-qPCR

This study verified the expression of eight genes including
calcium-dependent protein kinase (CDPK), ent-CPS, ispS,
FLS2, LAR1, (E)-8-carboxylinalool synthase (CYP76F14),
(3S,6E)-nerolidol synthase (NES1), and LAR2. Although the
expression level of each gene in the transcriptome was higher
than that of each gene in the RT-qPCR, both expression levels
possessed consistent upregulated or downregulation as shown
in Figure 6.

Discussion

With global climate change, forest disasters caused by
parasitic and semi-parasitic fungi have become more severe,
which was also the case with the beetle-vectored fungi (Kim
et al., 2021; Klesse et al., 2021; Morrison et al., 2021; Sitz
et al., 2021; Li et al., 2022). However, compared with the
former, the diseases caused by beetle-vectored fungi, particularly

in gymnosperms, are not well studied. This study combined
pathophysiological and transcriptomic analyses to investigate
the defense response of P. koraiensis to O. bicolor infection.
The results showed that: (1) different O. bicolor strains showed
pathogenicity differentiation in P. koraiensis; (2) O. bicolor can
induce the release of monoterpenoids in spruce in a short period
of time; the release rates are correlated with the fungal virulence.
Subsequently, the release rates gradually decrease to a normal
level comparable to the control; (3) O. bicolor can significantly
change the overall gene expression of P. koraiensis in early
infection, and induce the upregulated expression of terpenoid
backbone biosynthesis, plant-pathogen interaction, and MAPK
signaling pathway.

Some ophiostomatoid fungi associated with I. typographus
were pathogenic to spruce, and could induce the host to produce
terpenoids, phenols, and other defense substances that were
related to disease resistance (Solheim and Safranyik, 1997;
Yamaoka et al., 2000; Sallé et al., 2005; Repe et al., 2015).
In inoculation experiments by ophiostomatoid fungi, fungal
virulence to hosts was not necessarily fatal (Kolb et al., 2019;
Stewart et al., 2020). In this study, all five strains of O. bicolor
could cause lesions around the inoculation site in P. koraiensis
but could not cause wilting or death of the host tree (Figure 1).
The elicited lesion areas around the inoculation sites decreased
in the order of TS, BH, QH, MX, and LWQ (Table 2). Devkota
and Eckhardt (2018) showed that there were differences in
host defense responses to different fungal strains inoculation.
These results indicated that O. bicolor was a fungus that was
weakly virulent to P. koraiensis, and there was pathogenicity
differentiation among different strains.

Trees can generate and transfer terpenes, such as
monoterpenes, diterpenes, and sesquiterpenes, which are
toxic to beetles and fungi; these terpenes could prevent further
attacks from beetles and fungi. Raffa and Berryman (1983)
reported that lodgepole pines could resist mountain pine
beetles by producing high concentrations of two monoterpenes,
α-pinene, and limonene, which was further verified in the field
by Erbilgin et al. (2017). Meanwhile, the resistance induced
by the bark beetle in the host also inhibits the infection of the
fungus (Lombardero et al., 2019). The results of this study
showed that in addition to the pathogenicity differentiation of
different fungi strains, the spruce monoterpenoids synthesis
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FIGURE 4

Top 20 KEGG pathway analysis of DEGs.

that was induced by O. bicolor, also showed differentiation
(Supplementary Table 2). Furthermore, the release rate of
monoterpenoids from the host increased at first and peaked
at 4 dpi. From 4 to 90 dpi, the release rate of monoterpenoids
showed a gradual downward trend (Figure 2). The release rates
of monoterpenoids were correlated with the fungal virulence
at 30 dpi and almost did not differ with each other under all
treatments at 90 dpi. This phenomenon is consistent with the
findings of a previous study, which showed that after MeJA
was applied to P. abies, the host displayed an induction of
terpenes, with concentrations peaking around 16 days after
treatment and returning to near-normal levels within 32 days
after treatment (Erbilgin et al., 2006). Mageroy et al. (2020a)
further verified this phenomenon in Norway spruce, which
might be the result of defense priming. Previous studies have
shown that host trees inoculated with ophiostomatoid fungi,
i.e., E. polonica and Endoconidiophora fujiensis, could generate a
rapid and long-term release of monoterpenoids, which possibly
deplete the host defense ultimately (Arango-Velez et al., 2018;
Fang et al., 2020; Ott et al., 2021). In this study, the release of
monoterpenoids did not drastically increase, which was likely
due to the different fungal species and inoculation scenarios.
The dominant species of ophiostomatoid fungi, which is less
virulent, was selected to evaluate host response, whereas in the
previous study, the pioneer species, which is more virulent,
was selected. This result is in accordance with the conclusion
that more virulent fungi induce large changes in host defense
terpenoids (Cale et al., 2019; Fang et al., 2020). Therefore,
we speculate that O. bicolor stimulates the host to produce
defense priming; however, subsequent experiments using
MeJA treatment as a positive control of priming defense and
challenging stimulus, e.g., E. polonica inoculation or beetle
infestation are needed for further verification.

To reveal the regulation of gene expression related to
disease resistance and immunity in P. koraiensis, transcriptomic
analysis was performed. The results showed that in the early
stage of O. bicolor infection of spruce stems (4 dpi), most
of the DEGs were upregulated (Figure 3), and these DEGs
were mainly related to repair, binding, and signal transduction
processes. In the transcriptomic analysis of Grosmannia
clavigera hyphae treated with terpenoids for 12 h, it was
observed that genes encoding DNA repair, recombination,
stabilization, and replication proteins were induced (DiGuistini
et al., 2011). This study expands our knowledge of the effects
of ophiostomatoid fungi on hosts. Early defense signals in
plants often lead to the activation of downstream TF genes,
thereby enhancing the expression of defense-related genes
(Eulgem and Somssich, 2007). WRKYs play important roles
in plant immunity through the ET, JA, and SA pathways in
response to various biotic stressors. Several WRKY TFs (mostly
upregulated) were involved in the spruce response to O. bicolor.
We focused on previously reported pathways involved in plant
immune responses, such as plant-pathogen interactions, MAPK
signaling, flavonoid biosynthesis, phenylpropane biosynthesis,
and terpene biosynthesis and metabolism, to elucidate the
molecular mechanisms underlying host defense responses (Gao
et al., 2018; Su et al., 2018; Song et al., 2019).

In plants, the biosynthetic precursor of terpenoids can be
synthesized via two pathways: the MVA and MEP pathways
(Roberts, 2007). In this study, numerous DEGs involved in
terpenoid biosynthesis by the MVA and MEP pathways were
upregulated (Figure 5A; Supplementary Table 6). On the one
hand, the genes of FDPS, which are involved in the synthesis
of various monoterpene precursors, and GPP, which comes
from DMAPP, were upregulated. On the other hand, the genes
of ispS involved in the synthesis of isoprene from DMAPP,
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FIGURE 5

Transcriptional profiling of differentially expressed genes (DEGs) associated with Terpenoid backbone biosynthesis, flavonoid biosynthesis and
phenylpropanoid biosynthesis pathway. The log2FC (fold change) values for the DEGs were used for each treatment (TS vs. Control and LWQ vs.
Control). The progression of the color scale from blue to red represents an increase in the log2FC values. Sequences of all new genes were in
Supplementary Table 7. (A) The DEGs involved in terpenoid backbone biosynthesis pathway. (B) The DEGs involved in flavonoid biosynthesis
pathway. (C) The DEGs involved in phenylpropanoid biosynthesis pathway.

were downregulated and thus enhanced the monoterpenoids
precursor biosynthesis (Figure 5A). These results suggest that
O. bicolor inoculation in P. koraiensis promoted the biosynthesis
of host monoterpene precursor, thereby increasing the release
of six monoterpenoids. The expression of enzyme genes in the
monoterpene synthesis pathway remained nearly unchanged,
which is expected and consistent with the findings of previous
research (Mageroy et al., 2020b). Moreover, the differences of
DEGs related to ispS and HMGCR in TS and LWQ treatments
may be the reason for the differences in the release rates of
monoterpenoids in the two strain treatments.

Ophiostoma bicolor significantly altered the expression
of genes related to plant-pathogen interactions pathways,
involving 241 DEGs at 25 nodes. Upregulated genes accounted
for 87.97% and were mainly involved in biological processes
such as hypersensitive response (HR), cell wall reinforcement,

stomatal closure, defense-related gene induction, phytoalexin
accumulation, miRNA production, programmed cell death,
suppression of plant HR, and defense response (Supplementary
Figure 3). These processes are closely related to plant defense
responses (Yang et al., 1997). Binding of plant PR proteins
to pathogen effector proteins activates ion channels, oxidative
bursts, and other signal transductions (Dixon et al., 1994).
Ca2+ activates the plant early surveillance system to prevent
microbial infection in plant defense signaling (Nürnberger and
Scheel, 2001). In the present study, the host treated with the two
strains (TS and LWQ treatments) showed differential expression
pattern of CML, and LWQ treatment showed less downstream
calcium-dependent process in defense response.

The upregulated genes in the MAPK signaling pathway
accounted for 68.81% (75 of 109) of all upregulated genes
and were mainly involved in biological processes such as cell
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FIGURE 6

Validation of RNA-seq data by RT-qPCR. R was the correlation coefficient between the FPKM value of RNA-seq and the relative expression level
of RT-qPCR, and p was the significance between the FPKM value of RNA-seq and the relative expression level of RT-qPCR. p < 0.01 means a
significant correlation at the 0.01 level.

death, accumulation of reactive oxygen species in plant defense,
defense responses, stress adaptation, and wounding. The
downregulated genes were mainly related to defense responses
against pathogens and wounding (Supplementary Figure 4).
MAPK cascades play an important role in plant defense against
pathogens (Pitzschke et al., 2009). Its activation is one of the
earliest responses for sensing pathogen-associated molecular
patterns (PAMPs) in plants (Meng and Zhang, 2013). Some
DEGs of LWQ treatment were downregulated and enriched
in defense response against pathogens, cell death process and
active oxygen production process, while these genes were
not differentially expressed in TS treatment (Supplementary
Table 6), which might indicate weaker induction of host defense
response by the weakly virulent strain. These results suggest that
P. koraiensis may use different MAPKs to deliver attack signals,
and O. bicolor activated the earliest defense via the MAPK
cascade, thus inhibiting further infection.

Through the phenylpropanoid pathway, many kinds of
lignin (p-hydroxyphenyl lignin, guaiacyl lignin, 5-hydroxy-
guaiacly lignin, and syringyl lignin) can be produced by
plants. Lignin can help plants resist biotic and abiotic
stresses by regulating secondary cell wall development and
stomata (Chen et al., 2019). The synthesis process can be
roughly divided into two steps: firstly, the lignin monomer is
synthesized under catalysis by a series of enzymes including
the 4CL and CAD, and secondly the lignin monomer is
polymerized into bioactive lignin by a series of chemical
reactions catalyzed by POD and other enzymes (Boerjan
et al., 2003). Inhibition of CAD activity in vascular plants
changed lignin content. For example, a decrease in CAD
activity in sorghum results in a decrease in the total amount

of lignin (Palmer et al., 2008). In the present study, the key
enzymes involved in lignin monomer synthesis, including 4CL,
COMT, and CCR, were activated (Supplementary Table 6).
However, CAD required for the final step of lignin monomer
biosynthesis was inhibited (Supplementary Table 6). In
addition, the gene expression of POD was downregulated,
which is consistent with the findings of previous studies
on poplar responses to canker pathogens (Li et al., 2019).
Although our experiment did not measure the change in
lignin content in spruce, it was known from the literature
that the content of lignin was reduced in hosts infected
with ophiostomatoid fungi (Villari et al., 2012). As a result,
O. bicolor may inhibit the synthesis and metabolism of lignin
in the spruce stem.

The flavonoid biosynthesis pathway produces a variety
of phenolic compounds such as procyanidin, catechin,
gallocatechin, and epicatechin. When pathogens invade
spruce, fluorescent inclusion bodies containing phenolic
compounds appear in the phloem parenchyma cells of
the bark, suggesting that phenolic compounds may play
a key role in defense against herbivores and pathogens
(Franceschi et al., 2005). After an E. polonica infection
in Norway spruce, the content of flavane-3-ols, catechin,
and gallocatechin in the bark increased (Hammerbacher
et al., 2014). The results of this study showed that most
DEGs (22 of 28) associated with the flavonoid biosynthesis
pathway were downregulated at 4 dpi (Supplementary
Table 6), and O. bicolor infection inhibited phenolics-
related gene expression in spruce, which differed from the
expression pattern of the virulent pioneer E. polonica. The
downregulated expression pattern in this study was consistent
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with the transcriptomic results of Norway spruce infected with
Chrysomyxa rhododendri at 4 dpi (Trujillo-Moya et al., 2020).
The flavonoid contents of spruces inoculated by O. bicolor
were not investigated in this study. Thus, further research is
needed to clarify the correlation between the contents and gene
expressions of flavonoids.

Conclusion

The ophiostomatoid fungal flora of bark beetles is rich
and diverse. This study showed that a dominant fungus of
the flora, O. bicolor, is a weakly virulent pathogen of spruce,
and various strains showed differentiation in pathogenicity.
The release of monoterpenoids from the host is positively
correlated with the virulence of the inoculated fungus. In
terms of amounts of monoterpenoids released by hosts
after inoculation, the pioneer species, e.g., Endoconidiophora
spp., can induce rapid and long-term defense responses
in the host, while O. bicolor is likely to induce the host
defense priming phenomenon. The response of spruce to
O. bicolor is a complex process involving multiple biological
processes, including plant-pathogen interaction process and
MAPK metabolic process. The expression patterns of spruce
defense-related genes during infection with different O. bicolor
strains were different. However, it was still unclear how the
host coordinates these different defense responses against
different fungal strains. Further studies are necessary to
investigate the underlying mechanism of the host defense
response against the pathogen fungi. Bark beetles and
their associated fungi usually attack adult trees, thus our
inoculations conducted on seedlings have certain limitations.
The experiments should attempt to conduct under natural
conditions in the future.
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SUPPLEMENTARY FIGURE 1

Functional annotation of the all genes detected in P. koraiensis from
various databases. (A) NR database homologous species distribution
analysis; (B) GO; (C) eggNOG; (D) KOG; and (E) COG.

SUPPLEMENTARY FIGURE 2

Gene Ontology (GO) classification of DEGs.

SUPPLEMENTARY FIGURE 3

Plant-pathogen interaction pathway map. Upregulation is highlighted in
red; downregulation is highlighted in green; mixed regulation is
highlighted in blue.

SUPPLEMENTARY FIGURE 4

Mitogen-activated protein kinase (MAPK) signaling pathway map.
Upregulation is highlighted in red; downregulation is highlighted in
green; mixed regulation is highlighted in blue.

SUPPLEMENTARY TABLE 1

Primer sequences used in RT-qPCR.

Frontiers in Plant Science 14 frontiersin.org

https://doi.org/10.3389/fpls.2022.944336
https://www.editage.cn
https://www.frontiersin.org/articles/10.3389/fpls.2022.944336/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2022.944336/full#supplementary-material
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-944336 July 19, 2022 Time: 11:15 # 15

Liu et al. 10.3389/fpls.2022.944336

SUPPLEMENTARY TABLE 2

Release rates of major monoterpenes in different treatments (µg/h,
mean ± SE, N = 3).

SUPPLEMENTARY TABLE 3

Statistics of annotation results for new genes in databases.

SUPPLEMENTARY TABLE 4

All the different transcription factors.

SUPPLEMENTARY TABLE 5

Statistics of KEGG pathway with significant enrichment.

SUPPLEMENTARY TABLE 6

Differential gene expression levels in five KEGG pathways.

SUPPLEMENTARY TABLE 7

Sequences of all differentially expressed new genes involved in
five KEGG pathways.
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