
STOCHASTIC COMPUTING SYSTEM HARDWARE DESIGN FOR

CONVOLUTIONAL NEURAL NETWORKS OPTIMIZED FOR ACCURACY,

AREA AND ENERGY EFFICIENCY

HAMDAN USAMAH HAMDAN ABDELLATEF

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy

School of Electrical Engineering

Faculty of Engineering

Universiti Teknologi Malaysia

JANUARY 2020

DEDICATION

This thesis is dedicated to my wonderful parents who have raised me to be the person I

am today, my beloved wife who supported me through my study, my lovely daughter,

and my family.

iv

ACKNOWLEDGEMENT

The past three years were the most challenging but productive in my life. Now,

the Ph.D. journey comes to an end. I am blessed with the completion of this thesis.

Alhamdulillah, I am deeply grateful and thankful to Almighty Allah, whomademe able

and gave me the strength to overcome the hardships and complete this thesis. I would

like to express my appreciation to the people that have involved directly or indirectly in

my work.

I would like to express my sincere gratitude to my supervisor, Prof. Dr.

Mohamed Khalil Mohd. Hani for his guidance, enthusiastic encouragement, and

useful critiques of this research work. I have gained valuable knowledge during his

supervision. My very high appreciation for him is not only for academic supervision

but also for sharing his philosophy of life and treating me as his son.

My sincere appreciation also goes to my co-supervisor Assoc. Prof. Dr. Shaikh

Nasir Bin Shaikh Husin for his guidance and dedication towards my research work. It

was also a privilege to work closely with the members of VeCAD Lab, namely Sayed

Omid Ayat, Mohd Ikmal Fitri bin Maruzuki, Arbab Alamgir, and Shehryar Masud

Rizvi.

Most importantly, I would like to thank my family, especially my dear parents

and my beloved wife, for their love and the boundless supports during this journey.

Also, I thank my daughter for creating happiness and motivation during the past year.

I am thankful to my friends for making me feel at home while being too far away. This

Ph.D. journey would have been impossible without all of you. Thank you.

v

ABSTRACT

Stochastic computing (SC) is an alternative computing paradigm that can
lead to designs that offer lower area and power consumption compared to that of
the conventional binary-encoded (BE) deterministic computing. In SC, numbers are
encoded as a bit-stream of ‘0’s and ‘1’s, where SC computation elements (or functions)
operate on one or more bit-streams. To obtain accurate results, some functions require
the bit-streams to be correlated, while others require uncorrelated bit-streams or a
combination of both. The relationship between SC function accuracy and correlation
is not well studied in previous works. Thus, managing the correlation across the SC
system is a key challenge in the effort to achieve optimum accuracy. In addition, to
perform SC computation, the input values are converted from BE domain to SC; then
on the completion of the computation, back to BE to obtain the results. The conversion
processes require circuitry that typically consume over 80% of the overall SC system
area, hence this is another key challenge of the problem. To address the abovementioned
challenges, this thesis proposes a framework of an end-to-end system design optimized
for accuracy and area. The framework provides guidelines to design an effective SC
function or system that exploit correlation. This framework is applied in designing
the SC functional units and the complete SC system for convolutional neural network
(CNN), which is the dominant approach in the implementation of recognition systems.
This thesis shows that although CNN is a compute-intensive and resource-demanding
algorithm, through the proposed SC design framework, it is possible to implement
CNN in an embedded system with limited area and power budget. Several novel SC-
based functions are proposed that outperform previous works and obtain significant
area savings and high accuracy to replace the BE equivalent functions. These functions
include inner product, max pooling, ReLU activation function, and average pooling.
Then, some training considerations are specified to enable achieving low error rates
for SC-based CNN. Experimental results show that the SC-based CNN attained no or
minor accuracy degradation compared to BE counterpart. SC-based CNN achieves
99.6% and 96.25% classification accuracy using MNIST digit classification and AT&T
face recognition datasets, respectively. Moreover, the SC-based CNN of ResNet-20
model achieves 86.5% classification accuracy using CIFAR-10 object dataset. To
rapidly map an SC system into FPGA, a generic design strategy for high-level synthesis
of SC computation engines is proposed. The SC-based CNN hardware on FPGA
obtains the lowest resource utilization compared to previous works on FPGA-based
CNN accelerators. In addition, the proposed hardware architecture achieves 277.46
GOP/s/W energy efficiency, which outperforms previous works.

vi

ABSTRAK

Pengkomputeran stokastik (SC)merupakan sebuah paradigma pengkomputeran
alternatif yang dapat membawa kepada reka bentuk yang menawarkan penggunaan
ruang dan kuasa yang lebih rendah berbanding dengan pengkomputeran berketentuan
binari terkod (BE) konvensional. Dalam SC, nombor dikodkan sebagai strim-bit ‘0’
dan ‘1’, dengan elemen pengiraan (atau fungsi) beroperasi pada satu atau lebih strim-
bit. Untuk mendapatkan keputusan yang tepat, beberapa fungsi memerlukan strim-
bit yang berkorelasi, sementara yang lain memerlukan strim-bit tak berkorelasi atau
gabungan kedua-duanya. Hubungan antara ketepatan dan korelasi fungsi SC tidak
dikaji dengan baik dalam kajian terdahulu. Oleh itu, menguruskan korelasi seluruh
sistem SC merupakan cabaran utama untuk mencapai ketepatan optimum. Selain itu,
untuk melaksanakan pengiraan SC, nilai input ditukar daripada domain BE kepada SC;
setelah selesai pengiraan, kembali kepada BE untuk mendapatkan keputusan. Proses
penukaran ini memerlukan jalan kerja litar yang biasanya menggunakan lebih 80%
daripada keseluruhan kawasan sistem SC; oleh itu, ini adalah satu lagi cabaran utama
masalah ini. Bagi menangani cabaran yang dinyatakan di atas, tesis ini mencadangkan
satu rangka kerja reka bentuk sistem hujung-ke-hujung yang dioptimumkan untuk
ketepatan dan kawasan. Rangka kerja ini menyediakan garis panduan untuk mereka
bentuk fungsi SC atau sistem berkesan yang mengeksploitasi korelasi. Rangka
kerja ini digunakan dalam mereka bentuk unit berfungsi SC dan sistem SC yang
lengkap bagi rangkaian neural konvolusi (CNN) yang merupakan pendekatan dominan
dalam pelaksanaan sistem pengecaman. Kami menunjukkan bahawa walaupun CNN
merupakan pengiraan intensif dan algoritma menuntut sumber daya, menerusi rangka
kerja reka bentuk SC yang dicadangkan ini, CNN dapat dilaksanakan dalam satu
sistem terbenam dengan kawasan dan bajet kuasa yang terhad. Beberapa fungsi
berasaskan SC terbaharu dicadangkan yang mengatasi kajian terdahulu dan mencapai
penjimatan kawasan yang ketara dan ketepatan yang tinggi untuk menggantikan
BE yang setara. Fungsi ini termasuk produk dalaman, pengumpulan maksimum,
fungsi pengaktifan ReLU dan pengumpulan purata. Kemudian, kami menentukan
beberapa pertimbangan latihan supaya boleh mencapai kadar ralat rendah untuk CNN
berasaskan SC.Keputusan eksperimenmenunjukkan bahawaCNNberasaskan SC tidak
menunjukkan penurunan ketepatan atau penurunan ketepatan yang kecil berbanding
BE. CNN berasaskan SC masing-masing mencapai 99.6% dan 96.25% ketepatan
klasifikasi menggunakan klasifikasi digit MNIST dan set data pengecaman wajah
AT&T. Selain itu, CNN berasaskan SC bagi model ResNET-20 mencapai 86.5%
ketepatan klasifikasi menggunakan set data objek CIFAR-10. Untuk memetakan sistem
SC ke dalam FPGAdengan cepat, kamimencadangkan satu strategi reka bentuk generik
untuk sintesis peringkat tinggi enjin pengiraan SC. Perkakasan CNN berasaskan SC
pada FPGA memperoleh penggunaan sumber paling rendah berbanding dengan semua
kajian terdahulu berkenaan pemecut CNN berasaskan FPGA. Di samping itu, seni bina
perkakasan kami mencapai kecekapan tenaga 277.46 GOP/s/W yang mengatasi semua
kajian terdahulu.

vii

TABLE OF CONTENTS

TITLE PAGE

DECLARATION iii
DEDICATION iv
ACKNOWLEDGEMENT v
ABSTRACT vi
ABSTRAK vii
TABLE OF CONTENTS viii
LIST OF TABLES xiii
LIST OF FIGURES xvi
LIST OF ABBREVIATIONS xxi
LIST OF SYMBOLS xxiv
LIST OF APPENDICES xxvi

CHAPTER 1 INTRODUCTION 1
1.1 Background of research 1

1.1.1 Stochastic computing 1

1.1.2 Convolutional neural network 3

1.1.3 FPGA design using HLS tools 6

1.2 Problem Statements 7

1.2.1 Summary of problems in existing CNN

based on stochastic computing 7

1.2.2 Limitations of existing techniques

of SC system design that exploit

correlation 9

1.2.3 The issue of energy efficiency achiev-

able in conventional CNN accelerators 11

1.3 Objectives 12

1.4 Scope of work 13

1.5 Research contributions and achievements 14

1.6 Thesis organization 15

viii

CHAPTER 2 LITERATURE REVIEW 17
2.1 Basics of Stochastic Computing circuits and

system 17

2.1.1 SNs, encoding, and basic arithmetic

elements 17

2.1.2 BE-to-SC and SC-to-BE conversion 19

2.1.3 Correlation in SC circuits — concepts

and definitions 22

2.1.4 RNG sharing scheme in generation of

SNs 24

2.1.5 Top-level structural view of an SC

system 25

2.1.6 Sources of inaccuracy in SC systems 26

2.2 Stochastic functions 28

2.2.1 Prelude 28

2.2.2 SC inner product function 30

2.2.3 SC adder and multiplier functions — a

review 31

2.2.4 Previous work on SC inner product 33

2.2.5 Previous work on SC maximum and

minimum functions 37

2.3 Optimization of circuit area in an SC system —

a review 41

2.4 Optimization of accuracy of SC circuits — a

review 42

2.5 Stochastic functions exploiting correlation 44

2.5.1 Overview 44

2.5.2 Management of SNs correlation 46

2.5.3 Previous work on SC median filter 48

2.5.4 Previous work on SC Robert Cross

edge detection 48

2.6 Convolutional neural network (CNN) 50

2.6.1 Basics of CNN — architectures and

algorithms 50

ix

2.6.2 Previous related work on CNN 57

2.6.3 Previous work on FPGA-based CNN

implementation 59

2.6.4 CNN accelerators using alternative

computing paradigms 66

2.7 CNN based on stochastic computing (SC CNN) 68

2.7.1 Previous works on SC CNN 68

2.7.2 Previous works on hybrid SC CNN 72

2.8 Summary of the outstanding issues in SC circuits

and systems for CNN 73

2.8.1 Issues of effective multi-stage SC

system design 73

2.8.2 Design of effective functional units for

SC CNN 75

2.8.3 High-level synthesis of FPGA-based

SC CNN 76

CHAPTER 3 RESEARCHMETHODOLOGY 77
3.1 Research approach 77

3.2 Design of experiment 79

3.2.1 Software tools and validation platform 79

3.2.2 Random number generator 87

3.2.3 Measurement metrics 88

3.2.4 Datasets 91

3.3 Summary 92

CHAPTER 4 FRAMEWORK FOR DESIGN OF SC SYSTEMS 95
4.1 Characterization of correlation in SC functions 95

4.1.1 Definitions of correlation-sensitivity

and correlation-induced properties 95

4.1.2 Relationship between correlation and

accuracy in SC functions 97

4.1.3 Correlation between two random num-

ber sequences 104

x

4.1.4 How to use independent RNGs in SC

system 105

4.2 Correlation manipulation circuits 109

4.2.1 How to re-correlate uncorrelated SNs 109

4.2.2 SC min/max function 110

4.2.3 How to relocate positions of ones in a

SN bit-stream 110

4.2.4 The correlator 113

4.2.5 Performance evaluation of correlator 113

4.2.6 Correlated stochastic number generator 117

4.3 RNG sharing scheme 120

4.4 Guidelines on design of SC systems 124

4.4.1 Guidelines on design of SC functions 125

4.4.2 Guidelines on design of a multistage

SC system with correlation 127

4.5 Summary 132

CHAPTER 5 SC-BASED CONVOLUTIONAL NEURAL NET-
WORK: ARCHITECTURE, DESIGN, AND HIGH-
LEVEL SYNTHESIS 135
5.1 Proposed SC CNN architecture model 135

5.2 SC functions for SC CNN inference 137

5.2.1 Inner product SC function 138

5.2.2 SC ReLU activation function 144

5.2.3 SC pooling functions 147

5.2.4 Verification of convolution-ReLU-

pooling dataflow 150

5.3 SC CNN training considerations 152

5.3.1 Normalization 152

5.3.2 Modified backward functions 153

5.4 MATLAB simulation model of SC CNN 156

5.5 High-level design strategy for SC hardware 159

5.6 FPGA implementation model of the SC CNN 164

xi

5.6.1 The SC convolutional layer hardware

architecture overview 164

5.6.2 Applying HLS design technique in

creating the implementation of SC

CNN 167

5.7 Summary 174

CHAPTER 6 RESULTS, ANALYSIS, AND DISCUSSION 177
6.1 Performance analysis of SC functions for CNN 177

6.1.1 SC inner product 177

6.1.2 SC ReLU 188

6.1.3 SC Pooling 190

6.2 Validation of complete SC CNN model 196

6.2.1 Digit classification dataset 197

6.2.2 Face classification dataset 200

6.2.3 Object recognition dataset 200

6.3 Performance analysis of SC CNN on FPGA 202

6.3.1 Performance of the SC system hard-

ware 203

6.3.2 Comparison of SC versus BE CNN 205

6.3.3 Benchmarking and discussion 207

6.4 Summary 212

CHAPTER 7 CONCLUSION 213
7.1 Achievements of research objectives 214

7.2 Research contributions 215

7.3 Future work 218

REFERENCES 221
LIST OF PUBLICATIONS 234

xii

LIST OF TABLES

TABLE NO. TITLE PAGE

Table 2.1 SN encoding 18

Table 2.2 Correlation sensitivity of SC elements (logic functions) 23

Table 2.3 XNOR gate logic function 29

Table 2.4 Previous works on SC Inner product compared to

conventional SC inner product 38

Table 2.5 Previous works on SC min and max functions 40

Table 2.6 Previous works on RNG sharing scheme 41

Table 2.7 Previous works on designing accurate SC circuits 43

Table 2.8 Functions of a two input f(x,y) combinational circuit 44

Table 2.9 Previous works on decorrelation 46

Table 2.10 Common CNN activation functions 56

Table 2.11 List of previous work on deep CNN using ImageNet dataset 58

Table 2.12 The ResNet model for CIFAR-10 59

Table 2.13 Previous works on accelerating CNN on FPGAs 65

Table 2.14 The SC CNN previous works 71

Table 2.15 Hybrid SC CNN previous works 74

Table 3.1 The LFSR polynomials used in this thesis 87

Table 3.2 The amount of FPGA device resources used in the reviewed

works 90

Table 4.1 Correlation sensitivity and variation when inputs are

correlated 103

Table 4.2 Timing diagram to compare the correlator performance

with regeneration 114

Table 4.3 Resource utilization of the conversion circuits 115

Table 4.4 Resource utilization comparison for different correlators 117

Table 4.5 Resource utilization for the proposed CSNG 118

Table 4.6 The correlation ρ(LFSR,CS(LFSR, k)) between random

number sequences produced using circular shift 121

xiii

Table 4.7 The proposed RNG sharing scheme correlation

ρ(LFSR,FCS(LFSR, k)) 122

Table 4.8 The 16 input APC-based inner product accuracy with

respect to RNG sharing 124

Table 4.9 The correlation variation δSCC of the different SC elements

and functions 126

Table 5.1 The used SC max function according to the input SCC

estimation 149

Table 5.2 The purpose of the derivatives 154

Table 5.3 The dimensions of the backward function operands 156

Table 5.4 The proposed SC layers for the SC CNN 156

Table 5.5 The Double Buffering Timing 174

Table 6.1 The proposed inner product function absolute error (×10−2)

with different N and stochastic number length (L = 256) 179

Table 6.2 PSNR of the APC-based and the proposed inner product

function 180

Table 6.3 Comparison of the proposed SC inner product resource

utilization with BE equivalent using f = 100 MHz 183

Table 6.4 The proposed N = 32 SC inner product area (µm2)

compared to previous work 184

Table 6.5 Comparison of the proposed inner product function with

previous methods 186

Table 6.6 The output SNR (dB) of SC FIR filters using the proposed

SC inner product for different orders and cutoff frequencies 187

Table 6.7 Comparison of output SNR (dB) of 3rd order low-pass SC

FIR filters using proposed inner product with previous work

187

Table 6.8 TheMAEof the proposed SCReLUwith respect to different

SN lengths 188

Table 6.9 Resource utilization of SC ReLU 189

Table 6.10 Comparison of resource utilization of the proposed SC

neuron for L = 256 and f = 100 MHz 189

Table 6.11 Resource utilization of SC max functions 193

Table 6.12 Resource utilization of SC addition operation 196

xiv

Table 6.13 The CNN model used for digit classification using MNIST

dataset 197

Table 6.14 The proposed SC CNN error rate using MNIST dataset 198

Table 6.15 The proposed SC CNN error rate using MNIST dataset

compared with previous works 199

Table 6.16 The proposed SC CNN error rate using AT&T dataset 200

Table 6.17 The ResNet-20 test error rate in BE computation 201

Table 6.18 The proposed SN CNN error rate using CIFAR-10 dataset

compared with previous work on SC CNN for CIFAR-10 202

Table 6.19 The #op for SC computation 204

Table 6.20 Performance, resource utilization, and energy efficiency of

the SCCNN convolution hardware architecture for different

degrees of parallelism Tm × Tn using 100 MHz frequency 205

Table 6.21 Performance, and resource utilization of the fixed point

CNN convolution accelerator at 100 MHz frequency 205

Table 6.22 Power comparison (in W) between SC and BE hardware

using Vivado power analysis tool 206

Table 6.23 Resource utilization, performance, and energy-efficiency

comparison with previous works using BE computation 208

Table 6.24 Resource utilization, performance, and energy-efficiency

comparison with previous works using other types of

computation 211

Table 6.25 Output throughput comparisonwith ourBE implementation

and previous works 212

Table B.1 The absolute errors of each filter 249

Table C.1 The definitions of variables and parameters in Equation

(C.1) 251

xv

LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 1.1 Using AND gate to perform SC multiplication 2

Figure 1.2 Processes covered by ANN and CNN in a recognition

system 4

Figure 2.1 SC basic circuits 20

Figure 2.2 SC conversion circuits 21

Figure 2.3 SC multiplier (using AND gate). Note: inputs are UP-

encoded, but not uncorrelated, hence px′ =
6
8 , py′ = 4

8 , and

pz′, = 2
8 , i.e. pz′ , px′ × py′ 22

Figure 2.4 Generating stochastic numbers with respect to correlation

and sharing 24

Figure 2.5 Generic structure of an SC system 26

Figure 2.6 Random number fluctuation when generating a SN of

probability 0.65 using LFSR and Halton random number

sequences. px* represents the actual probability of the SN

generated. 27

Figure 2.7 The conventional SC inner product 31

Figure 2.8 Accurate SC adder 32

Figure 2.9 SC inner product using weighted summation method 33

Figure 2.10 16-input APC 34

Figure 2.11 Two-line SC multiplication 36

Figure 2.12 Correlation loss problem. pA =
4
8 , pB =

6
8 , pC = 6

8 , and

pD =
2
8 . The probability of the MUXs output SNs are

5
8 and 4

8 , where these SNs had lost their correlation. The

output SN probability pZ =
6
8 is not correct (, 5

8) because

of the issue of variation in correlation. 47

Figure 2.13 The median filter process and circuit 49

Figure 2.14 SC Robert-Cross edge detection 50

xvi

Figure 2.15 Amodern deepCNNResNet-20model , Each convolutional

layer performs convolution and ReLU activation function.

Input image size is 32 × 32. The subsampling is included

in the convolutional layer by using stride of 2 (/2) 52

Figure 2.16 A typical ANN 53

Figure 2.17 The convolution operation 55

Figure 2.18 The pooling operation 56

Figure 3.1 The research overview 77

Figure 3.2 Zynq simplified architecture 81

Figure 3.3 Vivado HLS design flow 84

Figure 3.4 Sample of MNIST images 92

Figure 3.5 Samples of the AT&T face database 93

Figure 3.6 CIFAR-10 sample images 93

Figure 4.1 The SC circuit used in the test experiment 97

Figure 4.2 Generating SNs with a controlled level of correlation

(SNG_CC) 98

Figure 4.3 Characteristics of SC T flip-flop adder and traditional SC

adder 99

Figure 4.4 Characteristics of SC multiplier and the multiplier with one

input decorrelated using D flip flop 100

Figure 4.5 Characteristics of SC min/max 100

Figure 4.6 Characteristics of SC division and absolute subtraction 101

Figure 4.7 Characteristics of SC functions when SCCin = 1 102

Figure 4.8 SCC variation due to SC absolute subtraction (using XOR

gate) where all inputs are correlated (SCCin = 1). px =
7
8 ,

py = 3
8 , pa =

5
8 , and pb = 2

8 . The outputs pz = 4
8 and

pc = 3
8 represent | px − py | and | pa − pb |, respectively.

SCCout , 1, so the function is correlation-induced. 103

Figure 4.9 The correlation between two random number sequences

generated by LFSR using the same polynomial with

different seeds 107

Figure 4.10 The correlation between two random number sequences

generated by LFSR using different polynomials with

different seeds 108

xvii

Figure 4.11 SCC and relation to ’1’s position 109

Figure 4.12 The correlator experimental setup 114

Figure 4.13 Proposed Correlator for different counter bit-width and

initial correlation (SCCin) 115

Figure 4.14 Comparison of correlator output MAE 116

Figure 4.15 The CSNG experimental setup 119

Figure 4.16 The CSNG output error and correlation 119

Figure 4.17 Example of RNG sharing types 121

Figure 4.18 f1 is not CI, and f2 is either CS or not (case 1) 129

Figure 4.19 f1 is CI, and f2 is CS (case 2) 129

Figure 4.20 Case 3: correlator is required to be added 130

Figure 4.21 Case 4: CSNG is required to generate a correlated SN 131

Figure 4.22 Matching degree pf parallelism between functional units to

preserve SC dataflow nature 132

Figure 4.23 Example of matching the parallelism for maintaining SC

dataflow 132

Figure 5.1 The top-level view of CNN in SC 136

Figure 5.2 Proposed inner product circuit 140

Figure 5.3 Generalized coefficients BE/SC conversion 143

Figure 5.4 N = 4 coefficient BE/SC example 143

Figure 5.5 Creating a correlation-insensitive and accurate SC-ReLU

function 145

Figure 5.6 The SC-ReLU circuit 146

Figure 5.7 Using the counter-basedmax function (Function 1) formax-

pooling 147

Figure 5.8 The case study used to verify the dataflow of convolution-

ReLU-pooling layers and evaluate the overall accuracy 151

Figure 5.9 The forward and backward phases in the ANN or CNN 154

Figure 5.10 Overview of the hardware architecture for the SC

convolutional layer 165

xviii

Figure 5.11 SC computation engine with Tm=2 and Tn=4. The input

SNGs share one random number sequence, and the weights

SNGs shares another sequence. Both random number

sequences are generated by one RNG via FCSh sharing

scheme. 173

Figure 6.1 The proposed SC inner product absolute error with different

number of inputs N and SN length L 178

Figure 6.2 Absolute error comparison of FEB using the proposed

functions with previous work 181

Figure 6.3 SNR for different filter orders (N) and different normalized

cutoff frequency (π) 182

Figure 6.4 Correlation variation of the proposed SC inner product

function 185

Figure 6.5 The SC FIR filter 186

Figure 6.6 Results of the proposed SC ReLU using different SN length

L 188

Figure 6.7 Accuracy of SC neuron for various N and L parameters 189

Figure 6.8 The max operation testing 190

Figure 6.9 The accuracy of proposed SC max functions for different

SCC and SN lengths 191

Figure 6.10 Comparison of the proposed max function with previous

works for L=1024 192

Figure 6.11 The absolute error of the system using different SC max

approaches 194

Figure 6.12 The absolute error of the system using different SC addition

approaches for average pooling for different L 196

Figure B.1 Image processing case study in testing the effectiveness of

the proposed SC design framework 241

Figure B.2 The Gaussian filter kernel and SC circuit 242

Figure B.3 Correlation management of the SC system 245

Figure B.4 The SC system after applying the proposed guidelines 245

Figure B.5 Test setup for evaluating the SC system case study 246

Figure B.6 The experimental setup input image 247

xix

Figure B.7 The SC and BE noise reduction results of the experimental

setup 248

Figure B.8 The edge detection output images 248

Figure B.9 The threshold and the SC system output with and without

using the proposed correlating circuits 249

Figure C.1 Convolution layer example 252

Figure C.2 Illustration of partial derivatives of loss with respect to

selected inputs 255

Figure C.3 Illustration of partial derivatives of loss with respect to w11 257

xx

LIST OF ABBREVIATIONS

ANN – Artificial Neural Network

APC – Accumulative Parallel Counter

ASIC – Application-Specific Integrated Circuit

BE – Binary-Encoded deterministic computing

BISC – Binary-Interfaced Stochastic computing

BNN – Binarized Neural Network

BP – BiPolar encoding

BRAM – On-chip Block RAM

CNN – Convolutional Neural Network

CI – Correlation-induced

CS – Correlation-sensitive

CSh – Circular Shift

CSNG – Correlated Stochastic Number Generator

CTR – Counter

DFF – D Flip-Flop

DNN – Deep Neural Network

DSP – Digital Signal Processing

DTE – Data Transfer Engine

BE/SC – Binary encoded-to-stochastic computing

FCSh – Flip Circular Shift

FEB – Feature Extraction Block

FIR – Finite Impulse Response

FF – Flip-Flop

FFT – Fast Fourier Transform

xxi

FPGA – Field Programmable Gate Array

FSM – Finite State Machine

GOP – Giga OPerations

GPGPU – General-Purpose Graphics Processing Unit

GPP – General-Purpose Processor

GPU – Graphics Processing Unit

HDL – Hardware Description Language

HLL – High-Level Language

HLS – High-Level Synthesis

II – Initiation Interval

IOBD – Input Output Block Diagram

LCTR – Local down-counter

LFSR – Linear Feedback Shift Register

LUT – LookUp Table

MAC – Multiply-accumulate

MAE – Mean Absolute Error

MSE – Mean Squared Error

MUX – MUltipleXer

ORL – Olivetti Research Laboratory

PE – Processing Element

PL – Programmable Logic

PP – Progressive Precision

PS – Processing System

PDT – Probability Domain Transformation

PSNR – Peak-Signal-to-Noise Ratio

ReLU – Rectified Linear Unit

RC – Robert Cross

xxii

RNG – Random Number Generator

RTL – Register Transfer Level

SC – Stochastic Computing

SCC – Stochastic Computing Correlation

SDK – Software Development Kit

SGD – Stochastic Gradient Descent

SN – Stochastic Number

SNG – Stochastic Number Generator

SNR – Signal-to-Noise Ratio

SoC – System-on-Chip

SC/BE – Stochastic computing-to-binary encoded

TFF – Toggle Flip-Flop

UP – UniPolar encoding

xxiii

LIST OF SYMBOLS

α – Learning Rate

η – Energy-efficiency

ρ – Correlation Coefficient

δSCC – Variation in stochatic computing correlation

τ – Clock period

conv() – Convolution function

corr() – Cross-correlation function

dB – deciBel

∂L
∂x – derivative of loss with respect to input

∂L
∂w – derivative of loss with respect to weights

∂L
∂z – gradient from next layer

kCS – Amount of bit-wise circular shift

L – Stochastic number Length

max() – The maximum function

min() – The minimum function

n – Binary number bit-width

Tn – Input feature maps Tile size

Tm – Output feature maps Tile size

Tr – Feature map height (rows) Tile size

Tc – Feature map width (columns) Tile size

Xb – The bth bit in the stochastic number (bit-stream) X

Xb,i – bth bit of SN of probability xi (ith element in vector x)

∧ – AND logic operator

∨ – OR logic operator

xxiv

⊕ – XOR logic operator

xxv

LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A MATLAB Deep Learning Toolbox 235

Appendix B SC system design case study of image processing — An

illustration of the application of proposed framework 241

Appendix C Backward Function Derivation 251

Appendix D MATLAB functions code 259

Appendix E High-Level Synthesis Code 263

xxvi

CHAPTER 1

INTRODUCTION

1.1 Background of research

Stochastic Computing (SC) is an alternative paradigm of computation that

considers data as probabilities. Low-area/power cost and error tolerance are some of

SC advantages. However, many challenges should be overcome before SC becomes

widespread [1]. In this thesis, many SC challenges have been addressed.

The case study used to show the applicability of SC paradigm is object

classification using convolutional neural network (CNN). CNN is the state-of-the-art

algorithm for object recognition applications. Designing an Field Programmable Gate

Array (FPGA) accelerator based on the conventional binary arithmetic calculations for

deep CNNs incurs high hardware cost and energy-efficiency achievable is low. Since

deep CNNs are both compute and memory intensive, it is impractical to use deep CNN

accelerators in embedded system platforms that typically has limited area and power

budget. Therefore, novel alternative computing paradigm such as SC is urgently needed

to overcome this hurdle. In this thesis, a low-area and energy-efficient CNN hardware

is designed using a High-Level Synthesis (HLS) tool targeting FPGA.

1.1.1 Stochastic computing

Stochastic computing is a computing paradigm, which was first introduced

by Gaines [2] in the 1960s, as an alternative to the conventional binary-encoded

deterministic computing technique. From hereon in this thesis, for convenience, the

abbreviation, BE, is used to refer to this conventional binary-encoded deterministic

computingmethod. In SC, data being processed are represented by bit-streams (referred

1

to as stochastic numbers (SN)), and the value of the data is encoded as the probability

of 1s appearing in the bit-stream. For example, the data bit-stream X = 1001 encodes

the value of 0.5 since the probability of 1s appearing in X is 0.5 (=2/4); there are two

1s and the bit-stream is 4 bits long.

The main advantage of an SC element is its low hardware cost and posses a high

tolerance for soft errors. SC elements of multiplication, addition, and subtraction can

be performed using simple logic functions. For example, as shown in Figure 1.1, the

SC multiplier is an AND gate. Referring to Figure 1.1, the SNs X and Y are multiplied

to obtain the SN Z . X is 11010111, hence px =
6
8 . Y is 11001010, hence py = 4

8 .

Therefore, the output of the AND gate is Z = 11000010, which means pz = 3
8 . Now,

6
8 ×

4
8 =

3
8 ; therefore, this is a multiplication operation in SC domain.

Today there is renewed interest in SC for applications in mobile and embedded

devices that usually demand error-tolerant solutions with low area and low power.

Consequently, in recent years, there have been more active research conducted to adopt

SC in a wide range of embedded solutions for image processing [3], neural networks

[4], digital filters [5], and CNNs [6, 7].

X
Y Z

X=11010111

Y=11001010
Z=11000010

Figure 1.1: Using AND gate to perform SC multiplication

However, SC has significant drawbacks that have to be addressed before it can

be viable for application in designing complex practical circuits [1]. One fundamental

weakness is that an SC implementation can have a long latency arising from long

input bit-streams. Data precision depends on bit-stream length; hence, higher precision

requires a longer bit-stream. The crucial second drawback of SC is due to the fact that,

unlike BE computation, SC operations (which are based on random numbers) do not

necessarily yield consistent results, giving rise to the issue of accuracy. Moreover, the

2

SC circuit might lose the low-area advantage when many stochastic number generators

(SNGs) are required to generate uncorrelated bit-streams. SNGs are complex circuits

and can account for as much as 80% of the total circuit cost [8].

Aside from quantization errors, the correlation between SNs is also a source of

inaccuracy in SC circuits. To operate correctly, some SC circuits require uncorrelated

data inputs; others require correlated inputs. Hence, the inaccuracies due to correlation

arise because of over-correlated operands in the former case, and in the latter case,

because of operands that are not sufficiently correlated. Research work in [9] has

shown that circuits that exploit correlation can result in improved accuracy in SC-based

designs. It also showed that, by exploiting correlation, further gains can be made in

area and delay reductions.

Previous works on utilizing correlation in SC designs were limited to the design

of basic circuits or functional units, such as an edge detection filter in [10]. Typically,

a large complex system, such as CNN, consists of massive amount of successive

computations. For example, CNNconsists of a series of layers that include convolutions,

activation functions, and pooling. Such a system could not be realized previously (by

exploiting correlation), because the SC-based functional units induces the correlation.

Consequently, the correlation between SNs after each computation is reduced or lost,

resulting in significant errors. To prevent these errors from occurring, the correlation

has to bemaintained end-to-end across the complete system. Onemay think that there is

an on-the-fly solution. The designer simply regenerates the SNs by inserting conversion

circuits whenever inputs have to be correlated to restore any lost correlation. However,

this solution is infeasible since it introduces long conversion latency and significantly

increases area cost.

1.1.2 Convolutional neural network

Deep learning has emerged as a new area of machine learning research, which

enables a system to automatically learn complex information and extract representations

at multiple levels of abstraction. CNN is recognized as one of the most promising types

3

of artificial neural networks (ANNs) taking advantage of deep learning and has become

the dominant approach for almost all recognition and detection tasks [11]. Originally

inspired by biological processes, CNN is a special case of feed-forward ANN, which

requires minimal preprocessing, and combines the feature extraction and classification

tasks in one trainable block as shown in Figure 1.2. In CNN, the number of trainable

parameters (weights) are reduced significantly because the weights are shared by some

neurons. Recently, various CNNs have been used in image and video recognition

tasks and have been successfully applied to computer vision and machine learning

applications such as object recognition [12, 13], face recognition [14, 15], handwritten

character and digit recognition [16, 17].

Image Acquisition
Dimension
reduction

Preprocessing ClassificationFeature extractionInput Sample Result

MLP

(a) Image recognition with ANN

Image Acquisition
Dimension reduction &

Feature extraction
Preprocessing ClassificationInput Sample Result

CNN

(b) Image recognition with CNN combine dimension reduction, feature extraction, and classification processes

Figure 1.2: Processes covered by ANN and CNN in a recognition system

The typical CNN is composed of four types of processing layers: convolutional

layer, an activation layer, pooling layer, and a fully-connected layer as in ANNs.

Each of these layers transforms a volume of feature maps to another. To achieve

acceptable classification accuracy, CNN performs millions of convolutions and

sub-sampling operations with significant amount of intermediate data, where the

convolution operations consume more than 90% of the computing effort in the CNN

[18]. Despite its high classification accuracy, a deep CNN is highly-demanding of

resources, computation effort, and energy consumption. Therefore, the implementation

of CNN has become complex and challenging due to its large requirements of

computation resources, which limits its applicability, especially in any resource-

constrained applications.

4

Industrial and academic demands lead to larger depth and width of CNNs for

a better quality of results and recognizing bigger datasets, resulting in complicated

topologies and increased computation resources required for implementation. For

example, to improve the accuracy performance for image recognition using ImageNet

dataset [19], the depth of CNNs grow from 8 layers in AlexNet model [12] at 2012 to

152 layers in ResNet-152 model [13] at 2016. Therefore, a practical implementation

of large-scale CNNs require high-performance server clusters with accelerators such

as GPUs and FPGAs. However, there is a trend to rapidly adopt machine learning

algorithms in the mobile and embedded systems. In order to deploy CNNs in these

resource-constrained systems, designers must conquer the challenges of implementing

resource-hungry CNNs in embedded systems with limited area and power budget. To

overcome the limitation of low-power and low-hardware footprint CNN developers take

advantage of highly-parallel or dedicated hardware such as General-Purpose Graphics

ProcessingUnit (GPGPU) [12], FPGA [20], andApplication-Specific IntegratedCircuit

(ASIC) [21] to implement CNNs.

Neural networks have very high computational complexity and high error-

tolerance at the algorithmic level, which allows using SC for CNN implementation

[22]. Our study is not the first work using SC to solve the resource-hungry problem of

CNN. Previous works [23, 24, 25, 26, 22, 7, 27, 28, 6, 29] have implemented CNN basic

functions in SC. Despite many strengths in the previous works for basic functions, there

are still many gaps in findingmore efficient SC circuits for the CNN basic functions with

high accuracy, smaller area, cheaper conversion circuits, and lower latency. Besides,

there are some limitations in the previous works regarding the applicability in the multi-

stage designs since intermediate regeneration or decorrelation or special circuitry are

requiredwhich introduce severe latency increase or area cost. Furthermore, someworks

(such as [6]) cannot be generalized to any CNN architecture or require re-arrangement

of the CNN layers. The effective stochastic computing convolutional neural network

(SC CNN) is an open field of research and has many problems to be addressed.

5

1.1.3 FPGA design using HLS tools

System-on-Chip (SoC) size is rapidly increasing; hence, the design productivity

problem is becoming more and more serious. In the mid-1980s, the gate-level design

shifted up to register transfer level (RTL) design when the number of gates exceeded

100K.Ahundred thousand gates is assumed to be themaximum limit to design in several

months with appropriate human resources. Nowadays, a system design commonly

exceeds one million gates that requires several hundreds of thousand lines of RTL

description. Consequently, it is time to shift up to a higher level of abstraction, that

enables designers to have less number of descriptions and higher reusability. This

is the same situation as what happened in software programming. Previously, the

assembly language had to be shifted up to a higher level language like the C language

to increase the scalability, and an object-oriented language such as the C++ language to

increase reusability. A higher level C description involves fewer codes and accelerates

simulation. These two facts are the main effects of higher-level shifting to HLS [30].

The combination of reconfigurable hardware architectures, such as FPGAs and

HLS tools allow designers to achieve a specialized hardware design, and at the same

time, address the time-to-market problem. FPGAs are reconfigurable integrated circuits

that can be configured by the end-user to implement digital circuits. Also, since FPGAs

are reconfigurable, they allow quick refinement and optimization of a hardware design

compared to ASICs with no additional manufacturing costs. The designer writes or

modifies the Hardware Description Language (HDL) for a component and then use an

FPGA vendor tool-chain for the synthesis of the bitstream to configure the FPGA. HLS

tools start from a software programmable high-level language (HLL) (e.g., C, C++,

and SystemC) to automatically produce a circuit specification in HDL that performs

the same function as specified in the HLL. HLS is an interesting tool for both software

and hardware engineers. HLS enables software engineers to gain speed and energy

efficiency of hardware, without requiring deep hardware expertise. On the other hand,

for hardware engineers, HLS accelerates the design of the system at a high-level of

abstraction and speed up the design space exploration. This is important in the design

of complex systems such asCNNs, and suitable for FPGAdesignwheremany alternative

implementations can be easily generated, deployed onto the target device, and compared

[31].

6

Starting from early 2000, many FPGA-based accelerators have been proposed

for CNN computing because general-purpose processors cannot implement CNN

efficiently. Most of the early works focused on either improving the performance

of computing engine or the off-chip memory communication issue. Recent works

tried to improve both (performance of compuation engine and utilization of memory

bandwidth), like works in [20, 32, 33, 34, 35, 36] where some have used HLS such as

[20, 33]. Until now, almost all existing CNN implementations are based on BE which

uses the conventional binary arithmetic, which requires huge hardware; therefore, their

performance is severely limited by hardware budget and memory bandwidth of existing

FPGA platforms. Nevertheless, more efficient design is required to overcome the

challenge of mapping CNNs to resource-constrained environments.

1.2 Problem Statements

This thesis tackles many issues that can be categorized into (a) problems in

existing SC CNNs, (b) limitations in SC system design, and (c) low energy-efficiency

in CNN accelerators.

1.2.1 Summary of problems in existing CNN based on stochastic computing

There have been several attempts to design efficient SC circuits for CNNs.

However, most of the previous works on CNN based on stochastic computing (SC

CNN for short) [23, 27, 25, 28, 24, 37, 22, 29, 38] have two main problems. First,

they do not scale to harder recognition problem. They had acceptable accuracy for

simple digit classification problem using MNIST dataset, but they cannot perform well

in more complex recognition problem such as object recognition. Second, they incur

large overhead due to the conversion of fixed-point data and weights into stochastic

bit-streams, which significantly reduces energy and area efficiency of SC CNNs.

7

In SC CNN, the key functions are the activation function, pooling, and the

inner product. The inner product is applied in convolution. In most previous works

[27, 25, 28, 24, 7, 29, 38, 6], the SC inner product function is based on the accumulative

parallel counter (APC). This APC-based inner product is correlation-sensitive, so many

RNGs are required to generate uncorrelated SNs to ensure accurate computations, which

severely affect the circuit area cost. Furthermore, the output of an APC-based inner

product is in binary format; hence, for this output to be used as an input for another SC

functional unit, a regeneration circuit (or a specially designed intermediate circuitry) is

required. In addition, APC-based inner product has a relatively high area compared to

traditional SC inner product circuits.

The SC CNN max pooling or ReLU in previous works has a higher area than

the BE implementation, or the area is not specified. Yu et al. [7] proposed accurate

SC-based ReLU and max functions. However, the area cost in these functions is larger

than the BE counterpart. Yu et al. in [7] proposed an RNG sharing scheme to reduce

the conversion circuit area, but their inner product function (APC-based) requires

uncorrelated SNs, which limited the amount reduction of area cost in the conversion

circuits area.

Li et al. [6] proposed a Highly Efficient stochastic computing-based Inference

Framework (HEIF) for deep neural networks. The HEIF framework introduces a new

SC-based ReLU, and the authors performed a holistic and module-level optimization.

However, this work has limitation in the stack order of the layers and cannot be

generalized easily to other CNN models such as ResNet. In addition, this work did

not discuss the conversion circuit area cost, especially that their convolution operation

requires uncorrelated SNs. In addition, their SC-based ReLU has 10× higher area cost

than the BE counterpart. A common limitation in all previous works on SCCNN is they

did not use RNG sharing scheme, and many did not consider the conversion circuits in

their area cost evaluation.

Finally, the previous works on SC average pooling used the conventional SC

scaled addition, which is highly inaccurate. Moreover, if the CNN functions are

changed, consequently the derivatives of the SC functions should be obtained. If SC

CNN is trained with the default backward functions, the accuracy will be very low.

8

Sim and Lee [26] proposed a new SC multiply-accumulate (MAC module) unit

with higher accuracy and lower latency than conventional SC counterparts, but this

method is limited to what is called binary interfaced SC (or hybrid SC CNN). This

method cannot be used in pure SC system. Any hybrid BE-SC system (including hybrid

SC CNNs) have the problem of multiple BE-SC domain conversions. Consequently,

SC dataflow will be destroyed resulting much higher latencies, where latency increase

will be exponential with the number of operations. In addition, hybrid approaches

introduce large hardware overhead due to conversion.

Precision in conventional BE is the number of bits used to represent a number

while in SC the precision is the length of the SN. The previous [23, 27, 25, 28, 24, 37,

22, 7, 29, 38, 6, 39] SC CNN implementation required precision for SN of L=64 up

to 8192 bits. Long SNs increase the number of clock cycles required to perform any

operation. Increased latency will affect not only the operation speed but also energy

consumption as energy = power × time.

To evaluate the application level accuracy, previous works did not use the state-

of-the-art CNN models, such as ResNet. Although AlexNet [12] deep CNN is used in

[6], the AlexNet error rate on ImageNet is 36.7%. This error rate is high compared to

other models such as ResNet [13]. ResNet-18 and ResNet-152 achieved error rates of

27.88% and 21.43% respectively.

1.2.2 Limitations of existing techniques of SC system design that exploit
correlation

It is usual to assume that the accuracy in an SC system is dependent on the

interacting SNs being highly independent or uncorrelated (in a loosely specified way).

However, Alaghi and Hayes [9] has shown that, contrary to intuition, correlation can

be exploited in an SC design. The circuits that exploit correlation are generally smaller

and more accurate than those with uncorrelated inputs. In addition, the circuits with

correlated inputs can provide a cheap implementation for a complex operation, such as

the max operation, that is very hard to realize in traditional uncorrelated SC circuits.

9

If an SC system is to be designed using the SC circuits with correlated inputs, the

correlation between SNs should be managed throughout the system; otherwise, the

accuracy will be severely degraded.

Alaghi and Hayes [9] proposed a general framework for analyzing and

designing combinational circuits with correlated inputs. Although such circuits can

be significantly more efficient and more accurate than traditional SC circuits, the

framework is limited to design of SC-based combinational circuits and cannot be used

to design a complete SC system with correlated SNs. Hence, we have this idea to

extend their design framework in finding a way to maintain the correlation throughout

the SC system, towards realizing an SC system design with correlation that works.

Maintaining the desired level of correlation between SNs is difficult [1]. Consider

the problem of decorrelation, i.e., systematic elimination of undesired correlation, the

counterpart problem in traditional SC. Ting and Hayes [40] have developed a theory

for placing isolation-based decorrelators and have obtained conditions for a placement

to be valid.

On the other hand, for SC circuits with correlated inputs, Lee et al. [41] have

designed a synchronizer (also referred as a correlator) that increases the correlation

between two SNs. Although not adequate by itself, this correlator is a good candidate

to be considered in the proposed extended framework. Other correlation manipulation

circuits would be also needed, such as a correlated SN generator that generates an SN

correlated to a intermediate SN. Any SC system, although it is designed to exploit

correlation, still requires uncorrelated SNs. A previous study showed that random

number generators (RNGs) could take up to 80% of the SC circuit area [42]. This high

area cost due to the RNGs is a serious problem that to be addressed. To solve this issue,

RNG sharing schemes were proposed in [5, 43], where one RNG was used for multiple

SNGs.

The above discussion suggests that the solution to the problem of designing

an SC system with correlation would entail extending the framework proposed in [9]

to include providing design guidelines for managing the correlation through a SC

system and how to build an optimal SC system with exploiting correlation. Managing

the correlation depends on two conditions, namely the correlation-sensitivity of the

10

SC functions at its inputs and the correlation induced at its outputs. The effect of

correlation between input SNs on the behavior of the different SC operations has been

studied before, where the correlation sensitivity term was introduced. However, how

much different SC operations change the level of correlation at the output SNs should

also be investigated, and this has not been done before. Finally, the design framework

for building an SC system with correlation should have the target objective of reducing

the area cost of conversion circuits.

1.2.3 The issue of energy efficiency achievable in conventionalCNNaccelerators

CNN is the dominant approach for recognition applications, but it is highly

compute-intensive. In the feed-forward computation of CNN, a previous study [18]

reported that convolution operations would occupy over 90% of the computation time.

Optimal FPGA accelerators had been proposed for CNN [20, 32, 33, 34, 35, 36]

using many hardware optimization techniques. However, the CNN implementation

consumes high resource utilization and obtain a low energy efficiency smaller than

25GOPS/W. Although there are two FPGA implementation works that obtained high

energy efficiency using binarized CNN [44] and FFT/Winograd CNN [45], using SC

might produce greater energy efficiency. It should be noted that SC can be used in

conjunction with any of the previous solutions.

HLS accelerates system design at a high-level of abstraction and speeds up the

design space exploration. Typically, the SC systems are designed at the gate/RTL level,

which reduces design productivity. To our knowledge, there are no previous work on

design of SC modules and systems that employ designing at the C-based high-level of

abstraction to facilitate the exploration of the design space.

11

1.3 Objectives

The goal of this work is to propose an accurate, low-area, and energy-efficient

SC system hardware for CNN. In this thesis, this CNN is designed for recognition

applications, and targeted for implementation in embedded FPGA devices. To achieve

this goal, the following are the main objectives of this work:

1. To propose a framework for the design of an effective end-to-end SC system

hardware composed of a series of SC processing units that exploit correlation.

The proposed SC system is targeted for deployment as a hardware computation

engine in applications of image processing and convolutional neural networks.

2. To develop a CNN based on the proposed stochastic computing design

framework that achieves high classification accuracy in recognition applications.

The associated sub-objectives are:

i. To propose SC functions for CNN functional units that include the

convolution, activation function, and pooling, which are optimized for

accuracy and resource utilization.

ii. To modify SC CNN training to achieve high classification accuracy.

This includes the derivation of the backward functions for the proposed

SC CNN functions.

3. To develop an SC CNN computation engine on FPGA platform using the HLS

design method. This SC system hardware is used to demonstrate how the SC

design led to the optimization in resource utilization and energy efficiency. The

objective also involves the proposing of a novel strategy/ methodology for the

design of a generic SC functional unit or system at a high-level of abstraction.

12

1.4 Scope of work

In this thesis, we utilize a combination of tools to support modeling, design, and

implementation of the proposed algorithms and hardware. The approaches, software

tools, performance measures, and case studies are summarized as follows:

• The entire work targets the embedded applications that have meager resources

and require very low power consumption such as mobile, IoT, and wearable

devices.

• The proposed SC algorithms are developed using MATLAB tool. Mean

absolute error is computed to quantify errors for the SC functions.

• The CNN basic functions in this work are the inner product for the convolutional

layer, average and max for pooling layer, and max for ReLU activation function

layer.

• The used CNN models are modified LeNet-5 [16] and ResNet-20 [13]. The

supervised training mode is used. The computation of the error gradients is

based on the backpropagation algorithm.

• The effectiveness of the resulting SCCNN is demonstrated, in terms of accuracy,

with different datasets that represent complex and real-world problems. The

datasets used to verify and analyze the performance of the proposed SCCNNare

limited to the following: (a) handwritten digit classification using the MNIST

database, (b) face recognition using AT&T database, and (c) object recognition

using CIFAR-10 dataset.

• The development and training of different SC CNN models are performed

using deep learning toolbox in MATLAB. The MATLAB is also used any

preprocessing of the datasets such as normalization and resizing.

• The performance of a CNN model using particular dataset is evaluated based

on its classification accuracy and misclassification error rate.

• For the hardware implementation, only CNN inference is considered, and

training remains on the software since in embedded devices training is done

off-line.

13

• The test platform is FPGA-SoC ZYNQ Z706 development board. In this work,

performance is measured by Giga Operations per Second (GOP/s), latency is

measured in the number of clock cycles, energy-efficiency is measured by Giga

Operations per Second per Watt GOP/s/W, and resource utilization is measured

using the number of utilized BRAMs, DSPs, FFs, and LUTs in the FPGA chip.

• The SC CNN hadware is designed at the high-level of abstraction using Vivado

HLS 2018.3 tool. The used description is written in C++. The functionality is

validated via Vivado HLS simulation and co-simulation using a C++ testbench.

The latency of the accelerator is obtained from the Vivado HLS co-simulation

results. The resource utilization and power consumption are collected from the

implementation report of Vivado HLx 2018.3 design suite. The Vivado power

analysis tool is used to analyze the power consumption of the SC hardware.

1.5 Research contributions and achievements

1. A design framework for an efficient design of an effective SC system hardware

that exploits correlation. The corresponding research outputs are:

i. Characterization of correlation in SC elements and functions that

include correlation-sensitivity and correlation-induction. In addition,

quantifying correlation in RNG generated sequences.

ii. Novel algorithms and designs for correlation manipulation circuitry that

includes a correlator, a correlated stochastic number generator, and a

RNG sharing scheme.

iii. Design guidelines for the efficient design of an end-to-end SC system

hardware optimized for accuracy, area, and energy-efficiency.

2. An accurate and low-area SC-based CNN based on novel SC functional units.

The following details out this contribution:

i. A novel SC functions that outperform all previous work [6, 7, 5] in low-

area cost. In addition, those SC functions achieve higher or comparable

accuracy compared to previous works. These SC functions are inner

14

product, SC ReLU, and maximum functions that create the convolution,

activation, and max-pooling layers of a SC CNN, respectively . In

addition, a new SC average pooling layer is developed based on the

adder in [46].

ii. Considerations to achieve high classification accuracy after training

process. These include the input normalization and the derived

backward functions.

3. An efficient SC CNN convolution computation engine developed using high-

level synthesis for FPGA implementation. This engine outperforms previous

work [20, 47, 32, 34, 44, 35, 33, 36, 45] in terms of low resource utilization and

high energy efficiency.

1.6 Thesis organization

This thesis is organized into 7 chapters. Chapter 2 describes the background

theory of SC and CNN. It also covers the literature review of the previous related works.

Chapter 3 presents the methodology for the research work performed in this

thesis. This includes the approach taken to conduct the research, the tools and platform

used, and the high-level synthesis design flow for mapping algorithms towards FPGA-

based accelerators.

Chapter 4 describes the proposed design framework of effective SC system

hardware that exploits correlation. This chapter includes a comprehensive study of the

impact of correlation on successive SC computation through the system. Based on this

study, the correlation in SC functions is characterized, and correlation manipulation

circuits are discussed. Guidelines are recommended to design an SC functional unit or

system efficiently.

Chapter 5 presents the SC-based CNN development, where the proposed novel

SC functions are discussed. Then, SC CNN training considerations to achieve high

15

classification accuracy are described. This chapter presents a MATLAB simulation

model for SC CNN that enable creating, testing, and training different CNN models

in SC domain. Finally, the proposed high-level design strategy to create a generic SC

system hardware and high-level synthesis of the SC CNN hardware are presented.

Chapter 6 presents the experimental results and the analysis of SC CNN and

its functions. First, the SC functions are examined. Then, the SC CNN accuracy is

evaluated using different models and datasets and benchmarked with previous work.

The low resource utilization and high energy-efficiency of SCCNNhardware are proved

in this chapter after extensive comparisons with previous works on FPGA-based CNN

accelerators. Discussions and justifications for accuracy, low-area cost, and energy

efficiency are included in this chapter.

Chapter 7 summarizes the thesis, re-stating the contributions based on the

results, and suggests directions for future research works.

16

REFERENCES

1. A. Alaghi, W. Qian, and J. P. Hayes, “The promise and challenge of stochastic

computing,” IEEE T COMPUT AID D, vol. 37, pp. 1515–1531, 2017.

2. B. R. Gaines, “Stochastic computing,” in Proceedings of the April 18-20,

1967, spring joint computer conference. ACM, 1967, pp. 149–156.

3. P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, “Computation

on stochastic bit streams digital image processing case studies,” IEEE T VLSI

SYST, vol. 22, pp. 449–462, 2014.

4. V. Canals, A. Morro, A. Oliver, M. L. Alomar, and J. L. Rosselló,

“A new stochastic computing methodology for efficient neural network

implementation,” IEEE T NEUR NET LEAR, vol. 27, pp. 551–564, 2016.

5. H. Ichihara, T. Sugino, S. Ishii, T. Iwagaki, and T. Inoue, “Compact and

accurate digital filters based on stochastic computing,” IEEE T EMERG TOP

COM, 2016.

6. Z. Li, J. Li, A. Ren, R. Cai, C. Ding, X. Qian, J. Draper, B. Yuan, J. Tang,

Q. Qiu et al., “Heif: Highly efficient stochastic computing based inference

framework for deep neural networks,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 2018.

7. J. Yu, K. Kim, J. Lee, and K. Choi, “Accurate and efficient stochastic

computing hardware for convolutional neural networks,” in 2017 IEEE

International Conference on Computer Design (ICCD). IEEE, 2017, pp.

105–112.

8. J. P. Hayes, “Introduction to stochastic computing and its challenges,” in

Design Automation Conference (DAC), 2015 52nd ACM/EDAC/IEEE. IEEE,

2015, pp. 1–3.

9. A. Alaghi and J. P. Hayes, “Exploiting correlation in stochastic circuit design,”

in IEEE International Conference on Computer Design; 6-9 October 2013;

Asheville, NC, USA. New York, NY, USA: IEEE, 2013, pp. 39–46.

221

10. A. Alaghi, C. Li, and J. P. Hayes, “Stochastic circuits for real-time image-

processing applications,” inDesign Automation Conference (DAC), 2013 50th

ACM/EDAC/IEEE. IEEE, 2013, pp. 1–6.

11. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no.

7553, p. 436, 2015.

12. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in neural information

processing systems, 2012, pp. 1097–1105.

13. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 770–778.

14. S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face recognition:

A convolutional neural-network approach,” IEEE transactions on neural

networks, vol. 8, no. 1, pp. 98–113, 1997.

15. Y. Zhang, D. Zhao, J. Sun, G. Zou, and W. Li, “Adaptive convolutional neural

network and its application in face recognition,” Neural Processing Letters,

vol. 43, no. 2, pp. 389–399, 2016.

16. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

17. C. Wu, W. Fan, Y. He, J. Sun, and S. Naoi, “Cascaded heterogeneous

convolutional neural networks for handwritten digit recognition,” in

Proceedings of the 21st International Conference on Pattern Recognition

(ICPR2012). IEEE, 2012, pp. 657–660.

18. J. Cong and B. Xiao, “Minimizing computation in convolutional neural

networks,” in International conference on artificial neural networks.

Springer, 2014, pp. 281–290.

19. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:

A large-scale hierarchical image database,” in 2009 IEEE conference on

computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

222

20. C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing

fpga-based accelerator design for deep convolutional neural networks,” in

Proceedings of the 2015 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays. ACM, 2015, pp. 161–170.

21. S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,

“Eie: efficient inference engine on compressed deep neural network,” in 2016

ACM/IEEE 43rd Annual International Symposium on Computer Architecture

(ISCA). IEEE, 2016, pp. 243–254.

22. H. Sim, D. Nguyen, J. Lee, and K. Choi, “Scalable stochastic-computing

accelerator for convolutional neural networks,” in 2017 22nd Asia and South

Pacific Design Automation Conference (ASP-DAC). IEEE, 2017, pp. 696–

701.

23. A. Ren, Z. Li, Y. Wang, Q. Qiu, and B. Yuan, “Designing reconfigurable

large-scale deep learning systems using stochastic computing,” in 2016 IEEE

International Conference on Rebooting Computing (ICRC). IEEE, 2016, pp.

1–7.

24. J. Li, Z. Yuan, Z. Li, C. Ding, A. Ren, Q. Qiu, J. Draper, and Y. Wang,

“Hardware-driven nonlinear activation for stochastic computing based deep

convolutional neural networks,” in 2017 International Joint Conference on

Neural Networks (IJCNN). IEEE, 2017, pp. 1230–1236.

25. A. Ren, Z. Li, C. Ding, Q. Qiu, Y. Wang, J. Li, X. Qian, and B. Yuan, “Sc-

dcnn: Highly-scalable deep convolutional neural network using stochastic

computing,” ACM SIGOPS Operating Systems Review, vol. 51, no. 2, pp.

405–418, 2017.

26. H. Sim and J. Lee, “A new stochastic computing multiplier with application to

deep convolutional neural networks,” in 2017 54th ACM/EDAC/IEEE Design

Automation Conference (DAC). IEEE, 2017, pp. 1–6.

27. J. Li, A. Ren, Z. Li, C. Ding, B. Yuan, Q. Qiu, and Y. Wang,

“Towards acceleration of deep convolutional neural networks using stochastic

computing,” in 2017 22nd Asia and South Pacific Design Automation

Conference (ASP-DAC). IEEE, 2017, pp. 115–120.

223

28. Z. Li, A. Ren, J. Li, Q. Qiu, B. Yuan, J. Draper, and Y. Wang, “Structural

design optimization for deep convolutional neural networks using stochastic

computing,” in Proceedings of the Conference on Design, Automation &

Test in Europe. European Design and Automation Association, 2017, pp.

250–253.

29. X. Ma, Y. Zhang, G. Yuan, A. Ren, Z. Li, J. Han, J. Hu, and Y. Wang,

“An area and energy efficient design of domain-wall memory-based deep

convolutional neural networks using stochastic computing,” in 2018 19th

International Symposium on Quality Electronic Design (ISQED). IEEE,

2018, pp. 314–321.

30. K. Wakabayashi, “C-based behavioral synthesis and verification analysis on

industrial design examples,” inProceedings of the 2004 Asia and South Pacific

Design Automation Conference. IEEE Press, 2004, pp. 344–348.

31. R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,

H. Hsiao, S. Brown, F. Ferrandi et al., “A survey and evaluation of fpga

high-level synthesis tools,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 35, no. 10, pp. 1591–1604, 2016.

32. J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu, S. Song

et al., “Going deeper with embedded fpga platform for convolutional neural

network,” in Proceedings of the 2016 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays. ACM, 2016, pp. 26–35.

33. C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine:

Towards uniformed representation and acceleration for deep convolutional

neural networks,” IEEETransactions onComputer-AidedDesign of Integrated

Circuits and Systems, 2018.

34. Z. Liu, Y. Dou, J. Jiang, J. Xu, S. Li, Y. Zhou, and Y. Xu, “Throughput-

optimized fpga accelerator for deep convolutional neural networks,” ACM

Transactions on Reconfigurable Technology and Systems (TRETS), vol. 10,

no. 3, p. 17, 2017.

35. K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang, and H. Yang,

“Angel-eye: A complete design flow for mapping cnn onto embedded fpga,”

224

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 37, no. 1, pp. 35–47, 2018.

36. S. O. Ayat, M. Khalil-Hani, and A. A.-H. Ab Rahman, “Optimizing fpga-

based cnn accelerator for energy efficiency with an extended roofline model,”

Turkish Journal of Electrical Engineering & Computer Sciences, vol. 26,

no. 2, pp. 919–935, 2018.

37. V. T. Lee, A. Alaghi, J. P. Hayes, V. Sathe, and L. Ceze, “Energy-efficient

hybrid stochastic-binary neural networks for near-sensor computing,” in

Proceedings of the Conference on Design, Automation & Test in Europe.

European Design and Automation Association, 2017, pp. 13–18.

38. Z. Li, J. Li, A. Ren, C. Ding, J. Draper, Q. Qiu, B. Yuan, and Y. Wang,

“Towards budget-driven hardware optimization for deep convolutional neural

networks using stochastic computing,” in 2018 IEEEComputer SocietyAnnual

Symposium on VLSI (ISVLSI). IEEE, 2018, pp. 28–33.

39. H. Sim and J. Lee, “Cost-effective stochastic mac circuits for deep neural

networks,” Neural Networks, 2019.

40. P.-S. Ting and J. P. Hayes, “Isolation-based decorrelation of stochastic

circuits,” in 2016 IEEE 34th International Conference on Computer Design

(ICCD). IEEE, 2016, pp. 88–95.

41. V. T. Lee, A. Alaghi, and L. Ceze, “Correlation manipulating circuits

for stochastic computing,” in 2018 Design, Automation & Test in Europe

Conference & Exhibition (DATE). IEEE, 2018, pp. 1417–1422.

42. W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An architecture

for fault-tolerant computation with stochastic logic,” IEEE Transactions on

Computers, vol. 60, no. 1, pp. 93–105, 2011.

43. B. Yuan, Y. Wang, and Z. Wang, “Area-efficient scaling-free dft/fft design

using stochastic computing,” IEEE T CIRCUITS-II, vol. 63, pp. 1131–1135,

2016.

44. Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and

K. Vissers, “Finn: A framework for fast, scalable binarized neural network

inference,” in Proceedings of the 2017 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays. ACM, 2017, pp. 65–74.

225

45. Y. Liang, L. Lu, Q. Xiao, and S. Yan, “Evaluating fast algorithms for

convolutional neural networks on fpgas,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 2019.

46. V. T. Lee, A. Alaghi, J. P. Hayes, V. Sathe, and L. Ceze, “Energy-efficient

hybrid stochastic-binary neural networks for near-sensor computing,” in

Proceedings of the Conference on Design, Automation & Test in Europe.

European Design and Automation Association, 2017, pp. 13–18.

47. M. Alawad and M. Lin, “Stochastic-based deep convolutional networks with

reconfigurable logic fabric,” IEEE Transactions on multi-scale computing

systems, vol. 2, no. 4, pp. 242–256, 2016.

48. A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM T EMBED

COMPUT S, vol. 12, pp. 1–19, 2013.

49. D. P. Bertsekas and J. N. Tsitsiklis, Introduction to probability. Athena

Scientific Belmont, MA, 2002, vol. 1.

50. A. Alaghi and J. P. Hayes, “Fast and accurate computation using stochastic

circuits,” in Proceedings of the conference on Design, Automation & Test in

Europe. European Design and Automation Association, 2014, p. 76.

51. S. Liu and J. Han, “Energy efficient stochastic computing with sobol

sequences,” inProceedings of theConference onDesign, Automation&Test in

Europe. European Design and Automation Association, 2017, pp. 650–653.

52. V. T. Lee, A. Alaghi, R. Pamula, V. S. Sathe, L. Ceze, and M. Oskin,

“Architecture considerations for stochastic computing accelerators,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 37, no. 11, pp. 2277–2289, 2018.

53. V. Sehwag, N. Prasad, and I. Chakrabarti, “A parallel stochastic number

generator with bit permutation networks,” IEEE Transactions on Circuits and

Systems II: Express Briefs, vol. 65, no. 2, pp. 231–235, 2017.

54. B. D. Brown and H. C. Card, “Stochastic neural computation. i. computational

elements,” IEEETransactions on computers, vol. 50, no. 9, pp. 891–905, 2001.

55. Z. Li, A. Ren, J. Li, Q. Qiu, Y. Wang, and B. Yuan, “Dscnn: Hardware-

oriented optimization for stochastic computing based deep convolutional

226

neural networks,” in 2016 IEEE 34th International Conference on Computer

Design (ICCD). IEEE, 2016, pp. 678–681.

56. M. H. Najafi and M. E. Salehi, “A fast fault-tolerant architecture for

sauvola local image thresholding algorithmusing stochastic computing,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 2,

pp. 808–812, 2016.

57. E. Vahapoglu andM. Altun, “Accurate synthesis of arithmetic operations with

stochastic logic,” in VLSI (ISVLSI), 2016 IEEE Computer Society Annual

Symposium on. IEEE, 2016, pp. 415–420.

58. ——, “From stochastic to bit stream computing: Accurate implementation

of arithmetic circuits and applications in neural networks,” arXiv preprint

arXiv:1805.06262, 2018.

59. Y.-N. Chang and K. K. Parhi, “Architectures for digital filters using stochastic

computing,” in 2013 IEEE International Conference on Acoustics, Speech

and Signal Processing. IEEE, 2013, pp. 2697–2701.

60. H. Ichihara, S. Ishii, D. Sunamori, T. Iwagaki, and T. Inoue, “Compact and

accurate stochastic circuits with shared random number sources,” inComputer

Design (ICCD), 2014 32nd IEEE International Conference on. IEEE, 2014,

pp. 361–366.

61. M. M. Wong, M. D. Wong, C. Zhang, and I. Hijazin, “A new stochastic inner

product core design for digital fir filters,” inMATECWeb of Conferences, vol.

125. EDP Sciences, 2017, p. 05006.

62. Y. Liu and K. K. Parhi, “Linear-phase lattice fir digital filter architectures

using stochastic logic,” Journal of Signal Processing Systems, vol. 90, no. 5,

pp. 791–803, 2018.

63. ——, “Architectures for recursive digital filters using stochastic computing,”

IEEE Transactions on Signal Processing, vol. 64, no. 14, pp. 3705–3718,

2016.

64. B. Parhami and C.-H. Yeh, “Accumulative parallel counters,” in Conference

Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and

Computers, vol. 2. IEEE, 1995, pp. 966–970.

227

65. P.-S. Ting and J. P. Hayes, “Stochastic logic realization of matrix operations,”

in 2014 17th Euromicro Conference on Digital System Design. IEEE, 2014,

pp. 356–364.

66. K. Kim, J. Lee, and K. Choi, “Approximate de-randomizer for stochastic

circuits,” in 2015 International SoC Design Conference (ISOCC). IEEE,

2015, pp. 123–124.

67. K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi, “Dynamic energy-accuracy

trade-off using stochastic computing in deep neural networks,” in 2016 53nd

ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 2016, pp.

1–6.

68. A. Zhakatayev, S. Lee, H. Sim, and J. Lee, “Sign-magnitude sc: getting 10x

accuracy for free in stochastic computing for deep neural networks,” in 2018

55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 2018,

pp. 1–6.

69. B. Yuan and Y. Wang, “High-accuracy fir filter design using stochastic

computing,” in 2016 IEEE Computer Society Annual Symposium on VLSI

(ISVLSI). IEEE, 2016, pp. 128–133.

70. A. Alaghi and J. P. Hayes, “Fast and accurate computation using stochastic

circuits,” in Proceedings of the conference on Design, Automation & Test in

Europe. European Design and Automation Association, 2014, p. 76.

71. M.H.Najafi andD. J. Lilja, “High-speed stochastic circuits using synchronous

analog pulses,” inDesignAutomationConference (ASP-DAC), 2017 22ndAsia

and South Pacific. IEEE, 2017, pp. 481–487.

72. P. Li and D. J. Lilja, “Using stochastic computing to implement digital

image processing algorithms,” in 2011 IEEE 29th International Conference

on Computer Design (ICCD). IEEE, 2011, pp. 154–161.

73. Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural networks

for energy-efficient object recognition,” International Journal of Computer

Vision, vol. 113, no. 1, pp. 54–66, 2015.

74. K. Kim, J. Lee, and K. Choi, “An energy-efficient random number generator

for stochastic circuits,” in Design Automation Conference (ASP-DAC), 2016

21st Asia and South Pacific. IEEE, 2016, pp. 256–261.

228

75. T.-H. Chen, P. Ting, and J. P. Hayes, “Achieving progressive precision in

stochastic computing,” in Signal and Information Processing (GlobalSIP),

2017 IEEE Global Conference on. IEEE, 2017, pp. 1320–1324.

76. A. Alaghi and J. P. Hayes, “On the functions realized by stochastic computing

circuits,” in Proceedings of the 25th edition on Great Lakes Symposium on

VLSI. ACM, 2015, pp. 331–336.

77. R. K. Budhwani, R. Ragavan, and O. Sentieys, “Taking advantage of

correlation in stochastic computing,” in Circuits and Systems (ISCAS), 2017

IEEE International Symposium on. IEEE, 2017, pp. 1–4.

78. D. Jenson and M. Riedel, “A deterministic approach to stochastic

computation,” in Proceedings of the 35th International Conference on

Computer-Aided Design. ACM, 2016, p. 102.

79. M. H. Najafi, S. Jamali-Zavareh, D. J. Lilja, M. D. Riedel, K. Bazargan,

and R. Harjani, “Time-encoded values for highly efficient stochastic circuits,”

IEEE T VLSI SYST, vol. 25, pp. 1644–1657, 2017.

80. M. H. Najafi and D. Lilja, “High quality down-sampling for deterministic

approaches to stochastic computing,” IEEE T EMERG TOP COM, 2018.

81. P. Ting and J. P. Hayes, “Eliminating a hidden error source in stochastic

circuits,” in Defect and Fault Tolerance in VLSI and Nanotechnology Systems

(DFT), 2017 IEEE International Symposium on. IEEE, 2017, pp. 1–6.

82. X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,”

in Proceedings of the fourteenth international conference on artificial

intelligence and statistics, 2011, pp. 315–323.

83. Y. LeCun, C. Cortes, and C. J. Burges. The mnist database. [Online].

Available: http://yann.lecun.com/exdb/mnist/

84. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

85. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”

in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2015, pp. 1–9.

229

http://yann.lecun.com/exdb/mnist/

86. A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny

images,” Citeseer, Tech. Rep., 2009.

87. E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong Gee Hock,

Y. T. Liew, K. Srivatsan, D. Moss, S. Subhaschandra et al., “Can fpgas beat

gpus in accelerating next-generation deep neural networks?” in Proceedings

of the 2017 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays. ACM, 2017, pp. 5–14.

88. M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Durdanovic,

E. Cosatto, and H. P. Graf, “A massively parallel coprocessor for

convolutional neural networks,” in 2009 20th IEEE International Conference

on Application-specific Systems, Architectures and Processors. IEEE, 2009,

pp. 53–60.

89. C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “Cnp: An fpga-based

processor for convolutional networks,” in 2009 International Conference on

Field Programmable Logic and Applications. IEEE, 2009, pp. 32–37.

90. S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A dynamically

configurable coprocessor for convolutional neural networks,” ACM SIGARCH

Computer Architecture News, vol. 38, no. 3, pp. 247–257, 2010.

91. C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Culurciello,

“Hardware accelerated convolutional neural networks for synthetic vision

systems.” in ISCAS, vol. 2010, 2010, pp. 257–260.

92. V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, “A 240 g-ops/s

mobile coprocessor for deep neural networks,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition Workshops, 2014,

pp. 682–687.

93. M. Peemen, A. A. Setio, B. Mesman, and H. Corporaal, “Memory-centric

accelerator design for convolutional neural networks,” in 2013 IEEE 31st

International Conference on Computer Design (ICCD). IEEE, 2013, pp.

13–19.

94. A. Shawahna, S. M. Sait, and A. El-Maleh, “Fpga-based accelerators of deep

learning networks for learning and classification: A review,” IEEE Access,

vol. 7, pp. 7823–7859, 2018.

230

95. S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful visual

performance model for floating-point programs and multicore architectures,”

Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States),

Tech. Rep., 2009.

96. B. Bosi, G. Bois, and Y. Savaria, “Reconfigurable pipelined 2-d convolvers

for fast digital signal processing,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 7, no. 3, pp. 299–308, 1999.

97. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast

feature embedding,” inProceedings of the 22ndACM international conference

on Multimedia. ACM, 2014, pp. 675–678.

98. M.A.Awan andS.M. Petters, “Race-to-halt energy saving strategies,” Journal

of Systems Architecture, vol. 60, no. 10, pp. 796–815, 2014.

99. M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet

classification using binary convolutional neural networks,” in European

Conference on Computer Vision. Springer, 2016, pp. 525–542.

100. I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized

neural networks,” inAdvances in neural information processing systems, 2016,

pp. 4107–4115.

101. M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized

neural networks: Training deep neural networks with weights and activations

constrained to+ 1 or-1,” arXiv preprint arXiv:1602.02830, 2016.

102. M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep

neural networks with binary weights during propagations,” in Advances in

neural information processing systems, 2015, pp. 3123–3131.

103. R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “Yodann: An architecture

for ultralow power binary-weight cnn acceleration,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 1, pp.

48–60, 2017.

104. M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional

networks through ffts,” arXiv preprint arXiv:1312.5851, 2013.

231

105. A. Lavin and S. Gray, “Fast algorithms for convolutional neural networks,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2016, pp. 4013–4021.

106. M. Alawad and M. Lin, “Survey of stochastic-based computation paradigms,”

IEEE Transactions on Emerging Topics in Computing, vol. 7, no. 1, pp. 98–

114, 2016.

107. S. R. Faraji, M. H. Najafi, B. Li, D. J. Lilja, and K. Bazargan, “Energy-efficient

convolutional neural networks with deterministic bit-stream processing,” in

2019 Design, Automation & Test in Europe Conference & Exhibition (DATE).

IEEE, 2019, pp. 1757–1762.

108. C. Wolf, J. Glaser, and J. Kepler, “Yosys-a free verilog synthesis suite,” in

Proceedings of the 21st Austrian Workshop on Microelectronics (Austrochip),

2013.

109. MATLAB, “Deep learning toolbox,” https://www.mathworks.com/products/

deep-learning.html.

110. L. H. Crockett, R. A. Elliot, M. A. Enderwitz, and R. W. Stewart, The Zynq

Book: Embedded Processing with the ArmCortex-A9 on the Xilinx Zynq-7000

All Programmable Soc. UK: Strathclyde Academic Media, 2014.

111. Xilinx, “Vivado design suite - hlx editions,” https://www.xilinx.com/products/

design-tools/vivado.html.

112. ——, “Vivado design suite user guide high-level synthesis,” 2018.

113. ——, “Vivado design suite user guide designing ip subsystems using ip

integrator,” 2019.

114. ——, “Vivado design suite user guide power analysis and optimization,” 2019.

115. Berkeley Logic Synthesis and Verification Group. Abc: A system

for sequential synthesis and verification. [Online]. Available: http:

//www.eecs.berkeley.edu/~alanmi/abc/

116. The nangate open cell library. [Online]. Available: https://projects.si2.org/

openeda.si2.org/projects/nangatelib

117. “7 series fpgas data sheet: Overview,” https://www.xilinx.com/support/

documentation/data_sheets/ds180_7Series_Overview.pdf.

232

https://www.mathworks.com/products/deep-learning.html
https://www.mathworks.com/products/deep-learning.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/
https://projects.si2.org/openeda.si2.org/projects/nangatelib
https://projects.si2.org/openeda.si2.org/projects/nangatelib
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf

118. “Zynq-7000 soc data sheet: Overview,” https://www.xilinx.com/support/

documentation/data_sheets/ds190-Zynq-7000-Overview.pdf.

119. T.-H. Chen and J. P. Hayes, “Design of division circuits for stochastic

computing,” in 2016 IEEE Computer Society Annual Symposium on VLSI

(ISVLSI). IEEE, 2016, pp. 116–121.

120. Ica99 synthetic benchmarks. [Online]. Available: http://sound.media.mit.

edu/ica-bench/

121. B. Yuan, C. Zhang, and Z. Wang, “Design space exploration for

hardware-efficient stochastic computing: A case study on discrete cosine

transformation,” in Acoustics, Speech and Signal Processing (ICASSP), 2016

IEEE International Conference on. IEEE, 2016, pp. 6555–6559.

122. P. Jamieson, W. Luk, S. J. Wilton, and G. A. Constantinides, “An energy

and power consumption analysis of fpga routing architectures,” in 2009

International Conference on Field-Programmable Technology. IEEE, 2009,

pp. 324–327.

123. A. Alaghi and J. P. Hayes, “Strauss: Spectral transform use in stochastic

circuit synthesis,” IEEETransactions onComputer-AidedDesign of Integrated

Circuits and Systems, vol. 34, no. 11, pp. 1770–1783, 2015.

233

https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://sound.media.mit.edu/ ica-bench/
http://sound.media.mit.edu/ ica-bench/

LIST OF PUBLICATIONS

This appendix lists downs the papers written based on the findings from the

work done in this thesis. It also includes publications that are related to the work done

in this thesis. The following is a summary of these papers:

1. Abdellatef, H., Khalil-Hani, M., Shaikh-Husin, N. and Ayat, S. O. Stochastic

Computing Correlation Utilization in Convolutional Neural Network Basic

Functions. Telkomnika, 2018. 16(6). (Scopus).

2. Abdellatef, H., HANI, M. K. and Shaikh-Husin, N. Accurate and compact

stochastic computations by exploiting correlation. Turkish Journal of Electrical

Engineering & Computer Sciences, 2019. 27(1): 547–564. (ISI, IF 0.708).

234

