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ABSTRACT 

Recommender systems have been widely adopted to assist users in 

purchasing and increasing sales.  Collaborative filtering techniques have been 

identified to be the most popular methods used for the recommendation system. One 

major drawback of these approaches is the data sparsity problem, which generally 

leads to low performances of the recommender systems. Recent development has 

shown that user review texts can be exploited to tackle the issue of data sparsity 

thereby improving the accuracy of the recommender systems. However, the problem 

with existing methods for the review-based recommender system is the use of 

handcrafted features which makes the system less accurate.  Thus, to address the 

above issue, this study proposed collaborative recommender system models that 

utilize user textual reviews based on deep learning methods for improving predictive 

performances of recommender systems. To extract the product aspects to mine users‟ 

opinion, an aspect extraction method was first developed using a Multi-Channel 

Convolutional Neural Network. An aspect-based recommender system was then 

designed by integrating the opinions of users based on the product aspects into the 

collaborative filtering method for the recommendation process. To further improve 

the  predictive performance, the fine-grained user-item interaction based on the 

aspect-based collaborative method was studied and a sentiment-aware recommender 

system was also designed using a deep learning method. Extensive series of 

experiments were conducted on real-world datasets from the Semeval-014, Amazon, 

and Yelp reviews to evaluate the performances of the proposed models from both the 

aspect extraction and rating prediction. Experimental results showed that the 

proposed aspect extraction model performed better than compared methods such as 

rule-based and the neural network-based approaches, with average gains of 5.2%, 

12.0%, and 7.5% in terms of Precision, Recall, and F1 score, respectively. 

Meanwhile, the proposed aspect-based collaborative methods demonstrated better 

performances compared to benchmark approaches such as topic modelling 

techniques with an average improvement of 6.5% and 8.0% in terms of the Root 

Means Squared Error (RMSE) and Mean Absolute Error (MAE), respectively. 

Statistical T-test was conducted and the results showed that all the performance 

improvements were significant at P<0.05. This result indicates the effectiveness of 

utilizing the multi-channel convolutional neural network for better extraction 

accuracy. The findings also demonstrate the advantage of utilizing user textual 

reviews and the deep learning methods for improving the predictive accuracy in 

recommendation systems. 
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ABSTRAK 

Sistem pengesyoran telah diterima pakai secara meluas untuk membantu 

pengguna dalam pembelian dan peningkatan jualan. Teknik penapisan kolaboratif 

telah dikenal pasti sebagai kaedah yang paling dikenali yang digunakan untuk sistem 

cadangan. Salah satu kelemahan utama pendekatan ini adalah masalah ketahanan 

data, yang secara amnya menyebabkan prestasi rendah terhadap sistem pengesyoran. 

Perkembangan terkini menunjukkan bahawa teks ulasan pengguna boleh 

dieksploitasi untuk menangani isu ketahanandata seterusnya meningkatkan ketepatan 

sistem pengesyoran. Walau bagaimanapun, masalah dengan kaedah yang sedia ada 

untuk sistem pengesyoran berasaskan ulasan adalah penggunaan ciri-ciri kraftangan 

yang menjadikan sistem kurang tepat. Oleh itu, untuk menangani isu di atas, kajian 

ini mencadangkan model sistem pengesyoran kolaboratif yang menggunakan ulasan 

teks pengguna berdasarkan kaedah pembelajaran mendalam untuk meningkatkan 

prestasi ramalan sistem pengesyoran. Untuk mengekstrak aspek produk bagi 

mendapatkan pendapat pengguna, kaedah pengekstrakan aspek pertama kali 

dibangunkan menggunakan Rangkaian Neural Konvolusi Pelbagai Saluran. Sistem 

pengesyoran berdasarkan aspek kemudian dirancang dengan mengintegrasikan 

pendapat pengguna berdasarkan aspek produk ke dalam kaedah penapisan 

kolaboratif untuk proses cadangan. Untuk meningkatkan lagi prestasi ramalan, 

interaksi item pengguna yang halus berdasarkan kaedah kolaboratif berasaskan aspek 

telah dikaji dan sistem penyaran sedar sentimen juga dirancang menggunakan kaedah 

pembelajaran mendalam. Siri eksperimen yang meluas telah dijalankan ke atas data 

dunia nyata dari Semeval-014, Amazon, dan ulasan Yelp untuk menilai prestasi 

model yang dicadangkan dari aspekpengekstrakan dan ramalan penarafan. Keputusan 

eksperimen menunjukkan bahawa model pengekstrakan aspek yang dicadangkan 

menunjukkan prestasi yang lebih baik daripada kaedah perbandingan seperti 

pendekatan berasaskan peraturan dan rangkaian neural, dengan keuntungan purata 

masing-masing 5.2%, 12.0%, dan 7.5% dari segi Ketepatan, Ingat, dan skor F1. 

Sementara itu, kaedah kerjasama berasaskan aspek yang dicadangkan menunjukkan 

prestasi lebih baik berbanding pendekatan penanda aras seperti teknik pemodelan 

topik dengan peningkatan purata masing-masing 6.5% dan 8.0% dari segi Kesilapan 

Dataran Akar Bermakna (RMSE) dan Kesilapan Mutlak Min (MAE). Ujian-t statistik 

dijalankan dan keputusan menunjukkan bahawa semua peningkatan prestasi adalah 

signifikan pada P<0.05. Keputusan ini menunjukkan keberkesanan penggunaan 

rangkaian neural konvensional pelbagai saluran untuk ketepatan pengekstrakan yang 

lebih baik. Penemuan ini juga menunjukkan kelebihan menggunakan ulasan teks 

pengguna dan kaedah pembelajaran mendalam untuk meningkatkan ketepatan 

ramalan dalam sistem cadangan. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

With the advancement of the World Wide Web (WWW) and the explosive 

accumulation of information on the e-commerce platforms such as Amazon and 

Yelp, it becomes very difficult to search across all the alternative options in a bid to 

find what one most likely desire. In other words, the increasing growth of 

information on the web has brought about the information overload problem which 

makes it very difficult for effective information retrieval. Recently, to cope with 

these issues among other solutions, recommender system (RS) technology has been 

introduced to help customers by presenting products or services that are likely of 

their interest.    Recommender systems can be viewed as a software tool that 

improves access and provides suggestions to users for the relevant product by 

considering the users' implicit and explicit preferences (Adomavicius and Tuzhilin, 

2005).  

 

 Since it was evolved over some decades ago, the field has grown 

dramatically in solving a variety of problems using various recommendation 

techniques in the domain of e-commerce, news, social media, services delivery, and 

many other services  (Kunaver and Požrl, 2017). With the advancement of e-

commerce, the benefits of the recommender systems cannot be overemphasized.  

According to research on        x , 60% of the movies watched on their platform are 

recommended to the users with the aid of the RSs. Similarly, 35% of sales at 

   z    comes from recommendations that are recommended to the users and users 

have shown great interest. At the same time, it has been shown that recommendation 

generates 38% more clicks reported by          w  .  

 

www       x      

www    z         
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          w               

Depending on the manner and the type of information being used, RSs can 

either be Content-Based (CB) ( Smyth, 2016) which utilizes description of the items 

(features and attributes) to match the profiles of the users and provide a 

recommendation, or Collaborative Filtering (CF) approach (Shi et al., 2014) which 

relies on the information collected from users with similar behaviour in the past to 

provide a recommendation.  However,  these traditional RS approaches generally 

experience some major problems such as data sparsity and cold-start problems 

(Adomavicius and Tuzhilin, 2005). This made the RS became a wide research topic 

which raised the question of diving into more research works to finding effective 

solutions for further improvements.   

 

 With the recent remarkable success of deep learning methods in areas such as 

image processing, machine translation, and Natural Language Processing (NLP) 

(Hatcher and Yu, 2018), deep learning models have been widely used by many 

researchers for building the RS approaches (Cas et al., 2017;  Zhang et al., 2017; 

Kim et al., 2016). As such deep learning-based RS brings more capabilities by 

addressing the inherent challenges of the traditional recommendation methods 

(Kunaver and Požrl, 2017).  Deep learning techniques have been shown very 

effective in modeling the historical user/item interactions due to their capability in 

representation learning. Thus developing a personalized deep learning-based 

recommendation system became a  promising research direction (Batmaz et al., 

2019).  In the recommendation system, deep learning methods are typically used to 

better learn user and item representation based on the user textual review for 

improving the rating predictive performance. 

 

With the rapid advancement of E-commerce and social networks, recently 

opinion mining has been widely exploited for building the RSs.  Sentiment analysis 

which involves the extraction of users‟ opinions/sentiments from the contents of 

review generally serves as a vital source of information for improving the 

performances of the RSs.  Basically, opinion mining has been widely studied   

(Medhat et al, 2014; Ravi and Ravi, 2015) for many applications. It particularly 

focuses on determining the user preferences by classifying the user feedback polarity 

on a particular product. Feedback labelled „positive‟ implies that the user who has 
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posted the feedback has an interest in the product and vice versa. Thus, exploiting 

opinions for improving the performance of RS becomes a promising research 

direction recently. 

Essentially, the user opinions contained in the textual review can help 

improve the performance of the recommendation system. Meanwhile leveraging 

deep learning methods for better learning user/item representation is an important 

driver towards improving the performance of the recommender system. This is the 

main idea behind the proposed methods in this thesis. The proposed models in this 

thesis aim to improve the accuracy of the predictive performances of the 

recommendation system. The related datasets used in this research include SemEval 

2014 challenge, Amazon and Yelp datasets to evaluate the proposed models in 

Chapter 4, Chapter 5, and Chapter 6 respectively.  To measure the effectiveness of 

the proposed models  Precision, Recall,  F1 score,  Root Means Squared Error 

(RMSE), and  Mean Absolute Error (MAE)  metrics were used for the proposed 

models in Chapter 4, Chapter 5, and Chapter 6 respectively. 

 

  The rest of this chapter is organized as follows: Section 1.2 presents the 

background of the study which describes the problem background to identify the 

research gaps thereby proffering the desired solutions. Section 1.3 highlights the 

problem statement; section 1.4 presents the research objectives and section 1.5 

summarizes the scope of the study. 

 

 

1.2 Problem Background 

As stated earlier, RSs play a vital role in addressing the issue of information 

overload, having been widely applied in many online services including social media 

and e-commerce websites. Collaborative Filtering (CF) is the most widely used 

technique for  RSs.  The basic idea of this technique is that people who share similar 

behaviors in the past tend to have a similar preference in the future. Although CF 

methods have shown promising performances, one of its major challenges is the 

problem of data sparseness which is characterized by the insufficient number of user 

ratings with a high number of items. This, however, affects the effectiveness of the 
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recommendation systems.  With the recent advancement of e-commerce websites, it 

has been shown that user textual reviews that contain rich information on different 

products, can be utilized to alleviate the data sparsity problem thereby enhancing the 

effectiveness of RSs. Generally, user reviews contain not only the user‟s comments 

on different aspects of products but also the user‟s fine-grained opinions towards 

various aspects of products. Essentially, these opinions of users are very important as 

they reflect the user‟s preference towards products and consequently affect the 

accuracy of RSs.  Thus, in order to get details of the user‟s opinions towards the 

item, essentially aspect extraction for opinion mining methods has to be conducted 

(Cheah, 2016; Hemmatian and Sohrabi, 2017).  One of the earliest attempt to extract 

aspects of products was based on the frequency-based/rule-based methods (Hu and 

Liu, 2004; Popescu and Etzioni, 2005; Scaffidi et al., 2007) for which some of the 

constraints are used for identifying the most frequent nouns or noun phrases as the 

aspects candidates. In this approaches nouns and noun phrases are usually identified 

using Part-of-Speech (POS) tagger and the names that have been frequently repeated 

are termed as the aspects. One of the drawbacks of the frequency-based method is 

that the method generally focuses on only the most popular aspects while the low-

frequency aspects are generally neglected. 

 

With the recent achievement of the artificial neural networks in NLP (Da‟u 

and Salim, 2019; Kim, 2014), several methods have been introduced for the aspect 

extraction task. Most of these methods rely on the CNN model. For example, Poria et 

al., ( 2016a)  applied a multilayer convolutional model for aspect extraction by 

tagging words as aspects or non-aspects labels. To further improve the model 

performance, the authors additionally applied linguistic features which are then 

integrated with the pre-trained vectors. Toh and Su (2016) utilized the CNN model in 

the Semeval challenge for aspect detection. The model showed competitive results 

with the integration of two different machine learning methods.  Pham and Le  

(2018) proposed a CNN based technique by utilizing multiple input vectors for 

aspect extraction. The model specifically integrates Word2vec, Glove, and one hot 

vector to generate a unified feature generation for a better extraction process.  Xu et 

al., (2018b) introduced a simple CNN based technique named DE-CNN that leverage 

double embeddings for the aspect extraction. The model uses the pre-trained Glove 

and a domain-dependent embedding that are trained on the Amazon and Yelp 
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reviews using the convolution method.  Although these methods have performed 

well, however,  the major drawback of the existing  CNN based methods is that they 

typically rely solely on word embedding models such as Google Word2vec (Mikolov 

et al.,  2013) or Glove (Pennington et al.,  2014)  as the main semantic features. Even 

though word embeddings have been indicated to be effective in better learning both 

semantic and syntactic features of texts. However, due to their intrinsic issue of the 

distributional hypothesis, Word embeddings alone cannot guarantee to learn better 

semantic information of some aspect words  (Young et al., 2018). For instance, 

“good” and “bad” are particularly mapped together as neighbours in a latent space 

while analysing these words is very critical in real-world applications. 

 

The extracted aspect terms can essentially be utilized for building 

recommender system models  (Cheng et al., 2018).  Recently, several approaches 

have been proposed to directly exploit the product‟s aspects for building the aspect-

based recommendation systems.  Most of these approaches were typically based on 

the topic modelling (Cheng et al., 2018; Diao et al., 2014; McAuley and Leskovec, 

2013; Tan et al., 2016) in which the main idea is to align topics and user/item latent 

factors for rating prediction. Other approaches utilized sentiment lexicons and 

heuristic methods for the rating prediction ( Zhang et al., 2014a).  Although these 

approaches have shown good performance, however, they generally rely on the Bag 

of Word (BOW) method which typically considers words in the document as a mere 

collection without considering the local contextual information of the words. Thus, in 

such approaches, the vital information in the form of phrase and sentences is usually 

lost and consequently leads to poor accuracy of the model. 

 

To investigate the role of the deep learning method in exploiting the aspect 

terms along with reviews for improving the accuracy of the recommendation system, 

the study further seeks to explore a deep learning-based recommender system 

method.  Recently, several approaches have been proposed to exploit user reviews 

based on the deep learning techniques for recommendation systems ( Zhang et al., 

2017). For example, (Kim et al., 2016)  proposed Convolutional Matrix Factorization 

(ConMF) which simultaneously uses deep learning and Probabilistic Matrix 

Factorization (PMF)  model for better user/item representation learning based on the 

contextual information of the words. A Deep Convolutional Neural Network (Deep-
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CONN) has been proposed by  (Zhang et al., 2017) to exploit two parallel CNN 

models to separately learn the textual contents from both the user and item side. The 

model uses the embedding layer to derive the user and item latent features which are 

then concatenated and finally fed to the output layer consisting of the Factorization 

Machine (FM) for the rating prediction.  The model was later extended by 

introducing a method called Transnet  (Seo et al., 2017). The model particularly 

utilized more layers in addition to the two parallel CNN layers for better learning of 

the representation of the user-item review at the training time and regularized the 

output of the source network using the learned representation. Recently, the deep 

learning-based attention mechanism has been successfully applied for building the 

deep learning-based recommender system. Seo et al., (2017)   proposed an 

interpretable network model by exploiting the attention-based CNN technique. The 

model exploits different attention mechanisms:   local and global attention 

mechanisms.  Specifically, the local attentions assist the model for better modelling 

users and items features while the global attention allows better learning the 

semantics information of words from the user texts. In this way, the combinations of 

the local and global attention help the model to better learning interpretable item/user 

representations.   

 

Despite the remarkable achievements of the abovementioned deep learning-

based recommender system models compared to their prior methods, they experience 

some limitations: 1) they model latent feature vectors statically and independently in 

which the user and item factors are projected into fixed representations vectors in a 

shared space and the only interaction between user and item vectors occurs at the 

final prediction layer. Therefore, in these approaches, the fine-grained user/item 

interaction is generally lost which is very important for ensuring more accurate rating 

prediction.  2) Moreover, the existing deep learning methods generally ignore 

sentiment aware user/item representation in learning user/item latent factors for the 

rating prediction. 

 

To better clarify the entire research problem background, Figure 1.1 below, 

provides a diagrammatic illustration with a summary of the research problem of the 

study, showing the key research gaps and the proposed solutions accordingly.  
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Figure 1.1: Summary of the research background
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1.3    Problem Statement 

 

 

In view of the problem background as discussed in Section 1.2  above, it 

could be deduced, that despite numerous achievements of the existing RS approaches 

they still experience major problems of the data sparsity which could lead to the low 

accuracy of the recommendation performance. Therefore more research efforts are 

still needed to fill the gaps thereby addressing the existing shortcomings by 

developing enhanced recommender system methods. Thus, to achieve that, the 

research  put forward   the following main research question: 

 

“How can the accuracy of the collaborative recommender systems be 

improved by exploiting the user textual reviews using deep learning methods? ”   

 

 To answer  the main research  question (RQ) the following sub-research 

questions  are put forward to answer: 

 

 RQ1: How can the product‟s aspects be extracted from the user textual 

review by using a Multi-Channel Convolutional Neural Network 

(MCNN) model for opinion mining? 

 

 RQ2: Can the user opinions based on the product‟s aspects be integrated 

into the collaborative filtering technique for better predictive 

performance? 

 

 RQ3: How can the recommendation accuracy be improved by utilizing 

the aspect-based collaborative method based on the deep learning 

technique? 

 

 

1.3 Objectives of the Research    

The main goal of this research is to design collaborative recommender system 

models that leverage user textual reviews using deep learning methods to provide 
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robust and reliable predictive performances with high accuracy.  Therefore, to  

achieve the main goal, the following research  objectives (RO) will be put into 

consideration: 

 

 RO1: To propose a multichannel convolutional neural network (MCNN) 

model to extract the product‟s aspects from the user textual review for 

opinion mining. 

 

 RO2:  To propose an aspect-based collaborative method by 

incorporating user opinions based on the product‟s aspects into the 

collaborative filtering technique for better predictive performance. 

 

 RO3: To propose a sentiment-aware deep recommender system by 

utilizing the aspect-based collaborative method for improving the 

recommendation accuracy. 

 

 

1.4 The Scope of the Study 

This research provides an in-depth study of the collaborative recommendation 

system based on user review using the deep learning method. In essence, the 

recommender systems field is a broad research area that includes cross-domain RSs, 

rating-only-based RSs,  review based RSs, etc. In essence, this study specifically 

focuses on the review-based recommender system perspective which utilizes user 

textual review for the rating prediction. More specifically, this research was confined 

to the following scopes: 

 

 The proposed study is focused on the literature review related to the 

aspect extraction,  deep learning methods, aspect-based recommender 

systems, and deep learning-based recommender system. 

 

 Regarding the models‟ evaluations,  for the rating prediction, the study 

focused on the three different datasets: Instant video, Musical instrument, 

and Yelp challenge datasets. The first two datasets were taken from the 
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Amazon review datasets out of the 23 categories of different products 

(McAuley and  Leskovec, 2013) and the third dataset is taken from the 

Yelp challenge competition platform.  Similarly, for the aspect extraction, 

the study particularly focused on the  Semeval-014 Restaurant and 

SemEval-014 Laptop datasets which are taken from the SemEval  

(semantic evaluation ) challenge competition (Pontiki and Pavlopoulos, 

2014). 

 

 Regarding the collaborative filtering algorithms used for the rating 

prediction, the study specifically focused on the Tensor Factorization (TF) 

and Matrix factorization (MF)  for the proposed RS models in Chapter 5 

and Chapter 6 respectively.   

 

 Regarding the proposed models‟ performances, the study focused on the 

accuracy performance for both the aspect extraction and the 

recommendation relevance. Thus for the evaluation metrics, the study 

specifically focused on the MAE and RMSE metrics to evaluate both the 

proposed RS models. While the F1 score, Precision, and Recall metrics 

were used for the aspect extraction. 

 

 The experiments for all the algorithms were carried out using Python 3.7 

programming language with the Keras, Pytorch, and the Tensorflow 

backend.  

 

 

1.5 Significance of the Study 

As mentioned earlier, RSs have become ubiquitous in recent times due to 

their popularity in the e-commerce and social media domains. Companies such as 

Yelp, Amazon, and eBay have introduced a large number of products for meeting the 

satisfaction of their customers. The market value of recommendations in the 

companies is very important in the domain of service delivery and many sectors of e-

commerce.  According to research, over 30% of the sales in          comes from 
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recommendations that are provided to the customers and customers have shown a 

great satisfaction.   

 

As noted in the literature, the existing RS methods have been shown to be 

suffered form the problem of the data sparseness which leads to a poor and 

inaccurate recommendation.  This research aims to fill this gap by first proposing an 

aspect extraction method to extract product aspects from user textual review and then 

incorporate the extracted aspect opinions into a collaborative filtering method for 

improving the accuracy of the recommendation system.  Meanwhile, we believe that 

incorporating the user sentiments into collaborative filtering based on the deep 

learning method would address the data sparsity problem thereby improving the 

accuracy of the recommendation system. Therefore, this study further investigates 

exploiting deep learning-based methods and neural attention mechanisms to propose 

a sentiment aware deep recommender system with neural co attention (SDRA).  

 

Another significance of this study is that; our proposed recommender system 

models specifically utilizes user textual reviews in addition to the user numerical 

ratings. This is particularly very important in a domain where numerical ratings on 

products are very scarce, not available due to the difficulty to collect or where the 

opinions of a user towards domain items are too complex to express as scalar ratings.  

 

 

1.7    Thesis Organization  

 

This section describes the organization of the thesis. There are seven chapters 

in this thesis, which are arranged as follows: 

 

Chapter 1, Introduction: This chapter presents a general introduction 

regarding the concept of the research work which includes an overview of the 

proposed research study. A comprehensive background of the study is also presented 

in this chapter. Further, the chapter includes the problem statement, objective of the 

study, research scope and the significance of the study. 
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Chapter 2, Literature review: This chapter provides an overview of the 

recommender system which includes the basic techniques for the recommender 

system, the main challenges of the recommender system and the evaluation measures 

used for the recommender systems. The chapter also discusses an overview of the 

deep learning techniques including the major deep learning methods uses for 

recommender systems. Furthermore, this chapter reviews the previous research 

works on the aspect-based recommender systems, and deep learning-based 

recommender systems accordingly.  

 

Chapter 3, Research methodology: This chapter presents the detailed 

methodology used in this study. It encompasses the generic framework of the 

research and the steps required to carry out the research systematically. This chapter 

outlines detailed procedures involved in solving the research problems and 

answering the research questions to achieve the research goal and objectives. The 

chapter describes various stages to carry out the research, which includes a 

discussion of the research components such as the research phases, techniques, and 

the tools involved 

 

Chapter 4, Aspect extraction on user textual reviews using deep convolutional 

neural network: This chapter addresses the first objective of the research.  

Specifically, the chapter presents an approach to extract the item aspects from the 

user review using a multichannel convolutional neural network (MCNN) model. The 

MCNN model comprises of word embedding and POS embedding channel.  The 

main goal of this chapter was to propose a model for the aspect extraction from the 

user textual review using a multi-channel convolutional neural network for better 

predictive accuracy. 

 

Chapter 5, Recommender system exploiting aspect-based opinion mining 

using deep learning methods:  This chapter presents an approach to incorporate the 

user opinions/sentiments into the collaborative filtering algorithm for the 

recommender system. The main goal of this chapter is to address the problem of the 

cold start by utilizing the specific aspect ratings in addition to the overall ratings 

provided by the user in the review text. To achieve that a tensor factorization 
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technique was employed which is very effective in dealing with a high order 

decomposition.   

 

Chapter 6, Sentiment aware deep recommender system using neural attention 

mechanism: This chapter addresses the third objective of this thesis which aims to 

investigate how deep learning methods could be exploited along with neural attention 

mechanisms for improving the accuracy of the recommender systems. This chapter 

was motivated by the recent success of deep learning techniques in representation 

learning and the recommendation systems. In this chapter, the study proposed a deep 

recommender system that uses a neural co-attention mechanism to better learning 

fine-grained user/item interaction for improving the accuracy of the rating predictive 

performance of the recommendation system.  

 

Chapter 7, Conclusion and Future Work: This chapter provides the 

conclusions of the research work discussed throughout this study. The chapter also 

presents and highlights the contributions of the research and puts forward some 

recommendations for future studies. 
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