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ABSTRACT 

Basic structural features and physicochemical properties of chemical 
molecules determine their behaviour during chemical, physical, biological and 
environmental processes and hence need to be investigated for determining and 
modelling the actions of the molecule. Computational approaches such as machine 
learning methods are alternatives to predict physiochemical properties of molecules 
based on their structures. However, limited accuracy and error rates of these 
predictions restrict their use. This study developed three classes of new methods based 
on deep learning convolutional neural network for bioactivity prediction of chemical 
compounds. The molecules are represented as a convolutional neural network (CNN) 
with new matrix format to represent the molecular structures. The first class of 
methods involved the introduction of three new molecular descriptors, namely 
Mol2toxicophore based on molecular interaction with toxicophores features, Mol2Fgs 
based on distributed representation for constructing abstract features maps of a 
selected set of small molecules, and Mol2mat, which is a molecular matrix 
representation adapted from the well-known 2D-fingerprint descriptors. The second 
class of methods was based on merging multi-CNN models that combined all the 
molecular representations. The third class of methods was based on automatic learning 
of features using values within the neurons of the last layer in the proposed CNN 
architecture. To evaluate the performance of the methods, a series of experiments were 
conducted using two standard datasets, namely MDL Drug Data Report (MDDR) and 
Sutherland datasets. The MDDR datasets comprised 10 homogeneous and 10 
heterogeneous activity classes, whilst Sutherland datasets comprised four 
homogeneous activity classes. Based on the experiments, the Mol2toxicophore 
showed satisfactory prediction rates of 92% and 80% for homogeneous and 
heterogeneous activity classes, respectively. The Mol2Fgs was better than 
Mol2toxicophore with prediction accuracy result of 95% for homogeneous and 90% 
for heterogeneous activity classes. The Mol2mat molecular representation had the 
highest prediction accuracy with 97% and 94% for homogeneous and heterogeneous 
datasets, respectively. The combined multi-CNN model leveraging on the knowledge 
acquired from the three molecular presentations produced better accuracy rate of 99% 
for the homogeneous and 98% for heterogeneous datasets. In terms of molecular 
similarity measure, use of the values in the neurons of the last hidden layer as the 
automatically learned feature in the multi-CNN model as a novel molecular learning 
representation was found to perform well with 88.6%  in terms of average recall value 
in 5% structures most similar to the target search. The results have demonstrated that 
the newly developed methods can be effectively used for bioactivity prediction and 
molecular similarity searching.  
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ABSTRAK 

Ciri-ciri struktur asas dan sifat fizikokimia molekul kimia boleh menentukan 
kelakuan molekul semasa proses kimia, fizikal, biologi dan persekitaran dan oleh itu 
ia perlu dikaji untuk menentukan dan memodelkan semua tindakan molekul. Walau 
bagaimanapun, ketepatan yang terhad dan kadar ralat ramalan yang tidak sekata 
mengehadkan penggunaannya. Kajian ini mencadangkan kaedah baru berdasarkan 
pembelajaran rangkaian neural konvolusi terhadap ramalan bioaktiviti sebatian kimia. 
Molekul ini diwakili sebagai rangkaian neural konvolusi (CNN) dengan format 
matriks baru untuk mewakili struktur molekul. Kaedah kelas pertama melibatkan 
pengenalan tiga deskriptor molekul baru, iaitu Mol2toxicophore, berdasarkan interaksi 
molekul dengan ciri-ciri toksikophores, Mol2Fgs, berdasarkan perwakilan teragih 
untuk membina peta ciri abstrak set molekul kecil yang terpilih, dan Mol2mat, yang 
merupakan matriks molekul perwakilan yang disesuaikan daripada deskriptor cap jari 
2D yang terkenal. Kaedah kelas kedua adalah berdasarkan penggabungan model multi-
CNN yang menggabungkan semua perwakilan molekul. Kaedah kelas ketiga 
didasarkan pada pembelajaran pemberat ciri secara automatik yang menggunakan nilai 
dalam neuron di lapisan terakhir dalam seni bina CNN yang dicadangkan. Untuk 
menilai prestasi kaedah tersebut, satu siri eksperimen dijalankan menggunakan dua set 
data standard, iaitu MDL Drug Data Report (MDDR) dan set data Sutherland. Dataset 
MDDR terdiri daripada 10 kelas aktiviti homogen dan 10 heterogen, sementara 
kumpulan Sutherland mengandungi empat kelas aktiviti homogen. Berdasarkan 
eksperimen, Mol2toxicophore menunjukkan kadar ramalan yang memuaskan 
sebanyak 92% dan 80% untuk kelas aktiviti homogen dan heterogen. Mol2Fgs lebih 
baik daripada Mol2toxicophore dengan hasil ketepatan ramalan 95% untuk homogen 
dan 90% untuk kelas aktiviti heterogen. Perwakilan molekul Mol2mat mempunyai 
ketepatan ramalan tertinggi dengan 97% dan 94% untuk dataset homogen dan 
heterogen. Model gabungan multi-CNN memanfaatkan pengetahuan yang diperoleh 
daripada tiga persembahan molekul menghasilkan kadar ketepatan yang lebih baik 
sebanyak 99% untuk homogen dan 98% untuk dataset heterogen. Dari segi ukuran 
kesamaan molekul, penggunaan nilai-nilai dalam neuron lapisan tersembunyi yang 
terakhir sebagai ciri yang dipelajari secara automatik dalam model multi-CNN sebagai 
perwakilan pembelajaran molekul baru didapati berfungsi dengan baik dengan 88.6% 
dari segi nilai penarikan balik purata dalam struktur 5% yang paling hampir sama 
dengan carian sasaran. Hasilnya telah menunjukkan bahawa kaedah yang baru 
dibangunkan dapat digunakan secara efektif untuk ramalan bioaktiviti dan pencarian 
kesamaan molekul.  
 



ix 

 

 

 
TABLE OF CONTENTS 

 TITLE PAGE
 

DECLARATION iii 
DEDICATION iv 

ACKNOWLEDGEMENT v 

ABSTRACT vi 
ABSTRAK vii 
TABLE OF CONTENTS ix 

LIST OF TABLES xv 

LIST OF FIGURES xvii 
LIST OF ABBREVIATIONS xxiii 
LIST OF SYMBOLS xxiv 

 INTRODUCTION 1 

1.1 Overview 1 

1.2 Problem Background 4 

1.3 Problem Statement 6 

1.4 Research Objectives 6 

1.5 Research Scope 7 

1.6 Significance of the Study 8 

1.7 Thesis Organization 9 

 LITERATURE REVIEW 11 

2.1 Introduction 11 

2.2 Computer-Aided Molecular Design 12 

2.3 Molecular Representations and similarity 
measurement 15 

2.3.1 Molecular Representations 15 



x 

2.3.2 Linear Notation 16 

2.3.3 Molecular Descriptors 17 

2.3.4 Fingerprints 19 

2.3.5 Discussion 23 

2.4 Quantitative Structure-Activity Relationships 26 

2.4.1 Objective of QSAR 27 

2.4.2 Underlying principles 28 

2.4.3 QSAR model 29 

2.4.4 QSAR Steps 31 

2.5 Challenge and Discussion 34 

2.6 Deep learning 35 

2.6.1 Convolutional neural network 38 

2.6.2 The Architecture of the CNN 40 

2.6.2.1 Convolutional layers 40 

2.6.2.2 Rectified Linear Units (ReLU) Layer 42 

2.6.2.3 Pooling layers: 43 

2.6.2.4 Fully-connected layers: 43 

2.6.3 CNN for the prediction of the biological 
activities: 44 

2.6.4 Discussion 45 

2.7 Summary 47 

 RESEARCH METHODOLOGY 49 

3.1 Introduction 49 

3.2 Research Design 50 

3.3 Research Framework 52 

3.3.1 Phase 1: Preliminary Study and Dataset 
Preparation 56 

3.3.2 Phase 2: CNN model based on toxicophore 
features 56 

3.3.3 Phase 3: CNN model based on Small Molecules
 58 

3.3.4 Phase 4: CNN model based on 2D Fingerprint 59 



xi 

3.3.5 Phase 5: CNN model based on combination of 
all representations 61 

3.3.6 Phase 6: Adapting the combined CNN model 
for Ligand-Based Virtual Screening 62 

3.4 Dataset 64 

3.5 Distributed and Learning Representation 69 

3.6 Convolutional Neural Network architecture 73 

3.7 Performance Evaluation 75 

3.8 Benchmarking 77 

3.9 Summary 77 

 CNN MODEL BASED ON TOXICOPHORES 
FEATURES FOR BIOACTIVITY PREDICTION 79 

4.1 Introduction 80 

4.2 Materials and methods 80 

4.2.1 Input representation 81 

4.2.2 CNN Network architecture 87 

4.3 Results and discussion 93 

4.3.1 Stage 1 94 

4.3.2 Stage 2 95 

4.3.3 Stage 3 96 

4.3.4 Stage 4 97 

4.4 Conclusion: 104 

 CNN MODEL BASED ON SMALL 
MOLECULES FOR BIOACTIVITY PREDICTION 105 

5.1 Introduction 105 

5.2 Materials and methods 108 

5.2.1 Input Representation 108 

5.2.2 Network Architecture 116 

5.3 Results and discussion 116 

5.3.1 Stage 1 117 

5.3.2 Stage 2 118 

5.3.3 Stage 3 119 



xii 

5.3.4 Stage 4 120 

5.4 Conclusion 125 

 CNN MODEL BASED ON 2D FINGERPRINT 
FOR BIOACTIVITY PREDICTION 127 

6.1 Introduction 128 

6.2 Materials and methods 130 

6.2.1 Input Representation 131 

6.2.2 Network Architecture 135 

6.3 Results and discussion 137 

6.3.1 Stage 1: 138 

6.3.2 Stage 2: 141 

6.3.3 Stage 3: 146 

6.4 Conclusion 152 

 CNN MODEL BASED ON COMBINATION OF 
ALL REPRESENTATIONS FOR BIOACTIVITY PREDICTION 153 

7.1 Introduction 154 

7.2 Materials and methods 155 

7.2.1 Input Representation 155 

7.2.2 Network Architecture 158 

7.3 Results and discussion 160 

7.4 Conclusion 169 

 ADAPTING THE COMBINATION MODEL 
FOR IMPLEMENTING NEW MOLECULAR 
REPRESENTATION SCHEME FOR VIRTUAL SCREENING 171 

8.1 Introduction 172 

8.2 Materials and methods 172 

8.2.1 Learning Representation 174 

8.2.2 Procedure of Similarity Search in Ligand-
Based Virtual Screening 181 

8.2.3 Evaluation Measures and Benchmarking of 
Similarity Performance 183 

8.2.4 Kendall W test of concordance 184 

8.3 Results and discussion 185 



xiii 

8.4 Conclusion 194 

 CONCLUSION AND RECOMMENDATIONS 195 

9.1 Research Conclusions 195 

9.2 Research Contributions 199 

9.2.1 Mol2learning molecular representation based 
on the automatic learning features 199 

9.2.2 CNN Model Based On the 2D-Fingerprint for 
Bioactivity Prediction 200 

9.2.3 Mol2Fgs molecular representation that was 
based on Small Molecules 200 

9.2.4 Mol2toxicophore molecular representation 
based on the toxicophore interaction 201 

9.2.5 Combined multi-CNN model for predicting the 
bioactivities 201 

9.3 Future Work 201 

REFERENCES 203 

LIST OF PUBLICATIONS 217 
 



xv 

 

LIST OF TABLES 

TABLE NO. TITLE PAGE

Table 2.1 Examples of descriptors classified according to 
dimensionality demonstrated on the saccharin molecule 19 

Table 3.1 MDDR Activity Classes for MDDR1 Data Set 66 

Table 3.2 MDDR Activity Classes for MDDR2 Data Set 67 

Table 3.3 Sutherland Activity Classes 67 

Table 4.1  CNN configuration for A-F columns for the 2 weight 
convolutional layers 89 

Table 4.2 CNN configuration for G-N (columns) for the 3 weight 
convolutional layers 90 

Table 4.3 CNN configuration for O-R columns for the 4-6 weight 
convolutional layers 91 

Table 4.4 CNN configuration for S-Z columns for the 6-9 weight 
convolutional layers 92 

Table 4.5 Sensitivity, Specificity and AUC rates for the Prediction 
Models using the MDDR1 dataset. 99 

Table 4.6 Sensitivity, Specificity and AUC rates for the Prediction 
Models using the MDDR2 dataset. 99 

Table 4.7 Sensitivity, Specificity and AUC rates for the Prediction 
Models using the Sutherland dataset. 100 

Table 5.1 14 sets of small molecules constructed from ChEMBL 
dataset 111 

Table 5.2 Details of every matrix size for each set of small molecules
 113 

Table 5.3 Sensitivity, Specificity and AUC rates for the Prediction 
Models using the MDDR1 dataset. 120 

Table 5.4 Sensitivity, Specificity and AUC rates for the Prediction 
Models using the MDDR2 dataset. 121 

Table 5.5 Sensitivity, Specificity and AUC rates for the Prediction 
Models using the Sutherland dataset. 121 

Table 6.1 Details of every matrix size for every fingerprint 132 



xvi 

Table 6.2 Details of the first and second fully connected layers for 
every combination 136 

Table 6.3 Probable combination cases for the five best fingerprints 142 

Table 6.4 Sensitivity, Specificity and AUC values for all the 
Prediction Models using an MDDR1 dataset. 147 

Table 6.5 Sensitivity, Specificity and AUC values for the Prediction 
Models using an MDDR2 dataset 147 

Table 6.6 Sensitivity, Specificity and AUC values for the Prediction 
Models using a Sutherland dataset. 148 

Table 7.1 Details of every molecular matrix representation applied in 
the proposed combination technique 157 

Table 7.2 Sensitivity, Specificity and AUC values for all Prediction 
Models using MDDR1 dataset 164 

Table 7.3 Sensitivity, Specificity and AUC values for Prediction 
Models using MDDR2 dataset 165 

Table 7.4 Sensitivity, Specificity and AUC values for Prediction 
Models using a Sutherland dataset 165 

Table 8.1 The existing benchmarking techniques 183 

Table 8.2 Retrieval results for the top 1% with the help of the MDDR1 
dataset 186 

Table 8.3 Retrieval results for the top 5% with the help of the MDDR1 
dataset 186 

Table 8.4 Retrieval results of the Top 1%, based on the MDDR2 
dataset 188 

Table 8.5 Retrieval results for the Top 5% based on the MDDR2 
dataset 189 

Table 8.6 Ranking of the VS techniques based on the Kendall W test 
results derived using the MDDR1 and MDDR2 datasets for 
the Top 1% and 5% recall 191 

Table 8.7 Mean Rankings noted in the different VS methods 191 

Table 8.8 Rankings of the different VS methods based on their 
Kendall W Test result 192 

 

  



xvii 

LIST OF FIGURES 

FIGURE NO. TITLE PAGE

Figure 1.1 The prediction of biological activity for unknown 
molecular activity. 3 

Figure 2.1 Schematic diagram of two different approaches: structure 
based, and ligand based and location of this research. 13 

Figure 2.2 SMILES concept. Examples for illustrating the 
fundamental SMILES syntax rules, wherein every 
molecular structure was annotated using one or many valid 
SMILES strings. 17 

Figure 2.3 Fingerprints (a) Keyed structural fingerprint, (b) A 
pharmacophore fingerprint, (c) Circular fingerprints. 21 

Figure 2.4 Tanimoto coefficient used for similarity searching. 22 

Figure 2.5 The fundamental QSAR problem. 27 

Figure 2.6 Overview of QSAR modelling. 31 

Figure 2.7 A Venn diagram describing deep learning as a subfield of 
machine learning which is in turn a subfield of artificial 
intelligence. 35 

Figure 2.8 A multi-layer, feedforward network architecture. 37 

Figure 2.9 Architecture of the CNN for Image Classification. 39 

Figure 2.10 Eyeris Deep Learning-based facial feature extraction 
method based on CNN. 40 

Figure 2.11 Discrete convolution is the first CNN layer. 41 

Figure 2.12 Activation function of the ReLU. 42 

Figure 2.13 The max pooling operation using the 2 × 2 filters. 43 

Figure 2.14 An example describing the complete CNN architecture. 44 

Figure 3.1 The brief description of research design. 51 

Figure 3.2 The general research operational framework. 53 

Figure 3.3 The details research operational framework 55 

Figure 3.4 The general framework of CNN model based on 
toxicophore features. 57 



xviii 

Figure 3.5 The general framework of CNN model based on Small 
molecule. 59 

Figure 3.6 The general framework of CNN-QSAR model based on 2D 
Fingerprint. 60 

Figure 3.7 The general framework of CNN model based on 
combination of all representation. 62 

Figure 3.8  Overview of the proposed Ligand Based Virtual Screening 
(LBVS) process. 63 

Figure 3.9 Examples of low diversity molecules in MDDR dataset. 65 

Figure 3.10 Examples of high diversity molecules in MDDR dataset. 65 

Figure 3.11 The mean pairwise similarity (MPS) across each set of 
active molecules. 66 

Figure 3.12 Comparison of MPS values of three databases using 
boxplot. 68 

Figure 3.13 Comparison of MPS values of three databases using Violin 
Plot. 68 

Figure 3.14 The distributed representation, WORD2VEC, used in 
natural language processing (NLP). 70 

Figure 3.15 The Word2vec model. 70 

Figure 3.16 Word2Vec wherein every word was embedded in the vector 
in an n-dimensional space. 72 

Figure 3.17 Word2Vec wherein the words with similar vector 
representations display multiple similarity degrees. 72 

Figure 3.18 The general CNN configuration. 73 

Figure 3.19 Different approaches used for fusing the information 
present in the CNN layers. 74 

Figure 4.1 Set of approved 29 toxicophores within the Kazius Dataset.
 82 

Figure 4.2 Summary of the new Mol2toxicophore presentation 
process. 85 

Figure 4.3 Examples describing 9 molecules that were categorized in 
3 biological classes of the MDDR datasets and were used 
in this chapter along with their Mol2toxicophore 
representation. 86 

Figure 4.4 3D-scatter plots based on the Mol2toxicophore 
representation of 5083 different molecules that were 



xix 

selected from the 10 biological activity classes of the 
MDDR dataset. 87 

Figure 4.5 The proposed CNN configuration that used the 
Mol2toxicophore molecule representation. 88 

Figure 4.6 Boxplot chart Comparison of the prediction accuracy 
values for the using Mol2toxicophore with CNN A, B, C, 
D, E and F model configurations. 94 

Figure 4.7 Boxplot chart Comparison of the prediction accuracy 
values for the using Mol2toxicophore with the CNN G, H, 
I, J, K, L, M and N model configurations. 95 

Figure 4.8 Boxplot chart Comparison of the prediction accuracy 
values for the using Mol2toxicophore with the CNN O, P, 
Q, R, S, T, U, V, X, Y and Z model configurations. 96 

Figure 4.9 Boxplot chart Comparison of the prediction accuracy 
values for the using Mol2toxicophore with the CNN E, L 
and Q model configurations. 98 

Figure 4.10 Boxplot chart Comparison of the sensitivity values for the 
for the using Mol2toxicophore with CNNToxic, NaiveB, 
RBFN and LSVM algorithms. 101 

Figure 4.11 Boxplot chart Comparison of specificity values for the 
using Mol2toxicophore with the CNNToxic, NaiveB, 
RBFN and LSVM algorithms. 102 

Figure 4.12 Boxplot chart Comparison of AUC values for the using 
Mol2toxicophore with the CNNToxic, NaiveB, RBFN and 
LSVM algorithms. 103 

Figure 5.1 Summary of the new Mol2fgs presentation process. 114 

Figure 5.2 D-scatter plots based on the Mol2fgs representation of 5083 
different molecules selected from the 10 biological activity 
classes of the MDDR1 dataset using small molecules in set 
named K. 115 

Figure 5.3 Box plot diagram comparing the prediction accuracy values 
for the Stage 1 experiments involving the CNNSmall sets A 
to N. 117 

Figure 5.4 Box plot diagram comparing the prediction accuracy values 
for the Stage 2 experiments for 9 sets models, G, H, I, J, K, 
G+H, H+I, I+J and J+K. 118 

Figure 5.5 Box plot diagram comparing the prediction accuracy values 
for the Stage 3 experiments for the three sets (H+I) and 
(I+J) sets and the combined (H+I+J). 119 



xx 

Figure 5.6 Boxplot chart Comparison of the sensitivity values of 
CNNSmall, CNNToxic, NaiveB, RBFN and LSVM 
algorithms.. 122 

Figure 5.7 Boxplot chart Comparison of specificity values of 
CNNSmall, CNNToxic, NaiveB, RBFN and LSVM 
algorithms. 123 

Figure 5.8 Boxplot chart Comparison of AUC values of CNNSmall, 
CNNToxic, NaiveB, RBFN and LSVM algorithms. 124 

Figure 6.1 Two example that showed the generation of molecular 
fingerprint. a) dictionary-based fingerprint b) hashed-based 
fingerprint. 129 

Figure 6.2 3D-scatter plots based on seven Fingerprints and 
descriptors representation: a)ALogP, b)CDKFp, c) ECFP4, 
d) EPFP4  e)GraphOnly, f) MDL,    g)PubchemFp.      of 
5083 different molecules that were selected from the 10 
biological activity classes of the MDDR dataset. 133 

Figure 6.3 A Summary of the newly proposed Mol2Mat presentation 
process. 134 

Figure 6.4 The configuration of the combined CNN used for 3 
fingerprints. 137 

Figure 6.5 A summary of the proposed CNN configuration that uses 
the Mol2Mat representation. 139 

Figure 6.6 Evaluation of 8 fingerprints based on their: a) Accuracy and 
b) MSE performance. 140 

Figure 6.7 Prediction accuracy values of the CNN model for the 8 
fingerprint representatives using the Violin-plot charts. 140 

Figure 6.8 A summary of the CNN configuration for combination case 
named “K” using a Mol2Mat representation. 143 

Figure 6.9 A CNN Model configuration for combination case named 
“K” using the Mol2Mat representation. 144 

Figure 6.10 Prediction accuracy values for the CNN model that was 
applied on the 26 combination cases of the 5 best 
fingerprints, with the help of the Violin-plot charts. 145 

Figure 6.11 A comparison of the prediction accuracies for the D, O, R 
and T combination cases, plotted using the Box-plot charts.
 146 

Figure 6.12 Boxplot chart results based on the comparison of the 
sensitivity values of different algorithms CNNfp, 
CNNToxic, CNNSmall, NaiveB, RBFN and LSVM. 149 



xxi 

Figure 6.13 Boxplot chart results based on the comparison of the 
specificity values of different algorithms CNNfp, 
CNNToxic, CNNSmall, NaiveB, RBFN and LSVM. 150 

Figure 6.14 Boxplot chart results based on the comparison of the AUC 
values of different algorithms CNNfp, CNNToxic, 
CNNSmall, NaiveB, RBFN and LSVM 151 

Figure 7.1 The proposed CNN configuration used for the combination 
of the five proposed molecular representations. 159 

Figure 7.2 A summary of the proposed CNN configuration with the 
help of five molecular representations. 162 

Figure 7.3 The proposed CNN configuration using five molecular 
representation. 163 

Figure 7.4 Boxplot chart results based on the comparison of all 
sensitivity values of different algorithms like 
CNNCombine, CNNfp, CNNSmall, CNNToxic, NaiveB, 
RBFN and LSVM. 166 

Figure 7.5 Boxplot chart results based on the comparison of the 
specificity values of different algorithms like 
CNNCombine, CNNfp, CNNSmall, CNNToxic, NaiveB, 
RBFN and LSVM. 167 

Figure 7.6 Boxplot chart results based on the comparison of the AUC 
values of different algorithms like CNNCombine, CNNfp, 
CNNSmall, CNNToxic, NaiveB, RBFN and LSVM. 168 

Figure 8.1 Learning representation with Pre-trained CNN Model. 175 

Figure 8.2 The proposed CNN configuration used for a novel 
molecular learning representation. 177 

Figure 8.3 The proposed CNN configuration used for developing a 
new molecular learning representation, with the help of five 
molecular representations. 178 

Figure 8.4 3D-scatter plots, which were based on the proposed 
learning representation of the 8568 molecules, selected 
from 10 high-diversity biological activity classes in 
MDDR2 dataset. 179 

Figure 8.5 3D-scatter plots, which were based on the fingerprints and 
the molecular descriptor representations; a) ECFP4, b) 
EPFP4; of the 8568 molecules selected from 10 high-
diversity biological activity classes in the MDDR2 dataset. 180 

Figure 8.6 Process for conducting similarity searches during the 
Ligand-Based Virtual Screening. 182 



xxii 

Figure 8.7 Boxplot chart results noted after comparing the top 1% 
recall values for the 10 methods of actives that were 
retrieved while searching the MDDR1 database. 187 

Figure 8.8 Boxplot chart results noted after comparing the top 5% 
recall values for the 10 methods of actives that were 
retrieved while searching the MDDR1 database. 188 

Figure 8.9 Boxplot chart results noted after comparing the Top 1% 
recall value for the 10 methods of actives that were 
retrieved while searching the MDDR2 database. 189 

Figure 8.10 Boxplot chart results noted after comparing the Top 5% 
recall value for the 10 methods of actives that were 
retrieved while searching the MDDR2 database. 190 

Figure 8.11 Swarm-plot chart for the mean rankings determined using 
VS methods. 192 

Figure 9.1 The achievements of this study. 197 

 

  



xxiii 

LIST OF ABBREVIATIONS 

ANN - Artificial Neural Network 

QSAR - Quantitative Structure-Activity Relationship 

CAMD - Computer Aided Molecular Design 

VS - Virtual Screening 

QSTR - Quantitative Structure Toxicity Relationship 

QSPR - Quantitative Structure Property Relationship 

MNA - Multilevel Neighbourhoods of Atoms 

BKD - Binary Kernel Discrimination 

NBC - Naiv̈e Bayesian Classifier 

SVM - Support Vector Machines 

AUC - Area Under Curve 

CNN - Convolutional Neural Network 

DL - Deep Learning 

ML - Machine Learning 

MDDR - MDL Drug Data Report 

SMILES - Simplified Molecular Input Line System 

ECFP - Extended-Connectivity Fingerprints 

TAN - Tanimoto Coefficient 

PCA - Principal Component Analysis 

AI - Artificial Intelligence 

DNN - Deep Neural Network 

FGs - Functional Groups 

SAR - Structure-Activity Relationship 

NLP - Natural Language Processing 

MPS - Mean Pairwise Similarity 

 

  



xxiv 

LIST OF SYMBOLS 

δ - squared deviations 

W - Kendall 

 

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

  



1 

  
 
 

INTRODUCTION 

1.1 Overview 

The ability to store and search chemical structures and other related 

information in a computer database have prompted a huge increment in the quantity of 

chemical compounds and biological information that is accessible for discovery 

programs in pharmaceutical and agrochemical commercial ventures. Computer Aided 

Molecular Design (CAMD) it is a method that helps in studying the chemical 

properties of structural configurations which have been developed via software 

programs. The concept of rational molecular design uses synergy of chemical 

combinations and permutations via computer software and advanced computer 

technology so that new compounds can be developed. The important processes used 

in CAMD and computational chemistry are Quantitative Structure Activity 

Relationships (QSAR), molecular quantum mechanics, machine learning, analysis on 

basis of structural configuration, molecular graphics and illustration of data illustrating 

the binding of ligand to receptor and calculating the intermolecular bonds.  

Many different sectors have benefitted from the use of CAMD like study of 

organic chemicals, development of new drugs, study of biochemical phenomenon 

occurring in nature, catalysts and solutions used in experiments. Other fields like 

agriculture, animal husbandry, medicine and material sciences (like study of 

compounds made up of different molecules, polymers, chemicals, semiconductors and 

nonlinear phenomenon) have also benefitted from these developments (Handa et al., 

2013; Barakat, 2014; Pérez-Sánchez et al., 2014). 

Any chemical compound is characterised by its biological activity, which helps 

the application of the compound in the agricultural chemistry, cosmetic, medicinal, 

and food industries (Wang et al., 2014). Biological activity is described as the effect 
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that is noted when a chemical compound interacts with a biological system. Biological 

activity highlights the interaction between the chemical compounds and a biological 

system at any biological organisation level, right from the molecular to the organism 

level. Hence, the biological activities of the chemical compounds must be studied with 

the help of different testing systems, like the “in vitro” (i.e., cells, individual molecules 

or subcellular organelles), “ex vivo” (i.e. isolated tissues or organs), and “in vivo” 

(animal experiments at the preclinical stage or human trials at the clinical trial stage).  

Drug design is based on the ligand structure, i.e., is based on the molecular 

similarities principal “molecules with a similar structure show similar biological 

activities”, it is used for analysing the characteristics of the biological activities of the 

compounds (Abdo et al., 2010). However, this statement is generally violated and the 

computer-based methods used for biological activity prediction, based on the pairwise 

structural similarity of the molecules, often provide an inaccurate estimate 

(Anusevicius et al., 2015). Despite this fact, many machine learning techniques are 

applied for deriving satisfactory results (Druzhilovskiy et al., 2017; Ancuceanu et al., 

2019; Ballester, 2019), as they can help in estimating the biological activity profiles/ 

spectra of the chemical compounds, such as the diverse biological activities (specific 

toxicity, pharmacotherapeutic effects, mechanism of action, metabolism, effect of the 

gene expression, etc.) (Filimonov et al., 2014).  

The quantitative structure-activity relationship (QSAR) takes a gander at the 

consequence of theoretical mixes in light of the examined aftereffect of beforehand 

blended results. It then associates attributes figured from the ligands structure with 

their measured results. The discovered results can be used to foresee the activities of 

hypothetical particles. The outcomes may, likewise, be significant in planning 

enhanced ligands. QSAR procedures contrast in the plan of particles that relate to the 

movement and in the systems for choosing the relationship. 

In QSAR similarity searching strategy, the activities of unknown compounds 

(target) are predicted by comparing them with the known chemical compounds. 

Thereafter, the researcher assigns the activities of similar compounds to the target 

compounds as shown if Figure 1.1. Though many of the target prediction techniques 
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have been successful, some problems still exist. Researchers have applied different 

techniques for predicting different target subsets for the same molecule (Ding et al., 

2013).  

 

Figure 1.1 The prediction of biological activity for unknown molecular activity. 
 

The popular Machine Learning ML algorithms, using the compound 

classification method for activity prediction (target), were Binary Kernel 

Discrimination (BKD) (Willett et al., 2007), Genetic programming for QSAR 

investigation  (Archetti et al., 2010), Naiv̈e Bayesian Classifier (NBC) (Xia et al., 

2004), hybrid soft-computing method (Pérez-Sánchez et al., 2014), Artificial Neural 

Networks (ANNs) (Winkler and Burden, 2002) and Support Vector Machines (SVM) 

(Kawai et al., 2008). The Bayesian belief network classifier was also used for 

predicting the ligand-based targets and their activities (Ammar et al., 2014).  

The key issue for the problems of Biological Activities Prediction of Chemical 

Compounds examined in this study is whether application of Deep learning approaches 

based on new sources of knowledge can improve the prediction accuracy. The aim of 

the proposed models in this research is to improve prediction using Deep learning 

Convolutional Neural Network. In this study, proposed and developed a novel machine 

learning process that was based on the Convolutional Neural Network (CNN) method, 
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which was considered as one of the best deep learning methods in the field of machine 

learning algorithms. 

This chapter proceeds as follows: Section 1.2 reviews the problem background; 

Section 1.3 presents the problem statements. Section 1.4 describes the objectives of 

the study; Section 1.5 gives the scope of the study. Section 1.6 mentions the 

significance of the research; Section 1.7 lists the Significance of this Study and Section 

1.8 describes the organization of the thesis. 

1.2 Problem Background 

A few methods which are used for predicting the biological activity and 

determining the Structure-Activity Relationship (SAR) are based on the linear 

regression(Free and Wilson, 1964; Hansch, 1969) and other linear techniques like the 

partial least squares (Joereskog and Wold, 1982). It is noted that the real-life SARs are 

non-linear, especially across the diverse set of compounds with different chemical 

structures. For improving the flexibility and range of the SARs that can be modelled, 

several novel approaches have been developed based on those described in the 

machine learning literature (Bolis et al., 1991; Burden, 1996; King and Srinivasan, 

1997; Sadowski and Kubinyi, 1998). These models are generally flexible (i.e., a feed-

forward neural network having linear output units along with a single hidden layer that 

can approximate a continuous function having an arbitrary accuracy (Cybenko, 1989)). 

However, some issues exist like sensitivity to the noise or over-fitting. Some other 

approaches were based on the estimation (either implicitly (Cramer et al., 1974; 

Ormerod et al., 1989) or explicitly (Gao et al., 1999)) of the probability of the 

compound activity, based on the presumption that the descriptor variables were 

stochastically independent. This assumption is usually not valid, and these techniques 

show a low ability to model the complex relationships between a diverse set of 

molecules. In the past few years, some researchers have applied recursive partitioning 

techniques for problems related to a large number of diverse chemical compounds 

(Rusinko et al., 1999; Cho et al., 2000). The recursive partitioning processes are better 



5 

as they can be predicted using a set of rules, wherein one can easily reach any specific 

node in the resultant tree.  

The similarity methods are seen to be a simple and popular tool for determining 

the biological activities of the various chemical compounds. This was because these 

techniques use a single known bioactive molecule (a target or reference molecule) as 

a start point for database search. The database structures were ranked in decreasing 

order of similarity with regards to the user-defined, active, reference (query) structure, 

based on the expectation that all the nearest neighbors display the activity like the 

query structure. All similarity searching techniques are categorised based on the 

dimensionality of the molecular structures used for determining the compound 

similarity, i.e., the 2D and 3D similarity methods.  

Many studies published earlier were related to the measurement of molecular 

similarity for determining the biological activities of molecules (Ding et al., 2013; 

Kowalski, 2013; Cereto-Massagué et al., 2015; Schymanski et al., 2017; Ancuceanu 

et al., 2019). However, the popular approaches were based on the 2D fingerprints, 

wherein the similarities between the target and the database structure were computed 

based on the association coefficient like the Tanimoto coefficient (Carbó-Dorca and 

Mezey, 2013; Ding et al., 2013; Ammar et al., 2014; Cereto-Massagué et al., 2015; 

Kumari et al., 2018). Several similarity methods used for biological activities 

prediction have been described for computing the QSAR between all molecules. 

However, the effectiveness of a similarity technique varies according to the biological 

activities, which affects the prediction (Carbó-Dorca and Mezey, 2013; Simões et al., 

2018). Furthermore, two methods retrieve a different subset of active molecules from 

a chemical database, hence, it is better to use many search methods, if possible  

(Ancuceanu et al., 2019; Ballester, 2019). 

In order to enhance the effectiveness of the similarity methods and QSAR 

measurement, the aim of this research is to develop a novel method of biological 

activity prediction, based on deep learning convolutional neural network (CNN), 

which incorporates the molecule’s substructural information which are identified as 

functional groups or toxicophores. In addition, the biological activities will also be 
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predicted using the molecules’ distributed representation. This approach included the 

encoding and storage of information regarding the chemical compounds by 

establishing their interactions and similarities to the standard toxicophores and 

functional groups. Furthermore, this method should be able to introduce a novel 

molecular matrix representation for molecular bioactivity mapping using small 

molecules. Finally, the availability of the combine multi convolutional neural network 

and several fingerprint types when they are available can help enhance the 

effectiveness of the molecular representation and prediction method. 

1.3 Problem Statement 

Since the traditional QSAR methods still suffer from their poor prediction 

accuracy and sensitivity specially in heterogenous activity classes, more works are still 

required to develop new approaches for the area of QSAR measurement. Therefore, 

this research raises several challenges, such as improving the prediction accuracy and 

enhancing the molecular representation. Here the researcher put forward the Research 

Questions (RQ) that will be further investigated in this study.  

(a) Can we improve the performance of biological activities prediction by utilizing 

the deep learning convolutional neural network? 

(b) How can fusion of molecular descriptor improve the performance of molecular 

activities prediction of unknown molecules using CNN?  

(c) How can convolutional neural network model and transfer learning strategy 

improve the ligand-based virtual screening and molecular similarity searching? 

 

1.4 Research Objectives 

By understanding the problem statements which has been discussed earlier, the 

QSAR try to measure the biological activity of chemical compound that the Drug 

design will be interested in it. Since the traditional QSAR methods still suffer from 
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their poor prediction accuracy and sensitivity, more works are still required to develop 

new approaches for the area of QSAR measurement.  The main goal of this study is to 

develop high-accuracy QSAR models, relying on CNN technique through taking into 

account the useful merging many sources of information for the purpose of enhancing 

the prediction accuracy. Therefore, this research raises several challenges, such as 

improving the prediction accuracy and enhancing the molecular representation. Thus, 

to achieve the goal mentioned above, the following objectives have been set. 

1. To incorporate the functional groups information, the fingerprint 

representations and the relationships of small molecules to biological activity 

into a new CNN-based molecular matrix representation for prediction the 

biological activity. 

2. To combine multi molecular representations in one CNN-based model to 

improve the performance of the prediction of biological activities specifically 

in heterogenous activity classes. 

3. To investigate whether the combined CNN model and transfer learning strategy 

can be a better alternative to improve the ligand-based virtual screening. 

 

1.5 Research Scope 

In order to achieve the objectives stated above, the scope of this research is 

limited to the following, the validation and evaluation of the quality of the prediction 

model proposed in this research will be tested on different datasets that have been used 

to validate the classification of molecules based on structure-activity relationship.   

The databases aimed to be used in this study are only limited to chemical data 

from MDDR (Sci Tegic Accelrys Inc, no date) and four data sets were taken from 

Sutherland and Helma (Jeffrey J Sutherland et al., 2003; Helma et al., 2004; 

Sutherland et al., 2004) literatures with compounds classified as active or inactive:  

cyclooxygenase inhibitors, ligands of the benzodiazepine receptor, dihydrofolate 

reductase inhibitors, ligands of the estrogen receptor (ER) and finally mutagens (MUT) 



8 

of molecular structures. These data sets have been used by literatures for validating 

prediction models. 

The proposed code has been implemented in the Keras (Chollet, 2015), which 

is a public deep learning software, based on Theano (Bastien et al., 2012) and 

Tensorflow (Abadi et al., 2016). The weights in the neural networks were initialised 

according to the Keras settings. All layers in the deep network were initialised 

simultaneously with the ADADELTA (Zeiler, 2012). The complete network was 

trained using the Dell Precision T1700 CPU system with a 16GB memory and the 

professional-grade NVIDIA GeForce GTX 1060 6GB graphics. The next section we 

put forward the Significance of the Study. 

1.6 Significance of the Study 

The need to identify the biological activity of molecules is the foundation for 

the work presented here. It is strongly believed that complete automatic biological 

activity prediction system can improve and help in the drug development process. The 

motivation of conducting this PhD study is to propose new state-of-the-art, optimized 

and innovative techniques for the prediction of biological activity. 

Proposed techniques should be capable to provide promising performance in 

an undesirable situation such as new presentation for molecules, and precise biological 

activity by reducing the prediction error. In light of the above-mentioned issues, the 

findings of this study do contribute meaningfully to what is currently known about 

prediction and estimate the biological activity of unknown molecule.  Nonetheless, the 

significance of this study is not only limited to knowledge enrichment, but also to the 

development of a new method for future implementation and prediction of biological 

activity. The next section we put forward the describes the organization of the thesis.    
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1.7 Thesis Organization 

This section describes the organization of the thesis. There are altogether 

nine chapters in this thesis, which includes: 

Chapter 1, Introduction: this chapter gives a general introduction to the topic 

of the proposed research work. Brief overviews of some of the issues concerning the 

research are also mentioned in this chapter. Besides the problem background, this 

chapter also includes the problem statement, objectives of the study, research scope 

and the significance of the study. 

Chapter 2, Literature Review: in this chapter, the researcher presents an 

overview of biological activity studies. It covers the basic approaches of biological 

activity prediction, the Computer-Aided Molecular Design and Quantitative Structure-

Activity Relationships. Furthermore, this chapter also reviews the significant efforts 

which have been put in biological activity studies and provides the theoretical 

explanation and fundamental concepts related to it. Also, literature reviews on other 

concepts related to the current study; such as Molecular Representations, prediction 

models, Conditions for Applicability of QSAR and QSAR Origins and Evolution. 

Finally, the challenges that face the biological activity prediction.  

Chapter 3, Research Methodology: this chapter presents the methodology 

used in this research. A Methodology is a guideline for solving a research problem. It 

contains the generic framework of the research and the steps required to carry out the 

research systematically. This chapter includes discussion of the research components 

such as the phases, techniques, and tools involved. 

Chapter 4, Convolutional Neural Network Model Based on Toxicophores 

Features for Bioactivity Prediction. described a novel molecular representation which 

could help in observing and characterising each molecule in the matrix based on its 

interaction with the toxicophores. This proposed matrix presents the molecular activity 

of the compound based on its toxic properties. Furthermore, this Mol2toxicophore 

showed a low overlap and segregated all biological activities. 
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Chapter 5, Convolutional Neural Network Model Based on Small Molecules 

for Bioactivity Prediction. showed that the distributed representation was able to 

construct the abstract features, needed for predicting the toxicity of the compounds. 

This chapter described a novel molecular matrix representation based on a select set 

of small molecules. Finally, the new matrix representation can easily highlight the 

biological activities of the unknown molecules. 

Chapter 6, Convolutional Neural Network Model Based on 2d Fingerprint for 

Bioactivity Prediction. described the prediction of the biological activities of 

molecules using the molecular fingerprints in the CNN model. The researcher use 2D 

fingerprint descriptors as a new molecular matrix for representing the “Mol2mat” in 

the CNN model. After analysing the multi fingerprints, the researcher study all the 

probable combinations.  

Chapter 7, Convolutional Neural Network Model Based on Combination of all 

Representation for Bioactivity Prediction. describes a new CNN architecture which 

applies all the knowledge derived from the 3 molecular representatives and combines 

them together to form one compact molecular descriptor. The researcher presents a 

combination of the multi-molecular representation with CNN, to predict the activities 

of the unknown compounds. 

Chapter 8, Adapting the Combination model for Implementing New Molecular 

Representation Scheme for Ligand-Based Virtual Screening: the researcher use the 

same CNN architecture, describe in Chapter 7, for implementing a novel molecular 

descriptor, which could be used in the ligand-based virtual screening and molecular 

similarity measurements. This method used the values within the neurons of the CNN 

layer as a novel molecular learning representative. This method could be very effective 

for Ligand-Based Virtual Screening. 

Chapter 9, Conclusion and Future Work: this chapter provides the conclusions 

of the research work discussed throughout this study. The chapter present and 

highlights the contributions of the research and put forward recommendations for 

future work. 



 

203 

REFERENCES 

Abadi, M., Barham, P., Chen, J. and Chen, Z. (2016) ‘TensorFlow: A System for 

Large-Scale Machine Learning’, This paper is included in the Proceedings of 

the 12th USENIX Symposium on Operating Systems Design and 

Implementation (OSDI ’16), pp. 265–283. 

Abdo, A., Chen, B., Mueller, C., Salim, N. and Willett, P. (2010) ‘Ligand-based virtual 

screening using bayesian networks’, Journal of Chemical Information and 

Modeling, 50(6), pp. 1012–1020. 

Abdo, A. and Salim, N. (2011) ‘New fragment weighting scheme for the Bayesian 

inference network in ligand-based virtual screening’, Journal of Chemical 

Information and Modeling, 51(1), pp. 25–32. 

Abdo, A., Salim, N. and Ahmed, A. (2011) ‘Implementing relevance feedback in 

ligand-based virtual screening using Bayesian inference network.’, Journal of 

biomolecular screening, 16(9), pp. 1081–8. 

Adl, A., Zein, M. and Hassanien, A. E. (2016) ‘PQSAR: The membrane quantitative 

structure-activity relationships in cheminformatics’, Expert Systems with 

Applications. Elsevier Ltd, 54, pp. 219–227. 

Ahmed, A., Abdo, A. and Salim, N. (2011) ‘Ligand-based Virtual screening using 

Fuzzy Correlation Coefficient’, in International Journal of Computer 

Applications (0975, pp. 38–43. 

Ahmed, A., Abdo, A. and Salim, N. (2012a) ‘An enhancement of Bayesian inference 

network for ligand-based virtual screening using minifingerprints’, Fourth 

International Conference on Machine Vision (ICMV 2011): Computer Vision 

and Image Analysis; Pattern Recognition and Basic Technologies, 8350(Icmv 

2011), p. 83502U. 

Ahmed, A., Abdo, A. and Salim, N. (2012b) ‘Ligand-Based Virtual Screening Using 

Bayesian Inference Network and Reweighted Fragments’, The Scientific 

World Journal, 2012, pp. 1–7. 

Ahmed, A., Saeed, F., Salim, N. and Abdo, A. (2014) ‘Condorcet and borda count 

fusion method for ligand-based virtual screening’, Journal of 

Cheminformatics, 6(1). 



 

204 

Al-Dabbagh, M. M., Salim, N., Himmat, M., Ahmed, A. and Saeed, F. (2017) 

‘Quantum probability ranking principle for ligand-based virtual screening’, 

Journal of Computer-Aided Molecular Design. Springer International 

Publishing, 31(4), pp. 365–378. 

Ammar, A., Valérie, L., Philippe, J., Naomie, S. and Maude, P. (2014) ‘Prediction of 

new bioactive molecules using a Bayesian belief network’, Journal of 

Chemical Information and Modeling, 54(1), pp. 30–36. 

Ancuceanu, R., Dinu, M., Neaga, I., Laszlo, F. G. and Boda, D. (2019) ‘Development 

of QSAR machine learning-based models to forecast the effect of substances 

on malignant melanoma cells’, Oncology Letters, 17(5), pp. 4188–4196. 

Angermueller, C., Pärnamaa, T., Parts, L. and Stegle, O. (2016) ‘Deep learning for 

computational biology’, Molecular Systems Biology, 12(7), pp. 1–16. 

Anusevicius, K., Mickevicius, V., Stasevych, M., Zvarych, V., Komarovska-

Porokhnyavets, O., Novikov, V., Tarasova, O., Gloriozova, T. and Poroikov, 

V. (2015) ‘Synthesis and chemoinformatics analysis of N-aryl-β-alanine 

derivatives’, Research on Chemical Intermediates. Springer Netherlands, 

41(10), pp. 7517–7540. 

Archetti, F., Giordani, I. and Vanneschi, L. (2010) ‘Genetic programming for QSAR 

investigation of docking energy’, Applied Soft Computing Journal, 10(1), pp. 

170–182. 

Bai, L., Cui, L., Bai, X. and R. Hancock, E. (2018) ‘Deep depth-based representations 

of graphs through deep learning networks’, Neurocomputing. Elsevier B.V., 

(xxxx). 

Bajusz, D., Rácz, A. and Héberger, K. (2015) ‘Why is Tanimoto index an appropriate 

choice for fingerprint-based similarity calculations?’, Journal of 

Cheminformatics. Journal of Cheminformatics, 7(1), pp. 1–13. 

Ballester, P. J. (2019) ‘Machine learning for molecular modelling in drug design’, 

Biomolecules, 9(6), pp. 10–12. 

Banerjee, P., Siramshetty, V. B., Drwal, M. N. and Preissner, R. (2016) 

‘Computational methods for prediction of in vitro effects of new chemical 

structures’, Journal of Cheminformatics. Springer International Publishing, 

8(1), pp. 1–11. 

Barakat, K. (2014) ‘Computer-Aided Drug Design’, Journal of Pharmaceutical Care 

& Health Systems, 1(4), pp. 1–2. 



 

205 

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., 

Bouchard, N., Warde-Farley, D. and Bengio, Y. (2012) ‘Theano: new features 

and speed improvements’, pp. 1–10. 

Bender, A., Jenkins, J. L., Scheiber, J., Sukuru, S. C. K., Glick, M. and Davies, J. W. 

(2009) ‘How Similar Are Similarity Searching Methods? A Principal 

Component Analysis of Molecular Descriptor Space’, Journal of Chemical 

Information and Modeling, 49(1), pp. 108–119. 

Bengio, Y. (2009) Learning Deep Architectures for AI, Foundations and Trends® in 

Machine Learning. 

Benigni, R., Giuliani, A., Franke, R. and Gruska, A. (2000) ‘Quantitative structure-

activity relationships of mutagenic and carcinogenic aromatic amines’, 

Chemical Reviews, 100(10), pp. 3697–3714. 

Bento, A. P., Gaulton, A., Hersey, A., Bellis, L. J., Chambers, J., Davies, M., Krüger, 

F. A., Light, Y., Mak, L., McGlinchey, S. and others (2014) ‘The ChEMBL 

bioactivity database: an update’, Nucleic acids research. Oxford University 

Press, 42(D1), pp. D1083--D1090. 

Bobach, C., Böhme, T., Laube, U., Püschel,  a. and Weber, L. (2012) ‘Automated 

compound classification using a chemical ontology’, Journal of 

Cheminformatics, 4(12), pp. 1–12. 

Bolis, G., Di Pace, L. and Fabrocini, F. (1991) ‘A machine learning approach to 

computer-aided molecular design.’, Journal of computer-aided molecular 

design, 5(6), pp. 617–628. 

Booth, B. and Zemmel, R. (2004) ‘Prospects for productivity’, Nature Reviews Drug 

Discovery, 3(5), pp. 451–456. 

Bugmann, G. (1998) ‘Normalized Gaussian radial basis function networks’, 

Neurocomputing, 20(1–3), pp. 97–110. 

Bullins, B., Princeton, G. A., Hazan, E., Kalai, A., Research Roi Livni, M., Garivier, 

A. and Kale, S. (2019) ‘Generalize Across Tasks: Efficient Algorithms for 

Linear Representation Learning’, Proceedings of Machine Learning Research, 

98, pp. 1–12. 

Burden, F. R. (1996) ‘Using Artificial Neural Networks to Predict Biological Activity 

from Simple Molecular Structural Considerations’, Quantitative Structure-

Activity Relationships. WILEY-VCH Verlag, 15(1), pp. 7–11. 



 

206 

Carbó-Dorca, R. and Mezey, P. G. (2013) Fundamentals of molecular similarity. 

Springer Science & Business Media. 

Cereto-Massagué, A., Ojeda, M. J., Valls, C., Mulero, M., Garcia-Vallvé, S. and 

Pujadas, G. (2015) ‘Molecular fingerprint similarity search in virtual 

screening’, Methods, 71(August), pp. 58–63. 

Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne (2016) ‘Eyeriss: 

An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional 

Neural Networks’, in IEEE International Solid-State Circuits Conference, 

ISSCC 2016, Digest of Technical Papers, pp. 262–263. 

Cheng, Y., Wang, F., Zhang, P. and Hu, J. (2016) ‘Risk Prediction with Electronic 

Health Records: A Deep Learning Approach’, Proceedings of the 2016 SIAM 

International Conference on Data Mining, pp. 432–440. 

CHIH-CHUNG, C. (2011) ‘LIBSVM : A library for support vector machines’, ACM 

Transactions on Intelligent Systems and Technology, 2, pp. 27:1-27:27. 

Cho, S. J., Shen, C. F. and Hermsmeier, M. a. (2000) ‘Binary Formal Inference-Based 

Recursive Modeling Using Multiple Atom and Physicochemical Property 

Class Pair and Torsion Descriptors as Decision Criteria’, Journal of Chemical 

Information and Modeling, 40(3), pp. 668–680. 

Chollet, F. (2015) ‘Keras Documentation’, Keras.Io. 

Cramer, R. D., Redl, G. and Berkoff, C. E. (1974) ‘Substructural Analysis. Novel 

Approach to the Problem of Drug Design’, Journal of Medicinal Chemistry, 

17(5), pp. 533–535. 

Cybenko, G. (1989) ‘Degree of approximation by superpositions of a sigmoidal 

function’, Mathematics of control, signals and systems, 9(3), pp. 303–314. 

Dahl, G. E., Jaitly, N. and Salakhutdinov, R. (2014) ‘Multi-task Neural Networks for 

QSAR Predictions’, pp. 1–21. 

Dahl, G. E., Sainath, T. N. and Hinton, G. E. (2013) ‘Improving Deep Neural Networks 

for {LVCSR} Using Rectified Linear Units and Dropout’, IEEE International 

Conference on Acoustics, Speech and Signal Processing, pp. 8609–8613. 

Das, A., Ghosh, S., Sarkhel, R., Choudhuri, S., Das, N. and Nasipuri, M. (2019) 

‘Combining Multilevel Contexts of Superpixel Using Convolutional Neural 

Networks to Perform Natural Scene Labeling’, Advances in Intelligent 

Systems and Computing, 740, pp. 297–306. 



 

207 

David S, T. and Dean A, P. (1989) ‘What’S Hidden in the Hidden Layer’, In Depth 

Neural Networks .Byte 14.8, pp. 227–233. 

Ding, H., Takigawa, I., Mamitsuka, H. and Zhu, S. (2013) ‘Similarity-based machine 

learning methods for predicting drug-target interactions: a brief review.’, 

Briefings in bioinformatics, 15(5), pp. bbt056-. 

Dolz, J., Desrosiers, C. and Ayed, I. Ben (2018) ‘IVD-Net: Intervertebral disc 

localization and segmentation in MRI with a multi-modal UNet’, Proceedings 

ofthe MICCAI 2018 IVD Challenge, (Ivd), pp. 1–7. 

Druzhilovskiy, D. S., Rudik,  a. V., Filimonov, D. a., Gloriozova, T. a., Lagunin,  a. 

a., Dmitriev,  a. V., Pogodin, P. V., Dubovskaya, V. I., Ivanov, S. M., Tarasova, 

O. a., Bezhentsev, V. M., Murtazalieva, K. a., Semin, M. I., Maiorov, I. S., 

Gaur,  a. S., Sastry, G. N. and Poroikov, V. V. (2017) ‘Computational platform 

Way2Drug: from the prediction of biological activity to drug repurposing’, 

Russian Chemical Bulletin, 66(10), pp. 1832–1841. 

Ertl, P. (2017) ‘An algorithm to identify functional groups in organic molecules’, 

Journal of Cheminformatics. Springer International Publishing, 9(1), pp. 1–7. 

Feldman, H. J., Dumontier, M., Ling, S., Haider, N. and Hogue, C. W. V. (2005) ‘CO: 

A chemical ontology for identification of functional groups and semantic 

comparison of small molecules’, FEBS Letters, 579(21), pp. 4685–4691. 

Fernández-De Gortari, E., García-Jacas, C. R., Martinez-Mayorga, K. and Medina-

Franco, J. L. (2017) ‘Database fingerprint (DFP): an approach to represent 

molecular databases’, Journal of Cheminformatics. Springer International 

Publishing, 9(1), pp. 1–9. 

Filimonov, D. a, Lagunin,  a a, Gloriozova, T. a, Rudik,  a V, Druzhilovskii, D. S., 

Pogodin, P. V and Poroikov, V. V (2014) ‘Prediction of the biological activity 

spectra of organic compounds uing the PASSonline website resource’, 

Chemistry of Heterocyclic Compounds, 50(3), pp. 444–457. 

Free, S. M. and Wilson, J. W. (1964) ‘a Mathematical Contribution To Structure-

Activity Studies.’, Journal of medicinal chemistry, 7(4), pp. 395–399. 

Gao, H., Williams, C., Labute, P. and Bajorath, J. (1999) ‘Binary quantitative 

structure-activity relationship (QSAR) analysis of estrogen receptor ligands.’, 

Journal of chemical information and computer sciences, 39(1), pp. 164–8. 

Gatys, L. a, Ecker, A. S. and Bethge, M. (2015) ‘A Neural Algorithm of Artistic Style’, 

arXiv preprint, pp. 1–16. 



 

208 

Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., Light, 

Y., McGlinchey, S., Michalovich, D., Al-Lazikani, B. and Overington, J. P. 

(2012) ‘ChEMBL: A large-scale bioactivity database for drug discovery’, 

Nucleic Acids Research, 40(D1), pp. 1100–1107. 

Ghasemi, F., Mehridehnavi, A., Fassihi, A. and Pérez-Sánchez, H. (2018) ‘Deep neural 

network in QSAR studies using deep belief network’, Applied Soft Computing 

Journal. Elsevier B.V., 62, pp. 251–258. 

Goodfellow, I., Bengio, Y. and Courville, A. (2016) ‘Book Review: Deep Learning’, 

Deep Learning, 22(4), pp. 351–354. 

Gupta, A., Wang, H. and Ganapathiraju, M. (2015) ‘Learning structure in gene 

expression data using deep architectures, with an application to gene 

clustering’, 2015 IEEE International Conference on Bioinformatics and 

Biomedicine (BIBM), pp. 1328–1335. 

GUPTA, V. (2017) Image Classification using Convolutional Neural Networks in 

Keras. 

Handa, K., Nakagome, I., Yamaotsu, N., Gouda, H. and Hirono, S. (2013) ‘Three-

dimensional quantitative structure-activity relationship analysis of inhibitors of 

human and rat cytochrome P4503A enzymes’, Drug Metabolism and 

Pharmacokinetics, 28(4), pp. 345–355. 

Hansch, C. (1969) ‘A Quantitative Approach to Biochemical Structure-Activity 

Relationships’, Chemical Research, 2(4), pp. 232–239. 

Hansen, K., Mika, S., Schroeter, T., Sutter, A., Laak, A. Ter, Thomas, S. H., Heinrich, 

N. and Müller, K. R. (2009) ‘Benchmark data set for in silico prediction of 

Ames mutagenicity’, Journal of Chemical Information and Modeling, 49(9), 

pp. 2077–2081. 

He, M., Yang, Q., Norvil, A., Sherris, D. and Gowher, H. (2018) ‘Characterization of 

Small Molecules Inhibiting the Pro-Angiogenic Activity of the Zinc Finger 

Transcription Factor Vezf1’, Molecules, 23(7), p. 15. 

Helma, C., Cramer, T., Kramer, S. and De Raedt, L. (2004) ‘Data mining and machine 

learning techniques for the identification of mutagenicity inducing 

substructures and structure activity relationships of noncongeneric 

compounds’, Journal of Chemical Information and Computer Sciences, 44(4), 

pp. 1402–1411. 



 

209 

Hentabli, H., Naomie, S. and Saeed, F. (2016) ‘AN ACTIVITY PREDICTION 

MODEL USING SHAPE-BASED DESCRIPTOR METHOD’, Jurnal 

Teknologi, 1, pp. 1–8. 

Hentabli, H., Saeed, F., Abdo, A. and Salim, N. (2014) ‘A new graph-based molecular 

descriptor using the canonical representation of the molecule’, Scientific 

World Journal, 2014. 

Hentabli, H., Salim, N., Abdo, A. and Saeed, F. (2012) ‘LWDOSM : Language for 

Writing Descriptors’, Advanced Machine Learning Technologies and 

Applications. Springer Berlin Heidelberg, pp. 247–256. 

Hentabli, H., Salim, N., Abdo, A. and Saeed, F. (2013) ‘LINGO-DOSM : LINGO for 

Descriptors of Outline’, Intelligent Information and Database Systems. 

Springer Berlin Heidelberg, pp. 315–324. 

Himmat, M., Salim, N., Al-Dabbagh, M. M. and Ahmed, A. (2015) ‘An algorithm for 

similarity-based virtual screening.’, Journal of Chemical and Pharmaceutical 

Research, 7(4), pp. 974–979. 

Himmat, M., Salim, N., Al-Dabbagh, M. M., Saeed, F. and Ahmed, A. (2015) ‘Data 

mining and fusion methods in ligand-based virtual screening’, Journal of 

Chemical and Pharmaceutical Sciences, 8(4), pp. 964–969. 

Joereskog, K. G. and Wold, H. O. A. (1982) Systems under indirect observation: 

Causality, structure, prediction. North Holland. 

John, G. H. and Langley, P. (2013) ‘Estimating Continuous Distributions in Bayesian 

Classifiers’, pp. 338–345. 

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R. and Fei-Fei, L. (2014) 

‘Large-scale Video Classification with Convolutional Neural Networks’, in 

Proceedings of International Computer Vision and Pattern Recognition (CVPR 

2014). 

Kawai, K., Fujishima, S. and Takahashi, Y. (2008) ‘Predictive Activity Profiling of 

Drugs by Topological-Fragment-Spectra-Based Support Vector Machines’, 

Journal of chemical information and modeling, 48(6), pp. 1152–1160. 

Kazius, J., McGuire, R. and Bursi, R. (2005) ‘Derivation and validation of 

toxicophores for muta- genicity prediction’, J. Med. Chem, 48, pp. 312–320. 

King, R. D. and Srinivasan,  a (1997) ‘The discovery of indicator variables for QSAR 

using inductive logic programming.’, Journal of computer-aided molecular 

design, 11(6), pp. 571–80. 



 

210 

Kowalski, B. R. (2013) Chemometrics: mathematics and statistics in chemistry. 

Springer Science & Business Media. 

Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012) ‘ImageNet Classification with 

Deep Convolutional Neural Networks’, Advances In Neural Information 

Processing Systems, pp. 1–9. 

Kumari, M., Tiwari, N., Chandra, S. and Subbarao, N. (2018) ‘Comparative analysis 

of machine learning based QSAR models and molecular docking studies to 

screen potential anti-tubercular inhibitors against InhA of mycobacterium 

tuberculosis’, International Journal of Computational Biology and Drug 

Design, 11(3), pp. 209–235. 

LeCun, Y., Bottou, L., Orr, G. B. and Müller, K.-R. (1998) ‘Effiicient BackProp’, in 

Neural Networks: Tricks of the Trade, this book is an outgrowth of a 1996 

NIPS workshop, pp. 9–50. 

LeCun, Y., Yoshua, B. and Geoffrey, H. (2015) ‘Deep learning’, Nature, 521(7553), 

pp. 436–444. 

Legendre, P. (2005) ‘Species associations: The Kendall coefficient of concordance 

revisited’, Journal of Agricultural, Biological, and Environmental Statistics, 

10(2), pp. 226–245. 

Lewis, R. a. and Wood, D. (2014) ‘Modern 2D QSAR for drug discovery’, Wiley 

Interdisciplinary Reviews: Computational Molecular Science, 4(6), pp. 505–

522. 

Lo, Y. C., Rensi, S. E., Torng, W. and Altman, R. B. (2018) ‘Machine learning in 

chemoinformatics and drug discovery’, Drug Discovery Today. Elsevier Ltd, 

23(8), pp. 1538–1546. 

Ma, J., Sheridan, R. P., Liaw, A., Dahl, G. E. and Svetnik, V. (2015) ‘Deep neural nets 

as a method for quantitative structure-activity relationships’, Journal of 

Chemical Information and Modeling, 55(2), pp. 263–274. 

Martin, Y. C. (1991) ‘Computer-assisted rational drug design.’, Methods in 

enzymology, 203, p. 587. 

Martin, Y. C., Kofron, J. L. and Traphagen, L. M. (2002) ‘Do structurally similar 

molecules have similar biological activity?’, Journal of Medicinal Chemistry, 

45(19), pp. 4350–4358. 

McCulloch, W. S. and Pitts, W. (1988) ‘Neurocomputing: foundations of research’, 

Cambridge, MA, USA, pp. 15–27. 



 

211 

McCulloch, W. S. and Pitts, W. H. (1943) ‘Alogical calculus of the idea immanent in 

nervous activity’, Bulletin of Mathematical Biophysics, 5, pp. 115–133. 

Mikolov, T., Chen, K., Corrado, G. and Dean, J. (2013) ‘Efficient Estimation of Word 

Representations in Vector Space’, pp. 1–12. 

Mikolove, T., Sutskever, I., Chen, K., Corrado, G. and Dean, J. (2013) ‘Distributed 

Representations of Words and Phrases and their Compositionality’, pp. 1–9. 

MLA, J. and Maggiora, G. M. (1990) ‘Concepts and Application of Molecular 

Similarity’, Wiley Interdisciplinary Reviews-Computational Molecular 

Science, 50, pp. 376–377. 

Nair, V. and Hinton, G. E. (2010) ‘Rectified Linear Units Improve Restricted 

Boltzmann Machines’, Proceedings of the 27th International Conference on 

Machine Learning, (3), pp. 807–814. 

Ormerod, A., Willett, P. and Bawden, D. (1989) ‘Comparison of Fragment Weighting 

Schemes for Substructural Analysis’, Quantitative Structure-Activity 

Relationships. WILEY-VCH Verlag, 8(2), pp. 115–129. 

Park, E., Han, X., Berg, T. L. and Berg, A. C. (2016) ‘Combining Multiple Sources of 

Knowledge in Deep CNNs for Action Recognition’, 2016 IEEE Winter 

Conference on Applications of Computer Vision (WACV), 53, pp. 1–8. 

Pérez-Sánchez, H., Cano, G. and García-Rodríguez, J. (2014) ‘Improving drug 

discovery using hybrid softcomputing methods’, Applied Soft Computing 

Journal. Elsevier B.V., 20, pp. 119–126. 

Pradeep, P., Povinelli, R. J., White, S. and Merrill, S. J. (2016) ‘An ensemble model 

of QSAR tools for regulatory risk assessment’, Journal of Cheminformatics. 

Springer International Publishing, 8(1), pp. 1–9. 

Qabaja, A., Alshalalfa, M., Alanazi, E. and Alhajj, R. (2014) ‘Prediction of novel drug 

indications using network driven biological data prioritization and integration’, 

Journal of Cheminformatics, 6(1), pp. 1–14. 

Qiu, Z., Yao, T., Ngo, C.-W., Tian, X. and Mei, T. (2019) ‘Learning Spatio-Temporal 

Representation with Local and Global Diffusion’, In Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition, pp. 12056–12065. 

Ramsundar, B., Kearnes, S., Riley, P., Webster, D., Konerding, D. and Pande, V. 

(2015) ‘Massively Multitask Networks for Drug Discovery’, (Icml). 

Rogers, D. and Hahn, M. (2010) ‘Extended-connectivity fingerprints’, Journal of 

chemical information and modeling. ACS Publications, 50(5), pp. 742–754. 



 

212 

Rosenblatt, F. (1958) ‘The perceptron: a probabilistic model for information storage 

and organization in the brain.’, Psychological review. American Psychological 

Association, 65(6), p. 386. 

Rosenblatt, F. (1961) Principles of neurodynamics. perceptrons and the theory of brain 

mechanisms. 

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1988) ‘Neurocomputing: 

Foundations of research’, ch. Learning Representations by Back-propagating 

Errors, pp. 696–699. 

Rusinko,  a, Farmen, M. W., Lambert, C. G., Brown, P. L. and Young, S. S. (1999) 

‘Analysis of a large structure/biological activity data set using recursive 

partitioning.’, Journal of chemical information and computer sciences, 39(6), 

pp. 1017–26. 

Sadowski, J. and Kubinyi, H. (1998) ‘A scoring scheme for discriminating between 

drugs and nondrugs.’, Journal of medicinal chemistry, 41(18), pp. 3325–9. 

Saeed, F. and Salim, N. (2013) ‘Using soft consensus clustering for combining 

multiple clusterings of chemical structures’, Jurnal Teknologi (Sciences and 

Engineering), 63(1), pp. 9–11. 

Sainath, T., Mohamed, A. R., Kingsbury, B. and Ramabhadran, B. (2013) ‘Deep 

convolutional neural networks for LVCSR’, Proceedings of IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8614–

8618. 

Salim, N., Holliday, J. and Willett, P. (2003) ‘Combination of fingerprint-based 

similarity coefficients using data fusion’, Journal of Chemical Information and 

Computer Sciences, 43(2), pp. 435–442. 

Schreiber, S. L. (2005) ‘Small molecule, the missing link in the central dogma’, 

NATURE CHEMICAL BIOLOGY, 1(2), pp. 64–66. 

Schymanski, E. L., Ruttkies, C., Krauss, M., Brouard, C., Kind, T., Dührkop, K., 

Allen, F., Vaniya, A., Verdegem, D., Böcker, S., Rousu, J., Shen, H., Tsugawa, 

H., Sajed, T., Fiehn, O., Ghesquière, B. and Neumann, S. (2017) ‘Critical 

Assessment of Small Molecule Identification 2016: automated methods’, 

Journal of Cheminformatics. Springer International Publishing, 9(1), pp. 1–21. 

Sci Tegic Accelrys Inc (no date). 

Shen, M.-Y., Su, B.-H., Esposito, E. X., Hopfinger, A. J. and Tseng, Y. J. (2011) ‘A 

Comprehensive SVM Binary hERG Classification Model Based on Extensive 



 

213 

but Biased Endpoint hERG Data Sets.’, Chemical research in toxicology, pp. 

934–949. 

Sidney Siegel (1956) Nonparametric statistics for the behavioral sciences. New York, 

NY, England: Mcgraw-Hill Book Company. 

Siegel, S. and Castellan, N. J. (1988) ‘Nonparametric Statistics for the Behavioral 

Sciences’, McGraw-HiU Book Company, New York. 

Simões, R. S., Maltarollo, V. G., Oliveira, P. R. and Honorio, K. M. (2018) ‘Transfer 

and multi-task learning in QSAR modeling: Advances and challenges’, 

Frontiers in Pharmacology, 9(FEB), pp. 1–7. 

Simonyan, K. and Zisserman, A. (2014) ‘Two-Stream Convolutional Networks for 

Action Recognition in Videos’, in Advances in Neural Information Processing 

Systems 27, pp. 568–576. 

Snyder, R. D. and Smith, M. D. (2005) ‘Computational prediction of genotoxicity : 

room for improvement chemical space considerations with associated non-

causal activity correlations . REVIEWS’, REVIEWSdrug discovery todaye 

BIOSILICO, 10(16), pp. 1120–1124. 

Stevenson, J. M. and Mulready, P. D. (2003) ‘Pipeline Pilot 2.1 By Scitegic, 9665 

Chesapeake Drive, Suite 401, San Diego, CA 92123-1365.’, Journal of the 

American Chemical Society. American Chemical Society, 125(5), pp. 1437–

1438. 

Su, B. H., Slien, M. Y., Esposito, E. X., Hopnnger, A. J. and Tseng, Y. J. (2010) ‘In 

silico binary classification QSAR models based on 4D-fingerprints and MOE 

descriptors for prediction of hERG blockage’, Journal of Chemical Information 

and Modeling, 50(7), pp. 1304–1318. 

Su, H., Maji, S., Kalogerakis, E. and Learned-Miller, E. (2015) ‘Multi-view 

Convolutional Neural Networks for 3D Shape Recognition’, In Proceedings of 

the IEEE international conference on computer vision, 1(02), pp. 945–953. 

Sutherland dataset (no date). 

Sutherland, Jeffrey J, Brien, L. a O. and Weaver, D. F. (2003) ‘Spline-Fitting with a 

Genetic Algorithm : A Method for Developing Classification Structure - 

Activity Relationships’, Journal of Chemical Information and Modeling, pp. 

1906–1915. 

Sutherland, Jeffrey J., O’Brien, L. a. and Weaver, D. F. (2003) ‘Spline-Fitting with a 

Genetic Algorithm: A Method for Developing Classification Structure-



 

214 

Activity Relationships’, Journal of Chemical Information and Computer 

Sciences, 43(6), pp. 1906–1915. 

Sutherland, J. J., O’Brien, L. a. and Weaver, D. F. (2004) ‘A comparison of methods 

for modeling quantitative structure-activity relationships’, Journal of 

Medicinal Chemistry, 47(22), pp. 5541–5554. 

Todeschini, R. and Consonni, V. (2000) ‘Handbook of Molecular Descriptors’. John 

Wiley & Sons. 

Unterthiner, T., Mayr, A., Klambauer, G. and Hochreiter, S. (2015) ‘Toxicity 

Prediction using Deep Learning’. 

Unterthiner, T., Mayr, A., Klambauer, G., Steijaert, M., Wegner, J. K. and Ceulemans, 

H. (2014) ‘Deep Learning as an Opportunity in Virtual Screening’, Deep 

Learning and Representation Learning Workshop: NIPS 2014, pp. 1–9. 

Vaidya, A., Jain, Sourabh, Jain, Shweta, Jain, A. K. and Agrawal, R. K. (2014) 

‘Quantitative Structure-Activity Relationships: A Novel Approach of Drug 

Design and Discovery’, Journal of Pharmaceutical Sciences and 

Pharmacology, 1(3), pp. 219–232. 

Vane, J. R. (2000) ‘The Mechanism of Action of Anti-Inflammatory Drugs’, Advances 

in Eicosanoid Research, pp. 1–23. 

Wang, H., Meghawat, A., Morency, L.-P. and Xing, E. P. (2016) ‘Select-Additive 

Learning: Improving Cross-individual Generalization in Multimodal 

Sentiment Analysis’, 1. 

Wang, H. and Raj, B. (2017) ‘On the Origin of Deep Learning’, Arxiv, pp. 1–72. 

Wang, X., Chen, H., Yang, F., Gong, J., Li, S., Pei, J., Liu, X., Jiang, H., Lai, L. and 

Li, H. (2014) ‘iDrug: a web-accessible and interactive drug discovery and 

design platform.’, Journal of cheminformatics, 6(1), p. 28. 

Wang, Y., Xiao, J., Suzek, T. O., Zhang, J., Wang, J., Zhou, Z., Han, L., Karapetyan, 

K., Dracheva, S., Shoemaker, B. A. and others (2011) ‘PubChem’s BioAssay 

database’, Nucleic acids research. Oxford University Press, 40(D1), pp. D400-

-D412. 

Weininger, D. (1988) ‘SMILES, a Chemical Language and Information System. 1. 

Introduction to Methodology and Encoding Rules’, Journal of Chemical 

Information and Computer Sciences, 28(1), pp. 31–36. 



 

215 

Weininger, D., Weininger, A. and Weininger, J. L. (1989) ‘SMILES. 2. Algorithm for 

Generation of Unique SMILES Notation’, Journal of Chemical Information 

and Computer Sciences, 29(2), pp. 97–101. 

Werbos, P. (1974) Beyond Regression:" New Tools for Prediction and Analysis in the 

Behavioral Sciences, Ph. D. dissertation, Harvard University. 

Willett, P. (2006) ‘Similarity-based virtual screening using 2D fingerprints’, Drug 

Discovery Today, 11(23–24), pp. 1046–1053. 

Willett, P., Barnard, J. M. and Downs, G. M. (1998) ‘Chemical similarity searching’, 

Journal of Chemical Information and Computer Sciences, 38(6), pp. 983–996. 

Willett, P., Wilton, D., Hartzoulakis, B., Tang, R., Ford, J. and Madge, D. (2007) 

‘Prediction of ion channel activity using binary kernel discrimination’, Journal 

of Chemical Information and Modeling, 47(5), pp. 1961–1966. 

Williams, J., Comanescu, R., Radu, O. and Tian, L. (2018) ‘DNN Multimodal Fusion 

Techniques for Predicting Video Sentiment’, In Proceedings of Grand 

Challenge and Workshop on Human Multimodal Language (Challenge-HML), 

pp. 64–72. 

Winkler, D. a and Burden, F. R. (2002) ‘Application of neural networks to large dataset 

QSAR, virtual screening, and library design.’, Methods in molecular biology 

(Clifton, N.J.), 201, pp. 325–367. 

Witten, I. H., Frank, E., Hall, M. A. and Pal, C. J. (2016) Data Mining: Practical 

machine learning tools and techniques. Morgan Kaufmann. 

Wu, F. X. and Li, M. (2019) ‘Deep learning for biological/clinical data’, 

Neurocomputing. Elsevier B.V., 324, pp. 1–2. 

Xia, X., Maliski, E. G., Gallant, P. and Rogers, D. (2004) ‘Classification of kinase 

inhibitors using a Bayesian model’, J.Med.Chem., 47, pp. 4463–4470. 

Yuan, Y., Xun, G., Suo, Q., Jia, K. and Zhang, A. (2019) ‘Wave2Vec: Deep 

representation learning for clinical temporal data’, Neurocomputing. Elsevier 

B.V., 324, pp. 31–42. 

Zeiler, M. D. (2012) ‘ADADELTA: An Adaptive Learning Rate Method’. 

 
  



 

217 

LIST OF PUBLICATIONS 

Hamza, Hentabli, Naomie Salim, and Faisal Saeed. "An activity prediction model using 

shape-based descriptor method." Jurnal Teknologi 78, no. 6-12 (2016). 

Hamza, Hentabli, Naomie Salim, and Faisal Saeed. "Quantitative Structure Activity 

Relationships In Computer Aided Molecular Design." Jurnal Teknologi 78, no. 

9-3 (2016). 

Hentabli, Hamza, Faisal Saeed, Ammar Abdo, and Naomie Salim. "A New Graph-

Based Molecular Descriptor Using The Canonical Representation Of The 

Molecule." The Scientific World Journal 2014 (2014). 

Hentabli, Hamza, Naomie Salim, Ammar Abdo, and Faisal Saeed. "LINGO-DOSM: 

LINGO for descriptors of outline shape of molecules." In Asian Conference on 

Intelligent Information and Database Systems, pp. 315-324. Springer, Berlin, 

Heidelberg, 2013. 

Hentabli, Hamza, Naomie Salim, Ammar Abdo, and Faisal Saeed. "LWDOSM: 

language for writing descriptors of outline shape of molecules." 

In International Conference on Advanced Machine Learning Technologies and 

Applications, pp. 247-256. Springer, Berlin, Heidelberg, 2012. 

 

Hentabli, Hamza, Naomie Salim, 2018, PATENT, New Molecular representation 

based on Small Molecules for Bioactivity Prediction, IP/PT/2018/0753, 

APPROVED. 

Hentabli, Hamza, Naomie Salim, 2018, PATENT, MeramalNet: A Deep Learning 

Convolutional Neural Network for Bioactivity Prediction in Structure-Based 

Drug Discovery, IP/PT/2018/0757, APPROVED.  

Hentabli, Hamza, Naomie Salim, 2018, PATENT, Mol2Matrix : Matrix for 

Molecular representation based on toxicophores, IP/PT/2018/0755, 

APPROVED.  
  

 




