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e Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta 37–49, E08003 Barcelona, Catalunya, Spain   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Microbial community composition 
clearly differed along the peatland 
chronosequence. 

• Net MeHg formation was linked to 
composition and activity of microbial 
communities. 

• Fermenters, syntrophs, and metha-
nogens correlated positively with MeHg 
formation. 

• Sulfate reducers may be less prominent 
in MeHg formation than previously 
thought.  
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A B S T R A C T   

Peatlands are generally important sources of methylmercury (MeHg) to adjacent aquatic ecosystems, increasing 
the risk of human and wildlife exposure to this highly toxic compound. While microorganisms play important 
roles in mercury (Hg) geochemical cycles where they directly and indirectly affect MeHg formation in peatlands, 
potential linkages between net MeHg formation and microbial communities involving these microorganisms 
remain unclear. To address this gap, microbial community composition and specific marker gene transcripts were 
investigated along a trophic gradient in a geographically constrained peatland chronosequence. Our results 
showed a clear spatial pattern in microbial community composition along the gradient that was highly driven by 
peat soil properties and significantly associated with net MeHg formation as approximated by MeHg concen-
tration and %MeHg of total Hg concentration. Known fermentative, syntrophic, methanogenic and iron-reducing 
metabolic guilds had the strong positive correlations to net MeHg formation, while methanotrophic and meth-
ylotrophic microorganisms were negatively correlated. Our results indicated that sulfate reducers did not have a 
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key role in net MeHg formation. Microbial activity as interpreted from 16S rRNA sequences was significantly 
correlated with MeHg and %MeHg. Our findings shed new light on the role of microbial community in net MeHg 
formation of peatlands that undergo ontogenetic change.   

1. Introduction 

Mercury (Hg) has long been known as a global environmental 
contaminant due to its potential for long-distance transport. One of its 
chemical species, methylmercury (MeHg), is of particular concern 
because of its tendency to bioaccumulate in aquatic and terrestrial food 
webs in combination with its high toxicity to wildlife and humans 
(Clarkson and Magos, 2006; Feng et al., 2008; Hong et al., 2012; Meng 
et al., 2011; Zhang et al., 2010a, 2010b). Various studies have demon-
strated a crucial role for peatlands in Hg cycling since they are typically 
exporting MeHg to adjacent aquatic ecosystems while they are generally 
sinks for total Hg (THg) (Mitchell et al., 2008; St. Louis et al., 1996; 
Tjerngren et al., 2012). Therefore, a greater understanding of MeHg 
formation within such peatland ecosystems is critical for devising 
effective land management strategies that limit MeHg production and 
constrain health risks related to Hg (Bergman et al., 2012; Bishop et al., 
2020). 

Transformation from inorganic Hg (IHg) to MeHg is mediated by 
anaerobic microorganisms that host the hgcAB genes (Parks et al., 2013). 
These genes are found in sulfate-reducing bacteria (SRB) (Compeau and 
Bartha, 1985; Gilmour et al., 1992, 2013), iron-reducing bacteria (FeRB) 
(Bravo et al., 2018b; Fleming et al., 2006; Kerin et al., 2006), and 
methanogens (Hamelin et al., 2011; Wood et al., 1968), but also in some 
fermentative and syntrophic microbes (Gilmour et al., 2013; Podar et al., 
2015; Yu et al., 2018). Recently the wider use of culture-independent 
methods, such as hgcA gene sequencing, genome-resolved meta-
genomics and metatranscriptomics, has greatly expanded the known 
phylogenetic and metabolic diversity of Hg methylating microorganisms 
(Christensen et al., 2019; McDaniel et al., 2020; Peterson et al., 2020; Xu 
et al., 2019, 2021). While FeRB, methanogens, syntrophs and Firmicutes 
have been implicated as putative Hg methylating microorganisms in 
low-sulfate wetlands, SRB remain the main methylators in the ecosys-
tems where sulfate is not limiting (Liu et al., 2018; Roth et al., 2021; 
Schaefer et al., 2020; Xu et al., 2021). 

Nevertheless, the actual formation of MeHg appears to be only 
weakly related to the presence or expression of Hg methylating genes 
(Bouchet et al., 2018; Bravo et al., 2016; Christensen et al., 2019; Par-
anjape and Hall, 2017; Xu et al., 2021). Additionally, recent studies have 
recognized the hitherto underappreciated role of non-Hg methylating 
microorganisms as influencing net MeHg formation (Liu et al., 2019; Xu 
et al., 2019). The non-methylating microbes can mediate other Hg 
transformation processes such as demethylation, reduction, oxidation 
and sequestration (Barkay and Gu, 2022; Barkay and Wagner-Döbler, 
2005; Grégoire and Poulain, 2018) but also maintain complex metabolic 
interactions with the Hg methylating lineages (Bravo et al., 2018a; 
Correia et al., 2012). Clearly, net MeHg formation is not only dependent 
on Hg methylating microbes but the entire communities where Hg 
methylators are embedded. Therefore, we need to reach a better un-
derstanding of how the composition of microbial communities, 
including both Hg and non-Hg methylating microbes, influence net 
MeHg formation. 

Numerous studies have found that microbial community composi-
tion and abundance are highly sensitive to the heterogeneous environ-
mental conditions in peatlands, such as pH, redox potential, nutrient 
availability and vegetation (Bragazza et al., 2015; Fisk et al., 2003; 
Morales et al., 2006; Urbanová and Bárta, 2014). Such factors can be 
studied in manipulation experiments in either the field or the laboratory 
(Åkerblom et al., 2020; Haynes et al., 2017). However, the short-term 
nature of most such manipulations may introduce artifacts that 
complicate interpretation. Natural chronosequence ecosystems can be 

used as a form of long-term manipulation where isostatic rebound of 
land areas after the last glaciation has led to the formation of peatland 
ecosystems with dramatically different ages within geographically 
constrained areas. Examples of such chronosequences can be found on 
the coastline around the Gulf of Bothnia between Finland and Sweden, 
an area which is still rising at a rate of about 8.5 mm/year (Hünicke 
et al., 2015). Along chronosequences, the connection of peat at the top of 
the soil profiles with the underlying mineral substrates decreases over 
time as the peat builds up. This is paralleled by a depletion in the peat of 
dissolved minerals and other weathering products originating from 
either those mineral substrates or imports from the watersheds sur-
rounding the peatlands (Wang et al., 2020). A peatland chronosequence 
therefore creates a wide range of contrasting vegetation, hydrology and 
nutrient availability within a limited geographic area (10–20 km). This 
provides a natural trophic gradient for evaluating long-term biogeo-
chemical effects on microbial community composition and subsequent 
net MeHg formation. 

Across the peatland chronosequence within a few kilometers of the 
coast of the Baltic Sea’s Bothnian Bay in northern Scandinavia, there is a 
trophic gradient in peatlands that experience similar atmospheric 
deposition and climate patterns and also share a similar underlying 
geology. Our previous studies on this chronosequence have linked the 
characteristics (i.e. nutrients and other geochemical parameters) of 
fifteen peatlands divided into three age classes (i.e. young, intermediate 
and old peatlands) to gradual changes in concentrations of THg and 
MeHg in solid peat, with higher MeHg but lower THg observed in the 
nutrient-rich younger peatlands (Wang et al., 2020). The apparently 
higher net MeHg formation in younger peatlands was attributed to the 
higher availability of organic matter and appropriate electron acceptors 
as well as the higher IHg solubility enhanced by the formation of 
Hg-polysulfide compounds in the younger peatlands (Wang et al., 2021). 
We also investigated whether vascular plant removal would impact Hg 
methylation within peatlands along the chronosequence by reducing the 
availability of readily available organic matter (i.e. root exudates). 
Surprisingly, this had no discernible effect on Hg methylation. More-
over, the peat soils collected from three peatlands representing three age 
classes have also been analyzed for the contribution of different mi-
crobial processes (e.g. sulfate reduction, iron reduction, methanogenesis 
and fermentation) to Hg methylation by means of specific inhibitor/-
stimulator amendment incubations (Hu et al., 2020). 

This current study builds on these previously published studies with 
the primary goal of relating microbial community composition to net 
MeHg formation along the peatland chronosequence. This is done by (1) 
mapping the composition of microbial communities, (2) assessing the 
putative functional role of key microbial taxa in net MeHg formation, 
and (3) determining the activity of specific functional microbial groups. 
We used high-throughput Illumina sequencing of 16S rRNA gene 
amplicons and quantitative PCR for protein coding marker genes to 
describe the composition of microbial communities and the abundance 
of specific functional groups as well as to establish associations between 
microbial communities and net MeHg formation. 

2. Materials and methods 

2.1. Site description, sampling and sample preparation 

A chronosequence of 15 open peatlands along the Gulf of Bothnia in 
northern Sweden was sampled during 2016 and 2017 (Fig. S1 in the 
Supplementary Information (SI)). More detailed information on the site, 
clean sampling and sample preparation is given elsewhere (Wang et al., 
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2020, 2021). Briefly, the chronosequence features a natural gradient of 
trophic status and hydrogeochemistry with respect to vegetation 
composition and other geochemical and geomorphological features. The 
15 peatlands selected from the chronosequence were evenly divided into 
three age groups, young (< 1000 years, n = 5), intermediate (1000 ~ 
2000 years, n = 5) and old (> 2000 years, n = 5). Notably, the age of 
superficial peat is expected to be similar, regardless of the time since 
peatlands started to form. 

Five 70 × 210 cm plots were established within each of the fifteen 
peatlands in June 2016, with each plot divided into three 70 × 70 cm 
subplots: one control subplot, one treatment subplot (complete vascular 
plant removal, VPR) as well as one buffer subplot between these other 
two. The VPR treatment is supposed to reduce the availability of readily 
available organic matter (e.g. root exudates) to methylating microor-
ganisms and consequently to influence Hg methylation. Peat samples 
were sampled four times from both the control and VPR subplots in June 
(the beginning of the growing season) and August (growing season) 
during 2016 and 2017, with one exception from the VPR subplots in 
June 2016 when the VPR subplots had just been set up. A 10 × 10 × 10 
cm peat core, taken immediately below the average growing season 
ground water table (GWT), was extracted from each subplot and cut into 
an upper and a lower layer (0–5 and 5–10 cm, respectively). Peat soils 
used for DNA (taken from all samples, 210 samples in total) and RNA 
extractions (taken only from 2017 samples, 60 samples in total) were 
randomly retrieved from different parts of the two layers using a clean 
pair of tweezers and kept in individual 2 ml sterile cryo microtubes. The 
peat samples were immediately frozen and kept in liquid nitrogen dur-
ing transport and subsequently stored at − 80 ◦C until further processing 
and analysis. Peat subsamples were also taken for chemical analyses, 
such as MeHg, THg, total concentrations of C, S, and Fe. 

2.2. Chemical analysis 

The concentration of THg was measured with solid combustion 
atomic absorption spectrometry (DMA-80, Milestone, Italy) using the 
certified marine sediment reference material MESS-3 (National Research 
Council of Canada, 0.091 ± 0.009 mg Hg/kg) for calibration. The con-
centration of MeHg in peat soils was determined according to the 
method of Lambertsson et al. (2001). The concentration of IHg was 
calculated by subtracting MeHg from THg. The percentage of MeHg to 
THg (%MeHg) in the peat soil was also calculated. MeHg concentration 
and %MeHg in peat soil were used as proxies for net MeHg formation, 
due to its positive relationships across a wide range of different types of 
freshwater sediments (Drott et al., 2008). For the peat soils collected in 
2016, the total concentrations of C and N were measured with an 
elemental analyzer (Flash EA 2000, Thermo Fisher Scientific, Bremen, 
Germany) and total concentrations of Ca, Fe, Mg, Mn, Na, K, Al, Zn, Si, S 
and P were measured using an ICP-OES (Spectro Ciros Vision, Spectro 
Analytical Instruments Inc., Germany). Replicate samples were 
routinely analyzed for all the measurements in this study. The accuracy 
(defined as measured divided by certified concentrations) was 95 ± 5 
and 105 ± 8% for MESS-3 and ERM-CC580, respectively, while the 
precision was within 10% relative standard deviation. 

2.3. DNA extraction and barcoded PCR amplification of 16S rRNA genes 

The five upper and the five lower replicate samples were homoge-
nized into two samples for each peatland, one upper and one lower. 
Approximately 0.25 g of each homogenized soil sample was used for the 
extraction of genomic DNA with the DNeasy PowerSoil Kit (QIAGEN 
Inc., Germany) according to the manufacturer’s instructions. The quality 
of the extracted DNA was determined by gel electrophoresis (1% 
agarose). The V3–V4 region of the 16S rRNA gene was subsequently 
amplified with the primer pair, 341F (5′-CCTACGGGNGGCWGCAG-3′) 
− 805R (5′-GACTACNVGGGTATCTAATCC-3′), according to a two-step 
PCR protocol where sample-specific molecular barcodes (Table S1) 

were added in the second step (Sinclair et al., 2015), with slight modi-
fications of reaction reagents and thermal programs (Table S2 and 
Table S3). The amplicons from the second-stage PCR were purified using 
magnetic beads (AMPure XP, Beckman Coulter Life Sciences, United 
States) and quantified using a fluorescence-based DNA quantification kit 
(PicoGreen, Invitrogen). Based on the quantification, the amplicons 
from the second-stage PCR were pooled in equal proportions to obtain a 
similar number of sequencing reads for each sample, followed by a final 
purification with the Qiagen Gel Extraction Kit (Qiagen, Germany) and 
quantification with the fluorescence-based DNA quantitation kit (Pico-
Green, Invitrogen). The pooled amplicons were sequenced on the Illu-
mina MiSeq platform using 2 × 300 bp paired-end approach at the 
SNP/SEQ SciLifeLab facility hosted by Uppsala University 
(https://snpseq.medsci.uu.se) where the TruSeq Sample Preparation Kit 
V2 was used according to the manufacturer’s instructions. 

2.4. Sequence Processing 

Illumina reads were demultiplexed with an in-house script and then 
merged with USEARCH (v10) (Edgar, 2010) and quality screened 
("-fastq_minlen 400 -fastq_maxee 2′′, parameters) and dereplicated with 
singletons removed using VSEARCH (v2.7.1, an unlimited version of 
USEARCH) (Rognes et al., 2016). The sequences of individual samples 
range from 1349 to 42808 reads, with 2821853 reads in total for all the 
210 samples. High-quality sequences were clustered into Operational 
Taxonomic Units (OTUs) at 97% identity. Chimeric sequences were 
removed using USEARCH’s -cluster_otus method (Edgar, 2016), while 
taxonomy was predicted with the -sintax method using the rdp_16s_v16 
database (Cole et al., 2013), provided here: https://drive5.com/u-
search/manual/sintax_downloads.html. To enable the comparison be-
tween samples, sequences were rarefied to match the sample with the 
least number of reads. The sequences have been deposited in ENA under 
accession number PRJNA843367. 

2.5. RNA extraction, cDNA synthesis and quantitative PCR 

The peat samples collected from the five replicate plots in each 
peatland (the five upper layer and the five lower layer samples) on the 
same sampling occasion in 2017 were homogenized into an individual 
sample. This resulted in 60 samples in total, with two June and two 
August samples (one control and one VPR sample) for each of the 15 
peatlands along the chronosequence. Approximately 1 g of the homog-
enized peat soil was used for the extraction of total soil RNA with the 
RNeasy PowerSoil Total RNA Kit (QIAGEN Inc., Germany) according to 
the manufacturer’s instructions. After determining the concentration 
using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, 
USA), the extracted RNA was purified with a TURBO DNA-free™ Kit 
(AM1907, AMBIO, Life technologies, USA). The absence of DNA 
contamination in the RNA samples was confirmed by PCR amplification 
using RNA as a template. The purified RNA was then used for synthe-
sizing complementary DNA (cDNA) with the SuperScript™ III First- 
Strand Synthesis System (Invitrogen, Thermo Fisher Scientific) accord-
ing to the manufacturer’s instructions. The RNA and cDNA samples were 
stored at − 80 ◦C until further processing and analysis. 

The expression of specific marker genes (Table S4), including 16S 
rRNA (targeting actively growing microorganisms), dsrA (SRB), mcrA 
(methanogens), Archaea-hgcA (archaeal methylators), Deltaproteobac-
teria-hgcA (Deltaproteobacteria methylators) and SRB-firmicutes-hgcA 
(sulfate-reducing Firmicutes methylators), were quantified with real 
time quantitative PCR (qPCR). The qPCR was performed in 10 µL reac-
tion volumes with a Bio-Rad CFX96 touch real-time PCR detection sys-
tem using the commercial enzyme kit TATAA SYBR® GrandMaster® 
Mix (TATAA Biocenter AB, Sweden), according to the manufacturer’s 
recommendations. Genomic DNAs (gDNAs) used as standards were 
derived from pure cultures ordered from DSMZ (Deutsche Sammlung 
von Mikroorganismen und Zellkulturen, https://www.dsmz.de). The 
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gDNA was quantified and serially diluted. The 60 cDNA samples were 
used as templates and the qPCR specificity was further verified by gel 
electrophoresis (2% agarose) after GelRed staining. Standard curves and 
no-template controls were included in each reaction. The reactions for 
all the samples and standards were carried out in triplicate. The qPCR 
amplification reactions and thermal programs for all the studied genes 
are presented in Table S5 and Table S6, respectively. The number of 
targets per sample was calculated using Bio-Rad CFX Manager interface 
software. The amplification efficiencies of standards and the reaction 
ranges are shown in Table S7. The copies of all the target genes in all the 
samples were within the linear dynamic range of the standard curves. 

2.6. Statistical analyses 

All the statistical analyses were performed in R (Version 4.1.2, 
https://www.r-project.org) using specific packages, mainly vegan 
(Oksanen et al., 2019), phyloseq (McMurdie and Holmes, 2013), and 
microeco (Liu et al., 2020). The normality and homogeneity of the data 
were checked with Shapiro-Wilkinson and Levene tests respectively 
prior to downstream statistical analyses. Principal coordinates analysis 
(PCoA) based on Bray Curtis distance was used to characterize microbial 
community variation along the peatland chronosequence. Permuta-
tional multivariate analysis of variance (PERMANOVA) was used to test 
the differences in microbial community composition among categories 
such as peatland age class and sampling time. Standard Mantel tests 
were conducted to examine the relationships between microbial dis-
similarities from Bray–Curtis distances and net MeHg formation proxies 
(MeHg and %MeHg) represented by their Euclidean distances. Partial 
least squares path modeling (PLS-PM) was conducted using the seminr 
package (Ray et al., 2021) to build up the relationships between latent 
variables—peat soil properties (e.g. pH, C/N ratio and elemental con-
centrations), microbial community composition (PCoA 1) and net MeHg 
formation (MeHg and %MeHg) across the peatland chronosequence. The 
relative abundance of microbial communities at family level that were 
significantly correlated (Spearman, p < 0.05) with net MeHg formation 
proxies was also used to predict net MeHg formation by Random Forest 
analyses using the randomForest package (Liaw and Wiener, 2002), with 
the more important microorganisms having higher mean decrease Gini 
coefficients. While Hg methylators known to possess hgcAB gene pair 
can directly transform inorganic Hg to MeHg, non-Hg methylator can 
also directly or indirectly influence net MeHg formation by degrading 
MeHg, modulating Hg bioavailability, or controlling the activity of the 
actual methylating/demethylating populations through microbial in-
teractions. Here we defined putative Hg and non-Hg methylators ac-
cording to whether or not they are known to carry methylation gene 
hgcA as inferred from a reference database compiled by Christensen 
et al. (2019). Co-occurrence networks were also established to deter-
mine underlying interactions between microbial taxa (at family level), 
including both the putative Hg methylators and other lineages without 
such traits. These networks were based on significant and strong cor-
relations between microbial taxa (pairwise Spearman’s rank correla-
tions, ρ > 0.40 and p < 0.01). Only the taxa that were significantly (p <
0.05, Spearman) correlated with either MeHg or %MeHg were kept to 
relate the network to net MeHg formation along the peatland chro-
nosequence. The networks were visualized using the interactive plat-
form Gephi (Bastian et al., 2009). 

3. Results 

3.1. Relating microbial community composition to net MeHg formation 

For all samples studied, microbial α-diversity indices (i.e. Chao1 and 
InvSimpson, indicating richness as well as the combined richness and 
evenness of microbial communities, respectively) were correlated 
negatively with THg, but positively with both MeHg concentrations and 
%MeHg in peat soil along this peatland chronosequence (Fig. S2). The 

composition of microbial communities differed significantly between 
the three peatland age classes (i.e. young, intermediate and old peat-
lands), between sampling years (2016 and 2017), and between the two 
peat layers (0–5 and 5–10 cm), whereas only 0.9% and 3% of the total 
variance in microbial community composition could be explained by 
sampling year and peat layer, respectively (Fig. 1a, Table S8). Notably, 
VPR treatment had no significant effects on microbial community 
composition (Table S8). The samples from VPR subplots were therefore 
used as replicates in the downstream statistical analyses. Overall, there 
were significant correlations between the microbial community 
composition and net MeHg formation proxies, MeHg (r = 0.146, 
p < 0.0001) and %MeHg (r = 0.225, p < 0.0001) along the peatland 
chronosequence (Mantel test, Fig. S3). The dissimilarity of microbial 
community composition indicated by PCoA 1 was also correlated posi-
tively with both MeHg and %MeHg, and explained 28% and 37% of the 
variance in MeHg and %MeHg, respectively (Fig. 1b, c). The PLS-PM 
analysis also showed similar results in that net MeHg formation prox-
ies strongly correlated with the microbial community composition. 
These community features were also strongly correlated with soil 
properties, represented by pH, C/N as well as total concentrations of S, 
P, Fe, Mg, Mn, Zn and Ca (Fig. 2). 

3.2. Key microbial taxa as predictors of net MeHg formation 

The majority of the sequences of the peat samples studied were 
affiliated with a set of 58 families, where 14 families are known to 
harbor putative Hg methylators, mainly affiliated with Deltaproteobac-
teria, methanogenic Archaea, Firmicutes, Chloroflexi, Spirochaetes and 
Ignavibacteriae. Bacterial and archaeal families, such as Spirochaetaceae, 
Anaerolineaceae, Opitutaceae, Syntrophaceae, Ignavibacteriaceae, Meth-
anobacteriaceae, Methanoregulaceae, Methanotrichaceae, Geobacteraceae, 
Gallionellaceae, Desulfovibrionaceae and some others, were those families 
most positively and strongly correlated with net MeHg formation 
proxies, MeHg concentration and %MeHg in peat soil. The families with 
strong negative correlations with net MeHg formation proxies included 
Thermomonosporaceae, Planctomycetaceae, Methylocystaceae and Beijer-
inckiaceae (Fig. S4). The Random Forest analyses showed similar results 
that the most influential guilds explaining net MeHg formation along the 
peatland chronosequence were canonical fermenters such as Spi-
rochaetaceae, Opitutaceae, Anaerolineaceae, Ignavibacteriaceae and Syn-
trophaceae, followed by the lineages unlikely to be capable of MeHg 
formation (e.g. Planctomycetaceae, Methylocystaceae and Thermomono-
sporaceae) and a few known Hg methylating representatives, such as 
Geobacteraceae (FeRB), Clostridiaceae_1 (Firmicutes) and Methanor-
egulaceae (methanogen). Desulfovibrionaceae is a family with well-known 
putative SRB Hg methylators, but appeared to be less important for net 
MeHg formation as compared to the families mentioned above (Fig. 3). 

3.3. Co-occurrence of putative Hg and non-Hg methylators 

In the correlation networks, there were 34 families (10 putative Hg 
methylators and 24 non-Hg methylators) with strong (pairwise Spear-
man’s rank correlations, ρ > 0.40 and p < 0.05) co-occurrence patterns 
in the peat soils along the peatland chronosequence. A total of 5 modules 
were clearly clustered, with modules 1, 2, 3 and 5 having both putative 
Hg methylators and non-Hg methylators, while module 4 was altogether 
missing the lineages with known Hg methylating capacity (Fig. 4). 
Module 1 featured a higher diversity of putative Hg methylators 
compared to other modules with putative Hg methylators. Potential 
interactions were observed between Hg methylators (e.g. Spi-
rochaetaceae, Geobacteraceae and Anaerolineaceae) as well as between Hg 
and non-Hg methylators (e.g. between Spirochaetaceae and Planctomy-
cetaceae) (Fig. 4b). 
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Fig. 1. Relationships between microbial community composition and net MeHg formation along the chronosequence of three peatland age classes. (a) Principal 
coordinates analysis (PCoA) characterizing microbial community composition along the peatland chronosequence. Correlations of microbial community represented 
by PCoA 1 with (b) MeHg concentrations and (c) %MeHg along the peatland chronosequence. 

Fig. 2. Partial least squares path modeling 
(PLS-PM) demonstrating the associations be-
tween peat soil property (e.g. pH, C/N ratio and 
elemental concentrations), microbial commu-
nity (PCoA 1) and net MeHg formation (MeHg 
and %MeHg) along the peatland chronose-
quence. Only the 90 samples that were 
measured for the concentrations of elements in 
the peat collected in 2016 were used for PLS- 
PM analyses. The λ coefficients are loadings 
calculated as correlations between a latent 
variable and its indicators, with asterisks indi-
cating a significant difference (* p < 0.05, 
** p < 0.01, *** p < 0.001). The β coefficients 
represent the path coefficients between micro-
bial community and soil property as well as net 
MeHg formation. The thickness of the arrows 

filled in grey and black represents coefficients λ and β, respectively. The PLS-PM was bootstrapped 1000 times to obtain the 95% confidence intervals of the β path 
coefficients. The r2 indicates the proportion of variance explained.   

Fig. 3. Random forest analyses determining the 
importance of significant microbes at family 
level on net MeHg formation along the peatland 
chronosequence. Random forest analyses were 
carried out with 1000 trees and the mean 
decrease Gini coefficients were calculated from 
a set of 30 bootstrap samples. The more 
important a microbe is for net MeHg formation, 
the higher mean decrease Gini coefficient it has. 
The families in bold denote potential Hg 
methylators, while those in grey are non-Hg 
methylators.   
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3.4. Comparisons of expressed marker genes and net MeHg formation 

The expression of specific marker genes was quantified in this study 
with real time qPCR. While expressed hgcA transcripts from both Del-
taproteobacteria and SRB-firmicutes were below detection, most genes 
could be quantified with 16S rRNA, mcrA and Archaea-hgcA transcripts 
all being significantly higher than dsrA transcripts. The transcripts did 
not differ between the three peatland age classes for any of the detected 
genes, except for dsrA transcripts which were significantly higher in the 

young peatlands as compared to the old (Fig. S5). The transcripts from 
16S rRNA, mcrA and Archaea-hgcA genes were all positively correlated 
with both net MeHg formation proxies (MeHg concentration and % 
MeHg), with the sole exception that there was no significant correlation 
between mcrA transcripts and %MeHg. The dsrA transcripts did not 
correlate with either of the two proxies (Fig. 5). 

Fig. 4. The co-occurrence patterns of microbial commu-
nities relating to net MeHg formation along the peatland 
chronosequence. Those communities at family level that 
were significantly (Spearman) correlated with either MeHg 
or %MeHg were kept and represented by (a) 5 modules or 
(b) Hg and non-Hg methylators. The node size indicates the 
degree to which a node is connected by other nodes. The 
edges connecting nodes demonstrate strong (ρ > 0.40) and 
significant (p < 0.01) correlations between nodes, with the 
width of an edge representing correlation strength.   
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Fig. 5. Relationships between the abundance of specific gene transcript and MeHg concentration (left panels) and %MeHg (right panels) in peat along the peatland 
chronosequence. Significant correlations are indicated by dashed lines. The 60 combined samples of 0–5 and 5–10 cm peat layers collected from both control and 
vascular plant removal subplots in 2017 were used. 
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4. Discussion 

4.1. Microbial community composition as a predictor of net MeHg 
formation along the peatland chronosequence 

Net MeHg formation is largely the net effect of IHg methylation and 
MeHg demethylation in natural ecosystems, with microorganisms 
playing critical roles in both of the counteractive processes. Along the 
peatland chronosequence, significant differences in microbial commu-
nity composition were observed between the three peatland age classes 
(Fig. 1a, Table S8). We hypothesize that changes in microbial commu-
nity composition might be a critical factor determining net MeHg for-
mation proxies (i.e. MeHg concentration and %MeHg in peat soil) that 
decline with peatland age along the peatland chronosequence (Hu et al., 
2020; Wang et al., 2020, 2021). The diversity (i.e. alpha diversity 
indices) and composition (i.e. PCoA 1 and Bray-Curtis distances) of 
microbial community were all strongly associated with both of the two 
net MeHg formation proxies (Fig. S2, Fig. 1, Fig. S3). This finding is in 
agreement with analogous studies in rice paddies where the composition 
of microbial communities was tightly linked to MeHg concentration and 
%MeHg (Liu et al., 2019), but also contrasts with some earlier reports of 
insignificant or weak correlations between exclusive Hg methylating 
microorganisms and either MeHg concentration or Hg methylation rates 
(Christensen et al., 2019; Liu et al., 2019; Xu et al., 2021). Moreover, 
although there was no significant difference in 16S rRNA expression 
between the peatland age classes (Fig. S5), positive correlations were 
observed between 16S rRNA expression and the two net MeHg forma-
tion proxies (Fig. 5a, b). This suggests an important role of overall mi-
crobial activity beyond the activity of exclusive Hg methylating 
populations for predicting net MeHg formation. 

It is known that peatland microbial communities are shaped by a 
wide range of environmental factors, such as pH and nutrient avail-
ability (Juottonen et al., 2005; Morales et al., 2006; Urbanová and Bárta, 
2014). Accordingly, such environmentally controlled changes in the 
composition of microbial communities, including non-Hg and Hg 
methylating microorganisms, would likely result in variable net MeHg 
formation (Liu et al., 2019; Roth et al., 2021; Xu et al., 2021; Zhou et al., 
2020). In agreement with this, our results showed a strong association 
between peat soil characteristics and microbial community composition 
and subsequently an indirect effect of peat soil characteristics on net 
MeHg formation (Fig. 2, Table S9). Moreover, redox variation induced 
by water regime can also influence Hg speciation and mobilization and 
consequently Hg bioavailability, resulting in a direct effect on MeHg 
formation (Beckers et al., 2019; Beckers and Rinklebe, 2017; Frohne 
et al., 2012; Jonsson et al., 2014; Zhu et al., 2018). Hence it is not 
surprising that previously reported correlations between peat soil 
characteristics and net MeHg formation along the chronosequence 
(Wang et al., 2020, 2021) may be explained by peat-soil control of mi-
crobial community composition or some type of interplay (Fig. 2, 
Table S9). 

Interestingly, there were weak or insignificant effects of sampling 
year (wet in 2016 and dry in 2017) and month (June and August, rep-
resenting spring and summer seasons), as well as peat layer (0–5 and 
5–10 cm) and VPR treatment (vascular plant removal to reduce root 
exudates) on microbial community composition (Table S8). This may be 
because these boreal peatlands have similar high water saturation and 
DOC concentration along the year as well as similar soil temperature, 
largely independent of sampling time and VPR treatment, leading to a 
stable/resilient microbial community (Allison and Martiny, 2008). The 
weak or insignificant effects of these factors on microbial community 
composition may therefore explain their insignificant effects on net 
MeHg formation observed by our earlier studies along the peatland 
chronosequence (Wang et al., 2020, 2021). 

4.2. Importance of the key taxa from both non-Hg and Hg methylators for 
net MeHg formation 

Microorganisms in complex natural communities interact exten-
sively with each other to obtain metabolic substrates and energy for 
growth and reproduction. Indeed, five highly interactive modules were 
also identified from the network of microbial communities along the 
chronosequence (Fig. 4a). The relative abundance of some fermentative, 
syntrophic, methanogenic, iron-reducing and nitrate-respiratory guilds 
and Archaea-hgcA transcripts (i.e. active methylating archaea) were all 
positively correlated with both MeHg concentration and %MeHg 
(Fig. S4, Fig. 5d, h). This suggests a direct or indirect role for those 
microbial guilds in the formation of MeHg. Indeed, fermentative, syn-
trophic, methanogenic and iron-reducing microorganisms have previ-
ously been associated with Hg methylation in boreal wetlands (Roth 
et al., 2021; Schaefer et al., 2020, 2014; Xu et al., 2021). It is noteworthy 
that the abundance of some methanogenic archaea (e.g. Meth-
anobacteriaceae and Methanoregulaceae), which should in principle not 
be amplified with the primers used in this current study, were positively 
correlated with net MeHg formation (Fig. S4). Together with the rela-
tively high mcrA and Archaea-hgcA transcripts (targeting active 
methanogens and Hg methylating archaea, respectively, Fig S6), these 
results suggest an underappreciated role of methanogens in net MeHg 
formation along the peatland chronosequence, likely by acting as Hg 
methylators in low-sulfate environments such as freshwater lakes and 
wetlands (Hamelin et al., 2011; Xu et al., 2021), syntrophic partners 
with methylating fermenters (Yu et al., 2018), or MeHg demethylators in 
rice paddies (Wu et al., 2020). 

SRB are known to be efficient and prominent Hg methylators, but in 
this study, the relative abundance of SRB (e.g. Desulfovibrionaceae) and 
dsrA gene transcripts were all insignificantly or weakly correlated with 
MeHg concentrations or %MeHg (Fig. S4, Fig. 5). This may be because 
SRB include both Hg and non-Hg methylators. Some of these SRB (e.g. 
Syntrophaceae) which are putative Hg methylators can, instead of 
reducing sulfate, methylate Hg syntrophically with methanogens when 
sulfate is in short supply (McInerney et al., 2008; Pak and Bartha, 1998; 
Schaefer et al., 2020; Yu et al., 2010). This is further supported by our 
previous findings that SRB, likely those metabolizing alternative sub-
strates instead of sulfate, are responsible for Hg methylation along the 
peatland chronosequence, as evidenced by the inhibitory effects of 
molybdate addition and the insignificant or inhibitory effects of sulfate 
amendment on Hg methylation in laboratory incubations (Hu et al., 
2020). Furthermore, the low abundance of transcripts from dsrA relative 
to expressed Archaea-hgcA (Fig. S5) suggests a less significant role of 
SRB in net MeHg formation along the peatland chronosequence, as 
compared to other studied ecosystems showing a dominant role of SRB 
in MeHg formation (Compeau and Bartha, 1985; Gilmour et al., 1992, 
2013). 

Notably, Deltaproteobacteria-hgcA and SRB-firmicutes-hgcA tran-
scripts could not be detected by qPCR in the peat soils along the chro-
nosequence. This was not because of loss of mRNA or presence of 
inhibitory substances but likely as a result of primer bias or low abun-
dance of these clades, as other relevant gene transcripts, including mcrA, 
dsrA and Archaea-hgcA, were robustly detected (Fig S5). Additionally, 
caution should also be exercised when inferring capacity for Hg 
methylation based on 16S rRNA data. Lineages previously identified as 
Hg methylators can also include strains that lack this capacity (Bridou 
et al., 2011; Gilmour et al., 2011). Increased use of hgcA gene-related 
detection methods, such as hgcA gene sequencing, genome-resolved 
metagenomics and metatranscriptomics, are identifying novel putative 
methylators in other taxa besides the previously recognized Deltapro-
teobacteria, Firmicutes and methanogenic archaea. These novel methyl-
ators as identified by other studies are affiliated with a broad range of 
taxa including Chlorofexi, Nitrospirota, Spirochaetes, Actinobacteria, 
Planctomycetes and Verrucomicrobia (McDaniel et al., 2020; Peterson 
et al., 2020; Xu et al., 2019, 2021), none of which have previously been 
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thought of as being Hg methylators. 
Although microbial Hg methylation is the main source of MeHg in 

natural ecosystems, this process does not depend on a single methylating 
guild but rather complex metabolic interactions among microorganisms 
(Bravo et al., 2018a; Correia et al., 2012). This is further corroborated by 
our observed interactions both among putative Hg methylators as well 
as between such populations and non-Hg methylators (Fig. 4b). The 
MeHg concentration and %MeHg were also significantly correlated with 
both putative non-Hg and Hg methylators, suggesting that both can be 
important for net MeHg formation in the peatlands (Fig. S4, Fig. 3). For 
example, members of the Opitutaceae (e.g. the type species Opitutus 
terrae, a putative non-Hg methylator) are fermenters that can produce a 
variety of organic acids such as propionate, lactate and acetate. These 
can eventually serve as important substrates for methanogens (Rodri-
gues and Isanapong, 2014) that are a group known to engage in Hg 
methylation in natural ecosystems (Hamelin et al., 2011; Wood et al., 
1968). 

Moreover, the relative abundance of some methanotrophs (e.g. 
Methylocystaceae and Beijerinckiaceae) were negatively correlated with 
the two net MeHg formation proxies (Fig. S4). This can be explained by 
the involvement of methanotrophs (e.g. Methylosinus trichosporium 
OB3b) in the degradation of MeHg, likely by means of an initial binding 
to methanobactin (Barkay and Gu, 2022; Lu et al., 2017). Some other 
non-Hg methylating microbial taxa, such as Catenulisporaceae, Frank-
iaceae, Mycobacteriaceae and Thermomonosporaceae, have also been 
suggested by metatranscriptomic analyses to directly or indirectly in-
fluence MeHg degradation in rice paddies (Zhou et al., 2020). In line 
with this, negative correlations were shown between the relative 
abundance of Thermomonosporaceae and the two net MeHg formation 
proxies (Fig. S4). All of these results suggest that diverse microbial 
guilds are mediating MeHg demethylation that may in return directly 
control net MeHg formation in these peatlands. However, more work is 
needed to disentangle processes and organisms responsible for MeHg 
degradation along the peatland chronosequence. 

5. Conclusions 

Our study aimed to assess whether the composition of microbial 
communities, including both non-Hg and Hg methylating microorgan-
isms, could explain net MeHg formation along a trophic gradient in a 
peatland chronosequence. The composition and activity of total micro-
bial communities, including both putative Hg and non-Hg methylators, 
were significantly associated with the two net MeHg formation proxies, 
MeHg concentration and %MeHg in peat soil along the peatland chro-
nosequence. While potential Hg methylators (e.g. some fermentative, 
syntrophic, methanogenic, iron-reducing and nitrate-respiratory meta-
bolic guilds) could directly influence Hg methylation, non-Hg methyl-
ators also seemed to play an important role in net MeHg formation. The 
influence of the non-Hg methylators is presumably exerted by modu-
lating the bioavailability of Hg for use in methylating/demethylating 
processes, and/or by controlling the activity of the actual methylating/ 
demethylating populations through competition or other microbial in-
teractions, and/or by reducing MeHg via direct demethylation. The SRB, 
known as efficient and prominent Hg methylators, appeared to play a 
less significant role in net MeHg formation along the peatland chro-
nosequence as compared to other studied ecosystems. The involvement 
of both Hg and non-Hg methylating microorganisms in predicting net 
MeHg formation along the peatland chronosequence highlights the 
relevance of studying the entire microbial community in natural habitats 
for a better understanding of net MeHg formation. 

Environmental Implication 

Methylmercury (MeHg) is highly toxic to wildlife and humans 
because it can bioaccumulate and biomagnify in food webs. Net MeHg 
formation is not only dependent on Hg methylating microbes but the 

entire communities where Hg methylators are embedded. This work is a 
novel determination of the role of the entire microbial community, 
including Hg and non-Hg methylators, on net MeHg formation along a 
peatland chronosequence trophic gradient that has similar atmospheric 
deposition, climate patterns and underlying geology. It highlights the 
relevance of studying the entire microbial community in natural habitats 
for a better understanding of net MeHg formation. 
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