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Abstract

With the drive for more efficent slender structures, nonlinear dynamic phenomena are
increasingly being observed in, and sometimes designed into, engineering systems. The
objective of this thesis is to develop a better theoretical understanding of nonlinear systems
that manifest internal resonance and provides practical insights into the exploitation of
such nonlinear behaviours in engineering practice. To achieve this, an analytical approach
is employed, that is based on nonlinear normal mode, or backbone curve, analysis.

The geometry, i.e. synchronicity and asynchronicity, of internal resonances is investigated
using conceptually simple, two-mode systems. Special dynamic behaviours that emerge
from internal resonance are studied, including isolated backbone curves and backbone
solutions where the phases of modal coordinates vary. The underpinning mechanisms
that govern their existence are analytically derived and demonstrated using relevant
engineering systems. These geometric features are generalised to account for arbitrary
types of internal resonances for two-mode interactions with arbitrary eigenfrequency
ratios; an analytical technique is proposed for the efficient and robust determination of
internal resonances.

The research scope is then extended to forced-damped scenarios. By employing an
energy-based method, the relationships between backbone curves and forced periodic
responses are established. A semi-analytical, energy balancing method is formulated by
combining the energy balancing principle across multiple harmonics with quadrature
criteria. With known NNM solutions, it allows for efficient prediction of forced responses
with the applicability and accuracy estimated via harmonic phase-shifts.

Based on the concept of resonant capture, backbone curves are used to interpret damped
transient responses with applications of Targeted Energy Transfer (TET). The required
backbone curves for realising TET are identified from a symmetry-breaking perspective.
Using these insights, an analytical method is presented for parameter selection of a
nonlinear energy sink; the effectiveness of this is demonstrated via a beam system.
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Chapter 1

Introduction

The rapid development of the engineering industry has been accompanied by dealing
with dynamic problems and exploiting dynamic resources. For example, to ensure the
safety of life in the presence of earthquakes, the performance-based seismic design is
extensively considered in civil structures; to mitigate unwanted vibrations, dynamic
vibration absorbers are widely used in engineering systems.

To quantify and analyse dynamic behaviours, a great number of tools have been developed,
many of which are established via the concept of Linear Normal Modes (LNMs). A
LNM represents a vibration pattern in which all components of the system oscillate
at the same eigenfrequency with a fixed phase relationship. One useful mathematical
property of LNMs lies in their orthogonal relations. The orthogonality of LNMs indicates
that any response initiated in a specific LNM will remain in it for all time without
influence on other LNMs (this is also termed the invariance feature). Therefore, the
superposition principle can be applied, i.e. any free or forced response can be viewed as
a linear combination of LNMs. Based on these features, a direct application of LNMs
is that a high-dimensional physical system can be decoupled as a lower-order modal
model. With such a powerful methodology, the computational cost is greatly reduced,
and this makes analysis of complex dynamical systems feasible. To date, the application
of linear modal analysis has witnessed significant evolutions for dynamical systems such as
damping devices, civil structures, and aerospace systems. In many engineering fields, the
linear modal theory is still extensively used in the design, construction, and monitoring
processes.

Over recent decades, the demand for high-performance engineering structures has been
continually growing. Meeting this demand often requires extending the performance
envelope of structures to regions where nonlinearity must be considered – it brings
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Introduction

about a variety of advantageous applications; nonetheless, it also gives rise to numerous
challenges in modelling, analysis, and tests of nonlinear systems. For example, lightweight
and flexible aircraft wings can show more efficient aerodynamic performance, yet the
flexibility, in turn, can lead to significant nonlinear behaviours that are challenging to
predict. Another example is the nonlinear tuned mass damper, which can outperform
linear damping devices in showing a broader band performance; however, the use of
nonlinear tuned mass damper can lead to complex dynamic behaviours such as the
existence of isolas – this makes it difficult to guarantee a robust and reliable performance.

In the presence of nonlinearity, dynamical systems can manifest a number of nonlinear
behaviours such as modal interactions, bifurcations, and instability, which have no coun-
terpart in linear systems. In this case, applying the linear methodology in the dynamic
analysis cannot reliably predict these nonlinear behaviours, as such, it usually results in
suboptimal designs where the nonlinearity is not fully exploited. The complexity of non-
linear behaviours, combined with the limitations of linear methodologies, have presented
technical challenges in understanding and exploiting nonlinear behaviours. Therefore,
seeking a nonlinear extension to linear modal analysis attracts much research effort. In
this context, the concept of Nonlinear Normal Modes (NNMs) provides a mathematically
rigorous methodology in understanding and analysing nonlinear behaviours. Unlike their
linear counterpart (i.e. LNMs), NNMs are able to capture the intrinsic mechanisms of
nonlinear phenomena. However, similar to LNMs, NNMs possess the invariance property
and thus offer an analysis framework that allows the complex, large-scale nonlinear
systems to be exactly interpreted via a simpler, reduced-order model. Owing to these
useful features, the NNM analysis can assist in overcoming the bottleneck of nonlinear
modelling and designs, and in exploring advantageous nonlinear resources. To date,
the NNM analysis has been widely considered in a variety of nonlinear systems from
microelectromechanical systems to large-scale aerospace systems.

With tools suited to dealing with nonlinearity in dynamical systems, the desire also
grows: how to incorporate beneficial nonlinear properties in designs whilst eliminating
or reliably accounting for unfavorable features? The NNM-related methodology has
shown its power in handling nonlinear dynamic problems, however, NNM solutions can
show complex topologies in the presence of modal interactions and bifurcations – this
makes the interpretation of nonlinear behaviours a challenging task. Furthermore, how
the simpler modal properties of NNMs are related to more complex, yet more practical,
forced-damped responses is to be explored. Addressing these problems requires a further
study of the NNM properties and extending the framework to more general scenarios.
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Achieving this can help gain an in-depth understanding of nonlinear phenomena and ease
the bottleneck of exploiting nonlinearity in practical engineering structures.

This thesis aims to develop a better understanding of nonlinear behaviours and gain
insights into practical applications. Specifically, the NNM-based nonlinear modal analysis
is employed to study nonlinear dynamic phenomena in the presence of modal interactions.
By exploring the theoretical mechanisms that underpin intricate modal interactions, a
methodology is provided for the interpretation and determination of modal interactions.
The NNM-based framework is then further extended to account for nonlinear systems in
forced-damped scenarios. The relationships between NNMs and forced-damped responses
are established, and an NNM-based methodology is developed to interpret forced-damped
responses.

In addition to theoretical studies, a number of engineering-related examples will be
considered for demonstration such as cable and beam dynamics. Particularly, practical
applications related to vibration suppressions will be discussed, which include the existence
of isolated backbone curves in the application of nonlinear tuned mass dampers and the
identification and realisation of targeted energy transfer.
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Chapter 2

Literature review

Over the last few decades, extensive research on and applications of nonlinear dynamics
have been carried out in the fields of applied science and engineering. This is, to some
degree, in response to the urgent need of handling and exploiting nonlinear phenomena
in practice.

Due to objective reality such as intricate environments and natural disasters, nonlinear
phenomena have been continually observed in engineering systems. For example, un-
derwater vehicles, designed for monitoring, exploration, and military applications, can
experience complex nonlinear ocean disturbances [1, 2]; subject to earthquakes, civil
structures can suffer large-amplitude nonlinear vibrations, which threaten the security of
both structures and people [3]. Additionally, the requirements for more environmentally
friendly and highly efficient engineering facilities/structures have been calling for delib-
erate exploitation of nonlinear phenomena. For example, harnessing the energy from
ocean waves via wave energy converters is a promising renewable energy solution [4, 5]; to
protect structures from large deformations imposed by earthquakes, nonlinear damping
devices can outperform their linear counterparts [6, 7]. In practice, the boundary between
dealing with undesirable nonlinear problems and exploiting advantageous nonlinearity
can blur as they are indeed interconnected rather than separated as two facets. One
example is the application of high-aspect-ratio wings of aircraft – their slender geometry
results in higher efficiency due to lower drag coefficient, in turn, it also brings about
challenges in modelling the nonlinear behaviours [8]. To some extent, the advances of
green and efficient engineering technology are always accompanied by solving nonlinear
problems and harnessing nonlinear phenomena.
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2.1 Nonlinear dynamic phenomena

To better handle the undesirable nonlinear phenomena, observed in practice, and poten-
tially even exploit nonlinearity, the causes of nonlinear phenomena and their characteristics
should be understood beforehand.

2.1.1 Causes of nonlinear phenomena

A number of physical sources may lead to nonlinear dynamic phenomena. An overview
of some typical sources are given below.

Material properties

The material property reflects the response of a material due to external stimuli; it can
be expressed by the constitutive law between strain and stress, or displacement and force.
Typically, the constitutive relationship consists of a linear region followed by a nonlinear
region where the material exhibits plastic behaviours. In addition, damage, wear and
environmental factors (e.g. temperature) can also lead to nonlinear constitutive laws [9].
In this case, nonlinear behaviours such as hysteresis [10, 11] and rate dependence [12]
can be observed.

Constraints and external forces

Many engineering problems involve constraints between two or more entities that do
not allow them to move freely in all directions. In some cases, these constraints may
cause problematic nonlinear behaviours and need to be mitigated. For example, due
to degradation and manufacture tolerance, freeplay, or backlash, between components
can lead to repeated impacts, termed vibro-impact motions. Such nonlinear motions
can be observed in many engineering systems, e.g. aircraft [13, 14]. Another example is
the friction that occurs along the contact surface between two components of assembled
structures, of which the caused repeated stick and slip cycles can significantly affect the
performance, e.g. turbomachinery systems [15, 16]. In other cases, they can be exploited
in designs to offer advantageous applications such as vibro-impact dampers [17, 18] and
frictional dampers [19].

External forces acting on structures can also cause nonlinear behaviours. For instance,
when an elastic structure is subjected to a fluid flow, the structure can interact with
the aerodynamic forces – an important topic termed aeroelasticity [20]. For micro-scale
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2.1 Nonlinear dynamic phenomena

systems, e.g. micro-electromechanical systems (MEMs), inter-molecular forces also play
an important role in governing the dynamic behaviours [21].

Geometric nonlinearity

Geometric nonlinearity refers to the nonlinear effect arising from the geometric change of
systems, which can be expressed by a nonlinear strain-displacement relationship. Such a
nonlinear effect has been widely encountered in many engineering systems as a consequence
of the extensively used slender structures that aim for high efficiency and performance.
For example, the flexible nature of aircraft wings can exhibit significant geometric
nonlinearity when vibrating at large amplitudes [22]. One important exploitation of
geometric nonlinearity can be found in MEMs, where their large-amplitude vibrations
have been considered in energy harvesting [23], filters [24] and sensors [25].

To complicate matters, in practice, engineering systems can exhibit even more complex
dynamic behaviours that are attributed to combinations of the aforementioned sources.
For example, the dynamic behaviours of rotorcrafts can be significantly affected by
the coexistence of geometric nonlinearity, induced by large deflections, and contact
nonlinearity, caused by freeplay [26]. In [22], geometric nonlinearities have shown
significant effect on the aeroelastic characteristics of a high-aspect-ratio wing.

In reviewing the causes of nonlinear behaviours, it shows the extensiveness of engineering
systems that may experience nonlinear behaviours during operation; it also highlights
the importance of an in-depth understanding of their underpinning mechanism in order
to make full exploitation of them. The following discussions present an overview of the
characteristics of nonlinear phenomena before introducing the nonlinear modal analysis
that rigorously and efficiently captures these nonlinear features.

2.1.2 Characteristics of nonlinear phenomena

The sources leading to nonlinear phenomena are relatively well-studied; whilst they can
result in rich and complex nonlinear dynamic phenomena that have no counterpart in
linear systems, for instance, internal resonance, bifurcations, and instability [27–32].
Note that the following discussions focus on nonlinear features of periodic responses,
as they represent typical operational states of many mechanical systems; whilst other
responses such as transient, quasi-periodic, and chaotic responses will be briefly discussed
for completeness. Even though periodic motions are only a subset of the full dynamics of
nonlinear systems, an in-depth understanding of them can still reveal the mechanisms
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that underpin the rich nonlinear phenomena; consequently, periodic responses have been
extensively considered in the analysis and design of nonlinear systems.

Modal interaction

Modal interactions denote the phenomenon that, during a general motion, the energy can
exchange between two or more modal components of a nonlinear system because of the
nonlinear effect [33, 31]. Therefore, due to energy transferred from other modes, a mode
that is not directly forced may exhibit significant contributions to the overall responses.
This nonlinear behaviour is governed by equations of motion where nonlinear terms
couple different modal coordinates and can be defined by referring to the commensurate
relationships between nonlinear response frequencies [33, 34]. For example, two interacting
modes with a periodic response frequency commensurate match of 1 : 3 is termed the
1 : 3 internal resonance.

Regarding the underpinning mechanism and geometric features of modal interactions,
they will be detailed in §2.2.2; here, some examples are given for a brief introduction.
Modal interactions have been extensively studied in a wide range of mechanical systems,
e.g. cables [35], beams [36–38], plates [39, 40] and shells [41, 42]. Exploiting the accom-
panying energy exchange, they also receive considerable attention in vibration mitigation
devices, e.g. Nonlinear Tuned Mass Dampers (NLTMDs) [43, 44] and Nonlinear Energy
Sinks (NESs) [45, 46].

Bifurcations and instability

A bifurcation of a dynamical system occurs when the perturbation of parameter values,
termed bifurcation parameters, leads to a qualitative, or topological, change in its
behaviours. In vibration analysis of dynamical systems, the frequency and amplitude of
the excitation are often used to characterise steady-state responses; therefore, they are
typically considered as bifurcation parameters, yet other parameters can also be used. In
this case, bifurcations of a nonlinear system may result in more periodic solutions than
the number of its degrees of freedom [47, 31], a special scenario that cannot be observed
in linear systems.

Another feature of nonlinear responses lies in that they can be either stable or unstable.
Indeed, the instabilities are correlated to bifurcations as the change of stability occurs
through a bifurcation [31]. In determining the stability of a periodic response, the Floquet
theory can be used – it can be formulated either in the time domain by computing the
monodromy matrix to find Floquet multipliers [48], or in the frequency domain by

10



2.2 Understanding nonlinear behaviours using modal analysis

constructing the Hill’s matrix (through harmonic balancing) to find its eigenvalues,
termed Floquet exponents [49–52].

Localisation

Localisation can occur and lead to the spatial confinement of energy to subcomponents of
nonlinear dynamical systems. Indeed, localisation can also be observed in linear systems,
which, however, is limited to weak coupling between subcomponents and structural
irregularity, or disorder [53–56]. Nonlinear systems do not have such prerequisites to
exhibit localisation because the amplitude-dependent frequency can act as a mistuning
parameter [47, 46]. One important example that exploits this feature is the Targeted
Energy Transfer (TET) via applications of the NES. By attaching a NES to a primary
structure, the energy input to the primary structure can be irreversibly transferred to
and localised in the NES where the energy is dissipated [46]. Owing to this promising
feature, NES systems have been widely considered in vibration mitigation and isolation
[57–59].

In addition to these features, nonlinear systems can also exhibit quasi-periodic motions
where the response contains two or more incommensurate frequency components [60, 61];
and chaos where the behaviours of a dynamical system are highly sensitive to initial
conditions [62, 29].

Observing that nonlinear systems can exhibit intricate behaviours due to nonlinear
sources highlights the importance of rigorous and robust tools to interpret and quantify
these nonlinear phenomena.

2.2 Understanding nonlinear behaviours using modal
analysis

To interpret and quantify behaviours of dynamical systems, there is a great number of
tools [63, 28, 64, 30, 65–67], among which modal analysis has been extensively used in
literature and engineering practice. Here, an overview of modal analysis is provided.

One important modal theory is the concept of Linear Normal Modes (LNMs) [68, 69],
as introduced in Chapter 1. Owing to orthogonal relations between LNMs, they bring
about useful mathematical properties of invariance and superposition principle, based
on which linear modal analysis has become an integral part of many well-established
techniques and engineering practices. To date, LNMs are still extensively used in the
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fields of, for example, reduced-order modelling [70], structural health monitoring [71] and
experimental modal analysis [72].

The applicability of linear modal analysis requires the system to be linear. However,
linearity is an idealised condition whilst nonlinearity is the frequently observed scenario
[32, 31, 66]; as demonstrated in §2.1.1 and §2.1.2, a great number of physical sources can
lead to intricate nonlinear behaviours in practice. For nonlinear dynamical systems, the
useful properties of LNMs break down, and the direct application of LNMs to nonlinear
systems can never be guaranteed to yield accurate and robust results. In this context,
seeking a nonlinear extension of a LNM is needed for the interpretation and quantification
of rich nonlinear behaviours; this attracts much research effort in developing the nonlinear
modal analysis.

2.2.1 Concepts of nonlinear normal modes

The early attempts to derive a nonlinear mode were carried out by Rosenberg in [73, 74],
where the concept of a Nonlinear Normal Mode (NNM) is defined as a synchronous
periodic motion of a conservative nonlinear system. Synchronicity requires that all
system components reach their extrema and equilibrium simultaneously. In this case, an
oscillation in an NNM is characterised by a line, termed a modal line, passing through
the origin in the configuration space. In the geometric sense, this can be viewed as
an extension of a LNM, a vibration in which is depicted by a straight line (which also
passes through the origin) in the configuration space due to linearly related coordinates.
Following a similar approach, the construction of NNMs has been further investigated by
Rand [75, 76] and Vakakis [77–79].

Later, Shaw and Pierre proposed a generalisation of Rosenberg’s definition for a damped
nonlinear system via the theory of invariant manifolds [80–83]. In this series of works, an
NNM is defined as a two-dimensional invariant manifold that is tangent to the underlying
linear modal subspace at the equilibrium point. This definition also extends the invariant,
or orthogonal, property of a LNM to the nonlinear context, namely, an arbitrary damped
motion that starts on an invariant manifold remains on it over time. In the case of an
undamped conservative system, the relationship between Rosenberg’s and Shaw-Pierre’s
definitions can be established by the subcenter-manifold theorem [84]. Adopting a
complex invariant manifold formulation, a further extension of the Shaw-Pierre-type
NNM was proposed in [85], which shows an improved computational efficiency.
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An alternative extension to the Rosenberg’s NNM definition was proposed in [31], where
an NNM is defined as a periodic response (not necessarily synchronous) of a nonlinear
conservative system. Based on this periodic definition, a damped Nonlinear Normal
Mode (dNNM) was defined for a non-conservative nonlinear system in [86], where an
artificial damping is added to the system in order to compensate for the non-conservative
effects.

Recently, the definition of an NNM is relaxed as a set of small-amplitude recurrent
motions (i.e. fixed points, periodic and quasi-periodic responses) of damped nonlinear
systems [87]. In this context, the smoothest invariant manifold asymptotic to an NNM
is termed a spectral submanifold (SSM). The existence, uniqueness, and persistence of
SSMs are also derived to provide a mathematically rigorous methodology in nonlinear
modal analysis. Building on invariant manifold theory and defined as recurrent motions,
the SSM establishes the connections between the Shaw-Pierre-type and Rosenberg’s
NNMs in dissipasive nonlinear systems.

Additionally, there are other generalisations of nonlinear modes. For example, in [88],
a nonlinear mode is defined as a periodic response when phase quadrature takes place,
termed a phase resonance nonlinear mode (PRNM). Established based on harmonic
forcing, a PRNM represents an actual periodic oscillation on the forced response curve;
therefore, it is directly connected to experimental modal testing results, for instance,
obtained via force appropriation [89, 90] and control-based continuations [91, 92].

In computations of nonlinear modes, a large body of early studies employed analytical
frameworks based on methods that include, for example, the harmonic balance technique
[93, 94], perturbation techniques [95, 77], normal form theory [65] and invariant manifold
theory [80, 84]. Many of these methods depend on perturbative expansions of the
dynamic solutions, combined with truncations up to the first few leading-order terms.
With analytical expressions of NNMs, these methods lend themselves to uncover the
mechanisms that underpin nonlinear behaviours such as internal resonance, bifurcations,
and instability [36, 77, 96].

With the advances of engineering technologies, the last few decades have witnessed
a growing need for nonlinear analysis of complex high-dimensional structures. This
demand is, to some extent, fulfilled with the development of computational power and
algorithms, for example, continuation algorithms [97–99]. Therefore, with the aid of
numerical computational techniques [100, 99, 67], the concept of NNMs is progressively
considered in the analysis of full-scale nonlinear systems [101–104].
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An alternative strategy in response to the computational need is making use of the
invariance property of NNMs to derive reduced-order models (ROMs) [105–111]. This
idea is especially attractive when dealing with complex engineering systems that are
modelled via finite element (FE) discretisation, in which case the nonlinear analysis is
computationally infeasible based on the high-dimensional FE model. The appropriately
derived ROMs, taking the form of a lower-order nonlinear system, can considerably reduce
the computational effort; consequently, the aforementioned analytical and numerical
methods can be employed to interpret and quantify nonlinear behaviours based on ROMs.

To derive a ROM from a FE model, the methods can be categorised as intrusive and
non-intrusive methods – the non-intrusive method builts ROMs based on the outputs of
a FE model without the requirement to analyse the fundamental equations of motion;
in contrast, the intrusive method relies on manipulation of the coefficients of full-order
model. In this context, the non-intrusive methods mainly include the stiffness evaluation
procedure (STEP) [112–114, 107, 115, 110], implicit condensation and expansion (ICE)
[102, 107, 116, 109, 117] and quadratic manifold method with static modal derivative
[118, 119]; whilst intrusive methods include the quadratic manifold method with modal
derivative [119] and invariant manifold methods [80, 87, 120, 121]. Note that, for methods
that are based on invariant manifolds, recent developments overcome the requirement
for direct manipulation of nonlinear coupling coefficients and give rise to non-intrusive
implementations, for example, explicit SSM reduction method [122] and direct normal
form reduction method [123, 124]. These methods have been successfully implemented in
a variety of nonlinear systems, for example, beam systems [107, 119, 117], flat structures
[119], micro-electromechanical systems [124]. Comparison studies between these methods
have been carried out in [125, 126], highlighting their advantages and limitations. For a
detailed review of these methods, the interested reader is directed to [111].

One could observe that the concepts of NNMs rigorously suit different scenarios (e.g. un-
damped and damped systems) with different generalisations (e.g. periodic motions and
invariant manifolds); therefore, they lend themselves as a versatile tool in the analysis of
nonlinear systems.

2.2.2 Characteristics of NNMs

As briefly discussed above, NNMs can significantly simplify the analysis of complex
nonlinear systems due to their invariance property. In addition, due to the nonlinear
basis they build upon, they provide a rigorous and robust tool in interpreting and
quantifying nonlinear behaviours such as internal resonance and bifurcations, in contrast
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to the LNMs, which cannot capture the nonlinear phenomena. Note that, in this thesis,
the term mode is used to refer to a mode of the underlying linear model of the system,
whereas an NNM denotes a periodic response of the conservative nonlinear system and a
backbone curve represents an NNM branch, i.e. a family of periodic motions. [31]. In the
following, it is discussed how the concept of NNM captures those nonlinear phenomena,
demonstrated in §2.1, along with its applications in nonlinear engineering systems.

NNMs and modal interactions

As briefly mentioned in §2.1.2, modal interactions, or internal resonances, are characterised
by energy exchange between modal coordinates during oscillations. This phenomenon can
be described by a mixed-mode NNM (i.e. an NNM with multiple linear modal components)
where interactions between its modal components can be observed. In this case, the
presence of internal resonance is connected to the commensurability between nonlinear
response frequencies of these modal components. The associated modal interaction may
be termed m : n internal resonances [33, 34] with m and n denoting the commensurate
frequency match. In practice, when the nonlinear system is vibrating at small to moderate
amplitudes, estimating the types of internal resonance can be achieved by approximately
referring to the commensurate eigenfrequency relationships of the interacting modes
in an NNM [33, 111]. This particular scenario can be justified when the nonlinearity-
induced frequency detuning (from the eigenfrequency) is small. Therefore, a system
with an eigenfrequency ratio of 3 is expected to exhibit 1 : 3 internal resonance, e.g. in
nonlinear beam models [36, 94]. A large body of literature has concentrated on specific
types of internal resonances that can be found in a broad range of engineering systems
[36, 127, 41, 128]. However, modal interactions become more complex when dynamical
systems are vibrating at large amplitudes. In this case, the small frequency detuning
condition cannot be satisfied because the response frequency is amplitude-dependent.
Therefore, access to the nonlinear response frequency becomes necessary in determining
the existence of internal resonances. In addition, multiple commensurate relationships may
be satisfied even for a simple two-mode system – this indicates the existence of multiple
internal resonances. Owing to these features, determining internal resonance for systems
that vibrate at large amplitude is challenging, and usually relies on computationally
expensive numerical simulations [31, 104, 52].

Additionally, the concept of NNMs provides a geometric perspective to describe modal
interactions. Indeed, many definitions of an NNM are built upon its geometric features,
e.g. synchronous/asynchronous periodic responses [73, 74, 31] and an invariant manifold
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tangent to the equilibrium of a linear modal subspace [80], to name a few. Here, based
on the synchronous/asynchronous classification, it is demonstrated how it captures
geometric features of modal interactions. For a mixed-mode synchronous NNM, the
modal components reach their extrema and equilibrium at the same time over a period
of response. Such a periodic motion is characterised by a modal line passing through the
origin in the configuration space [77]. In contrast, a mixed-mode asynchronous NNM has
modal components that do not reach their extrema and equilibrium simultaneously. In
this case, the NNM is described by a modal loop that does not pass through the origin
in the configuration space. One example of the latter case is the whirling motions of
nonlinear cable systems where the in-plane and out-of-plane modes exhibit 1 : 1 modal
interactions [129].

NNMs with bifurcations and instability

As discussed in §2.1.2, nonlinear systems can exhibit bifurcations and lead to multiple
solutions. Likewise, due to the presence of bifurcations, there can be more NNM solutions
than degrees of freedom of the system [77, 31]. One case is the bifurcation that emerges
from modal interactions, which may lead to an internally resonant region of NNMs and
stability change. This is a topic that attracts a vast amount of research, for example,
based on the normal form method, the parameter values leading to bifurcations and 1 : 1
internal resonances have been identified in [130]; the general bifurcation scenario, emerging
from 1 : 1 internal resonance, has been studied theoretically and experimentally in [128].
Another important feature of NNMs that arises from bifurcations is the isolated NNM
branch, which, as indicated by its terminology, is isolated from the primary branches
that emerge from eigenfrequencies. Due to the geometric feature of being isolated,
detecting the existence of isolated NNM branches is of great challenge as initial solutions
on that branch are difficult to determine, which are typically required in order to find
the full branch. In addition, such an isolated branch can be related to large-amplitude
isolated forced responses, termed isolas [131, 132], which have a significant impact on the
performance of engineering devices, for example, the vibration mitigation performance
of NLTMD systems [43, 133]. Regarding this special feature of NLTMD applications, it
will be discussed in detail in §2.3.1.

NNMs with energy localisation

The energy localisation, i.e. energy confinement to subcomponents of a dynamical system,
can also be interpreted by the modal compositions of a subset of NNMs. This feature has
been demonstrated in many nonlinear systems, for example, flexible systems with smooth
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nonlinearities [134–137] and non-smooth nonlinearities [138]. As discussed in §2.1.2, one
important application that exploits energy localisation is the NES. The irreverisable
energy transfer and eventual localisation in the NES device are also captured by the
localised NNMs [136]. Another example was demonstrated in [137], where the symmetry
breaking induced nonlinear modal veering leads to energy localisations of NNMs for
a beam system. In this example, low-amplitude and large-amplitude vibrations are
captured by NNM subsets that are localised in bending and torsion modes respectively.

2.2.3 Relationships between NNMs and forced damped re-
sponses

Even though NNMs represent the underlying conservative (unforced and undamped)
dynamics1, the relationships between NNMs and forced damped responses can be estab-
lished.

The connections between NNMs and forced periodic responses can be established by the
energy balancing analysis [139]. By viewing the forced resonant motions as phase-shift
perturbations from NNM solutions, this methodology considers the energy balancing of
each modal component during periodic oscillations – the net energy transfer in and out
of any mode must be zero. Alternatively, their relationships can be established via the
Melnikov analysis in [140]; the Melnikov function (that determines such relationships) is
revealed to be equivalent to the leading-order terms of the energy balancing principle.

Using the energy balancing method, NNMs can be used to interpret forced responses, for
example, in predicting the existence of isolas [107, 141, 142] – i.e. forced response curves
that are separated from the primary branches; and identifying the relative significance of
NNMs in forced responses [143]. In addition, the energy balancing method can also aid
experimental tests in finding the appropriate number of excitations and their locations
in order to accurately extract NNMs experimetally [144]. This technique has later been
extended to account for non-conservative nonlinearity based on a numerical framework
[145], where it was shown to yield accurate resonance predictions for full-scale dynamical
systems with friction nonlinearity.

One advantage of the energy balancing technique, proposed in [139], lies in its highly
efficient computation due to analytical formulation based on a single-harmonic assumption.
However, such an assumption may also lead to errors when multiple harmonics show

1Indeed, some nonlinear modal theories derive NNMs based on the forced damped context, for example,
Shaw-Pierre-type NNMs [80–83], SSMs [87] and PRNMs [88]; here, the conservative formulation, i.e. the
Rosenberg’s type [73, 74] and its generalisation in [31], is considered.
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significant contributions. Such a limitation was demonstrated in [142], where significant
errors can be observed during the emergence of an isola to the primary forced response
curve.

In addition to the connections between NNMs and forced periodic motions, the relation-
ships between NNMs and damped transient responses can be established via the concept
of resonant capture – the damped responses can be locked in the neighbourhood of NNMs
for nonlinear oscillators that are weakly coupled [57, 146]. By referring to the frequency
commensurate relationships of the NNMs (where the transient motions are locked), such
relationships can be characterised as m : n resonant capture [45], similar to the definition
of periodic internal resonance. In [45, 147, 148], the NNM-based method was used to
interpret the transient targeted energy transfer. The damped transient oscillations, which
manifest irreversible energy transfer from one component to the other, were accurately
captured by the underlying energy localisation features of NNMs. Regarding the use of
NNMs in understanding the targeted energy transfer of NES systems, it will be discussed
in §2.3.1.

Based on the relationships between NNMs and forced damped responses, the conceptually
simpler NNMs can be used to interpret complex forced damped responses, as discussed
above. Conversely, forced damped responses can be used to identify NNMs, an important
application of which is the experimental NNM identification, detailed in the following.

2.2.4 Experimental modal analysis

Even though the advanced mathematical tools and increasingly powerful computational
techniques have made great contributions to nonlinear analysis of complex engineering
systems, experimental modal analysis still has an important role in both verification and
validation of numerical/analytical results and recognition of new or unsolved problems.

Experimental modal analysis for linear structures is a well-matured field that has been
extensively used in engineering practice. This can be achieved by applying impact hammer
testing, shaker testing, and ambient vibration testing [149–153]. From the testing data,
modal parameters, namely eigenfrequencies, modeshapes and modal damping ratios, can
then be identified by techniques, for example, eigensystem realisation algorithm [154],
polyreference least-squares complex frequency-domain technique [155] and stochastic
subspace identification technique [156].

However, in the nonlinear context, dynamical systems can exhibit rich nonlinear be-
haviours (as discussed in §2.1) that significantly complexify experimental tests in iden-
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tifying modal properties such as that presented in §2.2.2. The past few decades have
witnessed a large amount of research effort devoted to nonlinear modal testing techniques;
for a complete survey, the interested reader is directed to [64, 66]; here, an overview is
given of the NNM-based experimental techniques.

The nonlinear resonant decay method was proposed in [157] for identification of nonlinear
systems. Firstly, a burst is applied to the system at eigenfrequencies of linear modes to
excite responses that exhibit modal coupling due to nonlinear terms. A curve fitting based
on the restoring force surface method is then employed to identify modal parameters and
NNMs. This experimental technique has been implemented in many mechanical systems,
for example, a wing structure [158] and an aircraft [159].

A nonlinear extension of linear force appropriation was proposed in [89] to extract NNM
branches via experimental tests. The idea is to seek a set of excitations in order for
the system to exhibit responses of a single NNM. This is achieved by adapting the
multi-point multi-harmonic excitations to satisfy quadrature criterion – the excitations
are 90◦ phase-lagged to all harmonics of displaments at the excitation points. Once the
NNM appropariation is achieved, the frequency-amplitude relationship of an NNM can be
determined from the transient motions, termed resonant decay [90], via time-frequency
analysis methods such as Wavelet transfrom [160] and Hilbert transfrom [161]. Successful
implementations of the force appropriation technique were demonstrated in many studies
in combinations with, for example, control-based continuation technique [91, 92] and
phase-locked loop [162, 163]. These studies show that, for most scenarios, even a single
excitation is sufficient to accurately identify an NNM branch. However, numerical and
experimental studies in [144] show that significant errors can arise due to insufficient
compensation between mono-point excitation and distributed damping.

Nonlinear modal analysis can also be realised by control-based continuation (CBC),
which was first introduced in [164] as an experimental technique that aims to track
nonlinear steady-state oscillations with varied parameters. It relies on a feedback
controller whose control target acts as a proxy for the system state and ensures non-
intrusive implementations, i.e. the observed solutions in the controlled system are also
solutions for the uncontrolled system. In addition, the controller stabilises the system and
therefore, it allows for tracking of unstable solutions experimentally. This technique has
been implemented in identifying NNM branches [91, 92]; capturing softening-hardening
features [165] and modal interactions [166].
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2.3 Exploiting nonlinear phenomena

Some nonlinear phenomena can be problematic – they not only pose challenges to
analysis and designs of engineering systems but also significantly affect the performance
of structures/facilities, as detailed in §2.1. For example, inferior machining quality
caused by chatter instability during turning process of cutting machines [167]; limit
cycle oscillations of the aircraft caused by nonlinear interactions of the structural and
aerodynamic forces [168]; vibrations of civil structures caused by earthquake, burst and
wind loads [3]. Conversely, other nonlinear phenomena are of great potential, and a
large body of studies seek to exploit their features in engineering practice. The main
families of applications include vibration suppression [47, 169, 136, 170–172] and energy
harvesting [173, 174].

2.3.1 Vibration suppression

Linear dampers have been extensively used in engineering practice due to their simple
concepts in the field of vibration suppression; nonetheless, they are sensitive to the
variation of the system parameters and external environments. For example, the vibration
mitigation performance of a linear tuned mass damper may severely be weakened due to
the mistuning effect that arises from such as the natural frequency shift of the primary
system [175]. Active control has been proposed to address this limitation when using
linear dampers [175–177]; however, several problems, for example, the high requirement
for robust control algorithms and relatively high costs, may complicate and limit the
design and application.

Nonlinear dampers have received increasing attention over the last few decades due
to their wider frequency bandwidth and higher robustness in-service when compared
with linear dampers. A great number of studies can be found on different nonlinear
dampers, which, according to the nonlinear characteristic, can be categorised into the
following classes [178]: the nonlinear stiffness dampers, for instance, the NLTMD and
NES [47, 131]; the nonlinear damping dampers, e.g. the fluid viscous damper [3, 179],
magneto-rheological damper [180–182], friction damper [183], etc; and nonlinear stiffness
and damping dampers such as vibro-impact dampers [17, 18].

Among these applications, the nonlinear stiffness dampers are further discussed in the
following, as this type of damping devices has been widely considered in engineering
practice and literature [184, 46, 43, 44]; in these studies, the nonlinear modal analysis
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(the topic of this thesis) was shown to be an accurate and efficient tool in interpretation,
quantification, and optimisation.

Nonlinear Tuned Mass Damper

To suppress structural vibration, the dynamic vibration absorber, or the tuned mass
vibration absorber, was proposed in 1911 by [185]. Such a device consists of a mass
and a linear spring and is attached to the primary system to ameliorate the dynamic
behaviour of the primary system. With properly selected mass and spring parameters,
attaching the device to the system can redistribute the vibration energy by transferring
energy from the primary system to the absorber. Afterward, Den Hartog introduced
a damping component to the absorber and generated the concept of the linear tuned
mass damper (LTMD) in 1956 [68], where a corresponding optimisation methodology,
termed the equal-peak method, was proposed to achieve the best vibration suppression
performance. Since then, the LTMD has received extensive studies and applications
[186–188]. Nonetheless, as a linear damper, it is subject to the limitations mentioned
previously, namely, it can only achieve sufficient suppression performance within a narrow
bandwidth. Even though several measures can be adopted to address this limitation,
e.g. combining the tuned mass damper with active or semi-active control strategies [176],
and implementing multiple tuned mass dampers [189], several problems such as the high
cost and power supply still need to be solved in practical use.

An alternative strategy to address the limitations of a LTMD is integrating nonlinear
components to generate the concept of a NLTMD. A nonlinear generalisation of the equal-
peak method was introduced in [43] for optimising a NLTMD; its vibration suppression
performance was compared with that of a LTMD. In [44], the main advantage of
introducing nonlinearity is highlighted as the improvement of the performance bandwidth.
The NLTMD has, for example, been utilised to control a supercritical Hopf-bifurcation of
aerofoil flutter [190]; suppress machining chatter, and improve machining stability [191];
and suppress limit cycle oscillations of mechanical systems [192].

Besides these favorable properties, the use of a NLTMD also brings about some undesirable
dynamic behaviours that may limit, even severely weaken, its performance. One of
such undesirable phenomena is the existence of isolas, i.e. forced responses that are
detached from the primary response branches. Predicting the existence of isolas is
challenging; and furthermore, these isolated branches may be associated with large-
amplitude responses [131, 132, 43, 133]. Early study of isolas in engineering systems was
carried out by Abramson [193]; later, extensive works have focused on the mechanism of
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their creation, such as discontinuity [194, 195], internal resonances [196] and symmetry
breaking [197, 141].

Numerous approaches have been used to detect and trace isolas. One method is numerical
continuation which uses special points, such as fold bifurcations and extremum points,
to trace the evolution of isolas by varying specific parameters [198, 199]. In combination
with continuation methods, singularity theory can be used to provide complementary
information in the prediction and identification of isolas [200–202]. Methods based on
continuation can efficiently find isolas; however, they require a good understanding
of the system, and its responses, to select the appropriate continuation parameters.
Another numerical method is global analysis, which may detect an isola by finding initial
conditions which are within the basin of attraction of that isola [203]. This approach
requires a large number of simulations of initial conditions, making it computationally
expensive and thus unsuitable for large systems. An alternative approach is making use
of backbone curves in isola prediction via the energy balancing analysis [139, 198, 141].
This approach reduces the isola-finding problem to an analytical and computationally
simpler one; however, it requires that the backbone curves are known.

Nonlinear Energy Sink

To work efficiently, the natural frequency of a NLTMD, similar to a LTMD, is usually
tuned with respect to a particular mode of the primary system based on resonant
responses [43]. Even though the NLTMD has already shown an improved bandwidth
performance when compared to a LTMD, it still exhibits a suboptimal performance
when the excitation frequency is not in the vicinity of the target mode. One way of
overcoming the band-limited nature of the vibration suppression device is to employ
multiple dampers targeting different modes [204].

The effective bandwidth of vibration suppression can be further extended by exploiting
the nonlinearity in the form of a NES. As with a NLTMD, a NES is composed of a
small-sized device with a small mass value but is now attached to the primary system
by a nonlinearisable spring (i.e. one lacking a linear stiffness component) [46]. Without
a resonant frequency, the NES is able to interact resonantly with numerous modes
of the primary system, and hence exhibits a broad frequency bandwidth performance
[57, 205, 146]. In addition, one promising feature seen in applications of the NES is
the TET phenomenon [57, 146, 206] – with an initial energy (above a critical level) in
the primary system, the energy can be transferred in an irreversible manner from the
primary system to the NES (or energy receiver), where the energy is dissipated. Due to
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these advantages, a variety of NES schemes have been proposed, e.g. a device with cubic
nonlinearity [58, 207], a nonlinear rotator [208, 209], a vibro-impact oscillator [210, 211],
a tuned bistable NES [212] and a lever-type NES [213]. The NES has been utilised
to suppress the building structure vibrations caused by earthquake and shock loadings
[210, 214, 59], suppress the aeroelastic instability of a long-span bridge due to coupled
flutter [58], and attenuate the vibration of a railway bridge caused by traffic loads [215].

The mechanism underpinning the phenomenon of TET has been investigated by numerous
studies, where the concept of NNMs [31], were frequently used to interpret the forced
and damped responses [216, 45, 46]. These NNM-based frameworks revealed that the
resonant capture (as introduced in §2.2.3) governs the strong energy transfer from the
primary system to the NES [57, 146]. In [216], the bifurcations and energy localisation
features of NNM branches were used in combination with numerical wavelet transforms to
consider the time evolution of harmonic responses to evaluate the energy transfer between
modes. In [45], three mechanisms were identified to realise TET, namely, fundamental,
or 1 : 1, resonant capture; subharmonic resonant capture; and resonant capture triggered
by nonlinear beating. Later, experimental investigations on the resonant capture were
performed in [169, 136]. Focusing on the fundamental resonant capture, the conditions
of the system and external forcing that are required to exhibit efficient or optimal TET
are quantified in [147, 148]. To understand TET, the dynamics of the system can also be
approximated as a partition of slow and fast dynamics; as such, the phenomena of TET
are captured by the evolutions of the slow-flow dynamics [45, 148].

2.3.2 Other applications

Besides vibration suppression, which is the main application considered in this thesis,
other applications that exploit nonlinear behaviours are also widely considered in research
and engineering practice. One major field is the energy harvesting, an overview of which
is briefly given here, whilst the interested reader is referred to [217, 218] for a survey.

The frequent use of small-scale mobile devices in engineering practice, e.g. the wearable
devices, the field test, structural health monitoring, etc., has made device powering an
open problem [219, 220]. One potentially viable solution, ambient vibration harvesting
has received much research effort. Early works on vibration harvesting were mostly
based on linear oscillators that convert vibration to electricity via capacitive, inductive or
piezoelectric methods with the natural frequency of the oscillators tuned in the spectral
region where most energy can be exploited [221, 222]. Nonetheless, the ambient vibrations
are usually caused by wind loading, seismic noise and traffic loading, which exhibit non-
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stationary and wide spectral band properties. This makes the linear oscillators insufficient
for the harvesters as it can only extract a limited amount of energy within a narrow band
[223].

To overcome the limitations of linear energy harvesters, the exploitation of nonlinearity
is extensively considered. To date, a vast number of studies were conducted to explore
the application of nonlinear energy harvesters, mostly in the forms of monostable Duffing
[224, 225], impact [226] and bistable oscillators [227]. Benefiting from nonlinearity and
damping of the oscillator, the monostable harvester exhibits a broadening resonant
effect, and thus it has a widen bandwidth. The impact harvester is a device in which a
lower-frequency ambient vibration impacts a higher-frequency energy harvester through
the mechanism of frequency up-conversion, leading to energy harvesting at the coupled
frequency. The bistable harvesters, with a unique double-well potential, has three distinct
dynamic operation regimes, namely low-energy intrawell vibrations, aperiodic or chaotic
vibrations between two wells and periodic interwell oscillations, which strongly depends
on the amplitude of the excitation. Having higher mass velocity during the periodic
interwell oscillations, the bistable harvester has favourable electrical output performance.
For an overview of the applications of bistable energy harvesters, the interested reader
can refer to [227] for a survey.

In addition to energy harvesting, nonlinear phenomena have also been closely exploited
in signal processing [228, 229], micro-electromechanical devices [230, 25, 170] and filters
[231, 24], to name a few.

2.4 Research motivations

In §2.1, it was presented that, with commonly observed nonlinear sources, engineering
systems can experience rich nonlinear phenomena. These nonlinear behaviours can
present numerous challenges in analysis and design of dynamical systems, yet they also
bring about advantageous applications.

To overcome challenges and develop applications, a great number of tools can be used
for nonlinear analysis. Specifically, in §2.2.1, it was demonstrated that nonlinear modal
theory, using the concept of NNMs, or backbone curves, can provide a tool for efficient
interpretation and quantification of nonlinear behaviours.

Due to the invariance property of NNMs, reduced-order modelling methods can be
employed to construct computationally cheap, low-dimensional models that capture the
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salient dynamics of computationally expensive, high-dimensional systems. In addition,
due to the nonlinear basis they build on, NNMs can rigorously and robustly capture non-
linear behaviours such as modal interactions, bifurcations, and instabilities, as discussed
in §2.2.2.

Even though NNMs and backbone curves represent the underlying conservative dynamics,
their connections to forced periodic responses can be established via the energy balancing
analysis; likewise, the relationships between backbone curves and damped transient
responses are underpinned by the concept of resonant capture, shown in §2.2.3. Therefore,
backbone curves can be used to interpret and predict forced damped responses; or
conversely, using forced damped responses to identify backbone curves during experimental
tests, as demonstrated in §2.2.4.

As a versatile analysis tool, backbone curve analysis is extensively used in designs,
optimisations and validations of nonlinear engineering applications, some examples of
which were introduced in §2.3.1. Specifically, discussions were given on the applications
in vibration suppression using nonlinear damping devices such as a NLTMD and a NES.

It was noted in §2.2.1 that the primary advantages of using backbone curves for dynamic
analysis include the simplified computations that are required, as well as the capability
to rigorously interpret the mechanisms that underpin nonlinear dynamic behaviours.
However, due to the complexity of nonlinear phenomena, backbone curves can also
exhibit intricate features that are difficult to quantify, especially in the presence of
modal interactions. Synchronous backbone curves, where the modal components oscillate
either in-phase or anti-phase, are commonly observed in engineering systems. However,
they can be transformed into isolated backbone curves, the existence of which can pose
challenges to the computations as a prior knowledge (extra initial solutions) of these
isolated branches is required. In addition, they can be associated with high-amplitude
responses that have a significant impact on the performance of engineering systems, for
example, the NLTMD systems that were introduced in §2.3.1. Therefore, an objective
of the research is to provide an analytical study of isolated backbone curves in order to
gain insights into the mechanisms that govern their existence. In addition, considering
their significant impact on applications of a NLTMD, how these isolated backbone curves
can be reliably eliminated must be investigated. This will also help account for these
nonlinear features more easily when designing other nonlinear systems.

Another nonlinear feature, arising from modal interactions, of backbone curves lies in the
existence of asynchronous motions, for example, whirling motions of cables and rotor-shaft
systems. In contrast to synchronous motions, the asynchronous motions represent cases
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where the phase relationships between modal coordinates are arbitrary values. As such,
they represent a large family of nonlinear responses, however, they have received less
investigations in literature. The study of asynchronous backbone curves can further the
theoretical understanding of whirling-like motions and gain insights into practical designs
of engineering systems such as cables to better account for this nonlinear behaviour.
By comparing the definitions of synchronous and asynchronous motions, it is the phase
relationship between modal coordinates that governs their differences. Therefore, the
study looks in-depth into the phase relationships to uncover the underpinning mechanism
that distinguishes between synchronous and asynchronous backbone curves. Interestingly,
it will be shown how the phase relationships of asynchronous backbone curves can exhibit
amplitude-frequency dependency – a new class of nonlinear behaviours. This uncovered
mechanism also reveals the significance of accounting for phases in nonlinear modal
analysis.

As demonstrated in §2.2.2, the picture becomes more complex when dynamical systems
vibrate at large amplitudes in the presence of internal resonances between nonlinear
frequencies. In this context, determining the existence of internal resonances is challenging
because of the required access to nonlinear frequencies as well as the fact that multiple
internal resonances can exist. As such, many studies employed case-by-case studies, or
computationally expensive simulations to determine specific types of internal resonances.
To address the challenges, an analytical approach is employed to study the existence and
locations of internal resonances for two-mode interactions with an arbitrary eigenfrequency
ratio when vibrating at large amplitudes. In this general context, the underlying
relationships between synchronous and asynchronous backbone curves will be explored to
generalise the insights gained during separate studies of them. In addition, the study aims
to derive explicit formulas that reveal the relationships between physical properties and
internal resonances that may occur. A method will be provided for efficient determination
of internal resonances, which can aid practical designs when specific types of internal
resonances are exploited, or to be eliminated.

In §2.2.3, it was shown that the relationships between backbone curves and forced
periodic responses can be established via the energy balancing principle. Based on this
mechanism, one can use backbone curves to interpret forced periodic oscillations, or
conversely use forced responses to identify backbone curves. One advantage of the energy
balancing method, proposed in [139], lies in the analytical formulation that lends itself
to efficient prediction of forced responses; however, it also brings about an inherent
limitation that it may yield unrobust and even incorrect predictions due to neglecting
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harmonic contributions. Furthermore, it also prevents a direct analytical extension that
accounts for multiple harmonics, instead, it results in a numerical scheme that is of a
high computational cost. Therefore, another objective of this thesis is to propose an
energy balancing method that overcomes the unrobust and inaccurate limitations whilst
preserving the computational efficiency. This is achieved by employing a semi-analytical
framework to account for multi-harmonic energy-transfer balancing. A criterion will also
be presented which evaluates the applicability, as well as monitoring the accuracy, of the
proposed method. As such, this method will allow a robust and accurate use of backbone
curves to interpret forced responses. In addition, it will also aid experimental backbone
curve identification, for example, in designing an appropriate number of excitation points
and their arrangements in order for accurate identification.

In §2.2.3, it was also demonstrated that the relationships between backbone curves and
damped transient responses are underpinned by the concept of resonant capture. With
this mechanism, the backbone curve can be used to interpret TET in applications of
the NES, as discussed in §2.3.1. Indeed, TET is governed by the energy localisation
properties of the underlying conservative backbone curve, and the irreversible energy
transfer is realised via resonant decays that are locked in the neighbourhood of such a
backbone curve. However, how the energy localisation features are realised and how they
can be identified in other mechanical systems, has not been explored fully. Therefore, the
final objective of this thesis is to explore the underpinning mechanism that governs the
essential backbone curves to gain insights into the realisation of TET. These insights must
allow such a nonlinear phenomenon to be better accounted for and more easily exploited
in practical designs of NES systems. Furthermore, a more general understanding of TET
(not necessarily limited to NES systems) will also facilitate the identification of TET in
other mechanical systems.

Based on the observations, this thesis has the following main objectives:

1. To investigate internal resonances using backbone curves.

To achieve this, an analytical approach is employed that is based on backbone
curve analysis. Firstly, some special geometric features (with significant engineering
application relevance) of nonlinear normal modes are explored, including how
synchronous backbone curves are transformed into isolated backbone curves, and
what mechanism underpins the features of asynchronous backbone curves. These
concepts will then be generalised in a broader scope to account for arbitrary
types of internal resonances for arbitrary two-mode interactions. The connections
and differences between synchronous and asynchronous backbone curves will be
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analytically investigated; this will allow their existence to be reliably and efficiently
determined.

2. To investigate the relationships between backbone curves and forced-damped re-
sponses.

To establish the relationships between backbone curves and forced periodic re-
sponses, an energy-based method is employed to account for energy balancing
across multiple harmonics in an NNM. This provides a robust and accurate method
to interpret and predict forced responses using backbone curves; in addition, it will
also aid the experimental designs for backbone curve identification. Whilst, based
on the relationships between backbone curves and damped transient responses,
the required backbone curves for the realisation of TET are explored. The gained
insights allow TET to be better accounted for and more easily exploited in NES
systems; furthermore, they can also aid in identifying the realisation of TET in
other engineering systems.

To better motivate the research of this thesis, a motivating example is provided before
presenting the thesis outline.

2.5 Motivating example

In this section, an example case is presented to demonstrate modal interactions in
nonlinear dynamical systems and motivate the studies of this thesis. In literature,
the majority of works on modal interactions are based on two-mode interactions, see
Refs. [33, 130, 251, 263, 142], although other cases such as three-mode interactions have
been reported in [41]. In line with much literature, a two-mode nonlinear system is
considered in this section. Such a two-mode system may be seen as representative of
many mechanical systems with two interacting modes, e.g. a primary system with a
vibration absorber attached [46, 131, 43], cable systems [232, 129] or nonlinear beam
systems [233, 36, 52].

In the linear modal domain, the equations of motion for the two-mode system with a
cubic nonlinearity under periodic excitations are given by

q̈1 + d1q̇1 + ω2
n1q1 + Ψ4q

3
1 + 3Ψ1q

2
1q2 + Ψ3q1q

2
2 + Ψ2q

3
2 = P1 cos (Ωt) , (2.1a)

q̈2 + d2q̇2 + ω2
n2q2 + Ψ1q

3
1 + Ψ3q

2
1q2 + 3Ψ2q1q

2
2 + Ψ5q

3
2 = P2 cos (Ωt) , (2.1b)
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Fig. 2.1 Forced response curves (FRCs) of the example system with forcing amplitude
P2 = 0.003. Both panels show the FRCs in the projection of the response frequency,
ω, against the maximum response amplitude of the second mode, Q2. (a) The FRCs
obtained via forward and backward frequency sweeps, denoted by solid and dot-dashed
lines respectively, where the arrows denote the jump phenomena. (b) The FRCs, obtained
via numerical continuations, where the stable and unstable segments are denoted by solid
and dashed lines respectively with bifurcation points marked by dots.

Table 2.1 Parameters of the motivating example system.

ωn1 ωn2 d1 d2 Ψ1 Ψ2 Ψ3 Ψ4 Ψ5

0.9 1 0.01 0.01 0.5 0.5 5 1 1

where qi, q̇i, and q̈i are the ith linear modal displacement, velocity, and acceleration
respectively. di denotes the ith linear modal damping. It should be noted that the
linear modal damping is reflective of a significant number of engineering systems with
geometric nonlinearity where the damping may be assumed small when compared to
external forcing and nonlinear stiffness [234, 30, 31, 144, 117]. ωni is the ith linear natural
frequency. Ψ1, . . . ,Ψ5 are coefficients of the nonlinear terms, and Pi is the amplitude
of ith modal excitation with forcing frequency Ω. In this example case, only the cubic
nonlinearity is considered for demonstrating the rich dynamics in nonlinear systems. In
practice, other forms of nonlinearity such as quadratic nonlinearity can also be relevant
[228, 246].

Here, an example system, with parameters given in Table 2.1, is considered. Note that
the parameters of the example system are considered for an illustrative purpose rather
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than a case study of any practical engineering systems2. However, a number of practical
examples will be given in accordance with the related applications in the following
chapters.

For a given system, the Forced Response Curves (FRCs) are solution branches of forced
periodic responses. They reveal rich nonlinear behaviours, e.g. modal interactions,
bifurcations, and instability that emerge from nonlinear coupling mechanism; therefore,
FRCs are widely used for analysis and design of nonlinear systems [235, 31, 30]. Here,
to study the nonlinear responses, a periodic forcing with amplitude P2 = 0.003, is
applied to the second mode, q2. The simplist way to compute the FRCs of the example
system is arguably via direct numerical integration by performing frequency forward
and backward sweep simulations. This may be performed using inbuilt solvers such
as Matlab’s ode45 [236]. The forward and backward FRCs are shown as solid and
dot-dashed curves respectively in Fig. 2.1a in the projection of the response frequency, ω,
against the maximum displacement amplitude of the second mode, Q2. As this technique
relies on integration of steady-state responses, it only captures the stable solutions. The
bifurcations from stable to unstable responses are characterised by jump phenomena,
denoted by arrows in Fig. 2.1a. To locate unstable solutions, one can employ the shooting
method, where an initial value problem is formulated. The initial state of the system is
iteratively updated to meet the periodicity condition of a forced response.

Alternatively, one can avoid numerical integration in finding periodic solutions by em-
ploying the harmonic balance method and the collocation method [235, 30, 67]. The
harmonic balance method is a frequency domain method where the periodic solution of
the nonlinear dynamical system is approximated by a series of harmonic components
with unknown Fourier coefficients. By substituting the assumed solution to the equations
of motion, and balancing the harmonic components, finding periodic solutions leads to
solving a set of nonlinear algebraic equations. Whilst, the collocation method is a time
domain method where the periodic solution is divided into mesh time intervals; at each
interval, the solution is approximated by a Lagrange polynomial function. To find the
periodic solution, the equations of motion are satisfied at a given set of nodes termed
collocation points. These two methods have been frequently incorporated in numerical
continuation techniques to find periodic solutions of nonlinear dynamical systems, see
references [31, 100, 99].

2Note that, when considering practical systems, the coefficients of the nonlinear terms, Ψi, may be
seen as functions of the physical parameters, e.g., linear stiffness and nonlinear stiffness. In that case,
additional constraints should be imposed to define positive-definite strain energy.
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Fig. 2.2 Forced responses of the example system with forcing amplitude P2 = 0.01. The
left panel shows the FRCs in the projection of the response frequency, ω, against the
maximum response amplitude of the second mode, Q2. For simplicity, the stability of the
responses is not presented here. On FRCs, four example resonant responses are denoted
by ‘×’ and labelled (i) → (iv), the time-parameterised responses of which are shown in
the right panels in the configuration space. The arrows in panels (iii) and (iv) denote
clockwise and anticlockwise asynchronous responses.

Here, the Matlab-based continuation software COCO is used to compute FRCs of the
example system. It should be noted that the po-toolbox of COCO makes use of the
collocation method to discretise the problem and continuation is performed to obtain
periodic solutions [99]. The computed results are shown in Fig. 2.1b, where the stable and
unstable segments are represented by solid and dashed lines respectively with bifurcations
denoted by hollow dots. A typical nonlinear hardening feature can also be observed as
the response curve bends to higher response frequency as amplitude increases.

To complicate matters, as the external forcing amplitude increases, more complex
nonlinear phenomena may be observed. Here, to demonstrate the complexity, the
forcing amplitude is increased from P2 = 0.003 to P2 = 0.01. The FRCs are computed via
numerical continuations and shown in the left panel of Fig. 2.2; note that, for simplicity,
the stabilities of the responses are not shown.

In this figure, besides the primary forced response curve (green line), two isolas, i.e. regions
of forced responses that are separated from the primary branch, can also be observed – they
are represented by red and blue lines. Due to this isolated feature, the existence of isolas
can be difficult to determine; in addition, these isolated solutions may represent significant,
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high-amplitude responses, which are of great importance for practical engineering systems,
as discussed in §2.3.1. Note that the direct numerical integration is not favourable in
quantifying these features as stable solutions on these isolas are required to initiate the
frequency sweep – it must be performed very carefully at a computationally expensive
cost; hence the results from numerical integration are not shown here. In contrast,
numerical continuations can effectively stabilise the responses (see Fig. 2.1b) and thus, it
allows the full dynamics to be found if an appropriate number of initial solutions are
provided.

Another feature of the larger-amplitude forcing case lies in the existence of intricate
modal interactions, or internal resonances. By definition, the internal resonance denotes a
periodic response where the interacting modes exhibit frequency commensurate matches.
Here, four example periodic responses at phase resonances3 on FRCs (labelled (i) → (iv)
in the left panel of Fig. 2.2) are considered; and they are mapped to the configuration
space in the right panels. From the configuration mappings, one can observe that,
for every period of q1 response, q2 also oscillates for one period. As such, these two
modes vibrate with a 1 : 1 frequency relationship, denoting 1 : 1 internal resonance.
Even though these responses are dominated by the same frequency, they show different
geometric features in the configuration space. In panels (i) and (ii), q1 and q2 vibrate
in-phase and anti-phase respectively, in another word, these two periodic responses exhibit
synchronous, or in-unison, resonance – a line passes through the origin in the configuration
space. In contrast, in panels (iii) and (iv), the responses exhibit asynchronous features,
characterised by a loop in the configuration space. The two isolas, combined with
geometrically intricate internal resonances, make it challenging to fully characterise the
nonlinear behaviours of the example system, despite its apparent simplicity.

One method to account for these features is to consider the concept of nonlinear normal
modes (NNMs), i.e. undamped and unforced periodic responses of the nonlinear system
[31]. The NNM branches, or backbone curves, provide a simpler topology than the
FRCs, nonetheless they still capture the essential nonlinear behaviours. To compute the
backbone curves of the example system, the damping and forcing terms of Eqs. (2.1) are
removed (regarding the conservative NNM definition). Using numerical continuations,
the backbone curves are found and shown as solid black lines in Fig. 2.3; whilst the
FRCs are shown as thin lines for comparison. One can observe that the FRCs envelope
the backbone curves, with phase resonances captured by the backbone curves. Four
time-parameterised responses with respect to the labelled signs on backbone curves, near

3Note that, at these labelled responses, the external forcing exhibits 90◦ phase-lagged to the modal
displacement, as such, they are termed phase resonances [88].
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Fig. 2.3 Backbone curves of the motivating example system. The left panel shows the
backbone curves in the projection of the response frequency, ω, against the maximum
response amplitude of the second mode, Q2. For comparison, the FRCs for P2 = 0.01,
presented in Fig. 2.2, are shown as thin lines. On these backbone curves, four example
NNM solutions are labelled (i) → (iv), the time-parameterised responses of which are
shown in the right panels in the configuration space. Note that these NNM solutions are
in the neighbourhood of the resonant responses on FRCs.

the phase resonances on the FRCs, are shown in the right panels of Fig. 2.3. These
four unforced, undamped responses show strong similarity to that of the forced cases in
Fig. 2.2.

Up to this point, it has been shown that the backbone curves, i.e. the underlying unforced
undamped dynamics, provide a qualitative interpretation of the forced-damped responses.
To further establish a quantitative relationships between the backbone curves and forced
periodic responses, one can consider the energy balancing technique, proposed in [139].
The energy principle used by this technique is that the net energy transfer in and out of
the system must be zero over a period of response. The conservative stiffness does not
lead to energy transfer in and out of the system; as such, the only parameters that allow
energy transfer are damping and external forcing. Across all modes of the system, the
energy balancing principle is given by

N∑
i=1

(EDi + EP i) = 0 , (2.2)
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Fig. 2.4 Energy balancing analysis of the motivating example system. The solid lines
represent the required forcing amplitudes, P2, in order to have intersections between
forced responses and backbone curves at response frequency ω. The dashed line represents
the case with a forcing amplitude of P2 = 0.01, where four crossing points on the backbone
curves are identified and shown as hollow dots; whilst the dotted line represents the case
with a forcing amplitude of P2 = 0.003, where the identified resonant crossing point is
denoted by a solid dot. The two forcing cases are associated with the forced responses
shown in Figs. 2.1 and 2.2.

where EDi and EP i denote the ith modal damping and forcing energy-transfer terms
respectively, and N is the total number of modes of the system. As given in [139], EDi

and EP i can be computed using

EDi =
∫ T

0
[diq̇i] q̇idt , (2.3a)

EP i = −
∫ T

0

[
pi(t)

]
q̇idt , (2.3b)

where T is the period of the response of the system considering all modes, and pi(t) is
the periodic forcing applied to the ith mode, i.e. pi(t) = Pi cos(ωt) for the case considered
here.

Using energy balancing to establish the relationships between backbone curves and
forced periodic responses, it is assumed that they share intersections, called resonant
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Fig. 2.5 Interpretating forced responses using backbone curves. Backbone curves of the
system are shown as thin black lines; whilst the FRCs are denoted by thick solid lines.
The relationships between forced responses and backbone curves are identified using the
energy balancing analysis (see Fig. 2.4). Four intersectins between the forced responses
and backbone curves are identified and shown as hollow dots in this figure.

crossing points. As such, the backbone curves may be seen as loci of potential forced
responses; then at resonant crossing points, the energy balancing mechanism for periodic
forced responses also holds for backbone curves. Note that, in constructing the energy
balancing analysis, the backbone curves are viewed as known parameters whilst the forcing
amplitude, Pi, are unknowns and to be computed via Eqs. (2.2) and (2.3). Consequently,
based on energy balancing, the backbone curves can be used to predict/interpret forced
responses.

To demonstrate this, the same system parameters are considered, given in Table 2.1;
whilst the forcing amplitude of the second mode, P2, is assumed as an unknown parameter
to be computed. The results are shown in Fig. 2.4 – the forcing amplitude required for
the forced responses to share solutions with the backbone curves at response frequency
ω. For any given forcing amplitude, i.e. a horizontal line in this projection, the energy
balancing technique identifies the crossing points on backbone curves at corresponding
response frequencies. For example, the forcing case where P2 = 0.01 is represented by a
dashed line in Fig. 2.4, and the energy balancing analysis identifies four crossing points,
denoted by hollow dots. To verify the predicted results, the backbone curves, forced
responses and identified resonant crossing points are shown in Fig. 2.5 for comparison.
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One can observe that these identified points on backbone curves capture the forced
resonances with an excellent agreement. Likewise, one may recall the first example case
in Fig. 2.1, where the forcing amplitude is P2 = 0.003. Such a forcing amplitude is
denoted by a dotted line in Fig. 2.4, where only one intersection (a solid dot) is identified
at response frequency ω ≈ 1.05, indicating a single resonance on the FRC. This again is
in line with the results shown in Fig. 2.1b where only the primary FRC (whose resonance
is at ω ≈ 1.05) is found without the existence of isolas.

It can be concluded that using backbone curves, combined with the energy balancing
technique, offers a tool for nonlinear modal analysis, which significantly simplifies the
challenging and computationally expensive numerical simulations. However, there still
are some challenges and unaddressed issues when using backbone curves in nonlinear
modal analysis, namely in

• Characterising the features of backbone curves.

Even though backbone curves already exhibit a much simpler topology than forced
responses, they may exhibit intricate features arising from modal interactions. One
of these features is the existence of isolated backbone curves, an example of which is
shown in Fig. 2.3. Their existence makes determining backbone curves a challenging
task (arguably as difficult as finding isolas for forced systems), and complicates the
use of backbone curves in nonlinear modal analysis.

Another complexity that arises from modal interactions lies in the geometric
features (synchronous and asynchronous oscillations). Shown in Figs. 2.2 and 2.3,
the 1 : 1 internal resonance is captured by two geometrically different responses.
One type is related to the commonly observed synchronous responses, where the
phase relationship between the interacting modes is either in-phase or anti-phase.
Additionally, the less explored asynchronous responses, where the phase relationship
may assume any value, can also be found. As a generalisation of NNMs in terms of
phase relationships, the asynchronous response represents an important class of
nonlinear responses. However, further investigation is still needed on what governs
their existence and what is the mechanism that underpins their connections to, and
differences from, synchronous motions.

• Determining the existence and locations of internal resonances.

In contrast to the low-amplitude forcing case, the large-amplitude case exhibits
multiple mixed-mode backbone curves that emerge from internal resonances, see
Figs. 2.2 and 2.3. This is not the unique case where a nonlinear system shows intri-
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cate topologies of internal resonance when vibrating at large amplitudes. Indeed,
as discussed in §2.2.2, even a simple mechanical system may show similar intricacy
and the picture can further complexify when other frequency commensurate rela-
tionships are satisfied (in the presence of m : n internal resonance). In practice,
determining internal resonance is typically associated with computationally expen-
sive numerical simulations. To overcome this challenge, a robust method is needed
for efficient determination of internal resonances for an arbitrary system, regardless
of the response frequency range.

• Relationships between backbone curves and forced damped responses.

The relationships between backbone curves and forced periodic responses can be
established via the energy balancing analysis, proposed in [139]. Using a single
harmonic as the representative of the modal response, this technique permits
predictions of resonances in a computationally cheap analytical framework. In
the motivating example, it was revealed that this method accurately predicted
the resonances on both the primary branch and isolated branches, see results in
Figs. 2.4 and 2.5. However, it can also lead to unrobust and even erroneous results
when the response has multiple significant harmonics, as discussed in §2.2.3. In
addition, a direct extension of the method to consider multiple harmonics can
only result in a numerical framework that loses the advantages of high efficiency.
To overcome this single-harmonic limitation, whilst preserving the computational
efficiency, an alternative formulation is required.

In addition, as discussed in §2.2.3, the relationships between backbone curves and
damped transient responses are underpinned by the concept of resonant capture –
the free damped responses can be locked in the neighbourhood of backbone curves.
This indicates that conceptually simpler backbone curves can be used to interpret
intricate transient oscillations. In this case, it is of great interest to make use of this
connection to further the understanding of and even optimise engineering systems
that exploit transient responses, e.g. the targeted energy transfer.

In addition to these challenges and unaddressed issues, applications of such an NNM-
based nonlinear modal analysis framework in practical scenarios are also within the
consideration of this thesis. Particularly, the focus is on the fields of nonlinear oscillations
and vibration suppression of engineering systems. Throughout this thesis, a number of
applications will be presented, for example, the existence of isolated backbone curves in
applications of a NLTMD, the whirling motions in cable systems, and the realisation of
TET in applications of a NES and beam systems.
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Based on the observations in §2.4 and §2.5, the thesis outline is presented as follows.

2.6 Thesis Outline

An outline of the research, broken down chapter by chapter is now presented. The
relationships between the chapters are also discussed at the end of the section using
Fig. 2.6.

Chapter 3 – Isolated backbone curves

As previously discussed, based on geometric features, the concept of NNMs, or
backbone curves, can be categorised as either synchronous or asynchronous re-
sponses. An important feature of synchronous responses is the existence of isolated
backbone curves that are separate from the primary branch; as such, their existence
is challenging to predict and compute.

In Chapter 3, the conditions for the existence of isolated backbone curves are
explored from a symmetry-breaking perspective. A symmetric two-mass chain
oscillator is firstly studied which, as observed in literature, exhibits a bifurcation
between its backbone curves. As the symmetry is broken, the bifurcation splits to
form an isolated backbone curve. Here, it is demonstrated that this bifurcation,
indicative of a symmetric structure, may be preserved when the symmetry is broken
under certain conditions; these are derived analytically. This generalises the effect
of symmetry breaking on the existence of isolated backbone curves. Using these
insights, an asymmetric model – a single-mode nonlinear structure with a NLTMD –
is then considered. The evolution of backbone curves is investigated in the nonlinear
parameter space. It is found that this space can be divided into several regions,
within which the backbone curves share similar topological features; whilst those
topological boundaries define the emergence and annihilation of isolated backbone
curves. Analytical formulas that govern the existence of isolated backbone curves
are derived, which allow these features to be more efficiently accounted for, or
eliminated, when designing relevant nonlinear facilities.

Chapter 4 – Phase-varying backbone curves

In contrast to the synchronous NNMs that are studied in Chapter 3, asynchronous
NNMs have also been reported in the literature, taking the special form of out-of-
unison motions, where the two underlying linear modes exhibit a phase difference
of 90◦. Chapter 4 extends the special out-of-unison concept to account for general
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asynchronous NNMs, where the modes exhibit a phase difference that can be an
arbitrary value (not necessarily 90◦). A single-mass, two-mode model is firstly
used to demonstrate the symmetry-breaking mechanism that transforms the out-of-
unison NNMs into general asynchronous NNMs. Additionally, analytical derivations
reveal that, along with the breaking of the symmetric layout, the out-of-unison
backbone curves evolve into branches that exhibit amplitude-dependent phase
relationships. This means that the phase relationships between modes can vary
along the backbone curve as frequency or amplitude varies. As such, these NNM
branches are introduced here and termed phase-varying backbone curves. To explore
this further, a cable model, with an additional support near one cable end, is used
to demonstrate the existence of phase-varying backbone curves (and corresponding
general asynchronous NNMs) in a common engineering structure. The objective of
this chapter is to study the general asynchronous motions in nonlinear conservative
systems. A new class of nonlinear phenomena, namely the phase-varing behaviour,
is analytically derived and demonstrated using example systems. The significance
of considering phase relationships between modes in nonlinear response analysis is
also discussed.

Chapter 5 – Topological Mapping of Internal Resonances

The synchronous and asynchronous backbone curves, studied in Chapters 3 and
4, are special cases where the two modes exhibit a 1 : 1 frequency commensurate
relationship, or 1 : 1 modal interactions. In Chapter 5, these concepts are fur-
ther extended to a general case where the interacting modes have an arbitrary
frequency commensurate match, namely, m : n internal resonance. This is achieved
by investigating the backbone curves of a conservative system with arbitrary
modal parameters when vibrating at large amplitudes from a symmetry-breaking
perspective.

Firstly, the symmetric case is considered, where the internal resonances are shown
to be approximately captured by the Mathieu equation. It is revealed that the
backbone curves (emerging from internal resonance) exist in pairs; and for each
pair, the interacting modes exhibit the same response frequency commensurate
relationships but with different phase relationships (in line with the concepts
introduced in Chapters 3 and 4). To study the topological features of internal
resonances and to determine their existence and locations, the divergence and
convergence for pairs of backbone curves are then considered. Analytical formulas
show that the existence of internal resonances is determined by the eigenfrequency
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ratio and nonlinear parameter ratio. Using these insights, a graphical method is
proposed for the efficient determination of internal resonances in arbitrary two-mode
interactions. Lastly, by extending to asymmetric cases, the asymmetric evolutions
of internal resonance are shown to be captured by a non-homogeneous extended
Mathieu equation, where the asymmetry-induced bifurcation splitting is governed
by the non-homogeneous terms. This chapter aims to explore the mechanism
underpinning internal resonances and quantify their topologies by extending the
cases, considered in Chapters 3 and 4, to a general case. Analytical formulas and
a graphical method are presented to aid the determination and interpretation of
internal resonance.

Chapter 6 – Multi-harmonic energy balancing analysis using backbone curves

Previous chapters will be focused on using NNMs, i.e. unforced and undamped
periodic responses, in studies of internal resonances and their relevant applica-
tions. Chapter 6 extends the scope to forced-damped scenarios by establishing
the relationships between NNMs and forced damped periodic responses from an
energy-based perspective.

In this chapter, an overview is given of the energy balancing mechanism at the
system level, and then at the modal level and harmonic level. Using this mechanism,
the relationships between NNMs and forced responses are established via the energy
balancing analysis. For the energy balancing analysis based on a single-harmonic
representative, its applicability and accuracy are investigated – it can bring about
unrobust and even incorrect predictions when multiple harmonics show significant
contributions. To address this, a semi-analytical framework is employed to formulate
the multi-harmonic energy balancing analysis which combines the energy balancing
mechanism and quadrature constraints. With known inputs of NNM solutions,
the forcing amplitude and required perturbations, i.e. harmonic phase-shifts, to
establish the connections between backbone curves and forced responses, can be
computed. This allows for using backbone curves to interpret forced responses
with the applicability and accuracy estimated via phase-shifts. The proposed
method is then applied via a number of examples with comparison to numerical
force appropriation to demonstrate how it can aid experimental tests. Lastly, this
technique is adopted in isola prediction, which shows an improved accuracy and
robustness when compared with the single-harmonic formulation. The objective of
this chapter is to formulate the energy balancing analysis across multiple harmonics

40



2.6 Thesis Outline

to provide an accurate and robust method to interpret forced responses using
backbone curves.

Chapter 7 – Understanding targeted energy transfer using backbone curves

In Chapter 6, the connections between backbone curves and forced periodic re-
sponses are established by the energy balancing principle. Indeed, the relationships
between backbone curves and damped transient responses are underpinned by the
mechanism of resonant capture. Based on this mechanism, Chapter 7 studies TET
using backbone curves.

TET represents the phenomenon where energy in one component is irreversibly
transferred to another one when the initial energy is above a critical level. An
important engineering application of TET is the NES, attached to the primary
system to allow the energy to flow to and dissipated in the NES. There is a natural
asymmetry in the system due to the desire for the NES to be much smaller than
the primary structure it is protecting. This asymmetry is also essential from an
energy-transfer perspective. To explore how the essential asymmetry is related to
TET, the realisation of TET is interpreted from a symmetry-breaking perspective.
This is achieved by introducing a symmetrised model with respect to the generically
asymmetric original system. Firstly a classic example, where the system consists of
a linear primary system and a nonlinearisable NES, is studied. The backbone curve
topology that is necessary to realise TET is explored and it is demonstrated how
this topology evolves from the symmetric case. This example is then extended to a
more general case, accounting for nonlinearity in the primary system and linear
stiffness in the NES. Exploring the symmetry-breaking effect on the backbone
curve topologies enables the parameters of the NES to be identified, which give rise
to TET. Lastly, the uncovered symmetry-breaking mechanism in the realisation
of TET is demonstrated using a nonlinear beam model. The objective of this
chapter is to understand the phenomenon of TET using backbone curves based
on the mechanism of resonant capture. This phenomenon is interpreted from
a symmetry-breaking perspective with the necessary backbone curve topologies
identified. The proposed technique can aid the parameter designs of systems with
an NES and others without a peripheral device in order to realise TET.

Chapter 8 – Conclusions and future work

The conlusions of the achievements are drawn in Chapter 8; discussions are also
given on the potential future research.
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Chapter 3 synchronous NNMs and
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Fig. 2.6 A schematic diagram of the thesis outline.

To summarise the focus of and connections between each chapter, a schematic diagram of
the thesis outline is presented in Fig. 2.6 using the featured nonlinear oscillations (in each
chapter) in the configuration space for a two-mode system (q1, q2). Chapters 3 to 5 focus
on the use of NNMs to study nonlinear modal interactions from a geometric perspective.
In Chapter 3, the synchronous NNMs and their correlated isolated backbone curves are
studied; whilst Chapter 4 investigates the counterpart, namely the asynchronous NNMs
and the uncovered new set of nonlinear phenomenon – phase-varying behaviours. Results
in Chapters 3 and 4 are then generalised in Chapter 5 to account for m : n internal
resonance for systems with arbitrary modal parameters. In Chapter 6, the relationships
between backbone curves and forced periodic responses are established via the energy
balancing analysis. In Chapter 7, based on the mechanism of resonant capture, backbone
curves are used to interpret and understand transient TET.
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Isolated backbone curves

In this chapter:

• Analytical expressions of backbone curves are derived for a general two-mode
system with a cubic nonlinearity. Two example systems, in the form of two-mass
oscillators, are used for analysis and demonstration.

• Features of synchronous backbone curves are characterised, and shown how they
can be isolated from the primary curve due to symmetry breaking.

• Conditions for the existence of isolated backbone curves are quantified by exploring
the topological evolutions of backbone curves for an asymmetric system.

• Results are demonstrated using the application of a Nonlinear Tuned Mass Damper
(NTMD) to account for, or eliminate, the existence of isolated backbone curves in
design.

Publications related to this work

• D. Hong, T. L. Hill, S. A. Neild, 2019. Conditions for the existence of isolated
backbone curves, Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 475 (2232) 20190374.

• T. L. Hill, D. Hong, S. A. Neild, 2020. Uncovering hidden responses using isolated
backbone curves, 14th WCCM & ECCOMAS Congress.
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3.1 Introduction

Forced response curves (FRCs) are extensively used in the dynamic analysis of nonlinear
systems [235, 31, 30]. However, nonlinear forced responses can be challenging to quantify
and interpret; one example of particular interest is the existence of isolas, i.e. FRCs that
are separated from the primary branch [131]. The existence of isolas has been identified in
many nonlinear systems, e.g. the motivating example in §2.5 and Refs. [131, 132, 43, 133].
In these studies, the isolas can be associated with significant, high-amplitude responses
that must be accounted for, or eliminated; nonetheless, due to the isolated characteristics,
their existence is difficult to determine. In practice, this is often achieved via case-
by-case studies, or computationally expensive simulations via, for example, numerical
continuation of special points [198, 199, 203] and global analysis [203].

To interpret the complex forced responses, the concept of NNMs [31], or backbone curves,
can be employed, which exhibit a simpler topology, yet still capture the essential nonlinear
features, as discussed in §2.2.2. The relationships between forced responses and backbone
curves can be established using the energy balancing analysis [139, 198, 141]. As such,
the isola-finding problem can be reduced to an analytical and computationally simpler
scheme, provided that the backbone curves are known. One example of using backbone
curve to identify isolas can be found in the motivating case in §2.5.

To complicated matters, like the FRCs, backbone curves can be isolated, e.g. the isolated
backbone curve for the motivating example system shown in Fig. 2.3. Without a priori
knowledge of their existence, the associated isolas may go undetected and pose a risk of
unexpected, high amplitude responses. One mechanism for the emergence of isolated
backbone curves has been demonstrated in [139], where their creation is related to
symmetry breaking. This mechanism has been verified via experimental studies in a
cross-beam system [237]. In practice, a significant number of systems are asymmetric,
e.g. a primary structure with a damping device attached for vibration suppression
[43, 133]. A desirable design usually requires the damping device to be much smaller in
size compared to the system it is protecting – this formulating an essentially asymmetric
configuration. In such cases, the existence of isolas, as well as isolated backbone curves,
can show a particularly significant impact on the performance of the damping device, as
demonstrated in §2.3.1. However, a general methodology, establishing the relationship
between symmetry and the existence of isolated backbone curves, has not been explored
fully. This chapter aims to understand this relationship, and provides a method that
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ensures these isolated features are reliably predicted when designing nonlinear devices
and systems. To this end, the rest of this chapter is organised as follows.

In §3.2, a brief overview of NNMs is given by considering their geometric features – either
synchronous or asynchronous periodic motions. Such features are demonstrated using
two methods, namely, the geometry in the configuration space, and phase relationships
between modal coordinates. Specifically, the synchronous response is the focus of this
chapter, and the evolution of synchronous backbone curves to isolated branches will be
demonstrated and quantified.

In §3.3, the backbone curves for a two-mode system with a symmetric configuration are
firstly revisited. For such a symmetric case, one can observe a typical backbone curve
topology – two single-mode backbone curves with one pitchfork bifurcation leading to
mixed-mode synchronous backbone curves. The effect of symmetry breaking on backbone
curves is then considered – it can split the bifurcation and lead to the existence of isolated
synchronous backbone curves, as with Refs. [139, 237]. In contrast, here, it will also be
shown that the backbone curve topology for symmetric cases can hold for asymmetry if
parameters are properly selected. This highlights the shared features between symmetric
and asymmetric systems – an asymmetric system can exhibit the same dynamic features
as a symmetric system.

In §3.4, an asymmetric system is considered, taking the form of a primary system with
a NLTMD attached. Using the insights from §3.3, the parameter conditions to achieve
two single-mode backbone curves with one bifurcation are analytically derived – when
this asymmetric system shows similar dynamics as a symmetric system. Optimising the
NLTMD parameters (to achieve best vibration mitigation performance) breaks these
conditions and leads to the split of bifurcation and the existence of isolated backbone
curves. The evolution of backbone curves in the parameter space is then considered to
track the emergence of isolated backbone curves, conditions of which are analytically
derived.

In §3.5, additional conditions are identified when the isolated backbone curves annihilate
with infinite response frequency and amplitude. Combined with those derived in §3.4,
conditions for the emergence and annihilation of isolated backbone curves are obtained.
In addition to defining the existence of isolated backbone curves, these conditions serve
as topological boundaries that distinguish topological features of backbone curves in the
parameter space.

Lastly, this chapter is closed with summary given in §3.6.
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Synchronous NNMs Asynchronous NNMs

Fig. 3.1 Schematic representations of NNMs for a two-mode system. The responses are
illustrated in the modal configuration space, i.e. the projection of the first and second
linear modal coordinates, q1(t) and q2(t), parameterised in time. (a) The single-mode
NNMs. (b) The in-phase (θd = 0) and anti-phase (θd = π) NNMs. (c) The out-of-unison
(θd = ±π/2) NNMs.

3.2 Synchronous NNMs of a two-mode system

In this section, an overview of the concept of NNMs, i.e. periodic responses of a con-
servative system [31, 100], for a two-mode system is given. Such a two-mode system is
composed of two linear mods, q1 and q2, and those two modes are coupled by an arbitrary
nonlinearity, for example, a cubic nonlinearity. Considering the geometric features,
NNMs can be categorised as either synchronous or asynchronous motions [73, 31]. The
synchronous NNMs denote periodic motions where the system components all reach
their extrema and equilibria simultaneously [73]; whilst the counterpart, asynchronous
NNMs, are cases where the system componants do not reach their extrema and equilibria
simultaneously [31].

To illustrate the features of NNMs, one can consider the responses in the configuration
space with modal coordinates parameterised in time, i.e. the (q1(t), q2(t)) space. Some
examples of NNMs are shown in Fig. 3.1 where the lines, termed modal lines [77], denote
oscillations of the system over time, and where the extrema of q1 and q2 are marked by
‘◦’ and ‘×’ respectively. Regarding the definition of a synchronous motion, it requires
‘◦’ and ‘×’ to be overlapping, as shown in panels (a) and (b). In these two panels, two
types of synchronous motions are shown, they can be described respectively as

1) panel (a) represents the simplest type of NNM solution – single-mode synchronous
NNMs that contain contributions from only q1 or q2, illustrated by modal lines on
the axes in the configuration space, (q1(t), q2(t)).
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2) panel (b) shows the mixed-mode synchronous NNMs which, in contrast to the single-
mode NNMs in panel (a), arise from modal interactions and consist of contributions
from both linear modal coordinates, q1 and q2; such motions are denoted as lines
passing through the origin in the configuration space.

An alternative, nonetheless equivalent, method to differentiate between synchronous
NNMs in panels (a) and (b) is referring to the phase relationship between the components.
For the single-mode motions in panel (a), the phase relationship is undefined; whilst for
the mixed-mode cases, the phase difference between two modal components, θd, can be
either in-phase (θd = 0) or anti-phase (θd = π). In panel (b), the in-phase and anti-phase
motions are denoted by blue and red lines respectively. To further distinguish between
cases presented in panel (b), one can account for the response frequency commensurate
relationships. In the left plot of panel (b), for every period of response of q1, q2 also
oscillates for a period, as such, the response frequency ratio is one. In this case, the NNM
motions are emerging from 1 : 1 internal resonance, where the ratio denotes the frequency
commensurate match. Likewise, the NNM motions in the right plot of panel (b) emerge
from 1 : 3 internal resonance as for a period of q1 response, q2 vibrates for three periods.

In panel (c), one example of the asynchronous NNMs is presented, where it clearly shows
that the responses of the two modes do not reach extrema and equilibrium simultaneously
(‘◦’ and ‘×’ are separate). In this example, the two modes are oscillating out-of-unison, or
with ±π/2 phase differences, where + and − denote clockwise and anticlockwise motions
respectively. In addition, the two modes exhibit a 1 : 1 frequency commensurate match,
namely, 1 : 1 internal resonance. Note that, in this chapter, the discussion is constrainted
on the synchronous NNMs; whilst asynchronous NNMs will only be briefly discussed
whenever necessary. Instead, detailed investigations on asynchronous NNMs will be given
in Chapter 4.

Synchronous motions can be observed in a variety of nonlinear systems – see examples in
Refs. [238, 130, 203, 129, 139, 144, 237] and the following discussions. A particular case
of interest is the correlated isolated NNM branch, or isolated backbone curve, which is
the topic of this chapter. In the following studies, conditions for the existence of isolated
backbone curves will be derived from a symmetry-breaking perspective and based on the
case of 1 : 1 internal resonance. Whilst, extensions to general m : n internal resonances
will be discussed in Chapter 5.
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3.3 Symmetry breaking of nonlinear two-mode sys-
tems

In this section, modal interactions of a general conservative system with cubic nonlineari-
ties are considered. Such a nonlinear system is characterised by two interacting modes,
whose Lagrangian may be written

L = 1
2 q̇

2
1 + 1

2 q̇
2
2 − 1

2ω
2
n1q

2
1 − 1

2ω
2
n2q

2
2 − 1

4Ψ4q
4
1 − Ψ1q

3
1q2 − 1

2Ψ3q
2
1q

2
2 − Ψ2q1q

3
2 − 1

4Ψ5q
4
2 , (3.1)

where qi, q̇i and ωni are the ith linear modal coordinate, modal velocity, and natural fre-
quency respectively, and Ψ1, . . . ,Ψ5 denote the coefficients1 of nonlinear terms. Applying
the Euler-Lagrange equation then leads to the following equations of motion

q̈1 + ω2
n1q1 + Ψ4q

3
1 + 3Ψ1q

2
1q2 + Ψ3q1q

2
2 + Ψ2q

3
2 = 0 , (3.2a)

q̈2 + ω2
n2q2 + Ψ1q

3
1 + Ψ3q

2
1q2 + 3Ψ2q1q

2
2 + Ψ5q

3
2 = 0 , (3.2b)

where q̈i is the ith modal acceleration. To study modal interactions, the concept of NNMs,
i.e. the periodic solutions of the conservative system (3.2), is used. For most cases, one
can find responses composed of both modal components, capturing modal interactions,
due to the nonlinear coupling terms; whilst, special solution branches, where the modal
oscillations are decoupled, can only be found when the system pocesses symmetries.
From Eq. (3.2b), when the coefficient of q3

1 equals 0, i.e. when Ψ1 = 0, one solution
set is related to q2 = 0. With q2 = 0, nontrivial solutions of the system (3.2) give the
single-mode solutions, which consist of only the first linear modal coordinate, q1; the
related periodic solution branch represents a single-mode backbone curve that can be
solved from

q̈1 + ω2
n1q1 + Ψ4q

3
1 = 0 . (3.3)

Likewise, when the coefficient of q3
2 in Eq. (3.2a), Ψ2, equals to 0, one can find the

single-mode backbone curve that consists of only the second linear modal coordinate, q2,
from

q̈2 + ω2
n2q2 + Ψ5q

3
2 = 0 . (3.4)

1The nonlinear coefficients are defined in this order for simplicity in later discussions.
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Otherwise, when both Ψ1 ̸= 0 and Ψ2 ̸= 0, the system only has periodic solutions
containing both linear modal coordinates, termed mixed-mode backbone curves.

To find the expressions of backbone curves of the general two-mode system, the harmonic
balance technique2 is used, firstly by assuming that the modal displacements may be
written as

qi ≈ ui = Ui cos (ωrit− θi) , (3.5)

where qi is approximated by its fundamental component ui, or the leading-order com-
ponent; and where Ui, ωri, and θi are amplitude, response frequency, and phase of ui

respectively. Here, it is further assumed that the response frequencies of the fundamental
components of the two modes are equal (ωr1 = ωr2 = ω), namely the system exhibits 1 : 1
internal resonance. Note that the more general case, where the system exhibits m : n
internal resonances (m, n ∈ Z+), will be considered in Chapter 5. With substitution
of the assumed solution (3.5) into the equations of motion (3.2), and the removal of
non-resonant terms, i.e. terms that do not resonate at response frequency ω, one can
obtain
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4
(
ω2

n2 − ω2
)
U2 cos (ωt− θ2) +

(
2Ψ3U

2
1 + 3Ψ5U

2
2

)
U2 cos (ωt− θ2) + Ψ3U

2
1U2 cos (ωt− 2θ1 + θ2)

+3
(
Ψ1U

2
1 + 2Ψ2U

2
2

)
U1 cos (ωt− θ1) + 3Ψ2U1U

2
2 cos (ωt+ θ1 − 2θ2) = 0 . (3.6b)

After some algebraic manipulation, Eq. (3.6) can be rearranged as
{

4
(
ω2

n1 − ω2
)
U1 + 3Ψ4U

3
1 + Ψ3U1U

2
2

[
1 + 2 cos2 (θd)

]
+ 3

(
Ψ2U

3
2 + 3Ψ1U

2
1U2

)
cos (θd)

}
cos (ωt− θ1)

−
[
2Ψ3U1U2 cos (θd) + 3Ψ1U

2
1 + 3Ψ2U

2
2

]
U2 sin (θd) sin (ωt− θ1) = 0 , (3.7a){

4
(
ω2

n2 − ω2
)
U2 + 3Ψ5U

3
2 + Ψ3U

2
1U2

[
1 + 2 cos2 (θd)

]
+ 3

(
Ψ1U

3
1 + 3Ψ2U1U

2
2

)
cos (θd)

}
cos (ωt− θ2)

−
[
2Ψ3U1U2 cos (θd) + 3Ψ1U

2
1 + 3Ψ2U

2
2

]
U1 sin (θd) sin (ωt− θ2) = 0 , (3.7b)

where θd = θ1 − θ2, i.e. the phase difference between two modal coordinates. Eq. (3.7)
can be satisfied when

4
(
ω2

n1 − ω2
)
U1 + 3Ψ4U

3
1 + Ψ3U1U

2
2

[
1 + 2 cos2 (θd)

]
+ 3

(
Ψ2U

3
2 + 3Ψ1U

2
1U2

)
cos (θd) = 0 , (3.8a)

2Other methods, such as the normal form technique [239], the multiple-scales method [240], or the
numerical continuation [97–99], could alternatively be used.
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m1 m2

α1

k1

α2

k2

α3

k3

x1 x2

Fig. 3.2 A schematic diagram of a two-mode system in the form of a two-mass oscillator.
Two masses, with mass values m1 and m2, have displacements x1 and x2 respectively,
whilst linear and nonlinear cubic springs have coefficients ki and αi respectively, where
i = 1, 2, 3.

4
(
ω2

n2 − ω2
)
U2 + 3Ψ5U

3
2 + Ψ3U

2
1U2

[
1 + 2 cos2 (θd)

]
+ 3

(
Ψ1U

3
1 + 3Ψ2U1U

2
2

)
cos (θd) = 0 , (3.8b)[

2Ψ3U1U2 cos (θd) + 3Ψ1U
2
1 + 3Ψ2U

2
2

]
sin (θd) = 0 . (3.8c)

These equations can then be used to compute the backbone curves of the general two-mode
system. It should be noted that employing the harmonic balance method (as derived
above) results in the same formula, Eq. (3.8), to that obtrained via the second-order
normal form method of a first-order accuracy [30, 239]. Again, seen from Eqs. (3.8),
when Ψ1 = 0, or Ψ2 = 0, one can find single-mode backbone curves that consist of only
U1 or U2; otherwise one can only find mixed-mode solutions, containing both U1 and U2.

3.3.1 Backbone curves of a symmetric two-mass oscillator

The derivations above show that having Ψ1 = 0, or Ψ2 = 0, plays a critical role in
obtaining single-mode solutions. In the following, it is demonstrated how these conditions
are related to the breaking of symmetric configurations to set the stage for discussions on
the existence of isolated backbone curves. To this end, a specific two-mode system, taking
the configuration of the two-mass oscillator (schematically shown in Fig. 3.2), is now used.
The system consists of two masses with mass values m1 and m2; three linear springs with
coefficients k1, k2, and k3; and three nonlinear springs with coefficients α1, α2, and α3.
The physical symmetry of the system is divided into two parts: Linear Symmetry (LS),
when the underlying linear system is symmetric, i.e. m1 = m2 and k1 = k3; and likewise,
Nonlinear Symmetry (NS), when α1 = α3. For this two-mass oscillator, the governing
dynamics is given by the equation of motion, i.e.

Mẍ + Kx + Nx = 0 , (3.9)
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where M and K are mass and linear stiffness matrices respectively, Nx is a vector of
nonlinear stiffness terms, and x is a vector denoting displacements of the two masses.
They are defined as

M =
 m1 0

0 m2

 , K =
 k1 + k2 −k2

−k2 k2 + k3

 ,

Nx =
 α1x

3
1 + α2 (x1 − x2)3

α2 (x2 − x1)3 + α3x
3
2

 , x =
 x1

x2

 .
(3.10)

The system can be transformed into the linear modal space by introducing linear modal
transform x = Φq, given by

x = Φq =
 ϕ11 ϕ12

ϕ21 ϕ22

 q1

q2

 , (3.11)

where q is the vector of linear modal coordinates and Φ is the linear modeshape matrix,
whose first and second columns, i.e. [ϕ11 ϕ21]⊤ and [ϕ12 ϕ22]⊤, denote the modeshapes of
the first and second linear modes respectively; they are given by

ϕ2
11 = k2

2(
k1 + k2 −m1ω2

n1

)2
m2 +m1k2

2

, ϕ2
12 = k2

2(
k1 + k2 −m1ω2

n2

)2
m2 +m1k2

2

, (3.12a)

ϕ2
21 =

(
k1 + k2 −m1ω

2
n1

)2

(
k1 + k2 −m1ω2

n1

)2
m2 +m1k2

2

, ϕ2
22 =

(
k1 + k2 −m1ω

2
n2

)2

(
k1 + k2 −m1ω2

n2

)2
m2 +m1k2

2

. (3.12b)

After the linear modal transform and some algebraic manipulation, one can obtain the
equations of motion taking the same form as Eqs. (3.2) with coefficients of nonlinear
terms, Ψ1, . . . ,Ψ5, given by

Ψ1 = ϕ3
11ϕ12α1 + (ϕ11 − ϕ21)3 (ϕ12 − ϕ22)α2 + ϕ3

21ϕ22α3 ,

Ψ2 = ϕ11ϕ
3
12α1 + (ϕ11 − ϕ21) (ϕ12 − ϕ22)3 α2 + ϕ21ϕ

3
22α3 ,

Ψ3 = 3
[
ϕ2

11ϕ
2
12α1 + (ϕ11 − ϕ21)2 (ϕ12 − ϕ22)2 α2 + ϕ2

21ϕ
2
22α3

]
, (3.13)

Ψ4 = ϕ4
11α1 + (ϕ11 − ϕ21)4 α2 + ϕ4

21α3 ,

Ψ5 = ϕ4
12α1 + (ϕ12 − ϕ22)4 α2 + ϕ4

22α3 .
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Fig. 3.3 The effect of nonlinear symmetry (NS) breaking, namely, breaking the parameter
condition α1 = α3, for a system with linear symmetry (LS), i.e. m1 = m2 and k1 = k3.
(a) The nonlinear parameter space, (α1, α3), for the system with LS when m1 = m2 =
1, k1 = k3 = 1, k2 = 0.3 and α2 = 0.025. The α1 and α3 values that lead to Ψ1 = 0
and Ψ2 = 0 are shown as a dotted green line and a dashed purple line respectively.
Panels (b) → (d) are backbone curves shown in the projection of the response frequency,
ω, against the amplitude of the first mass, X1, for systems, labelled (b) → (d) in panel (a),
respectively. (b) A system with linear symmetry and nonlinear asymmetry (NA) when
α1 = 1, α3 = 0.5. (c) A LS-NS system with α1 = α3 = 1; (d) A LS-NA system with
α1 = 1, α3 = 1.5.

With modal equations of motion (3.2) and coeffieicnts of nonlinear terms (3.13), the
backbone curves can be computed via Eqs. (3.8) when the system exhibits 1 : 1 internal
resonance.

Firstly, the case where the system has both LS and NS, is considered. The backbone
curves for such a symmetric case have been investigated in detail in [130, 139, 141]; here,
they are briefly revisited. With m1 = m2 = 1, k1 = k3 = 1, k2 = 0.3, α1 = α3 = 1 and
α2 = 0.025, this LS-NS system can be described in the parameter space (α1, α3) – see
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3.3 Symmetry breaking of nonlinear two-mode systems

Fig. 3.3a, where the system is mapped as the solid dot, labelled (c), on overlapping lines
Ψ1 = 0 and Ψ2 = 0. Alternatively, it can be analytically found via Eqs. (3.13) that the
physical symmetry of the system results in Ψ1 = 0 and Ψ2 = 0.

As previously discussed, Ψ1 = Ψ2 = 0 leads to the existence of two single-mode backbone
curves. For the example system, the backbone curves are shown in Fig. 3.3c in the
projection of the response frequency, ω, against the displacement amplitude of the first
mass, X1. In this plot, S1 and S2 represent single-mode backbone curves emerging
from the linear natural frequencies, ωn1 and ωn2, respectively; whilst two mixed-mode
backbone curves, S+

2 and S−
2 , emerge from S2 via a Bifurcation Point (BP). Note that

the subscripts of S+
2 and S−

2 indicate the backbone curve from which they bifurcate
(i.e. from S2 in this case), and the superscripts •+ and •− denote in-phase and anti-phase
synchronous responses between the linear modal coordinates respectively. Note that,
as the system exhibits 1 : 1 internal resonance, the in-phase and anti-phase responses
can be represented via blue and red lines respectively in the left plot of Fig. 3.1b in the
configuration space.

Backbone curves with the features of a LS-NS system are here termed as having dynamic
symmetry3, and are characterised by the following two features:

1. Having two single-mode backbone curves, S1 and S2.

2. Having two mixed-mode backbone curves; either S±
2 , emerging from a BP on S2,

or S±
1 , emerging from a BP on S1.

Seen from Eq. (3.13), Ψ1 and Ψ2 may be seen as linear functions of nonlinear parameters,
α1, α2, and α3, with coefficients governed by the modeshapes, or the underlying linear
system. This means that, in the nonlinear parameter space (α1, α3),4 the orientation
of Ψ1 = 0 and Ψ2 = 0 is determined by the underlying linear system. In addition, any
system can be mapped as a point in this space, for example, the previously discussed
symmetric case is mapped as a solid dot, labelled (c), in Fig. 3.3a. Consequently, whether
the given system has dynamic symmetry or not, can then be directly determined by
the relationships between the mapped point and Ψ1 = 0 and Ψ2 = 0, for example, the
solid dot, on overlapping Ψ1 = 0 and Ψ2 = 0 in Fig. 3.3a, denotes a case with dynamic
symmetry. In the following, how having dynamic symmetry, i.e. Ψ1 = 0 and Ψ2 = 0,
relates to the physical symmetry, i.e. LS and NS, and its breaking is discussed.

3Note that, in comparison to the concept of dynamic symmetry, the symmetry in physical configuration
is termed physical symmetry.

4Here, as α2 does not affect the symmetry of the system, the nonlinear parameter subspace (α1, α3)
is used to track the information of NS, for example in Fig. 3.3a.

53



Isolated backbone curves

Fig. 3.4 The effect of NS breaking on backbone curves for a system with linear asymmetry
(LA). (a) The nonlinear parameter space for the system with LA when m1 = 1,m2 =
0.8, k1 = 1, k3 = 0.7, k2 = 0.3 and α2 = 0.025. The α1 and α3 values that lead to Ψ1 = 0
and Ψ2 = 0 are shown as a dotted green line and a dashed purple line respectively, and
parameters leading to NS are shown as a dash-dotted grey line. (b) Backbone curves for
a LA-NS system with α1 = 1, α3 = 1 (the dot labelled (b) in panel (a)).

3.3.2 Breaking either the nonlinear or the linear symmetry

With the symmetry of the underlying linear system retained, the orientations of Ψ1 = 0
and Ψ2 = 0 also remain overlapping in the (α1, α3) space, and they denote α1 = α3,
i.e. having NS. As such, with nonlinear parameters perturbed from its symmetric case
to give nonlinear asymmetry (NA), i.e. α1 ≠ α3, the system in the nonlinear parameter
space (α1, α3) is perturbed from having Ψ1 = Ψ2 = 0, which breaks the conditions
required for dynamic symmetry. Two example cases are shown as solid dots, labelled
(b) and (d), in Fig. 3.3a with respect to NS breaking in direction α1 > α3 and α1 < α3.
Whilst the effect of symmetry breaking on backbone curves are shown in Figs. 3.3b and
3.3d for these two cases respectively. This turns the single-mode backbone curves into
mixed-mode ones, splits the bifurcation, and generates an isolated backbone curve, the
same as that discussed in [141]. For more general cases, a system with LS and NA cannot
exhibit dynamic symmetry as in this case Ψ1 ̸= 0 and Ψ2 ̸= 0, see Eqs. (3.13).

Similarly, breaking the LS, whilst retaining the NS, can also break the conditions required
for dynamic symmetry. With the breaking of the LS, the orientations of Ψ1 = 0 and
Ψ2 = 0 are changed, and no longer overlapping, as shown in the (α1, α3) space in Fig. 3.4a
for a system with m2 = 0.8m1 and k3 = 0.7k1. If the NS is retained, i.e. α1 = α3 (depicted
by the grey line in Fig. 3.4a), the backbone curves, shown in Fig. 3.4b, are similar in
topology to the ones for the LS-NA system in Fig. 3.3d, i.e. having one isolated backbone
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3.3 Symmetry breaking of nonlinear two-mode systems

Fig. 3.5 Obtaining dynamic symmetry for a LA-NA system. (a) The nonlinear parameter
space for a system with LA (linear parameters and α2 are equal to those considered in
Fig. 3.4). The α1 and α3 values that lead to Ψ1 = 0 and Ψ2 = 0 are shown as dotted
green and dashed purple lines respectively. Panels (b) → (d) are backbone curves shown
in the projection of the response frequency, ω, against the amplitude of the first mass,
X1, for systems, labelled (b) → (d) in panel (a), respectively. (b) A LA-NA system with
α1 = 1, α3 ≈ 0.6785. (c) A LA-NA system with α1 = 1, α3 ≈ 0.5510. (d) A LA-NA
system with α1 ≈ 0.3333, α3 ≈ 0.1833.

curve and two primary mixed-mode backbone curves. The LA-NS system considered
here, like a LS-NA system, cannot have dynamic symmetry since the intersection of
Ψ1 = 0 and Ψ2 = 0, where one can find two single-mode backbone curves, is not on the
line representing α1 = α3 (i.e. the point at which the green and purple lines in Fig. 3.4a
cross does not correspond to the grey line).

3.3.3 Breaking both the linear and nonlinear symmetry

Following from the LA-NS system considered in §3.3.2, the NS is also broken to give
α1 ̸= α3 to investigate the backbone curves of a LA-NA system (a fully asymmetric
system). Firstly, by reducing α3 from the NS-case (labelled (b) in Fig. 3.4a) to the
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point where Ψ2 = 0, labelled (b) in Fig. 3.5a, the obtained backbone curves are shown
in Fig. 3.5b. As expected, this leads to a single-mode backbone curve S2; however, as
Ψ1 ̸= 0, the first primary backbone curve, S+

1 , contains a component of the second mode
with in-phase vibrations. As such, this is not a dynamically symmetric case, despite
sharing some characteristics, such as the existence of backbone curves S+

2 and S−
2 , which

emerge from S2. Further reducing α3 leads to the point where Ψ1 = 0 (labelled (c)
in Fig. 3.5a), of which the backbone curves are shown in Fig. 3.5c. These exhibit a
single-mode backbone curve S1 (as predicted by the Ψ1 = 0 condition) but with a primary
and an isolated backbone curve, S+

2 and S−
2 . Besides these two cases for LA-NA systems,

as seen in Fig. 3.5a, Ψ1 = Ψ2 = 0 may still be satisfied for this case if α1 and α3 are on
the intersection of Ψ1 = 0 and Ψ2 = 0. Dynamic symmetry can therefore be obtained for
such a LA-NA system, as can be seen from the backbone curves in Fig. 3.5d.

As previously discussed, the concept of dynamic symmetry is defined as having similar
characteristics to a LS-NS system; nonetheless, such a dynamic behaviour can be observed
in a LA-NA system, if parameters are appropriately selected, for example, the asymmetric
case presented in Fig. 3.5d. This indicates that an asymmetric system can exhibit the
same dynamic characteristics as a symmetric system. In addition, defining conditions
for the existence of single-mode solutions, expressions Ψ1 = 0 and Ψ2 = 0 also serve as
critical boundaries, which divide the parameter space into several regions (see examples
in Figs. 3.3a, 3.4a and 3.5a), within which the backbone curves share similar topological
features. These regions, in the parameter space, allow the changes in the fundamental
dynamic behaviours to be identified and predicted, as detailed in the following discussions.

3.4 Backbone curves of a NLTMD-inspired two-
mode system

In §3.3, the case study showed that the dynamic symmetry breaking leads to bifurcation
splitting and results in the existence of isolated backbone curves. This generalises the
condition for the existence of isolated backbone curve in [141], where the mechanism of
physical symmetry breaking was considered. Using these observations, the existence of
isolated backbone curves is further investigated in an asymmetric system (i.e. a LA-NA
system) in this section.

To motivate the study, the two-mass system, depicted in Fig. 3.6, is considered. This
system is equivalent to that shown in Fig. 3.2, but with the springs grounding the second
mass removed. Such a system is extensively considered in the vibration suppression
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m1 m2

α1

k1

α2

k2

x1 x2

Fig. 3.6 A schematic diagram of a two-mode asymmetric system, representative of a
nonlinear structure with a nonlinear tuned-mass damper (NLTMD).

context [131, 43, 133], where the primary structure (being protected) is modelled as
the first mass-spring oscillator that captures the target mode of the full system; whilst
the NLTMD is modelled as the second mass, being attached to the primary system
through a nonlinear spring with a cubic nonlinearity to absorb the primary system’s
vibrations. Motivated by the likely design requirement, the NLTMD is much smaller in
size when compared to the primary system it is protecting – this formulates an essentially
asymmetric configuration.

Isolated backbone curves represent particularly undesirable features in a NLTMD device
[131, 43, 133], due to the difficulty of predicting them, and their correlated high-amplitude
dynamic responses, as discussed in §2.3.1. As such, it is of great importance to have
a method that accounts for their features and provides guidance in eliminating them
during practical design of such vibration absorbers. To achieve this, firstly the parameter
conditions required for dynamic symmetry are found for the NLTMD-inspired system in
this section. However, in practice, the performance-oriented optimisation of a NLTMD
usually cannot satisfy such conditions, leading to the existence of isolated backbone
curves. Based on this optimised device (a given set of optimised linear parameters),
the evolution of backbone curves is then explored in the nonlinear parameter space to
determine the conditions for the existence of isolated backbone curves.

3.4.1 Obtaining dynamic symmetry for an asymmetric system

As discussed in §3.3, a LA-NA system can exhibit dynamic symmetry if the parameters
are selected appropriately. One feature of dynamic symmetry is having two single-mode
solutions, S1 and S2, which requires that both Ψ1 = 0 and Ψ2 = 0 in the equations of
motion. Here, the NLTMD-inspired system may be seen as a special case (with k3 = 0
and α3 = 0) of the two-mass chain system, whose equations of motion are given by
Eqs. (3.2) with coefficients of nonlinear terms defined by Eqs. (3.13). The expressions of
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Ψ1 and Ψ2 may be written in matrix form as Ψ1

Ψ2

 =
 ϕ3

11ϕ12 (ϕ11 − ϕ21)3 (ϕ12 − ϕ22)
ϕ11ϕ

3
12 (ϕ11 − ϕ21) (ϕ12 − ϕ22)3

 α1

α2

 , (3.14)

where α3 = 0 has been substituted (i.e. no nonlinear spring grounding the second mass)
and where ϕij are elements of the linear modeshape matrix Φ, defined in Eq. (3.12). In
order to satisfy both Ψ1 = 0 and Ψ2 = 0, Eq. (3.14) reveals two solution sets, given by

1) trivial cases: α1 = α2 = 0, when the system degenerates to a linear one.

2) nontrivial cases: the determinant of the matrix in Eq. (3.14) must be zero.

The later case is considered and the zero determinant is given by

ϕ3
11ϕ12 (ϕ11 − ϕ21) (ϕ12 − ϕ22)3 − ϕ11ϕ

3
12 (ϕ11 − ϕ21)3 (ϕ12 − ϕ22) = 0 . (3.15)

Note that for a system with an asymmetric configuration, ϕ12 and ϕ21 are non-zero, and
ϕ11 ̸= ϕ21 and ϕ12 ̸= ϕ22. Therefore, Eq. (3.15) can be rearranged to give

ϕ2
11 (ϕ12 − ϕ22)2

ϕ2
12 (ϕ11 − ϕ21)2 = 1 , (3.16)

which is satisfied with the following conditions

ϕ11 (ϕ12 − ϕ22)
ϕ12 (ϕ11 − ϕ21)

= 1 : ϕ11

ϕ21
− ϕ12

ϕ22
= 0 , (3.17a)

ϕ11 (ϕ12 − ϕ22)
ϕ12 (ϕ11 − ϕ21)

= −1 : ϕ21

ϕ11
+ ϕ22

ϕ12
= 2 . (3.17b)

Condition (3.17a) cannot be achieved in the physical context as it requires the first and
second modeshapes to be the same; therefore, dynamic symmetry, i.e. having Ψ1 = Ψ2 = 0,
can only be achieved when condition (3.17b) is satisfied. Interpreting the modeshape
coefficients, ϕij, using linear physical parameters via Eq. (3.12), the modal parameter
condition (3.17b) can be translated into a physical parameter condition, given by

k1

k2
= m1 +m2

m2
. (3.18)

As well as this condition for the linear parameters, the required condition between the
nonlinear parameters may be established by substituting expressions (3.18) back to
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Eq. (3.14), leading to

α1

α2
= (ϕ12 − ϕ22)4

ϕ4
12

= (ϕ11 − ϕ21)4

ϕ4
11

=
(
m1 +m2

m2

)2

. (3.19)

This demonstrates that, in order for the NLTMD-inspired system to exhibit dynamic
symmetry, the linear and nonlinear stiffness coefficients must obey the ratio described by
Eqs. (3.18) and (3.19) respectively.

For a given mass ratio between the NLTMD and the primary system, for instance,
m2 = 0.05m1, Fig. 3.7a shows the the required conditions for dynamic symmetry,
i.e. Ψ1 = 0 and Ψ2 = 0, in the nonlinear parameter space, (α1, α2). In this case,
k1/k2 = 21, which satisfies the linear parameter condition (3.18); whilst α1/α2 = 441,
satisfying the nonlinear parameter condition (3.19). Despite being a linearly asymmetric
(LA) system, the system exhibits strong similarities in nonlinear parameter space to a
linearly symmetric (LS) system in Fig. 3.3a – there are multiple nonlinear parameter
combinations (resulting from overlapping Ψ1 = 0 and Ψ2 = 0) leading to dynamic
symmetry. When the parameter relationships (3.18) and (3.19) are satisfied, expressions
for coefficients of nonlinear terms, Ψ1, . . . ,Ψ5, of the NLTMD-inspired system can be
further simplified, given by

Ψ1 = 0 , Ψ2 = 0 , Ψ3 = 6ϕ2
11ϕ

2
12α1 , Ψ4 = 2ϕ4

11α1 , Ψ5 = 2ϕ4
12α1 . (3.20)

The backbone curves of the dynamically symmetric NLTMD-inspired system can then
be computed via expressions (3.8) with coefficients (3.20), which can be reduced to

{
4
(
ω2

n1 − ω2
)

+ 3Ψ4U
2
1 + Ψ3U

2
2

[
1 + 2 cos2 (θd)

]}
U1 = 0 , (3.21a){

4
(
ω2

n2 − ω2
)

+ 3Ψ5U
2
2 + Ψ3U

2
1

[
1 + 2 cos2 (θd)

]}
U2 = 0 , (3.21b)

2Ψ3U1U2 cos (θd) sin (θd) = 0 . (3.21c)

Trivial solutions can be found when U1 = 0 and U2 = 0, which denotes a stationary
system. For nontrivial cases, two sets of single-mode solutions, denoted S1 and S2, can
be found with frequency-amplitude relationships described as

S1(ω, U1) : U2 = 0, ω2 = ω2
n1 + 3

4Ψ4U
2
1 , (3.22)

S2(ω, U2) : U1 = 0, ω2 = ω2
n2 + 3

4Ψ5U
2
2 , (3.23)
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Fig. 3.7 Dynamic symmetry for a NLTMD-inspired system. (a) The nonlinear parameter
space, α1 against α2, for a system with LA, i.e. m1 = 1, m2 = 0.05, k1 = 1 and k2 = 1/21,
where Ψ1 = 0 and Ψ2 = 0 are two overlapping lines. (b) Backbone curves with dynamic
symmetry for a hardening LA-NA system when α1 = 1 and α2 = 1/441 (the solid dot
labelled (b) in panel (a)). (c) Backbone curves with dynamic symmetry for a softening
LA-NA system when α1 = −1 and α2 = −1/441 (the solid dot labelled (c) in panel (a)).

where the parameters in the parentheses denote variables of the backbone curves, namely,
the response frequency and modal displacement amplitudes. The other nontrivial solution
set is related to mixed-mode backbone curves, whose responses are composed of both
modal coordinates. To compute these, the phase relationship, θd, between the fundamental
components of the two modal coordinates, u1 and u2, needs to be determined first. From
Eq. (3.21c), this can be satisfied when θd = nπ/2, with n ∈ Z. The case where n is even,
satisfying sin (θd) = 0, represents solutions where the two modes are vibrating in-phase
or anti-phase, or alternatively termed synchronous responses [73, 74, 31], as discussed
in §3.2. The other case where n is odd, satisfying cos (θd) = 0, denotes solutions where
the two modes are vibrating ±90◦ out-of-phase; this represents the counterpart of a
synchronous response, i.e. an asynchronous response [31]. Examples of such asynchronous
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responses are whirling motions, schematically shown in Fig. 3.1c, which have been studied
in cable systems [129], rotor systems [238] and the motivating example in §2.5.

The in-phase solutions, with θd = 0, are denoted S+
1 and S+

2 ; whilst the anti-phase
solutions, with θd = π, are denoted S−

1 and S−
2 (S±

1,2 is used to denote all of them). For
the dynamically-symmetric case, these backbone curves all share the same frequency-
amplitude relationship, given by

S±
1,2(ω, U1, U2) : U2

1 =
4
(
ω2

n2 − ω2
n1

)
+ 3 (Ψ5 − Ψ3)U2

2

3 (Ψ4 − Ψ3)
, (3.24a)

ω2 =
4
(
Ψ4ω

2
n2 − Ψ3ω

2
n1

)
+ 3

(
Ψ4Ψ5 − Ψ2

3

)
U2

2

4 (Ψ4 − Ψ3)
. (3.24b)

Likewise, the ±90◦ out-of-phase asynchronous solutions are labelled S±90
1,2 where the

superscripts, •+90 and •−90, denote clockwise and anticlockwise motions respectively –
see the arrows in Fig. 3.1c. With the substitution of out-of-unison phase relationship,
i.e. cos (θd) = 0 into Eqs. (3.21a) and (3.21b), the frequency-amplitude relationship of
S±90

1,2 is governed by

S±90
1,2 (ω, U1, U2) : U2

1 =
4
(
ω2

n2 − ω2
n1

)
+ (3Ψ5 − Ψ3)U2

2

3Ψ4 − Ψ3
, (3.25a)

ω2 =
4
(
3Ψ4ω

2
n2 − Ψ3ω

2
n1

)
+
(
9Ψ4Ψ5 − Ψ2

3

)
U2

2

4 (3Ψ4 − Ψ3)
. (3.25b)

In addition, with parameter conditions required for dynamic symmetry, i.e. expressions
from (3.18) to (3.20), substituted into Eq. (3.25b), it is found that the asynchronous
responses, in this case, are always related to a zero response frequency – this indicates
asynchronous responses cannot exist for the considered system. As the counterpart of
synchronous responses, and less commonly observed nonlinear responses, asynchronous
responses will be studied in detail in Chapter 4. Here, even though the non-existence of
asynchronous responses is particular to the NLTMD-inspired system, it should be noted
that bifurcations leading to asynchronous backbone curves cannot split due to symmetry
breaking, and no correlated isolated asynchronous backbone curves may be observed.
This will be revisted in Chapter 5, where analytical proof and discussions are considered
for more general cases of modal interactions. Hence, the following discussions will only
focus on synchronous responses and the correlated isolated backbone curves.
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Discussions above presented the conditions for having two single-mode backbone curves,
S1 and S2, and two mixed-mode in-phase and anti-phase branches, S±

1,2. As well as these
conditions, dynamic symmetry also requires to have either S±

1 bifurcating from S1, or S±
2

bifurcating from S2. To quantify these bifurcation scenarios, one can observe that the
amplitude of the first modal coordinate reduces to zero, i.e. U1 = 0, for the BP on S2;
likewise, the second modal amplitude U2 = 0 for the BP on S1. Using these conditions,
the amplitude and response frequency of these two bifurcations can be obtained via
Eqs. (3.24); they are given by

BP on S1: U2
1 =

4
(
ω2

n2 − ω2
n1

)
3 (Ψ4 − Ψ3)

, ω2 = Ψ4ω
2
n2 − Ψ3ω

2
n1

Ψ4 − Ψ3
, (3.26a)

BP on S2: U2
2 =

4
(
ω2

n2 − ω2
n1

)
3 (Ψ3 − Ψ5)

, ω2 = Ψ3ω
2
n2 − Ψ5ω

2
n1

Ψ3 − Ψ5
. (3.26b)

where, by definition, ωn2 > ωn1. To obtain physically meaningful bifurcations, positive
solutions are required, i.e. positive amplitude and frequency, given by

existence of a BP on S1: Ψ4 − Ψ3 > 0 , Ψ4ω
2
n2 − Ψ3ω

2
n1 > 0 , (3.27a)

existence of a BP on S2: Ψ3 − Ψ5 > 0 , Ψ3ω
2
n2 − Ψ5ω

2
n1 > 0 . (3.27b)

Note that conditions (3.27) are valid for any system with cubic nonlinearity that exhibits
a 1 : 1 resonance between two modes, rather than specific for the NLTMD-inspired
system. To relate these modal coefficient conditions to physical parameter relationships
of the NLTMD system, the expressions for modeshape elements (3.12), and the nonlinear
parameter relationship (3.20) are substituted into the inequalities (3.27). This reveals

existence of a BP on S1: α1 < 0 and α2 < 0 , (3.28a)
existence of a BP on S2: α1 > 0 , α2 > 0 and m2 < m1/3 . (3.28b)

This means that a BP on S1 can exist only for systems with softening nonlinear springs;
whilst a BP on S2 can be observed only for systems with hardening nonlinear springs,
combined with a relatively smaller m2 (this is likely to be satisfied in the practical
scenarios where the vibration absorbers are designed much smaller than the structure it is
protecting). Besides, any other combinations of one softening and one hardening nonlinear
springs result in the non-existence of BPs, and the non-existence of the correlated mixed-
mode backbone curves. Figures 3.7b and 3.7c show the backbone curves with dynamic
symmetry, i.e. satisfying parameter conditions (3.18), (3.19) and (3.28) for systems with
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3.4 Backbone curves of a NLTMD-inspired two-mode system

hardening and softening parameters respectively (labelled (b) and (c) respectively in
Fig. 3.7a).

3.4.2 Evolutions of backbone curve topologies

The previous discussions focus on whether the physically asymmetric NLTMD-inspired
system can exhibit dynamic symmetry; the required parameter conditions were derived,
given by Eqs. (3.18), (3.19) and (3.28). However, the optimisation of the NLTMD
regarding the vibration suppression performance was not considered. In this section,
linear parameters of the NLTMD are tuned to achieve optimal vibration mitigation
performance, which in turn breaks the conditions for having dynamic symmetry. The
evolutions of backbone curves are studied for this dynamic-symmetry-broken system to
account for the existence of isolated backbone curves.

Firstly, the optimisation of the damping device is considered. The classical approach
for optimising the linear parameters of a Tuned Mass Damper (TMD) is known as the
fixed-points method, proposed in [68]. Instead of imposing two fixed points, using H∞

optimisation, a closed-form exact solution to obtain equal peaks in receptance curves
of the underlying linear system was discussed in [241], where the linear stiffness of the
NLTMD can be optimised analytically using

kopt
2 =

8µk1
[
16 + 23µ+ 9µ2 + 2 (2 + µ)

√
4 + 3µ

]
3 (1 + µ)2 (64 + 80µ+ 27µ2)

, (3.29)

and where µ = m2/m1 denotes the mass ratio and kopt
2 is the optimised linear spring

coefficient of the NLTMD. This cannot satisfy the linear parameter relationship (3.18),
and hence dynamic symmetry cannot be achieved, i.e. Ψ1 and Ψ2 cannot simultaneously
be zero. In this case, similar to the asymmetric example considered in §3.3.3, the nonlinear
parameters can still be selected on either Ψ1 = 0 or Ψ2 = 0 to obtain a single-mode
backbone curve, S1 or S2. To find how the modal coefficient condition, i.e. Ψ1 = 0 or
Ψ2 = 0, maps to physical parameter condition, the modeshape expressions (3.12) are
substituted into the expressions of Ψi, given by Eqs. (3.13) (with α3 = 0); letting Ψ1 = 0
and Ψ2 = 0 respectively, one has

Ψ1 = 0 : α1

α2
= −

(
−ω2

n1m1 + k1
)3 (

−ω2
n2m1 + k1

)
k4

2
, (3.30a)

Ψ2 = 0 : α1

α2
= −

(
−ω2

n1m1 + k1
) (

−ω2
n2m1 + k1

)3

k4
2

. (3.30b)
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Fig. 3.8 Dynamic symmetry breaking for a NLTMD-inspired system due to optimised
linear parameters of the NLTMD. (a) Nonlinear parameter space, α1 against α2, for
a system with LA, i.e. m1 = 1, m2 = 0.05, k1 = 1 and k2 = kopt

2 ≈ 0.0454. The α1
and α2 values that lead to Ψ1 = 0 and Ψ2 = 0 are shown as a dotted green line and a
dashed purple line respectively; here, Ψ1 = 0 and Ψ2 = 0 are intersecting at the origin.
(b) Backbone curves with the single-mode solution S2 for the LA-NA system when α1 = 1
and α2 ≈ 0.00256 (the purple dot labelled (b) in panel (a)). (c) Backbone curves with
the single-mode backbone curve S1 for the LA-NA system when α1 = 1 and α2 ≈ 0.00166
(the green dot labelled (c) in panel (a)).

When parameter condition (3.30a) is satisfied, the single-mode backbone curves, S1, can
be found, given by amplitude-frequency relationships (3.22); likewise, S2 can be found
via Eq. (3.23) when condition (3.30b) is satisfied.

Figure 3.8a shows the nonlinear parameter space, (α1, α2), for the NLTMD system with
optimised linear parameters. This may be seen as an evolution of that in Fig. 3.7a due
to linear-symmetry breaking – it leads to the orientation changes of lines Ψ1 = 0 and
Ψ2 = 0, which intersect at the origin (where the system degenerates to a linear one).
Two example cases, with either Ψ1 = 0 or Ψ2 = 0, are denoted by dots, labelled (b)
and (c). Panel (c) shows the backbone curves for the system with Ψ1 = 0 and Ψ2 ̸= 0;
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3.4 Backbone curves of a NLTMD-inspired two-mode system

the backbone curve topology is similar to that shown in Fig. 3.5c, where a single-mode
backbone curve S1 is also present. Whilst, panel (b) shows the backbone curves for the
system with Ψ2 = 0 and Ψ1 ̸= 0, which exhibit similarity to Fig. 3.5b.

Otherwise, systems with nonlinear parameters that lie on neither Ψ1 = 0 nor Ψ2 = 0
only have mixed-mode backbone curves. As previously discussed on the symmetric case
in §3.4.1, to compute these mixed-mode backbone curves, the phase relationship between
the two modal coordinates needs to be determined first, which is governed by Eq. (3.8c).
The expression is satisfied with non-zero solutions when sin (θd) = 0, corresponding to
synchronous relationships between two modes, θd = θ1 − θ2 = nπ, where even and odd n
values denote in-phase and anti-phase relationships respectively. Further defining the
phase parameter, p, as

p = cos (θd) = cos (nπ) =

 +1 for even n

−1 for odd n
, (3.31)

it allows the equations that govern the amplitudes and response freuquencies of mixed-
mode backbone curves, given by Eqs. (7.9a) and (7.9b), to be written

4
(
ω2

n1 − ω2
)
U1 + 3

[
Ψ4U

3
1 + Ψ3U1U

2
2 + p

(
Ψ2U

3
2 + 3Ψ1U

2
1U2

)]
= 0 , (3.32a)

4
(
ω2

n2 − ω2
)
U2 + 3

[
Ψ5U

3
2 + Ψ3U

2
1U2 + p

(
Ψ1U

3
1 + 3Ψ2U1U

2
2

)]
= 0 . (3.32b)

Rearranging these two equations gives the frequency-amplitude relationships of the
mixed-mode backbone curves for a dynamically asymmetric case

S±
1,2(ω, U1, U2) : ω2 = ω2

n1 + 3
4

[
Ψ4U

3
1 + Ψ3U

2
2U1 + p

(
Ψ2U

3
2 + 3Ψ1U

2
1U2

)]
U−1

1 , (3.33a)

0 =
(
−3pΨ2U

−1
1

)
U4

2 + 3 (Ψ5 − Ψ3)U3
2 +

[
9p (Ψ2 − Ψ1)U1

]
U2

2 + (3.33b)[
4ω2

n2 − 4ω2
n1 + 3 (Ψ3 − Ψ4)U2

1

]
U2 + 3pΨ1U

3
1 .

Therefore, for dynamically asymmetric systems, those with Ψ1 = 0 or Ψ2 = 0 exhibit
a single-mode backbone curve, S1 or S2, for example, Figs. 3.8b and 3.8c; whilst other
systems only exhibit mixed-mode backbone curves, defined by Eq. (3.33).

Figure 3.9 presents the topological evolutions of mixed-mode backbone curves in the
nonlinear parameter space, (α1, α2), for a given system with optimised linear parameters
m1 = 1,m2 = 0.05, k1 = 1, k2 = kopt

2 ≈ 0.0454. Backbone curves for systems on Ψ1 = 0
and Ψ2 = 0, are topologically equivalent as those shown in Figs. 3.8c and 3.8b respectively.
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Fig. 3.9 Topological evolution of backbone curves in the nonlinear parameter space, α1
against α2, for a system with LA, i.e. m1 = 1,m2 = 0.05, k1 = 1 and k2 = kopt

2 ≈ 0.0454.
The α1 and α2 values that lead to Ψ1 = 0 and Ψ2 = 0 are shown as a dotted green
line and a dashed purple line respectively. The panels around the main figure show
backbone curve topologies for the nonlinear regions in terms of response frequency and
displacement amplitude of the first mass. Panels (a, b, c, e, g, h, i, k) are topologies in
regions indicated by the solid-grey arrows. Panels (d, f, j, l) are topologies corresponding
to α1 and α2 axes, as indicated by the dash-dotted grey arrows.

Here, this parameter space is divided by the axes α1 = 0 and α2 = 0 into the following
four classes of system:
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3.4 Backbone curves of a NLTMD-inspired two-mode system

1. a hardening system (the first quadrant)
For a system on Ψ2 = 0 (the backbone curves are shown in Fig. 3.8c), perturbing
the nonlinear parameters clockwise in the (α1, α2) space splits the BP on S2 – this
generates one isolated backbone curve, S+

2 , between two primary backbone curves,
S−

2 and S+
1 ,5 shown in Fig. 3.9a. Likewise, if nonlinear parameters are perturbed

anticlockwise from Ψ2 = 0, the BP on S2 splits in a different direction, resulting in
one isolated backbone curve, S−

2 , below two primary backbone curves, depicted in
Fig. 3.9b.
Further varying the nonlinear parameters in the anticlockwise direction towards
Ψ1 = 0, the contribution of the second modal coordinate, U2, to the mixed-mode
in-phase backbone curve, S+

1 , gradually decreases to zero. This results in a single-
mode backbone curve S1, seen from the evolution of backbone curves from Fig. 3.9b
to Fig. 3.8c. Finally, perturbing anticlockwise from Ψ1 = 0, the U2 component of
S1 increases, leading to a mixed-mode anti-phase backbone curve, S−

1 , as shown in
Fig. 3.9c.

2. a hardening structure with a softening attachment (the second quadrant)
Further decreasing α2 until α2 < 0 results in the second quadrant and leads the
backbone curve, S−

1 , to bend leftward to a lower response freuqency, as depicted
in Fig. 3.9e. Note that no isolated backbone curve is predicted for systems in the
second quadrant.

3. a softening system (the third quadrant)
Crossing from the second into the third quadrant causes S+

2 to show a lower
response freuqency, ω, with an increasing amplitude, shown in Figs. 3.9f and
3.9g. Continuing anticlockwise, from above Ψ2 = 0 to below it, leads to a similar
behaviour to the hardening system (the first quadrant) as it crosses Ψ1 = 0. The
contribution from U1 to the mixed-mode in-phase backbone curve, S+

2 , gradually
decreases, reaching zero when the system is on Ψ2 = 0, leading to a single-mode
backbone curve S2. The contribution from U1 then increases from zero, giving rise
to a mixed-mode anti-phase backbone curve S−

2 . Such an evolution is captured
in Figs. 3.9g and 3.9h. Simultaneously, the isolated backbone curve, S+

1 , emerges
from zero frequency and develops closer to the primary backbone curve S−

1 .
Further varying the nonlinear parameters anticlockwise towards Ψ1 = 0, the isolated
backbone curves, S+

1 merges to the primary backbone curve, S−
1 , and formulates

a single-mode backbone curve, S1, with a BP leading to mixed-mode backbone
5Note that in other projections, e.g. ω against X2, the relative amplitudes of these backbone curves

may differ.
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curves. Anticlockwise of Ψ1 = 0, the BP splits and again generates an isolated
backbone curve, S−

1 , however below the two primary backbone curves, S+
1 and S−

2 ,
shown in Fig. 3.9i.

4. a softening structure with a hardening attachment (the fourth quadrant)
Crossing from the third to the fourth quadrant leads to the disappearance of the
isolated backbone curve, S−

1 , at zero frequency, shown in Figs. 3.9i and 3.9j. Addi-
tionally, the mixed-mode backbone curve, S−

2 , bends rightward, seen in Figs. 3.9j
and 3.9k.

In addition, it can also be found that the hardening systems (the first quadrant) and
softening systems (the third quadrant) share the following features:

1) changes of the contribution of, and the phase relationship between, two
modal coordinates, from being in-phase, to single-mode, and then to anti-phase,
or vice versa, when crossing Ψ1 = 0 and Ψ2 = 0;

2) the emergence and splitting of a BP on S2 for a hardening system when
crossing Ψ2 = 0, and on S1 for a softening system when crossing Ψ1 = 0.

Note that the topological evolution of backbone curves, shown in Fig. 3.9, are computed
via analytical expressions derived in this section. Even though these expressions are
derived based on retaining only the fundamental harmonic of the interacting modes, the
boundaries that determine critical topological changes as well as the topology in each
region show great agreement with numerical results.

In summary, the backbone curve topology of a single-mode branch with a BP (leading
to mixed-mode branches) denotes a critical condition, perturbing from which leads to
the emergence of isolated backbone curves. Such a condition is defined by relation-
ships (3.30a) and (3.30b) for hardening and softening systems respectively. In addition
to capturing the existence of isolated backbone curves, these critical relationships also
serve as boundaries that divide the parameter space into regions, within which backbone
curves show topological equivalence for different systems. The following section explores
additional boundaries that may exist, which accounts for the annihilation of isolated
backbone curves.
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3.5 Additional topological boundaries

Fig. 3.10 Two additional topological boundaries for the existence of isolated backbone
curves. (a) The first quadrant of Fig. 3.9, along with two additional boundaries, shown
as dash-dotted black lines, differentiating between regions with and without isolated
backbone curves. Panels (b) → (f) are backbone curves of systems denoted by black
dots in Panel (a).

3.5 Additional topological boundaries

As discussed in §3.4.2, for a hardening system with Ψ2 = 0, it shows the backbone curve
topology in Fig. 3.8b – S2 with a BP leading to S±

2 ; a perturbation from Ψ2 = 0 splits
the BP on S2 and results in an isolated backbone curve, shown in Figs. 3.9a and 3.9b.

Here, the further deviation from Ψ2 = 0 is considered, which may cause the isolated
backbone curve to move toward a higher response frequency and a larger amplitude, as
depicted in Figs. 3.10b and 3.10c – backbone curves correspond to systems on points
labelled (b) and (c) respectively in Fig. 3.10a. Such a transition continues until the isolated
backbone curve undergoes topological change from having finite values of frequency and
amplitude to infinite values, i.e. being non-existent from a practical perspective. An

69



Isolated backbone curves

example capturing this topological change is presented in panels (b), (c) and (d) of
Fig. 3.10; one can observe

1) the response frequency, ω, and amplitude, X1, of the isolated backbone curve
first increases at a limited rate, seen from panels (b) and (c) as α2 changes from
7.5 × 10−4 to 7.0 × 10−4.

2) the isolated backbone curve then shifts to infinite frequency and amplitude as α2

approaches a critical value of approximately 6.76 × 10−4, shown in panel (d).

This demonstrates the annihilation of the isolated backbone curve – having an infinite
response frequency, in comparison to the emergence of isolated backbone curve due to
bifurcation splitting considered in §3.4.2. As such, the critical parameter values (leading
the isolated backbone curve to an infinite frequency) define another topological boundary
that distinguishes between backbone curves with and without an isolated backbone curve.

To find the conditions that define such boundaries in nonlinear parameter space, one can
track the isolated backbone curve to seek conditions for its existence. It is observed that
the isolated backbone curve annihilates when the amplitude of the minimum frequency
solution becomes infinite; hence, the conditions that lead to this case are investigated
here6. Since the solution with the minimum frequency is related to a multiple root
of amplitude for the frequency-amplitude relationship (3.33), one can refer to the zero
discriminant of the amplitude equation (3.33b) to track the multiple root. The zero
discriminant of the quartic equation (3.33b) is a sixth-order polynomial equation with
respect to U1 and it can be written as

DiscU2 = 0 : f6U
6
1 + f5U

5
1 + f4U

4
1 + f3U

3
1 + f2U

2
1 + f1U1 + f0 = 0 , (3.34)

where f6 may be seen as a function of nonlinear parameters, α1 and α2, written as

f6(α1, α2) = g1α
6
1 + g2α

5
1α2 + g3α

4
1α

2
2 + g4α

3
1α

3
2 + g5α

2
1α

4
2 + g6α1α

5
2 + g7α

6
2 , (3.35)

and where coefficients g1, . . . , g7 are determined by the underlying linear system, some of
which are given in Appendix A. Note that f0, . . . , f5, g1, g2, g6 and g7 are not provided
as they are not required for the following derivations.

6There may be other conditions that allow isolated backbone curves to annihilate/emerge; however,
this particular case is investigated here as an example of such behaviour, rather than as an exhaustive
study.
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As the isolated backbone curve reaches the annihilation point, it obtains the infinite
amplitude; thus, considering a limit of U1 → ∞, it gives

DiscU2 ≈ f6 = 0 . (3.36)

After some algebraic manipulation, one can find coefficients g1 and g7 have factors
(p− 1)2 (p+ 1)2, whilst coefficients g2 and g6 have factors (p− 1) (p+ 1). Recalling that
p denotes the phase relationship between modal coordinates and is defined by Eq. (3.31),
where p = ±1. It then follows that g1 = g7 = g2 = g6 = 0, and Eq. (3.36) can be further
simplified to give

f6 = α2
1α

2
2

(
g3α

2
1 + g4α1α2 + g5α

2
2

)
= 0 , (3.37)

where two non-zero solutions for α2 can be obtained

α2 =
−g4 ±

√
g2

4 − 4g5g3

2g5
α1 . (3.38)

Likewise, if frequency-amplitude relationships (3.33) are rearranged to give a quartic
amplitude equation with respect to U1 rather than U2, as currently, one can find the same
expression as Eq. (3.38) by following the procedure outlined above. This means that U1

and U2 approach infinite values simultaneously on the critical conditions described by
expression (3.38). The response frequency, ω, is explicitly determined by Eq. (3.33a), it
also approaches the infinite value when U1 → ∞ and U2 → ∞.

As such, the analytical derivations above exactly capture the phenomena observed in the
example case in Fig. 3.10 – satisfying parameter conditions (3.38) leads to the annihilation
of isolated backbone curves via critically having infinite response frequency and amplitude
values. This allows the first quadrant in Fig. 3.9, i.e. the hardening system, to be further
divided into additional regions, as shown in Fig. 3.10a. The backbone curves for systems
within the new divisions anticlockwise of Ψ1 = 0 show:

1) the shaded area anticlockwise of Ψ1 = 0: two primary backbone curves, S−
1 and

S+
2 , with one isolated backbone curve, S−

2 , below those two, e.g. panels (b) and (c).

2) the unshaded area anticlockwise of Ψ1 = 0: two primary backbone curves, S−
1 and

S+
2 , without an isolated backbone curve, e.g. panel (d).

Whilst the new divisions clockwise of Ψ2 = 0 show:
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1) the shaded area clockwise of Ψ2 = 0: two primary backbone curves, S+
1 and S−

2 ,
with one isolated backbone curve, S+

2 , between those two, e.g. panel (e);

2) the unshaded area clockwise of Ψ2 = 0: two primary backbone curves, S+
1 and S−

2 ,
without an isolated backbone curve, e.g. panel (f).

In summary, expressions (3.30a) and (3.30b), combined with conditions (3.27), are
boundaries for the existence of a BP on the single-mode backbone curve for a hardening
and a softening system respectively, perturbing from which the bifurcation splits and
an isolated backbone curve emerges. For hardening systems, expression (3.38) further
describes the other boundaries, at which the isolated backbone curve annihilates with
infinite frequency and amplitude values. The shaded area in Fig. 3.10a highlights the
region in which an isolated backbone curve can exist.

In practice, when external forcing is applied, the existence of isolated backbone curves may
be related to isolas, which can significantly affect the vibration mitigation performance of
a NLTMD, as discussed in §2.3.1 and §3.4. Using the method proposed in this chapter, the
existence of isolated backbone curves in the applications of a NLTMD can be analytically
determined. To ensure an optimised linear spring coefficient, whilst eliminating isolated
backbone curves, the nonlinear spring coefficient can be selected in the unshaded regions
of Fig. 3.10a. The associated parameter conditions are given by

0 < α2 <
−g4 −

√
g2

4 − 4g5g3

2g5
α1 , or α2 >

−g4 +
√
g2

4 − 4g5g3

2g5
α1 . (3.39)

When the nonlinear spring coefficient of the NLTMD, α2, is selected within these intervals,
the isolated backbone curves can be eliminated to ensure no correlated isolas may be
observed when external forcing is applied.

3.6 Summary

In this chapter, the synchronous NNMs and their correlated isolated backbone curves
have been studied with emphasis on conditions for the existence of isolated backbone
curves. This was achieved by considering general two-mode interactions due to cubic
nonlinearity; two example systems, taking the configurations of a two-mass chain system
and a NLTMD-inspired system, were used throughout this chapter to aid interpretations.

First, the backbone curves of a symmetric system was revisted, where one can observe
two single-mode backbone curves and mixed-mode backbone curves emerging from a
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bifurcation point on either of the single-mode branch. As with studies in [139, 141],
symmetry breaking splits the bifurcation and leads to the existence of isolated backbone
curves. Here, it has been shown that, under certain conditions, the backbone curve
topology for a symmetric system can hold for asymmetric cases. This highlights the
shared features between symmetric and asymmetric systems, termed dynamic symmetry
in this thesis.

This concept was then used to explore conditions for the existence of isolated backbone
curves. Here, an essentially asymmetric system, in the configuration of a primary system
with a NLTMD attached, was considered. The parameter conditions for this system
to behave equivalently to a symmetric system, i.e. having dynamic symmetry, were
derived analytically. However, in practice, the optimisation of the NLTMD for vibration
suppression performance breaks these conditions and leads to the emergence of isolated
backbone curves due to bifurcation splitting.

Based on the optimised parameters (a given underlying linear system), the evolutions of
backbone curves were investigated with respect to varied nonlinear parameters (to be
optimised parameters). It revealed that the nonlinear parameter space can be divided
into several regions, within which backbone curves exhibit similar topological features.
In addition, the boundaries of these regions define conditions for the emergence of the
isolated backbone curves. Additional boundaries were then identified to refine these
divisions by considering the annihilation of isolated backbone curves when they are
associated with infinite response frequency and amplitude values. These boundaries,
determining the emergence and annihilation of isolated backbone curves, have been
derived analytically; together they serve as topological boundaries in the parameter space,
distinguishing the parameter regions whether isolated backbone curves exist or not.

In this chapter, the isolated backbone curves were shown to be associated with synchronous
NNMs where the phase relationships between modal coordinates are in-phase or anti-
phase. The counterpart of synchronous responses, namely the asynchronous responses,
have also been briefly discussed and derived, given by Eqs. (3.25); however, this solution
branch is related to zero response frequency for the examples considered in this chapter.
In Chapter 4, this class of nonlinear responses will be considered to explore its dynamic
features. It should also be noted that, even though the non-existence of asynchronous
backbone curves is particular to the examples considered in this chapter, asynchronous
branches do not exhibit the isolated feature when symmetry is broken. This will be
revisted and discussed further for general m : n internal resonances in Chapter 5, where
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Isolated backbone curves

it will be shown that only bifurcations leading to synchronous backbone curves can split
due to symmetry breaking.
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Chapter 4

Phase-varying backbone curves

In this chapter:

• Geometric features of NNMs are revisited and extended to general asynchronous
cases by referring to the phase relationships between modal coordinates.

• The existence of general asynchronous NNMs is demonstrated by considering
evolutions from the special out-of-unison asynchronous NNMs due to symmetry
breaking.

• Analytical models of backbone curves are derived; they are used to determine
the evolutions from phase-fixed out-of-unison backbone curves to phase-varying
backbone curves due to the mechanism of phase-amplitude coupling.

• The existence of phase-varying behaviours is determined in a cable model with an
externally attached support.

Publications related to this work

• D. Hong, E. Nicolaidou, T. L. Hill, S. A. Neild, 2020. Identifying phase-varying
periodic behaviour in conservative nonlinear systems, Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences 476 (2237) 20200028.

• D. Hong, E. Nicolaidou, T. L. Hill, S. A. Neild, 2021. Identifying phase-varying
periodic behaviours in a conservative cable model, 2nd International Nonlinear
Dynamics Conference.
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4.1 Introduction

To understand nonlinear phenomena, extending linear modal analysis to the nonlinear
context is extensively considered using the concept of NNMs [32, 31, 139, 87]. As
demonstrated in §2.2.1, employing a geometric perspective, the NNMs can be categorised
as synchronous and asynchronous NNMs [73, 31]. The synchronous NNMs, or in-unison
NNMs, refer to cases where all components of the system reach their equilibrium and
extrema simultaneously during periodic responses [73]. Such nonlinear responses can be
observed in a variety of nonlinear systems, e.g. beam structures [144, 237], rotor systems
[238], cable structures [129] and example systems in Chapter 3.

The counterpart of synchronous NNMs, i.e. asynchronous NNMs, represent cases where
the system components do not reach their displacement extrema and equilibrium simul-
taneously. One example of asynchronous NNMs is the whirling motion, or out-of-unison
motions, observed in cable structures [242, 129], and rotor systems [238]. Such an
out-of-unison motion may be seen as a special case of asynchronous NNMs where one
coordinate reaches an extremum whilst the other passes through the equilibrium point.
This can also be interpreted by referring to the phase relationship between the vibrating
coordinates and, for the out-of-unison case, it is characterised by a ±90◦ phase difference.
Besides this special case, the more general case with an arbitrary phase difference (not
necessarily ±90◦ out-of-phase), receives less attention in the literature. The existence
of such general asynchronous motions represents a large family of nonlinear oscillations
that requires an in-depth study to further understand the mechanism that underpins the
dyanamic features. In addition, their existence means that phase relationships between
coordinates are important parameters in characterising NNMs of dynamical systems. In
terms of applications, due to their special features, the general asynchronous motions
may potentially be exploited, as with the exploitation of synchronous motions in the
context of vibration suppression and energy harvesting (as introduced in §2.3).

This chapter aims to demonstrate the existence of such general asynchronous NNMs,
explore their features, and identify their existence in practical engineering systems. To
this end, the rest of this chapter is organised as follows.

In §4.2, the concept NNMs is revisited for a two-mode system with 1 : 1 internal resonance.
Based on discussions in §3.2, an extension to account for general asynchronous NNMs
is demonstrated. Features of such general cases and those previously considered ones
are distinguished by referring to the response geometry in the configuration space and
the phase relationships between modal coordinates. A numerical method is then used
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4.2 Asynchronous NNMs of a two-mode system

to demonstrate the existence of general asynchronous NNMs for a simple single-mass
oscillator. It will be shown that these NNMs may be interpreted as asymmetric evolutions
from special out-of-unison NNMs due to symmetry breaking.

Building on this observation, in §4.3, an analytical technique is used to further quantify
the characteristics of asynchronous NNMs. Analytical phase relationships of the backbone
curves verify the results found in §4.2. They further reveal that, along with the breaking
of symmetric configurations, the out-of-unison backbone curve evolves to a family of
asynchronous NNMs whose phase relationships are varying along the backbone curve.
This class of backbone curve is defined here as a phase-varying backbone curve, and
represents the locus of general asynchronous NNMs.

In §4.4, using insights obtained from the single-mass model, the existence of phase-varying
backbone curves is identified for a cable model (a common mechanical structure that
exhibits out-of-unison backbone curves [129]). This is achived by firstly deriving a reduced-
order cable model, which is validated using an existing analytical model [232]. Next, the
addition of a support near the cable root is then considered – this resembles the engineering
practice of installing external devices to suppress cable vibrations [243, 244, 242]. This
support breaks the symmetric configuration of the cable and, as with the single-mass
model, causes the out-of-unison motions (i.e. whirling motions) to evolve to general
asynchronous motions on a phase-varying backbone curve.

Finally, a summary is presented in §4.5.

4.2 Asynchronous NNMs of a two-mode system

In this section, the concept of NNMs [31, 100], is revisited for a two-mode system, but an
extension is introduced to that considered in §3.2 by accounting for general asynchronous
NNMs.

As discussed in §3.2, NNMs can be categorised as either synchronous or asynchronous
motions by considering their geometric features. For illustration, modal interactions
are discussed using the configuration space. In this space, synchronous single-mode
and mixed-mode NNMs are shown in Figs. 4.1a and 4.1b respectively, where the lines
represent the oscillations over time (q1 and q2 denote the first and second linear modal
coordinates respectively). In this case, regarding the definition of synchronous motions,
the extrema of q1 and q2 (denoted ‘◦’ and ‘×’ respectively) are achieved simultaneously.
Equivalently, such synchronous features can also be captured by the modal state (i.e. qi

77



Phase-varying backbone curves

Synchronous NNMs Asynchronous NNMs

Fig. 4.1 Schematic representations of synchronous and asynchronous NNMs for a two-
mode system with 1 : 1 internal resonance. The responses are illustrated in the modal
configuration space, i.e. the projection of the first and second linear modal coordinates,
q1(t) and q2(t), parameterised in time. (a) The single-mode NNMs. (b) The in-phase
(θd = 0) and anti-phase (θd = π) NNMs. (c) The ±π/2 out-of-phase NNMs, where the
‘+’ and ‘−’ signs denote clockwise and anticlockwise motions respectively. (d) The ±θd

out-of-phase NNMs.

and q̇i) at extrema – both modes have non-zero displacements with zero velocities. An
alternative method to characterise synchronous NNMs is referring to phase relationships
between modal coordinates, where the single-mode NNMs in Fig. 4.1a have undefined
phase, whilst the mixed-mode NNMs in Fig. 4.1b are either in-phase or anti-phase. Here,
synchronous motions are briefly revisited, for detailed discussions, the reader is directed
to §3.2 and Refs. [73, 31].

An example of an asynchronous NNM is shown in Fig. 4.1c where one modal coordinate
reaches an extremum when the other passes through the equilibrium point – a loop in the
configuration space. In this case, the linear modal coordinates exhibit ±π/2 out-of-phase
relationships (the ‘+’ and ‘−’ signs here denote the clockwise and anticlockwise motions
in the configuration space respectively – see arrows on the loop in Fig. 4.1c). Likewise,
such motions can be captured by the modal state at extrema – a non-zero displacement
for one modal coordinate with a non-zero velocity for the other, or vice versa. This class
of NNM is termed an out-of-unison NNM in [129], and captures whirling motions of, for
example, cables [129] and rotor-shaft systems [238].

Up to this point, the commonly-observed NNM motions can, therefore, be categorised
as single-mode (panel (a), where θd is undefined), in-phase and anti-phase synchronous
(panel (b), θd = 0, π respectively) and out-of-unison asynchronous (panel (c), θd = ±π/2).
Observing that all mixed-mode motions exhibit specific phase relationships, i.e. θd ∈
{0, π, ± π/2}, between modal components, a logical extension to these particular cases
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mk1, L1

k
2
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2

k3, L3

x

y

δ

Fig. 4.2 A schematic diagram of a single-mass, two-mode system. A mass, with mass value
m, has x and y denoting horizontal and vertical in-plane displacements respectively. This
mass is grounded by two horizontal springs with coefficients k1 and k3, and unstretched
lengths L1 and L3. Another spring, with coefficient k2 and unstretched length L2, grounds
the mass, with δ representing the angle between k1 and k2. The system has a symmetric
configuration when δ = 90◦, k1 = k3 and L1 = L3.

results in periodic motions with arbitrary phase relationships between components. An
example of such NNMs is depicted in Fig. 4.1d – it exhibits geometric similarity to
that of out-of-unison motions in panel (c) (i.e. a loop in the configuration space) but
with a different phase relationship. Indeed, this class represents a general asynchronous
NNM where the phase relationship between modal coordinates is θd out-of-phase (to
differentiate from these previously discussed cases, θd ̸∈ {0, π, ± π/2}). In contrast to
the synchronous and out-of-unison asynchronous NNMs, this NNM represents responses
where displacements and velocities can never simultaneously be zero.

To explore the existence of this general asynchronous NNM, and understand the mecha-
nism that underpins its features, a two-mode, single-mass system, schematically shown in
Fig. 4.2, is firstly considered. This example system consists of one mass, with mass value
m, and has displacements x and y, denoting horizontal and vertical in-plane motions
respectively. This mass is grounded by three linear springs with coefficients k1, k2, and
k3, and with unstretched lengths L1, L2, and L3 respectively. At equilibrium, all the
springs are unstretched and springs, k1 and k3, are laying in the x-direction; whilst the
angle between k1 and k2 is denoted δ (when δ = 90◦, spring k2 is orthogonal to springs
k1 and k3). It can be observed that the model has a symmetric configuration when
δ = 90◦, k1 = k3, and L1 = L3; conversely, it has an asymmetric configuration when
these parameter conditions are broken.
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In considering the dynamic responses of the system, it can exhibit nonlinear behaviours
when vibrating at large amplitudes due to geometric nonlinearity. Using ∆Li to denote
the stretch or compression of springs ki, the Lagrangian of the one-mass, two-mode
system can be written as

L = T − V , (4.1)

= 1
2mẋ

2 + 1
2mẏ

2 −
(

1
2k1 (∆L1)2 + 1

2k2 (∆L2)2 + 1
2 (∆L3)2

)
,

= 1
2mẋ

2 + 1
2mẏ

2 − 1
2k1

(√
(L1 + x)2 + y2 − L1

)2

− 1
2k2

(√[
L2 cos (δ) + x

]2 +
[
L2 sin (δ) + y

]2 − L2

)2

− 1
2k3

(√
(L3 − x)2 + y2 − L3

)2
.

The equations of motion, with variables of the physical coordinates, x and y, can then
be obtained via the Euler-Lagrange equations, leading to

mẍ+ k1 (L1 + x) − k1L1 (L1 + x)√
(L1 + x)2 + y2

+ k2
[
L2 cos (δ) + x

]
− k2L2

[
L2 cos (δ) + x

]√[
L2 cos (δ) + x

]2 +
[
L2 sin (δ) + y

]2 − k3 (L3 − x) − k3L3 (x− L3)√
(L3 − x)2 + y2

= 0 ,

(4.2a)

mÿ + k1y − k1L1y√
(L1 + x)2 + y2

+ k2
[
L2 sin (δ) + y

]
− k2L2

[
L2 sin (δ) + y

]√[
L2 cos (δ) + x

]2 +
[
L2 sin (δ) + y

]2 + k3y − k3L3y√
(L3 − x)2 + y2

= 0 . (4.2b)

Using this two-mode model, the existence of the general asynchronous NNMs, shown
in Fig. 4.1d, is investigated based on one potential mechanism – the breaking of the
symmetric configuration. Note that, as discussed in Chapter 3, symmetry breaking
transforms single-mode NNMs into mixed-mode in-phase or anti-phase NNMs (i.e. from
Fig. 4.1a to Fig. 4.1b); hence, it is logical to assume that symmetry breaking can, likewise,
lead to evolutions from out-of-unison NNMs to general asynchronous NNMs (i.e. from
Fig. 4.1c to Fig. 4.1d). To investigate this symmetry-breaking mechanism, it is achieved
by comparing the NNM responses for the symmetric and asymmetric cases. The NNM
branches, or backbone curves, are directly computed via Eqs. (4.2) using the po-toolbox
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4.2 Asynchronous NNMs of a two-mode system

Fig. 4.3 Backbone curves for the single-mass, two-mode system in Fig. 4.2 with a
symmetric configuration. The backbone curves are shown in the projection of the
response frequency, ω, against the absolute displacement of the mass for a system with
m = 1, k1 = k3 = 0.5, k2 = 1.005, L1 = L2 = L3 = 1 and δ = 90◦. Bifurcation points on
backbone curve S1 are denoted as solid dots, labelled ‘BP1’ and ‘BP2’. Five embedded
plots, in the modal configuration space, (q1(t), q2(t)), represent the time-parameterised
NNM responses on the corresponding backbone curves; the extrema of modal coordinates
q1(t) and q2(t) are marked by ‘◦’ and ‘×’ respectively in these embedded plots. Arrows
in the embedded plot linked to S±90

1 denote clockwise and anticlockwise motions.

of COCO [99], which makes use of the collocation method to find periodic solutions.
Note that no analytical approximation is introduced for the results shown in this section.

4.2.1 NNMs of the symmetric system

First the symmetric case is considered via an example system with m = 1, k1 = k3 =
0.5, k2 = 1.005, L1 = L2 = L3 = 1, and δ = 90◦. The backbone curves of this system are
shown in Fig. 4.3 in the projection of the response frequency, ω, against the absolute
displacement amplitude of the mass,

√
X2 + Y 2, where X and Y are the maximum

amplitudes of displacements x and y respectively.
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In this region, there are two single-mode backbone curves S1 and S2;1 in addition, two
mixed-mode backbone curves, S+

1 and S−
1 , bifurcate from S1 via bifurcation point BP1

(as previously, the subscripts of S+
1 and S−

1 indicate the backbone curve from which they
bifurcate, in this case from S1). Note that, due to the symmetry of configuration, S+

1

and S−
1 are superimposed in this projection. The NNMs on these single-mode and mixed-

mode backbone curves are synchronous periodic responses – see the time-parameterised
responses of NNMs on these backbone curves in the embedded plots, which are analogous
to those shown in Fig. 4.1a and 4.1b respectively.

In contrast to these synchronous backbone curves, one can also find asynchronous,
out-of-unison backbone curves, S±90

1 , that bifurcate from S1 through bifurcation point,
BP2. The embedded plot, near S±90

1 in Fig. 4.3, describes the time-parameterised NNM
response on S±90

1 – q1 reaches its extreme displacement when q2 has a zero value and vice
versa; the arrows on the response curve in the configuration space denote the clockwise
motion (θd = +π/2) and anticlockwise motion (θd = −π/2) respectively. One can also
find the similarity between the out-of-unison NNMs, in the embedded plot, and those in
Fig. 4.1c.

Using numerical continuation, the backbone curves for a symmetric case have been
computed and discussed, where special out-of-unison branches are identified. In the
following, symmetry breaking is introduced to the system to investigate the asymmetric
evolutions of NNMs.

4.2.2 NNMs of the asymmetric system

With δ perturbed away from 90◦ whilst other parameters remain unchanged, the sym-
metric configuration of the system is broken. With δ = 89.5◦, the symmetry-breaking
effect on the backbone curves is shown in Fig. 4.4. For comparison, backbone curves for
the symmetric case are also presented using dash-dotted grey lines in the same figure.

Symmetry breaking splits the bifurcation point, BP1, on the single-mode backbone
curve, S1, and generates one primary in-phase backbone curve, S+

1 , and one isolated
anti-phase backbone curve S−

1 .2 Additionally, the broken symmetry gives rise to an
1Note that responses on the backbone curve S1 do contain a small component of the second mode, q2;

however, this is dominated by a response at twice the fundamental frequency and there is no component
at the fundamental frequency - i.e. the motion is similar to the swaying of a cable, observed at low
amplitude [245]. For consistency with later sections, we denote this as a single-mode backbone curve,
representing the fact that only one mode (q1) has a component at the fundamental frequency.

2Note that interested reader is directed to Chapter 3 for discussions on conditions for the existence
of this isolated backbone curve.

82



4.2 Asynchronous NNMs of a two-mode system

Fig. 4.4 Backbone curves for the single-mass, two-mode system in Fig. 4.2 with an
asymmetric configuration. The backbone curves are shown in the projection of the
response frequency, ω, against absolute displacement of the mass for a system with
m = 1, k1 = k3 = 0.5, k2 = 1.005, L1 = L2 = L3 = 1 and δ = 89.5◦. Four embedded
plots, in the modal configuration space, (q1(t), q2(t)), show the NNM responses on
the corresponding backbone curves. In these embedded plots, the extrema of modal
coordinates q1(t) and q2(t) are marked by ‘◦’ and ‘×’ respectively. Arrows in the embedded
plot linked to S±v

1 denote clockwise and anticlockwise motions. For comparison, the
backbone curves for the symmetric case in Fig. 4.3 are shown as dash-dotted curves with
bifurcations denoted by hollow dots.

in-phase primary backbone curve S+
2 . These three mixed-mode backbone curves, as with

the symmetric case, are composed of synchronous NNMs – seen from the embedded plots
in the configuration space, (q1(t), q2(t)), where the time-parameterised responses are
lines passing through the origin – analogues to that in Fig. 4.1b.

The other bifurcation point, BP2, remains intact for the asymmetric case, and connects
the anti-phase backbone curve S−

1 to S±v
1 , which can be viewed as asymmetric evolutions

from the out-of-unison backbone curves, S±90
1 . The NNM responses on S±v

1 are shown in
the embedded plot linked to the S±v

1 curves, and they exhibit asynchronous features – a
loop in the configuration space, similar to that on the out-of-unison backbone curves;
however, the phase relationships between modal coordinates, θd, are not ±π/2, but
instead are similar to the ones in Fig. 4.1d. This is highlighted by the dots and crosses,
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i.e. the extrema of q1 and q2 respectively in the embedded plot, which illustrate that the
extrema and equilibria of modal coordinates are reached at different times.

By comparing results shown in Figs. 4.3 and 4.4, this example demonstrates that NNMs
with a general asynchronous motion can exist due to symmetry breaking. As will be
shown in the next section, for asymmetric systems, the phase relationships, θd, of NNMs
on the asynchronous backbone curves exhibit phase-amplitude coupling; in other words,
phase relationships of NNMs are varying along the backbone curves. As such, they are
termed phase-varying backbone curves, as denoted with the superscript, •±v. Additionally,
it should also be noted that, in this example case, the bifurcation leading to synchronous
backbone curves splits due to symmetry breaking; however, the bifurcation onto the
asynchronous backbone curves remains intact under symmetry breaking. The different
effects of symmetry breaking on bifurcations splitting/remaining will be analytically
investigated in Chapter 5 for more general cases.

In this section, the periodic responses, i.e. the NNMs, of a two-mode system were firstly
reviewed, emphasising the less studied asynchronous NNMs. A specific example of
such asynchronous NNMs is the out-of-unison NNM, studied in [129], where the modal
coordinates have ±π/2 phase difference. To explore the existence of a more general
asynchronous case, where the NNM exhibits a phase difference θd ̸∈ {0, π, ± π/2}
between linear modal coordinates, a simple two-mode system, depicted in Fig. 4.2, has
been considered. It has been found that the symmetry breaking can transform the out-of-
unison NNMs to the more general asynchronous ones. In the next section, analytical
studies are carried out to further study the dynamic characteristics of the asynchronous
NNMs.

4.3 Analytical study of the asynchronous backbone
curves

In this section, the backbone curves of the single-mass, two-mode system are derived
analytically using the harmonic balance technique. The obtained backbone curve ex-
pressions are then used to interpret the dynamic behaviours from a symmetry-breaking
perspective. With the emphasis on the evolutions of asynchronous motions, studies in
this section aim to further the understanding obtained in §4.2.

To simplify the analytical study of the system in Fig. 4.2, the restoring force of the
full model, given in Eqs. (4.2), is firstly approximated as a polynomial function of
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physical coordinates, x and y, via a Taylor series expansion about the equilibrium point
(x = 0, y = 0); it is then truncated by retaining nonlinear terms up to the cubic order.
In this way, the obtained equations of motion are given by

Mẍ + Kx + Nx = 0 , (4.3)

where M and K are mass and linear stiffness matrices respectively; Nx is a vector of
nonlinear terms; and x is a vector representing physical displacements, defined respectively
as

M =
 m 0

0 m

 , K =
 k1 + k2 cos2 (δ) + k3 k2 sin (δ) cos (δ)

k2 sin (δ) cos (δ) k2 sin2 (δ)

 ,
Nx =

 3β1x
2 + 2β2xy + β3y

2 + 4γ1x
3 + 3γ2x

2y + 2γ3xy
2 + γ4y

3

β2x
2 + 2β3xy + 3β4y

2 + γ2x
3 + 2γ3x

2y + 3γ4xy
2 + 4γ5y

3

 , x =
 x

y

 ,
and where the coefficients of quadratic and cubic nonlinear terms, β1, β2, · · · , β4, γ1, γ2,
· · · , γ5, are defined by Eq. (A.5) (in Appendix A).

To compute backbone curves, the system is then transformed into the modal domain
by applying linear modal transform, i.e. x =Φq, defined by Eq. (3.11), where Φ is the
modeshape matrix and q is a vector of linear modal coordinates. After applying the
linear modal transform, and some algebraic manipulation, the obtained equations of
motion in the modal domain are given by

q̈ + Λq + Nq = 0 , (4.4)

where

Λ =
 ω2

n1 0
0 ω2

n2

 , Nq =
 Ξ3q

2
1 + 2Ξ1q1q2 + Ξ2q

2
2 + Ψ4q

3
1 + 3Ψ1q

2
1q2 + Ψ3q1q

2
2 + Ψ2q

3
2

Ξ1q
2
1 + 2Ξ2q1q2 + Ξ4q

2
2 + Ψ1q

3
1 + Ψ3q

2
1q2 + 3Ψ2q1q

2
2 + Ψ5q

3
2

 , (4.5)

and where Λ is a diagonal matrix with leading diagonal elements, ω2
n1 and ω2

n2, denoting
the squares of the first and second linear natural frequencies respectively; Nq is the vector
of nonlinear terms with Ξ1,Ξ2, · · · ,Ξ4 and Ψ1,Ψ2, · · · ,Ψ5 denoting the coefficients of
the quadratic and cubic nonlinear terms respectively. These coefficients are defined by
Eq. (A.6) in Appendix A.

Equation (4.4) can directly be used to compute backbone curves via numerical con-
tinuation; however, to find analytical expressions of backbone curves, the harmonic
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balance method is used. As with discussions in §3.3, it is assumed that the modal
displacements may be approximated by a single harmonic, given by Eq. (3.5), i.e. qi ≈
ui = Ui cos (ωrit− θi). It is further assumed that the fundamental frequencies of the
two modes are equal, i.e. ωr1 = ωr2 = ω, which accounts for 1 : 1 internal resonance.
This 1 : 1 assumption can be justified by numerical results shown in Figs. 4.3 and 4.4,
where the periodic motions on mixed-mode backbone curves (that emerge from internal
resonance) indeed exhibit 1 : 1 frequency commensurate relationships.

Following the procedure outlined in §3.3 – with substitution of the assumed solutions,
qi ≈ ui = Ui cos (ωrit− θi), into equations of motion (4.4), and the non-resonant terms
removed, one can obtain the expressions for backbone curves in the same form as
Eqs. (3.8), i.e.

4
(
ω2

n1 − ω2
)
U1 + 3Ψ4U

3
1 + Ψ3U1U

2
2

[
1 + 2 cos2 (θd)

]
+ 3

(
Ψ2U

3
2 + 3Ψ1U

2
1U2

)
cos (θd) = 0 , (4.6a)

4
(
ω2

n2 − ω2
)
U2 + 3Ψ5U

3
2 + Ψ3U

2
1U2

[
1 + 2 cos2 (θd)

]
+ 3

(
Ψ1U

3
1 + 3Ψ2U1U

2
2

)
cos (θd) = 0 , (4.6b)[

2Ψ3U1U2 cos (θd) + 3Ψ1U
2
1 + 3Ψ2U

2
2

]
sin (θd) = 0 , (4.6c)

where θd = θ1 − θ2 denotes the phase difference between two modal coordinates. These
equations can then be used to compute the backbone curves of the two-mode system
shown in Fig. 4.2. Note that the quadratic terms, presented in Eqs. (4.4), are non-resonant
components which do not lead to 1 : 1 internal resonance [246], hence their coefficients,
Ξi, do not present in Eqs. (4.6). The influence of the quadratic terms on 1 : 1 internally
resonant response may be represented as a DC offset from the equilibrium position for
the time trajectory.

As the govening equations for backbone curves, Eqs. (4.6), take the same form as that
derived in §3.3, the expressions for single-mode and mixed-mode backbone curves for the
symmetric case are directly given here for reference; whilst the detailed derivations can
be found in §3.3.

For symmetric cases, i.e. δ = 90◦, k1 = k3 and L1 = L3, the system has Ψ1 = Ψ2 = 0,
found from expressions (A.5) and (A.6). The backbone curve expressions for such
symmetric cases are given by:

1) Single-mode synchronous backbone curves

S1(ω, U1) : U2 = 0 , ω2 = ω2
n1 + 3

4Ψ4U
2
1 , (4.7)
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S2(ω, U2) : U1 = 0 , ω2 = ω2
n2 + 3

4Ψ5U
2
2 . (4.8)

The NNMs on these single-mode branches, as discussed previously, can be schemat-
ically illustrated by Fig. 4.1a.

2) Mixed-mode synchronous, or in-phase/anti-phase, backbone curves

S±
1,2(ω, U1, U2) : U2

1 =
4
(
ω2

n2 − ω2
n1

)
+ 3 (Ψ5 − Ψ3)U2

2

3 (Ψ4 − Ψ3)
, (4.9a)

ω2 =
4
(
Ψ4ω

2
n2 − Ψ3ω

2
n1

)
+ 3

(
Ψ4Ψ5 − Ψ2

3

)
U2

2

4 (Ψ4 − Ψ3)
. (4.9b)

The NNM responses on these synchronous backbone curves can be schematically
described by Fig. 4.1b.

3) Mixed-mode asynchronous, or out-of-unison, backbone curves

S±90
1,2 (ω, U1, U2) : U2

1 =
4
(
ω2

n2 − ω2
n1

)
+ (3Ψ5 − Ψ3)U2

2

3Ψ4 − Ψ3
, (4.10a)

ω2 =
4
(
3Ψ4ω

2
n2 − Ψ3ω

2
n1

)
+
(
9Ψ4Ψ5 − Ψ2

3

)
U2

2

4 (3Ψ4 − Ψ3)
. (4.10b)

NNMs on these backbone curves exhibit ±π/2 phase relationships between two
modes, where the responses are schematically shown in Fig. 4.1c.

For asymmetric cases, for example the case considered in §4.2.2 where δ ̸= 90◦, the
single-mode solution is no longer obtainable. Instead, there are mixed-mode solution
branches which are related to the phase condition of sin(θd) = 0, or θd = nπ, found from
Eq. (4.6c). These branches correspond to the in-phase and anti-phase backbone curves,
S±

1,2, whose frequency-amplitude relationships are governed by

S±
1,2(ω, U1, U2) :

ω2 = ω2
n1 + 3

4

[
Ψ4U

3
1 + Ψ3U

2
2U1 + p

(
Ψ2U

3
2 + 3Ψ1U

2
1U2

)]
U−1

1 , (4.11a)

0 =
(
−3pΨ2U

−1
1

)
U4

2 + 3 (Ψ5 − Ψ3)U3
2 +

[
9p (Ψ2 − Ψ1)U1

]
U2

2 + (4.11b)[
4ω2

n2 − 4ω2
n1 + 3 (Ψ3 − Ψ4)U2

1

]
U2 + 3pΨ1U

3
1 ,

where p = cos (nπ); p = +1 for even n and it represents in-phase backbone curves S+
1,2;

whilst p = −1 for odd n and it denotes anti-phase backbone curves S−
1,2. Note that such

mixed-mode synchronous backbone curves have been investigated in detail in Chapter 3.
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In addition to the synchronous cases, the other phase relationship can be established –
a zero value of the terms in the bracket of Eq. (4.6c). This phase relationship can be
rearranged as

cos (θd) = −
3
(
Ψ1U

2
1 + Ψ2U

2
2

)
2Ψ3U1U2

. (4.12)

This expression indicates that the phase relationship, θd, is a function of the amplitudes
(U1 and U2), suggesting that θd is varying along the backbone curve as amplitude
varies. Here, such an asynchronous NNM branch with an amplitude-dependent phase
relationship between modal coordinates is termed as a phase-varying backbone curve. To
find the expressions of this phase-varying backbone curve, the phase relationship (4.12) is
substituted into Eqs. (4.6b) and (4.6c); after some rearrangement, the following frequency-
amplitude relationship can be found, namely

S±v
1,2 (ω, U1, U2) :

U2
1 =

4Ψ3
(
ω2

n1 − ω2
n2

)
+ Ψ3 (Ψ3 − 3Ψ5)U2

2 + 9Ψ2 (Ψ2 − Ψ1)U2
2

Ψ3 (Ψ3 − 3Ψ4) + 9Ψ1 (Ψ1 − Ψ2)
, (4.13a)

ω2 =

[
Ψ3
(
Ψ2

3 − 9Ψ4Ψ5
)
U2

2 + 9
(
3Ψ5Ψ2

1 + 3Ψ2
2 Ψ4 − 2Ψ1Ψ2Ψ3

)
U2

2 +

4Ψ3
(
Ψ3ω

2
n1 − 3Ψ4ω

2
n2

)
+ 36Ψ1

(
Ψ1ω

2
n2 − Ψ2ω

2
n1

)]
4Ψ3 (Ψ3 − 3Ψ4) + 36Ψ1 (Ψ1 − Ψ2)

. (4.13b)

As previously discussed, a system with a symmetric configuration has modal coefficients
Ψ1 = 0 and Ψ2 = 0. Substituting these into Eqs. (4.13), the amplitude-frequency
expressions of phase-varying backbone curves are reduced to the ones describing out-
of-unison backbone curves, given by Eqs. (4.10). In addition, with Ψ1 = 0 and Ψ2 = 0,
the amplitude-dependent phase relationship, defined by the expression (4.12), is reduced
to cos (θd) = 0; this phase relationship is again identical to that for the out-of-unison
backbone curves, which have θd = ±π/2. This therefore indicates that the phase-varying
backbone curve is an evolution of the out-of-unison backbone curve due to symmetry
breaking, through the mechanism of phase-amplitude coupling, described by Eq. (4.12).

To illustrate these analytical results, Fig. 4.5a presents the analytically-computed back-
bone curves (using equations from (4.7) to (4.13)) in the projection of the response
frequency, ω, against the absolute displacement of the mass,

√
X2 + Y 2, for the single-

mass system schematically shown in Fig. 4.2. Backbone curves for the symmetric case
(i.e. m = 1, k1 = k3 = 0.5, k2 = 1.1, L1 = L2 = L3 = 1 and θ = 90◦) are presented by
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4.3 Analytical study of the asynchronous backbone curves

Fig. 4.5 Analytically computed backbone curves of the single-mass, two-mode system in
Fig. 4.2 for symmetric and asymmetric cases. The backbone curves for the symmetric
case, i.e. m = 1, k1 = k3 = 0.5, k2 = 1.1, L1 = L2 = L3 = 1 and δ = 90◦, are shown as
dash-dotted grey curves; whilst the backbone curves for the asymmetric case, i.e. with
δ changed from 90◦ to 85◦, are presented using solid curves. (a) Backbone curves in
the projection of the response frequency, ω, against the absolute displacement of the
mass. (b) The modal phase relationships on the backbone curves in the projection of the
response frequency, ω, against the phase difference, θd, between two modal coordinates.
Six embedded plots, labelled (i) → (vi), show the phase-varying behaviours in the modal
configuration space, (q1(t), q2(t)), of NNM responses on the phase-varying backbone
curve, S+v

1 . The extrema of q1(t) and q2(t), in these embedded plots, are labelled with ‘◦’
and ‘×’ respectively to highlight the varied phases.
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dash-dotted lines; whilst backbone curves for the asymmetric case, obtained by changing
δ from 90◦ to 85◦, are shown as solid lines. It should be noted that these backbone curves
are computed without taking into account the effect of quadratic nonlinearity as they
show a non-resonant effect which is eliminated during derivation; however, neglecting
the quadratic terms does not lead to qualitative differences in backbone curves. In the
remaining discussions, the effect of cubic nonlinearity is considered with a focus on how
symmetry breaking leads to the existence of general asynchronous NNMs.

Similar to Fig. 4.4, Fig. 4.5a shows the effect of symmetry breaking on backbone curves.
It causes the bifurcation, BP1, on the single-mode backbone curve, S1, to split into one
primary in-phase backbone curve, S+

1 , and one isolated anti-phase backbone curve S−
1 .

Whilst, the bifurcation point, BP2, remains intact and the out-of-unison backbone curves,
S±90

1 , evolve to the phase-varying backbone curves S±v
1 . Note that two phase-varying

backbone curves are superimposed in this projection with one showing clockwise motions
(+θd) and the other showing anticlockwise motions (−θd).

Figure 4.5b shows the phase relationships on these backbone curves in the projection
of the response frequency, ω, against the phase difference, θd, between fundamental
components of the modal coordinates, q1 and q2. For the symmetric case, as expected,
different NNMs on any backbone curve exhibit the same fixed phase relationship between
q1 and q2, indicated by the dash-dotted straight lines in this figure. For the asymmetric
case, the synchronous backbone curves, S+

1 , S−
1 and S+

2 , exhibit fixed phase relationships;
in contrast, the phase relationships of backbone curves, S±v

1 , vary with frequency and
amplitude. One branch of these phase-varying backbone curves, S+v

1 , has a phase
relationship varying from θd = π (the bifurcation on S−

1 ) to asymptotically θd = π/2,
with the decrement of response frequency (along with the increment of displacement
amplitude – see panel (a)). The embedded plots of panel (b), labelled (i) → (vi), present
the time-parameterised responses of a selection of periodic motions on S+v

1 . It can be
seen that the NNMs evolve from an anti-phase NNM (θd = π on the bifurcation) towards
a clockwise out-of-unison NNM (θd = π/2). Such a phase-varying behaviour can also
be observed from the evolutions of displacement extrema of q1(t) and q2(t), denoted by
‘◦’ and ‘×’ respectively in the embedded plots. The other phase-varying backbone, S−v

1 ,
shows similar behaviours, except for having NNMs exhibiting anticlockwise motions.

In this section, the harmonic balance technique has been employed to find the analytical
expressions of backbone curves for the single-mass system with symmetric and asymmetric
configurations. Analytical study showed that the general asynchronous backbone curve,
discussed in §4.2, exhibits an amplitude-dependent phase relationship between the linear
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4.4 Phase-varying backbone curves of a cable model

modal coordinates. This backbone curve is termed as a phase-varying backbone curve,
and it can be seen as an asymmetric evolution from the out-of-unison backbone curve
through symmetry breaking. Such a backbone curve represents a novel family of nonlinear
dynamic behaviours that are distinct from the commonly observed phase-fixed backbone
curves. Its existence highlights the importance of determining phase relationships between
modal coordinates when computing NNMs, a key implication of which is when applying
harmonic balance method numerically to compute NNMs. In the next section, numerical
analysis is carried out to investigate the existence of phase-varying backbone curves in a
cable model.

4.4 Phase-varying backbone curves of a cable model

In previous discussions, the existence of phase-varying backbone curves has been identified
analytically in a simple single-mass, two-mode system. In this section, the phase-varying
behaviour is investigated by considering an engineering-relevant system – a nonlinear
cable system.

Such a cable system is schematically shown in Fig. 4.6, where the cable profile is
represented by a blue line; near one of the fixed ends, an additional elastic support
connects the cable to the ground – this is analogous to the common practice of using
a grounded device to suppress cable vibration. The dynamics of the cable system are
modelled based on a lumped-mass approach, similar to the method in [247]. A brief
description is given here for completeness.

The model is formulated by discretising the cable into N identical elastic elements,
connected in series between N + 1 nodes. The two end nodes are fixed, resulting in a
total of 3(N − 1) degrees of freedom in three-dimensional space. The mass of the cable
is equally distributed between the elements, and for each element, half of its mass is
lumped on either end. The elements are assumed to be undamped and linearly elastic.

Regarding the parameters, the cable has an unstretched length of L0, uniform density ρ,
Young’s modulus E, and a constant cross-section of diameter d. Axial stress is assumed
to be uniformly distributed over the cross-sectional area, and a static axial pre-tension
with a horizontal component T is applied at both cable ends. The forces considered
acting on the cable are due to gravity and elasticity, whilst viscous and aerodynamic
effects are neglected. An additional undamped, linearly elastic element is attached to the
cable at a position zs along its span. This element lies within the cross-sectional plane,
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δ

Chord line/ horizontal line

Static sag profile
ρ, d, E, L0

k, l

T

T

z

y x
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Fig. 4.6 A schematic diagram of a cable with an unstretched length of L0, uniform density
ρ, Young’s modulus E, a constant cross-section of diameter d, and a static pre-tension
applied at both ends with a horizontal component T . A physical coordinate system is
defined at one end of the cable, with the (y, z) plane denoting the cable profile, where
the z- and y-axis are in the direction of the chord line and the gravity respectively. An
additional elastic support is attached to the cable at a position zs along the cable span
in the (x, y) plane, and it is modelled using a linear stiffness, k, and a support length, l,
with δ indicating the angle between the support and the negative x-axis.

(x, y), at an angle δ from the horizontal. It has a length l, stiffness k, and is unstretched
when the system is at equilibrium.

A 2-DOF nonlinear reduced-order model (ROM) of the cable system, which captures
its salient dynamic behaviour near the first two natural frequencies, is obtained using a
force-based indirect reduction method [106]. This involves a projection of the equations
of motion of the full model, onto a 2-DOF reduced basis. The reduction/projection basis
consists of the first out-of-plane and the first in-plane transverse mass-normalised linear
modeshapes of the cable about its equilibrium position. As such, the equations of motion
of the ROM can be written as

q̈1 + ω2
n1q1 + f1(q1, q2) = 0 , (4.14a)

q̈2 + ω2
n2q2 + f2(q1, q2) = 0 , (4.14b)

where f1 and f2 are the nonlinear restoring forces. For linear elastic finite element models
with geometric nonlinearities, the forcing functions typically take the form of quadratic
and cubic polynomials [106, 105, 112], i.e.

f1(q1, q2) = Ξ3q
2
1 + 2Ξ1q1q2 + Ξ2q

2
2 + Ψ4q

3
1 + 3Ψ1q

2
1q2 + Ψ3q1q

2
2 + Ψ2q

3
2 , (4.15a)

f2(q1, q2) = Ξ1q
2
1 + 2Ξ2q1q2 + Ξ4q

2
2 + Ψ1q

3
1 + Ψ3q

2
1q2 + 3Ψ2q1q

2
2 + Ψ5q

3
2 . (4.15b)
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4.4 Phase-varying backbone curves of a cable model

Note that linear dependencies are imposed on the coefficients in Eqs. (4.15), such that
the energy in the system is conserved [112, 108], similar to Eqs. (4.4).

The linear properties in Eqs. (4.14) can be obtained directly through an eigenanalysis of
the full system. However, the coefficients of the nonlinear terms, Ξi and Ψi, in Eqs. (4.15)
are computed in a non-intrusive manner, using a set of static solutions of the lumped-mass
model3. The static solutions are obtained by applying a set of prescribed static loads
and computing the corresponding displacements. The selected loading cases consist of
scaled linear combinations of the retained modes. For each load case, the computed static
displacement of the full system is then projected onto the reduced modal space. Finally,
the coefficients of the nonlinear terms in Eqs. (4.15) are estimated through regression
analysis in a least-squares manner, using the modal force-modal displacement dataset.

The lumped-mass discretisation approach and subsequent reduction method are first
validated by comparing the backbone curves of a ROM, with those obtained using an
analytically derived dynamic model of a small-sag cable system, proposed in [232]4. Here,
for validation purposes, a 40-element, 117-DOF cable model with the following physical
parameters is considered: L0 = 1.5 m, d = 5 mm, ρ = 3000 kg m−3, E = 200 GPa, and
the cable is subjected to a static pre-tension with a horizontal component T = 200 N.
Note that, in validating the reduced-order model, the additional support near the fixed
end is not considered for the applicability of the analytical model. The modal coefficients
obtained via the analytical method and order-reduction method are respectively given in
Table 4.1. The backbone curves for the ROM, as well as that for the analytical model,
are shown in Fig. 4.7 in the projection of response frequency, ω, against abolute modal
displacement of the cable. The results show excellent agreement both in quantitative and
qualitative, which demonstrates the applicability of the proposed reduced-order model.

Two additional support layouts are then considered to study the effect of symmetry
breaking of the configuration – one corresponds to the case where the spring is aligned
with the y-axis, i.e. when δ = 90◦, and this is denoted as the symmetric case; whilst,
the other relates to the case where δ = 60◦, and this is denoted as the asymmetric
case. Note that the static pre-tension is reduced to T = 100 N to highlight the nonlinear
significance induced by the sag cable profile; whilst other parameters remain the same

3Note that, even though the lumped-mass cable model is developed ad hoc, and the full equations of
motion are known and accessible, these are not explicitly used to construct the reduced-order model as
such. The indirect approach used instead, does not require knowledge of the exact equations of motion,
and is applicable to finite element models built using commercial finite element software packages.

4The analytical model is applicable to highly stressed cables with a small weight-to-tension ratio,
such that axial modal motions can be neglected.
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Table 4.1 Comparison between the values of the estimated model parameters, using
the analytical cable model in [232], and the 2-DOF reduced-order-model (ROM) via
reduction method outlined in §4.4.

ωn1 ωn2 Ξ1 Ξ2 Ξ3 Ξ4

cable model in [232] 122.04 123.87 1.28 · 106 0 0 3.84 · 106

2-DOF ROM 122.07 123.90 1.28 · 106 1 · 10−8 3 · 10−8 3.84 · 106

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5

cable model in [232] 0 0 7.26 · 109 7.24 · 109 7.24 · 109

2-DOF ROM 3 · 10−7 1 · 10−7 7.26 · 109 7.24 · 109 7.24 · 109

Fig. 4.7 Comparison between the backbone curves of the 2-DOF analytically derived
model in [232] (solid black line), and those of the 2-DOF reduced-order model (dash-
dotted blue line).

as that considered in validation process. The estimated parameters of either model can
be found in Table 4.2. From this table, one can observe that the symmetric case has
Ψ1 ≈ 0 and Ψ1 ≈ 0; whilst symmetry breaking leads to non-zero values, in line with the
derivations given in §4.3.

For the symmetric case, the backbone curves of the 2-DOF nonlinear cable ROM are
computed via numerical continuation and shown in Fig. 4.8a in the projection of response
frequency, ω, against absolute physical displacement of the cable. Two single-mode
backbone curves can be found, namely S1 and S2; via bifurcation point on the single-
mode backbone curve, S1, out-of-unison backbone curves, S±90

1 , emerge. The phase
relationships on these backbone curves are shown in Fig. 4.8b – either out-of-unison
backbone curve exhibits a fixed phase relationship (represented by a straight line denoting
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Table 4.2 Values of the estimated parameters of the reduced-order model for the symmetric
and asymmetric cases.

ωn1 ωn2 Ξ1 Ξ2 Ξ3 Ξ4

symmetric case 86.31 103.73 2.72 · 106 2 · 10−6 6 · 10−6 8.70 · 106

asymmetric case 87.71 102.76 2.58 · 106 6.22 · 105 18.60 · 105 8.43 · 106

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5

symmetric case 6 · 10−4 1 · 10−3 8.18 · 109 7.28 · 109 9.72 · 109

asymmetric case 2.63 · 108 3.64 · 108 8.22 · 109 7.44 · 109 9.52 · 109

either θd = ±90◦), the same as the out-of-unison branches for the single-mass system
considered in §4.3.

A selection of NNMs (labelled by ‘+’ signs in panels (a) and (b)) on S−90
1 are shown in

panel (c) in the modal configuration space, (q1(t), q2(t)); and panel (d) in the physical
configuration space, (xmid(t), ymid(t)), where •mid denotes the mid-span position of the
cable. The extrema of q1 and xmid are denoted via ‘◦’, whilst the extrema of q2 and
ymid are denoted via ‘×’ to highlight the phase relationships. Due to the variation of
tension in cable during oscillation, a non-resonant q2 component arises from the nonlinear
quadratic terms in expressions (4.15). This leads to a shift of the extrema q1(t), as well
as xmid(t), along the backbone curve [245]; nonetheless, an anticlockwise out-of-unison
(or equivalently θd = −90◦) phase relationship between q1 and q2 can still be observed
in both panels (c) and (d) – analogues to the schematic in Fig. 4.1c. Likewise, similar
behaviours can be expected for the other out-of-unison branch, S+90

1 , except for showing
clockwise motions (or equivalently θd = +90◦).

For the asymmetric case, where the external support is attached to the cable with δ ̸= 90◦,
the backbone curves are shown in Fig. 4.9a. The corresponding phase relationships on
these backbone curves are depicted in panel (b). Along with the breaking of symmetry, it
leads the single-mode backbone curves, S1 and S2, to mixed-mode backbone curves, S+

1

and S−
2 , respectively. The out-of-unison backbone curves, S±90

1 , evolve to phase-varying
backbone curves, S±v

1 , and remain bifurcating from the in-phase mixed-mode backbone
curve S+

1 , similar to the single-mass model considered in §4.3. In this cable system,
the phase-varying backbone curves exhibit phase relationship evolvutions from θd = 0
(in-phase motions at the bifurcation) to θd ≈ ±π/2 (nearly out-of-unison motions), as
depicted in panel (b). To demonstrate the evolutions of responses, a selection of NNM
motions (labelled ‘+’ in panels (a) and (b)) are presented in the (q1(t), q2(t)) space in
panel (c). Corresponding physical motions at the mid-span position of the cable are
shown in panel (d), which again exhibit phase-varying behaviour. Such phase-varying
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Fig. 4.8 Numerically computed backbone curves and NNM responses for the cable system
in Fig. 4.6 with δ = 90◦, other modal parameters are listed in Table 4.2. (a) Backbone
curves in the projection of the response frequency, ω, against the absolute displacement
of the cable in the (x, y) plane. (b) The phase difference between two modal coordinates
of NNMs on the backbone curves. (c) and (d) The NNM responses on the out-of-unison
backbone curve, S−90

1 , in the modal configuration space, q1(t) against q2(t), and physical
configuration space, xmid(t) against ymid(t), respectively, where •mid denote the mid-span
position. The extrema of q1(t) and xmid(t) are labelled with ‘◦’; whilst that of q2(t) and
ymid(t) are labelled with ‘×’. Note that the arrows in panels (c) and (d) denote the
anticlockwise motions. The motions of NNMs on the other out-of-unison backbone curve,
S+90

1 , have the same trajectories but with clockwise motions.

behaviours can also be observed by tracking the evolutions of coordinate extrema, labelled
‘◦’ and ‘×’ in panels (c) and (d) – the ‘◦’ and ‘×’ are deviating from being superimposed
(synchronous anti-phase motions) to spreading over (nearly out-of-unison motions).

In this section, the phase-varying behaviours have been identified in a nonlinear cable
model. As a common practice aiming for vibration mitigation, the additional support
near the cable end can break the symmetric configuration if its installation does not align
with the vertical direction. The induced symmetry breaking transforms the whirling, or

96



4.4 Phase-varying backbone curves of a cable model

Fig. 4.9 Numerically computed backbone curves and NNM responses for the cable system
in Fig. 4.6 with δ = 60◦, other modal parameters are listed in Table 4.2. (a) Backbone
curves in the projection of the response frequency, ω, against the absolute displacement
of the cable in (x, y) plane. (b) The phase difference between two modal coordinates of
NNMs on the backbone curves. (c) and (d) The NNM responses on the phase-varying
backbone curve, S−v

1 , in the projection of modal configuration space, (q1(t), q2(t)), and
physical configuration space, (xmid(t), ymid(t)), respectively. The extrema of q1(t) and
xmid(t) are labelled with ‘◦’; whilst the extrema of q2(t) and ymid(t) are labelled with ‘×’.
The arrows in panels (c) and (d) denote the anticlockwise motions; the NNM responses
on the other phase-varying backbone curve, S+v

1 , have the same trajectories but clockwise
motions.

out-of-unison, motions into phase-varying motions as response amplitude and frequency
varies. Similarly, whirling motions have been extensively observed in other mechanical
systems, for example, a rotor-shaft system [238]; imperfections, non-uniform density, or
degenerations can potentially cause asymmetry in configuration and lead to the existence
of phase-varying behaviours. This mechanism highlights the importance of accounting
for such dynamic features in engineering practice.
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4.5 Summary

In this chapter, asynchronous NNMs, the counterpart of synchronous NNMs considered
in Chapter 3, have been studied. The symmetry-breaking mechanism that underpins
the existence of general asynchronous NNMs was investigated; a new class of nonlinear
phenomenon, namely the phase-varying behaviours, was identified in conservative systems.

In §4.2, by revisiting the geometric features of synchronous and asynchronous NNMs, it
was shown that the out-of-unison NNM (where the modal coordinates exhibit a ±90◦

phase difference) is a special case of a more general asynchronous NNM set where the
phase relationships can be arbitrary values. Then, using a simple single-mass, two-mode
system, it was demonstrated how the special out-of-unison case evolves to the general
cases through symmetry breaking.

Building on these findings, in §4.3, an analytical study was employed to identify the
mechanism that underpins the existence of general asynchronous NNMs from a symmetry-
breaking perspective. With the breaking of symmetry, it was demonstrated that the
out-of-unison backbone curve evolves to a branch with a varying phase relationship
between modal components. The derived analytical phase expression revealed the
mechanism that governs the varying phase – a phase-amplitude coupling. Such an
NNM branch is thus defined as a phase-varying backbone curve, distinguishing from the
commonly observed phase-fixed backbone curves. Its existence highlights the importance
of determining phase relationships when computing NNMs.

In §4.4, the existence of phase-varying backbone curves was then investigated in a cable
model, through the attachment of a near-cable-end support. The additional support
breaks the symmetric cable configuration and causes the out-of-unison (whirling) NNMs
to evolve to general asynchronous NNMs, and the correlated phase-varying behaviours.
This demonstrates that these general asynchronous motions can exist in real engineering
structures and highlights the significance of accounting for their existence and features
in engineering practice.

Accompanying with Chapter 3, these two chapters have investigated synchronous and
asynchronous backbone curves, with their correlated isolated and phase-varying backbone
curves. Mechanisms underpinning these nonlinear behaviours have been obtained from
a symmetry-breaking perspective via numerical and analytical studies. In these two
chapters, the focus was on 1 : 1 modal interactions where the response frequency
between the interacting modes are the same. These special 1 : 1 cases reflect important
dynamic behaviours in many engineering systems, for example, the vibration suppression
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performance of a NLTMD, considered in Chapter 3, and the whirling motions of cable
systems in this chapter.

However, many engineering systems also exhibit other types of internal resonances
[36, 127, 41, 52]; the even more intricate cases lie in scenarios where a system may exhibit
multiple types of internal resonances when it is vibrating at large amplitudes. Such
intricate examples have been reported and highlighted in many engineering systems, even
in simple two-mode systems [31, 104, 52], as discussed in §2.2.2.

In the following chapter, the current framework is further extended to a more general
context to account for m : n internal resonance between two modes for an arbitrary
response frequency and amplitude range.
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Chapter 5

Topological mappings of backbone curves

In this chapter:

• An analytical model is derived to study m : n internal resonance of a symmetric
two-mode system with an arbitrary natural frequency ratio for arbitrary response
frequency and amplitude ranges.

• The effect of asymmetry on internal resonances is investigated from a symmetry-
breaking perspective.

• Topologies of internal resonances are investigated by considering the convergence
and divergence of correlated bifurcations; using these topological features, the
existence of internal resonances is studied.

• A simulation-free method is proposed for efficient determination of the existence
and locations of internal resonances.

Publications related to this work

• D. Hong, T. L. Hill, S. A. Neild, 2022. Existence and location of internal resonance
of two-mode nonlinear conservative oscillators, Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 478 (2260) 20210659.
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5.1 Introduction

As discussed in §2.1, nonlinear systems can exhibit intricate dynamic behaviours that
have no counterparts in linear systems, for example, the targeted energy transfer [57,
146, 169], nonlinear sound synthesis [248, 249], isolated response curves (e.g. Chapter 3
and Refs. [203, 198, 141, 202]), and phase-varying behaviours (e.g. Chapter 4). These
phenomena are characterised by interactions between modal components, and can be
described via equations of motion with nonlinear terms that couple the modal motions.

In engineering practice, the existence of modal interactions, or internal resonance, can
pose challenges in analysis and design of nonlinear systems, e.g. detecting isolas and
isolated backbone curves [131, 132]; nontheless, their existence also gives rise to beneficial
applications, such as energy converters [173, 174, 250], vibration suppression devices [133,
192, 190, 44] and sensitive signal processing filters [231, 24], as discussed in §2.3. Therefore,
interpretating and quantifying internal resonances are topics that have attracted long-term
attention in both research and engineering practice.

The presence of internal resonances can be related to the commensurate relationships
between the nonlinear response frequencies of the interacting modes. This results in the
established terminology of a m : n internal resonance [33, 34], where m : n denotes the
frequency commensurability of modes. In this context, the cases studied in Chapters 3
and 4 are classed as 1 : 1 internal resonance where the two interacting modes oscillate
at the same response frequency. To determine the types of internal resonances for a
given system, one can obtain an approximate estimate by referring to the ratio of natural
frequencies, if the system is vibrating at small to moderate amplitudes when the frequency
detuning due to nonlinearity is small. For example, a system with a natural frequency
ratio of approximately 1 : 3 is expected to exhibit a 1 : 3 internal resonance. Extensive
works, addressing particular types of internal resonances, can be found in a wide range
of systems [127, 41, 38, 35, 251, 128].

In practice, fully exploiting the performance of nonlinear systems, or operating under
extreme environments, may lead to large-amplitude responses. In this case, the small
detuning condition is no longer satisfied and the analysis of internal resonance becomes
challenging due to the necessity of access to the nonlinear frequency [111]. In addition,
systems vibrating at large amplitudes can exhibit multiple types of internal resonances,
even in a simple two-mode system, see Refs. [31, 104, 52]. Consequently, the determination
of internal resonance is usually associated with computationally expensive numerical
simulations. How to robustly and efficiently determine the existence and locations of
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internal resonances for an arbitrary system, regardless of the response frequency and
amplitude range, needs to be further explored.

In addition to referring to commensurate frequency matches, an alternative method to
characterise the internal resonance is employing a geometric perspective via the concept
of NNMs. As introduced in §2.2.2 and extensively used in studies in Chapters 3 and 4,
the NNM motions can be categorised as either synchronous or asynchronous responses
[73, 74, 31]. In these two chapters, the synchronous and asynchronous motions, as well as
their correlated isolated and phase-varying backbone curves, have been studied separately
for the special 1 : 1 resonant case. However, many interesting questions arising from
previous studies are not yet addressed – what are the connections between those two
geometrically different motions, why do they exhibit different bifurcation features under
symmetry breaking, and how can those concepts be further extended to the general m : n
case? Answers to these questions are key in engineering practice because they uncover
the mechanism that underpins the modal interactions and allows these nonlinear features
to be quantitatively interpreted and reliably accounted for in analysis and design.

In this chapter, the existence and locations of internal resonances are investigated for
large-amplitude vibrations of nonlinear systems with arbitrary eigenfrequency ratio.
This chapter generalises the results obtained in previous chapters and establishes the
relationships between synchronous motions (studied in Chapter 3) and asynchronous
motions (considered in Chapter 4); in addition, studies in this chapter extend the analysis
beyond 1 : 1 internal resonances to m : n cases. To achieve this, the rest of this chapter
is organised as follows.

In §5.2, the motivating example of a pinned-pinned beam is first considered to demonstrate
internal resonance in a common engineering system. The concept of NNMs is again
revisited but the 1 : 1 internal resonance, considered in previous chapters, is extended to
general m : n cases. Inspired by Rosenberg’s geometric perspective (synchronous and
asynchronous motions), the concept of NNMs is re-generalised by referring to the Fourier
components of the interacting modes. This generalisation accounts for the geometric
feature in the complex plane and provides a unique classification. In accordance with this
generalisation, the terminology of Fourier-real and Fourier-complex NNMs are proposed.
In addition, using this motivating example, the intricate topology of internal resonances
is also presented, i.e. satisfying multiple frequency commensurate matches, and having
two solution branches with almost identical amplitudes and response frequencies.

In order to interpret the internal resonances, and also to study their topological features,
a general two-mode system with an arbitrary eigenfrequency ratio is considered in §5.3.
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Firstly, an analytical model of internal resonances, in the neighbourhood of the primary
backbone curve, is derived, which is approximately captured by Mathieu equation; the
solution sets are associated with the Fourier-real and -complex generalisations, given in
§5.2. Additionally, it is shown that these Fourier-real and -complex NNMs exist as pairs;
for each pair, the interacting modes exhibit the same frequency commensurability but
with different phase relationships. Next, considering the convergence and divergence of
such NNM pairs, the topological evolutions of internal resonances are studied. Analytical
formulas are derived, which reveal that the existence of internal resonance is governed
by two parameter ratios: the eigenfrequency ratio and nonlinear coefficient ratio. This
brings about a simulation-free method for efficient determination of the existence and
locations of internal resonances.

In §5.4, the effect of symmetry breaking on internal resonance is investigated by accounting
for both quasi-static and dynamic coupling mechanisms. The analytical derivation leads
to a nonhomogenous extended Mathieu equation, whose solution sets are asymmetric
evolutions of internal resonances from that obtained in §5.3. In the limit of an asymmetric
perturbation, the symmetry-breaking effect is captured by a nonhomogenous perturbation,
governing the bifurcation splitting/remaining phenomena for the internal resonance. This
mechanism also underpins the different effects of symmetry breaking on Fourier-real
and -complex NNMs, observed in previous chapters (for synchronous and asynchronous
NNMs).

Finally, this chapter is closed with a summary in §5.5.

5.2 Internal resonances in two-mode systems

In this section, the two-mode conservative system with cubic nonlinearity is again
considered. However, discussions herein are further extended to account for two interacting
modes with an arbitrary natural frequency ratio that exhibit m : n internal resonances.
Such a two-mode system represents a generalisation of the special 1 : 1 internally resonant
cases considered in Chapters 3 and 4.

To account for this general case, the Lagrangian is re-written as

L = 1
2 q̇

2
r + 1

2 q̇
2
s − 1

2ω
2
nrq

2
r − 1

2ω
2
nsq

2
s − 1

4Ψ4q
4
r − Ψ1q

3
rqs − 1

2Ψ3q
2
rq

2
s − Ψ2qrq

3
s − 1

4Ψ5q
4
s , (5.1)

where qr and qs denote linear modal displacements of two interacting modes, whose
natural frequencies are ωnr and ωns respectively, and Ψi are coefficients of nonlinear
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terms. Without loss of generality, the terminology, qr and qs, is used to denote internal
resonances where qr is the dominant mode, whilst qs is the mode with which it resonates.
In this context, the natural frequency ratio between qr and qs can be an arbitrary positive
real value. Consequently, the modal interaction scenario, where qr interacts with a
lower-eigenfrequency qs, is captured by an eigenfrequency ratio ωnr/ωns > 1; whilst, the
other scenario, where qr interacts with a higher-eigenfrequency qs, is denoted ωnr/ωns < 1.
Note that, when qr := q1 and qs := q2 and, assuming 1 : 1 internal resonance, it reduces
to the cases considered in Chapters 3 and 4.

Applying the Euler-Lagrange equation to the Lagrangian (5.1), the equations of motion
can be obtained

q̈r + ω2
nrqr + Ψ4q

3
r + 3Ψ1q

2
rqs + Ψ3qrq

2
s + Ψ2q

3
s = 0 , (5.2a)

q̈s + ω2
nsqs + Ψ1q

3
r + Ψ3q

2
rqs + 3Ψ2qrq

2
s + Ψ5q

3
s = 0 . (5.2b)

Note that this two-mode model can also be derived from a continuous system using
Galerkin’s method with a two-mode truncation [36, 94] or reduce-order modelling tech-
niques [109, 111]. Viewed as representative of many nonlinear systems, such a two-mode
model has been extensively used in studies of modal interactions [36, 46, 137, 43, 192].
Here, a motivating example (a two-mode, pinned-pinned beam) is considered to demon-
strate the intricate modal interactions between its first two modes, qr and qs. The
coefficients of equations of motion (5.2), i.e. ωnr, ωns, Ψ1, . . . ,Ψ5, can be obtained by
applying Galerkin’s method to the governing equation of a von Kármán model, i.e.

ρA
∂2w(x, t)
∂t2

+ EI
∂4w(x, t)
∂x4 − T

∂2w(x, t)
∂x2 = 0 , (5.3)

where ρ,A,E, I and T denote the density, cross-sectional area, Young’s modulus, second
moment of area and axial force of the beam, respectively, and where w(x, t) represents
the transverse displacement at axial position x at time t. As this system is used for
illustration, rather than provide a detailed study on beam dynamics, derivations of
the coefficients are not provided here; however, the interested reader is directed to
Refs. [252, 52] or Appendix B for details.

Here, an example system with ωnr = π2, ωns = 4π2, Ψ1 = Ψ2 = 0, Ψ3 = 2π4, Ψ4 = π4/2
and Ψ5 = 8π4 is considered; a similar dimensionless example has been studied in [233, 52].
Note that, due to the symmetric configuration, such a beam system has Ψ1 = Ψ2 = 0. To
study internal resonance, the NNM branches, or backbone curves, for the system are then
computed via the po-toolbox of COCO [99], shown in Fig. 5.1a. The primary backbone
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Fig. 5.1 Internal resonances of a two-mode pinned-pinned beam. (a) The backbone curves
in the projection of response frequency, ω, against displacement amplitude of the first
mode, Qr. The stable and unstable segments are represented by solid and dashed lines
repsectively. (b) → (e) The schematic time-parameterised responses, i.e. qr(t) against
qs(t), of NNM solutions on backbone curves in panel (a).

curve, emerging from the first natural frequency, ωnr, is shown as a black line. As this
primary backbone curve contains only qr, it can also be termed a single-mode backbone
curve, denoted by Sr. Four other solution branches, containing both modal components,
qr and qs, bifurcate from the single-mode branch via pitchfork bifurcations [252, 52],
along with stability change of the primary backbone curve. These four mixed-mode
backbone curves emerge due to modal interactions, or internal resonances, between qr

and qs.

The periodic responses on these branches are depicted respectively in panels (b) → (e) in
the configuration space, (qr(t), qs(t)). From the modal lines, or loops, in these plots, the
commensurate frequency relationships between qr and qs can be determined to categorise
the associated internal resonances. In this case, the dominant response frequency of the
second mode, qs, is an integer multiple of that of the first mode, qr; for example, in
panel (b), for every period of qr response, qs undergoes three periods of oscillation. As
such, the observed internal resonance in panel (b) may be classified as a 1 : 3 internal
resonance; likewise, panel (c) also exhibits a 1 : 3 resonance, whislt panels (d) and (e)
capture 1 : 2 internal resonances.
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5.2 Internal resonances in two-mode systems

Table 5.1 Classification of NNMs by referring to Fourier components of qr and qs.

NNM type Fourier components of qr and qs Examples

Fourier-real NNM qr : real Fourier components; qs : real Fourier components Figs. 5.1c and 5.1d

Fourier-complex NNM qr : real Fourier components; qs : complex Fourier components Figs. 5.1b and 5.1e

As previously discussed in Chapters 3 and 4, these internal resonances can be alternatively
specified by referring to Rosenberg’s definition of NNMs, where panel (c) represents
an in-unison, or synchronous, NNM [73, 74], as both modal coordinates reach their
extrema and equilibrium simultaneously. Whilst the other panels, (b), (d) and (e),
are asynchronous NNMs [31]. Combining these two terminologies, i.e. considering the
commensurate frequency matches and the geometry in the configuration space, panels
(b) and (c) are defined as 1 : 3 asynchronous and 1 : 3 synchronous NNMs respectively;
however, panels (c) and (d) are both classified as 1 : 2 asynchronous NNMs. Having two
geometrically different motions defined using the same terminology is certainly less than
optimal.

To obtain a unique classification for each NNM, and also to capture their geometric
features in the complex plane, the classification is reorganised by referring to the Fourier
components of qr and qs. Here, a periodic response where both qr and qs are composed
of real Fourier components (equivalently, consisting of only cosine components in the
trigonometric sense) is defined as a Fourier-real NNM. Any Fourier-real NNM can be
characterised by a line in the configuration space, e.g. panels (c) and (d). Whilst a
periodic response where qr is composed of real Fourier components and qs is composed
of complex Fourier components (equivalently consisting of sine components, or both sine
and cosine components), is termed as a Fourier-complex NNM. In contrast to Fourier-real
NNMs, any Fourier-complex NNM is depicted as a loop in the configuration space, for
instance, panels (b) and (e). These definitions are summarised in Table 5.1.

Combining the frequency commensurability with the Fourier components of the two
modes, these four NNM solutions, in panels (b), (c), (d) and (e), can be uniquely termed
1 : 3 Fourier-complex, 1 : 3 Fourier-real, 1 : 2 Fourier-real and 1 : 2 Fourier-complex
NNMs, respectively; and their corresponding backbone curves are denoted by SC,3, SR,3,
SR,2 and SC,2, where the subsripts •R and •C denote Fourier-real and -complex respectively,
whilst the other subscript denotes the commensurate relationship between qs and qr.
Note that, in this context, the NNMs considered in Chapters 3 and 4 can be termed 1 : 1
Fourier-real and -complex NNMs respectively; the backbone curves can be accordingly
denoted SR,1 and SC,1.
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Fig. 5.2 Evolutions of the bifurcation points (BPs) that lead to 1 : 3 Fourier-real and
-complex backbone curves, SR,3 and SC,3. The embedded plot presents the BPs for the
beam system shown in Fig. 5.1.

In addition to showing multiple types of internal resonances, the 1 : 3 Fourier-real and
-complex backbone curves, SR,3 and SC,3, in this case, are almost indistinguishable in
panel (a), in contrast to the well-separated 1 : 2 branches, SR,2 and SC,2. To further
study this case, evolutions of the bifurcation amplitudes with respect to varied Ψ3

(with other parameters fixed) are shown in Fig. 5.2. As Ψ3 increases, the amplitudes of
the bifurcations grow, and two corresponding asymptotes can be observed, where the
amplitudes of bifurcations grow asymptotically to infinity. Another limit is associated
with Ψ3 → +0, when the amplitudes of two bifurcations converge to an identical finite
value. As such, the coexistence of SC,3 and SR,3 can be expected when Ψ3 is below the
the values of asymptotes. The pinned-pinned beam case, studied above, has Ψ3 = 2π4,
and the bifurcations are marked by dots in the embedded plot of Fig. 5.2. Shown in
both Figs. 5.1a and 5.2, due to similarity in response frequencies and amplitudes, an
extremely small step size is required in numerical continuation to distinguish the two 1 : 3
Fourier-real and -complex bifurcations as well as their associated mixed-mode backbone
curves. This can result in expensive numerical computations even in a conceptually
simple two-mode system.

In practice, NNMs have proved to be an efficient tool in capturing the fundamental
features of internal resonances and offer a rigorous and robust concept for their analysis
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[31, 100, 245]. To achieve this, the complete structure of NNMs must be found, otherwise
the associated dynamics may go undetected. However, fulfilling such a requirement
using numerical techniques requires significant computational effort and knowledge to
ensure intricate internal resonances are fully captured, such as distinguishing the two
1 : 3 internal resonances in the example beam system. The following studies aim to
efficiently predict internal resonances between two interacting modes with an arbitrary
natural frequency ratio. To this end, an analytical framework is first used to derive
internal resonances using NNM concepts; next, by investigating the bifurcation scenarios
of these internal resonances, a simulation-free method to efficiently determine the types
and locations of internal resonances is proposed.

5.3 Existence and interpretation of internal reso-
nances

In this section, the general two-mode cases are considered, whilst the specific pinned-
pinned beam system will be revisted to aid interpretation whenever necessary. Here,
a symmetry-breaking perspective is employed to understand internal resonances, as
previously employed in Chapters 3 amd 4. As such, the symmetric case where Ψ1 = Ψ2 = 0
is considered in this section; whilst the effect of symmetry breaking, i.e. Ψ1 ̸= 0 and
Ψ2 ̸= 0, will be considered in §5.4.

With symmetry, the equations of motion (5.2) in the modal domain can be reduced to

q̈r + ω2
nrqr + Ψ4q

3
r + Ψ3qrq

2
s = 0 , (5.4a)

q̈s + ω2
nsqs + Ψ3q

2
rqs + Ψ5q

3
s = 0 . (5.4b)

As discussed in §5.2, without loss of generality, the scenario where internal resonances
in the neighbourhood of Sr is considered. In this context, the internal resonance is
captured by NNMs in which qr is the dominant mode and qs is the mode with which it
is resonating. Consequently, it may be assumed that qs is a smaller term when compared
with qr; this allows q2

s and q3
s to be considered as higher-order small terms, O(q2

s). Using
this representation, Eqs. (5.4) may be rearranged as

q̈r + ω2
nrqr + Ψ4q

3
r + O(q2

s) = 0 , (5.5a)
q̈s + ω2

nsqs + Ψ3q
2
rqs + O(q2

s) = 0 . (5.5b)

109



Topological mappings of backbone curves

For dynamical systems governed by these equations, trivial solutions, associated with
qr = qs = 0, can be found with respect to static equilibrium. Whilst, non-trivial solutions
can be found with respect to either qr ̸= 0 and qs = 0 or qr ̸= 0 and qs ̸= 0, which
describe the primary single-mode backbone curve and mixed-mode backbone curves
respectively. For these non-trivial cases, solutions of qr can be assumed as a sum of
harmonic components, given by

qr =
∞∑

m=0
Qr,m cos(mωt), (5.6)

where Qr,m and mω denote the response amplitude and frequency of the mth harmonic
respectively. In evaluating qr, previous chapters, as well as the literature, show that
accounting for the leading-order term, i.e. the fundamental harmonic, can accurately
capture the nonlinear behaviours [233, 139, 144, 137]. In this chapter, such a formulation
is firstly employed, termed as having a first-order accuracy [30]; it captures the enssential
nonlinear phenomena but discrepancies from exact solutions can be found when higher-
order terms become significant. This limitation is then addressed by accounting for
contributions from higher-order harmonics, termed as having a higher-order accuracy,
which reveals an improved accuracy.

5.3.1 Formulation with a first-order accuracy

Here, a single-harmonic approximation is first considered by assuming that qr ≈
Qr,1 cos(ωt), i.e. remaining the leading-order term of qr. Combined with qs = 0, single-
mode backbone curves can be solved from Eqs. (5.5), i.e.

Sr(ω,Qr,1) : ω2 = ω2
nr + 3

4Ψ4Q
2
r,1. (5.7)

Another non-trivial solution set, i.e. the mixed-mode backbone curves with qr ̸= 0 and
qs ̸= 0, arises from internal resonances. Ignoring the contributions from higher-order
small terms, O(q2

s), namely, considering internal resonances in the neighbourhood of
Sr, expressions for internal resonances can be obtained by substituting solutions of qr,
i.e. qr = Qr,1 cos(ωt), into Eq. (5.5b). After some algebraic manipulation, the internal
resonances are found to be captured by the Mathieu equation, given by

∂2qs

∂τ 2 +
[
δ + ϵ cos(τ)

]
qs = 0, (5.8)

110



5.3 Existence and interpretation of internal resonances

where
τ = 2ωt, δ =

2ω2
ns + Ψ3Q

2
r,1

8ω2 , ϵ =
Ψ3Q

2
r,1

8ω2 . (5.9)

The Mathieu equation has been shown to be closely related to many nonlinear dynamic
problems [253, 254]. It may be interpreted as the dynamics of a single degree-of-freedom
system, qs, with a parametric forcing (chracterised by coefficients δ and ϵ) acting on it
[254]. In the context of internal resonances, when they are formulated with a first-order
accuracy in the neighbourhood of the primary backbone curve, the equivalence between
the internal resonances and the Mathieu equation is shown here. This offers a novel
perspective to understand internal resonances – the dynamics of the internally resonant
mode, qs, with parametric forcing from the dominant mode, qr. Note that, in §5.3.2, a
formulation with a higher-order accuracy will be derived; it will be shown to connect to
an extended Mathieu equation.

With an assumed solution for qr, the dynamics of qs are entirely determined by the two
parameters, δ and ϵ. These parameters are functions of ω and Qr,1, and hence will vary
for different responses on the single-mode backbone curve, Sr. To solve this equation and
find the expressions governing mixed-mode NNMs, the response of qs is approximated
using a sum of harmonics, i.e.

qs = Qsa,0 +
∞∑

n=1
Qsa,n cos (nωt) +Qsb,n sin (nωt)

= Qsa,0 +
∞∑

n=1
Qsa,n cos

(
n

2 τ
)

+Qsb,n sin
(
n

2 τ
)
, (5.10)

where Qsa,n and Qsb,n denote the amplitudes of the nth cosine and sine harmonics, or
equivalently real and complex Fourier components, respectively. It should be noted,
unlike qr that is assumed with a first-order approximation, qs can be exactly captured
by such a harmonic series. Substituting the assumed solutions (5.10) into Eq. (5.8), the
harmonic components can be balanced to give four groups of equations [254]. These
equation sets deal with unknown variables, Qsa,n and Qsb,n, respectively, with n denoting
either even or odd non-negative integers, Z+, i.e.

1 : n Fourier-real NNMs for even n, SR,n:
δ ϵ/2 0
ϵ δ − 1 ϵ/2 · · ·
0 ϵ/2 δ − 4

...




Qsa,0

Qsa,2

Qsa,4
...

 = 0, (5.11a)
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1 : n Fourier-complex NNMs for even n, SC,n:
δ − 1 ϵ/2 0
ϵ/2 δ − 4 ϵ/2 · · ·
0 ϵ/2 δ − 9

...




Qsb,2

Qsb,4

Qsb,6
...

 = 0, (5.11b)

1 : n Fourier-real NNMs for odd n, SR,n:
δ − 1/4 + ϵ/2 ϵ/2 0

ϵ/2 δ − 9/4 ϵ/2 · · ·
0 ϵ/2 δ − 25/4

...




Qsa,1

Qsa,3

Qsa,5
...

 = 0, (5.11c)

1 : n Fourier-complex NNMs for odd n, SC,n:
δ − 1/4 − ϵ/2 ϵ/2 0

ϵ/2 δ − 9/4 ϵ/2 · · ·
0 ϵ/2 δ − 25/4

...




Qsb,1

Qsb,3

Qsb,5
...

 = 0. (5.11d)

Nontrivial solutions to these four equation sets represent dynamic responses in qs (the
unknown variables), triggered by the response of qr (the elements in matrices). Consider-
ing equation set (5.11a) for example, any qs solution is composed of a series of cosine
components, whose response frequencies are even multiples of that of qr, as indicated
by the unknown vector elements, Qsa,0, Qsa,2, · · · . Recalling qr ≈ Qr,1 cos(ωt), both
qr and qs are composed of cosine components; thus, solutions to equation set (5.11a)
are 1 : n Fourier-real NNMs for even n, e.g. the 1 : 2 Fourier-real NNM shown in
Fig. 5.1d. Likewise, solutions to equation sets (5.11b), (5.11c) and (5.11d) denote 1 : n
Fourier-complex (even n), 1 : n Fourier-real (odd n), and 1 : n Fourier-complex (odd n)
NNMs, respectively; corresponding examples are shown in Figs. 5.1e, 5.1c and 5.1b.

As discussed in §5.2 for the symmetric system, the existence of internal resonances is
captured by solution branches that emerge from the primary backbone curve and lead to
stability change of the primary branch. To determine the stability-change bifurcations,
and the existence of internal resonances, Hill’s method is used [254]. The so-called Hill’s
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method can determine the stability of responses by referring to determinants of the four
coefficient matrices in Eqs. (5.11); as such, these determinants are also termed Hill’s
determinants. Using Hill’s method in determining stability yields the equivalent results as
those found using Floquet exponents [255]. Once the bifurcation on the primary backbone
curve is determined, the unknown internally resonant components in the neighbourhood
of that bifurcation can be solved from Eq. (5.11). It should also be noted that zero
determinants are conditions to obtain non-trivial solutions.

In Fig. 5.3, the stability boundaries (where the stability changes) are computed via
zero determinants and shown as coloured solid lines in the (δ, ϵ) space, with unstable
regions shaded in colour. It should be highlighted that these boundaries are computed
with respect to δ and ϵ – parameters that govern the dynamics of the approximated
modal interactions, given by Eq. (5.8). Without assuming any specific parameters of the
system, these boundaries capture the stability change, and consequently the bifurcations
emerging from internal resonance, for arbitrary systems. Using interpretations of the
four equation sets (5.11), the stability boundaries are denoted with the correlated types
of bifurcated NNMs and labelled BR,n and BC,n. Note that this diagram is equivalent to
the Ince-Strutt diagram, or Arnold tongues, which has been widely used to study the
stability of dynamical systems [253, 235]. In the context considered here, i.e. internal
resonances between two modes, this Ince-Strutt diagram is equivalent to a formulation
generated to a first-order of accuracy.

In this space, using expressions (5.9), the primary backbone curve, defined by Eq. (5.7),
can be mapped as a linear function with variables δ and ϵ, written as

Sr(ω, Qr,1) 7→ Sr(δ, ϵ) : ϵ = 2Ψ3ω
2
nr

2Ψ3ω2
nr − 3Ψ4ω2

ns

δ − Ψ3ω
2
ns

2 (2Ψ3ω2
nr − 3Ψ4ω2

ns)
, (5.12)

where

δ ∈

 ω2
ns

4ω2
nr

,
Ψ3

6Ψ4

)
and ϵ ∈

0, Ψ3

6Ψ4

)
. (5.13)

This means that the primary backbone curve, Sr, is a straight line with a finite length –
it emerges at coordinate

(
ω2

ns/(4ω2
nr), 0

)
with a zero amplitude at its natural frequency,

ωnr, and asymptotically approaches the coordinate
(
Ψ3/(6Ψ4), Ψ3/(6Ψ4)

)
as the response

amplitude and frequency increase.

By mapping the backbone curve to the (δ, ϵ) space, the intersections between Sr and
the stability boundaries (BR,n and BC,n) represent pitchfork bifurcations, which lead to
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Fig. 5.3 Determining the existence and locations of internal resonances. The stability
boundaries, representing the collections of bifurcations on Sr for arbitrary two-mode
systems, are labelled with the types of bifurcated mixed-mode backbone curves. The
first single-mode backbone curve for the pinned-pinned beam system, studied in §5.2, is
computed via numerical continuation and projected as a straight line with a finite length,
on which the bifurcations are marked by solid dots.

mixed-mode backbone curves of the labelled types, along with stability changes on Sr. For
example, the first single-mode backbone curve of the two-mode beam system, considered
in §5.2, is computed via numerical continuation and mapped as a straight line in Fig. 5.3.
The bifurcations are marked by dots, which approximately lie on the stability boundaries,
capturing the existence of internal resonances that are observed in the system – see
Fig. 5.1. There are some small discrepancies between the numerically solved bifurcations
and the analytically defined stability boundaries, especially at higher amplitudes. This
is because the stability boundaires, presented here, are computed with a first-order
approximation, which only accounts for contributions from the fundamental component
in qr; whilst, as amplitude increases, the contributions from harmonics become more
significant. To improve the accuracy, a formulation with a higher-order approximation is
required by accounting for the harmonic contributions, derived in the following.

5.3.2 Formulation with a higher-order accuracy

To account for harmonic contributions in modal interactions between qr and qs, a
formulation considering two harmonics in qr is derived (termed as having a second-order-
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accuracy [30]). The accuracy of this formulation is then compared with the first-order
formulation, derived in the previous section.

Unlike the formulation given in §5.3.1, where qr is approximated by its fundamental
component, here, qr is assumed as a sum of two harmonics, e.g. the first and third
harmonics1,

qr = Qr,1 cos(ωt) +Qr,3 cos(3ωt), (5.14)

where Qr,3 denotes the amplitude of the third harmonic, which may be assumed small
when compared with the fundamental component, Qr,1; as such, Q2

r,3 and Q3
r,3 may be

considered as higher-order small terms, O(Q2
r,3).

To find the expressions of mixed-mode NNMs that emerge from internal resonance, the
assumed solution (5.14) is substituted into Eq. (5.5b). Next, the contributions from
higher-order small terms, O(q2

2) and O(Q2
r,3) is neglected, namely considering internal

resonance in the neighbourhood of the primary backbone curve, Sr. Consequently, after
some algebraic manipulation, the mixed-mode responses are written as

∂2qs

∂τ 2 +
[
δ̃ + ϵ̃1 cos(τ) + ϵ̃2 cos(2τ)

]
qs = 0, (5.15)

where

τ = 2ωt, δ̃ =
2ω2

ns + Ψ3Q
2
r,1

8ω2 , ϵ̃1 =
Ψ3
(
Q2

r,1 + 2Qr,1Qr,3
)

8ω2 and ϵ̃2 = Ψ3Qr,1Qr,3

4ω2 , (5.16)

Compared to Eq. (5.8) (with a first-order approximation), expression (5.15) represents an
extended Mathieu equation with an additional term characterised by coefficient ϵ̃2. To
find the mixed-mode solutions for Eq. (5.15), harmonic balance technique is again used.
Assuming qs as a sum of harmonic components, i.e. expression (5.10), and stubstituting
the assumed solution into Eq. (5.15), the harmonic components can be balanced to give
four solution sets (similar to the formulation with a first-order accuracy), namely

1 : n Fourier-real NNMs for even n, SR,n:
1Note that this assumed solution is considered here as an example, similar formulations can be

obtained if other harmonics are accounted for.
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δ̃ ϵ̃1/2 ϵ̃2/2 0
ϵ̃1 δ̃ − 1 + ϵ̃2/2 ϵ̃1/2 ϵ̃2/2 · · ·
ϵ̃2 ϵ̃1/2 δ̃ − 4 ϵ̃1/2
0 ϵ̃2/2 ϵ̃1/2 δ̃ − 9

...





Qsa,0

Qsa,2

Qsa,4

Qsa,6
...


= 0, (5.17a)

1 : n Fourier-complex NNMs for even n, SC,n:

δ̃ − 1 − ϵ̃2/2 ϵ̃1/2 ϵ̃2/2 0
ϵ̃1/2 δ̃ − 4 ϵ̃1/2 ϵ̃2/2 · · ·
ϵ̃2/2 ϵ̃1/2 δ̃ − 9 ϵ̃1/2

0 ϵ̃2/2 ϵ̃1/2 δ̃ − 16
...





Qsb,2

Qsb,4

Qsb,6

Qsb,8
...


= 0, (5.17b)

1 : n Fourier-real NNMs for odd n, SR,n:

δ̃ − 1/4 + ϵ̃1/2 (ϵ̃1 + ϵ̃2) /2 ϵ̃2/2 0
(ϵ̃1 + ϵ̃2) /2 δ̃ − 9/4 ϵ̃1/2 ϵ̃2/2 · · ·

ϵ̃2/2 ϵ̃1/2 δ̃ − 25/4 ϵ̃1/2
0 ϵ̃2/2 ϵ̃1/2 δ̃ − 49/4

...





Qsa,1

Qsa,3

Qsa,5

Qsa,7
...


= 0, (5.17c)

1 : n Fourier-complex NNMs for odd n, SC,n:

δ̃ − 1/4 − ϵ̃1/2 (ϵ̃1 − ϵ̃2) /2 ϵ̃2/2 0
(ϵ̃1 − ϵ̃2) /2 δ̃ − 9/4 ϵ̃1/2 ϵ̃2/2 · · ·

ϵ̃2/2 ϵ̃1/2 δ̃ − 25/4 ϵ̃1/2
0 ϵ̃2/2 ϵ̃1/2 δ̃ − 49/4

...





Qsb,1

Qsb,3

Qsb,5

Qsb,7
...


= 0. (5.17d)

With these equation sets, the stability boundaries, capturing bifurcations to mixed-mode
solutions, can be found via Hill’s diterminants, similar to discussions in §5.3.1. However,
with the formulation of a higher-order accuracy, these boundaries are functions of δ̃, ϵ̃1

and ϵ̃2 – see matrices of Eqs. (5.17). As such, any primary backbone curve is a three
dimensional line with a finite length in the (δ̃, ϵ̃1, ϵ̃2) space; its intersections with the
stability boundaries denote pitchfork bifurcations that lead to correlated mixed-mode
backbone curves.
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BR,3(δ̃, ϵ̃1, ϵ̃2)

BC,3(δ̃, ϵ̃1, ϵ̃2)

Fig. 5.4 Comparing the predicted results using formulations of a first-order accuracy
(panel (a)) and a second-order accuracy (panel (b)) for a system with ωnr = 1, ωns = 3.2,
Ψ3 = 13 and Ψ4 = 1.

Here, an example system with ωnr = 1, ωns = 3.2, Ψ3 = 13 and Ψ4 = 1 is considered.
The primary backbone curve, Sr, is computed via numerical continuation and mapped
to the (δ, ϵ) space via Eq. (5.12), shown in Fig. 5.4a. It can be observed that the
existence of bifurcations is captured, whilst, with discrepancies between numerically
solved bifurcations and analytically approximated stability boundaries. Such discrepancies
arise due to neglecting harmonic contributions in qr in derivations with a first-order
approximation. For comparison, the numerically computed Sr is also mapped to the
(δ̃, ϵ̃1, ϵ̃2) space via Eq. (5.16), shown in Fig. 5.4b. It clearly shows an improved accuracy,
where a great agreement can be observed between the bifurcations and the stability
boundaries (the bifurcations are accurately on the boundaries surfaces).

In summary, compared to the formulation with a first-order accuracy, accounting for the
harmonic contributions of qr revealed improved accuracy. In the higher-order-accuracy
case, the internal resonances in the neighbourhood of the primary backbone curve are
captured by an extended Mathieu equation. Derivations in this section also showed that
the inclusion of one additional harmonic leads to an extra term in the extended Mathieu
equation and an extra parameter in describing stability boundaries. Consequently, the
formulation with a second-order approximation results in a three-dimensional parameter
space, shown in Fig. 5.4b. In addition, in this three-dimensional space, the primary
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Fig. 5.5 Convergence of bifurcations and backbone curves ememging from internal
resonances. The embedded plots show evolutions of SR,3 and SC,3 for a two-mode system
with ωns/ωnr = 4, Ψ4 = π4/2 and a varied Ψ3, in the projection of response frequency, ω,
against amplitude of qs.

backbone curve is a three-dimensional line with curvature, rather than the straight line
in the two-dimensional space, (δ, ϵ), for the first-order-accuracy formulation.

Even though there are small discrepancies using the first-order-accuracy formulation,
the essential topologies of internal resonances are captured, and it provides an efficient
method for determining internal resonance due to the simple geometry of the primary
backbone curve (a straight line with a finite length) in the (δ, ϵ) space. As such, in
the following discussions, the formulation of a first-order accuracy will be employed
for simplicity. Using this method, the existence of internal resonances will be further
investigated to understand their topological features.

5.3.3 Topologies of internal resonances: the converging be-
haviour

As discussed in §5.3.1, the formulation of a first-order accuracy yields stability boundaries
in the (δ, ϵ) space, i.e. Fig. 5.3. In this figure, the 1 : n Fourier-real and -complex
boundaires, BR,n and BC,n, exist as a pair, and those two boundaries share an identical
solution in the limit of ϵ → 0, i.e. the horizontal axis. Recalling that any stability
boundary represents a collection of bifurcations, the coalescence of a boundary pair
indicates the convergence of two bifurcations, as already observed with the limit of
Ψ3 → 0 for the two-mode beam system in Fig. 5.2.
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Here, taking the 1 : 3 internal resonance as an example, the converging behaviour is
further investigated. Shown in Fig. 5.5, the evolutions of bifurcations and backbone
curves, SR,3 and SC,3, are presented with respect to a varied Ψ3 for a system with
ωns/ωnr = 4, Ψ4 = π4/2. Four example cases are shown in the embedded plots where the
backbone curves are in the projection of response frequency, ω, against the displacement
amplitude of qs. It can be observed that the bifurcations converge as Ψ3 decreases;
likewise, the two correlated mixed-mode backbone curves, SR,3 and SC,3, also converge.

Considering the limit of Ψ3 → 0, SR,3 and SC,3 share identical amplitudes and response
frequencies – this can also be analytically derived from Eqs. (5.11c) and (5.11d), where
the coefficient matrices are identical as Ψ3 → 0. In contrast, as indicated by the
subscripts of the unknown variables for Eqs. (5.11c) and (5.11d), these two mixed-mode
solutions contain different types of Fourier components in qs, namely real and complex
Fourier components respectively. One can recall that having different types of Fourier
components in qs indicates different phase relationships between qr and qs. Having
identical coefficient matrices but different unknown variables, the solution (a mixed-mode
NNM) to Eqs. (5.11c) and (5.11d) exhibits the same determined response amplitude
and frequency but undetermined phase relationships between interacting modes – either
Fourier-real or -complex. Consequently, in this limit case, the 1 : 3 internal resonances
are captured by NNMs with unlocked phase relationships, representing resonances that
are rarely observed in the presence of damping and external forcing, as a significant
amount of energy is required to perturb the NNMs to forced responses [143, 140].

This feature can be alternatively observed from equations of motion (5.4), which reduce
to two uncoupled Duffing’s oscillators when Ψ3 → 0 (as Ψ3 is the only coupling parameter
for the symmetric case). For these two uncoupled oscillators, the converged solutions
represent motions where qr and qs are vibrating with the same amplitude and a constant
response frequency ratio, yet independently rather than interactionally as they are
not constrained by a specific phase relationship. Similar converging behaviours and
phase-unlocking NNMs can also be observed for other 1 : n internal resonances.

5.3.4 Topologies of internal resonances: topological divisions

In previous discussions, it is shown that the intricate internal resonances for the pinned-
pinned beam example, see Fig. 5.1, are well captured by the proposed method, as shown
in Fig. 5.3. This reduces the identification of internal resonances from computationally
expensive simulations to an efficient graphical check. Note that such an intricate topology
of internal resonances is not unique to this special example but has been reported in many
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other systems [31, 104, 52]. In addition to determining the existence of internal resonances,
quantifying the resonant features (such as the response amplitude and frequency) are
also of importance in understanding and optimising the system dynamics, allowing for
example the exploitation or elimination of internal resonances. In the following, by
considering the evolutions of internal resonances, it will be shown how the proposed
method can be used to meet these needs.

First, it can be found that the axes of the (δ, ϵ) space, defined by Eqs. (5.9), are
functions of the system states and coefficients; as such, stability boundaries in this space
cannot provide direct physical interpretations of the internal resonances, for example,
locations of the correlated bifurcations. To address this, the stability boundaries, shown
in Fig. 5.3, are remapped from the (δ, ϵ) space to the

(
Ψ3/Ψ4, Q

2
r,1

)
space, where Ψ3/Ψ4

denotes the system parameters, whilst Q2
r,1 captures the response amplitude of qr. Using

expressions (5.7) and (5.9), the projection is defined as

BR,n(δ, ϵ) 7→ BR,n(Ψ3/Ψ4, Q
2
r,1) or BC,n(δ, ϵ) 7→ BC,n(Ψ3/Ψ4, Q

2
r,1) :

Ψ3

Ψ4
= 6ϵω2

ns

ω2
ns − 4ω2

nr (δ − ϵ) , Q
2
r,1 = 4 (ϵ− δ)ω2

nr + ω2
ns

3Ψ4 (δ − ϵ) . (5.18)

Note that, using this projection, the physical interpretations of mixed-mode backbone
curves, emerging from internal resonances, can be directly captured via axes of the space
they mapped to.

The case where ωnr < ωns

First, the case where ωnr < ωns is considered to study internal resonances that the
dominant mode, qr, is interacting with a higher-eigenfrequency mode, qs. With ωns/ωnr =
4 and Ψ4 = π4/2, using Eq. (5.18) gives the remappings of the stability boundaries, BR,n

and BC,n, from Fig. 5.3 to Fig. 5.6a. For any system with a given Ψ3/Ψ4, the primary
backbone curve emerging from natural frequency, ωnr, is a vertical line in this space; and
as previously discussed, the intersections between the backbone curve and the stability
boundaries indicate bifurcations that lead to mixed-mode backbone curves of the labelled
types. Example NNM responses on the bifurcated backbone curves are shown in the
configuration space in panel (c), where the frequency commensurate relationships can also
be checked – qs (the mode with a higher natural frequency), is resonating at frequencies
that are integer multiples of that of qr (the mode with a lower natural frequency). Note
that, the schematic NNM responses in the configuration space (panel (c)) are obtained
via numerical computations rather than using the derived method in this chapter. By
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Fig. 5.6 Topological evolutions of internal resonances that bifurcate from the first single-
mode backbone curve for a two-mode system with ωns/ωnr = 4 and Ψ4 = π4/2. (a)
The evolutions of BP amplitude with respect to a varied coefficient Ψ3/Ψ4. This plot is
divided by the asymptotes of the loci into six regions, capturing the topological changes
in internal resonances. (b) The corresponding topologies of internal resonances for regions
(1) → (6) in panel (a). (c) The schematic time-parameterised NNM responses on the
Fourier-real and -complex backbone curves.

comparing the predicting results in panel (a) with numerical results in panel (c), it
verifies the internal resonance predicting method proposed in this chapter – it shows
consistency with the numerical results. Alternatively, one can substitute the parameters
at the intersections into Eq. (5.11), and it can be used to compute the internally resonant
components.

In this new projection, Fig. 5.6a, the amplitude of bifurcations for 1 : n Fourier-real and
-complex NNMs converge to an identical finite value with the decrement of Ψ3; whilst
they diverge to an infinite value with the increament of Ψ3, similar to the numerically

121



Topological mappings of backbone curves

obtained boundaries for the beam system in Fig. 5.2. Correlated asymptotes, where
the amplitude of bifurcation critically grows to infinity (i.e. being non-existent), are
represented by dashed lines in Fig. 5.6a. Therefore, the asymptote-related system
parameter, Ψ3/Ψ4, denotes the critical condition for the annihilation of specific internal
resonance. Combining all asymptotes of the stability boundaries, they together serve as
divisions capturing the topological changes of bifurcations and their correlated internal
resonances. For instance, using the asymptotes, Fig. 5.6a can be divided into six regions2,
the corresponding topology of backbone curves in each region is shown in panel (b) in
the projection of response frequency, ω, against amplitude of qs.

In region (1), Sr only intersects with BC,3, i.e. the stability boundary related to 1 : 3
Fourier-complex NNMs; as such, the backbone curve topology (1) in panel (b) can be
observed – a single mode backbone curve with a bifurcation leading to SC,3. Note that,
for this case, SC,3 is unstable due to the subcritical bifurcation. As Ψ3/Ψ4 decreases, it
moves from region (1) to region (2). In addition to an intersection with BC,3, Sr has an
additional intersection with BR,3; this indicates the bifurcation, leading to SR,3, merges
from an infinite amplitude, and evolves to a smaller amplitude as Ψ3/Ψ4 decreases. The
topology of backbone curves, for systems in region (2), are shown in plot (2) of panel (b)
– a single mode backbone curve with 1 : 3 Fourier-real and -complex backbone curves,
SR,3 and SC,3. Decreasing Ψ3/Ψ4 leads to region (3), where SR,2 merges, and where
the two bifurcations of 1 : 3 internal resonances further converge to similar amplitudes.
Likewise, further decreasing Ψ3/Ψ4 leads to the emergence of SC,2, SC,1 and SR,1 in turn
respectively. The topological evolutions of backbone curves are shown in plots (4) → (6)
of panel (b). For small values of Ψ3/Ψ4, e.g. in region (6), the NNMs emerging from 1 : 2
internal resonances, as well as 1 : 3 resonances, exhibit almost identical amplitudes and
response frequencies, see plot (6) in panel (b). A small step size in numerical continuation
would be required to distinguish between them. Note that the beam system, considered
in §5.2, has Ψ3/Ψ4 = 4. Its first primary backbone curve lies in region (4), as such, 1 : 3
and 1 : 2 internal resonances are expected, topologically shown in Fig. 5.6b(4), in line
with numerical results shown in Fig. 5.1a.

2Unlike Fig. 5.3, where the (δ, ϵ) projection is universal to arbitrary single-mode backbone curve,
the asymptotic features in Fig. 5.6a are dependent on the parameters considered here, i.e. ωns/ωnr = 4
and Ψ4 = π4/2. Therefore, a system with different parameters, for example different natural frequency
ratios, may give rise to different asymptotic features.
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Fig. 5.7 Topological evolutions of internal resonances that bifurcate from the second
single-mode backbone curve for a two-mode system with ωns/ωnr = 0.3 and Ψ4 = 1. (a)
The amplitude evolutions of the bifurcations with respect to a varied coefficient Ψ3/Ψ4.
This plot is divided by the asymptotes of the loci into seven regions, capturing the
topological changes of internal resonances. (b) The corresponding topologies of internal
resonances for regions (1) → (6) in panel (a). (c) The schematic time-parameterised
NNM responses on the Fourier-real and -complex backbone curves.

The case where ωnr > ωns

Up to this point, the existence and interpretations of internal resonances, where the
dominant mode, qr, is interacting with a higher-eigenfrequency mode, qs, have been
studied. It is also of interest to consider the other scenario – cases where ωnr > ωns, i.e. qr

is interacting with a lower-eigenfrequency mode, qs. Figure 5.7 shows the topological
evolutions of internal resonances for a system with ωns/ωnr = 0.3, Ψ4 = 1 and a varied
Ψ3. Like the case in Fig. 5.6a, there is an asymptote (denoted by dashed lines) for each
stability boundary, differentiating the topologies of backbone curves, correspondingly
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Fig. 5.8 Backbone curves for a system with ωnr = 1, ωns = 0.3, Ψ3 = 30 and Ψ4 = 1.
The stable and unstable segments are denoted by solid and dashed lines respectively.
The pitchfork bifurcations leading to mixed-mode backbone curves are marked by solid
dots; whilst secondary bifurcations on these mixed-mode backbone curves are marked by
diamonds.

shown in panel (b) in the projection of response frequency against the amplitude of qs.
Whilst plots in panel (c) show the schematic time-parameterised responses of the NNMs,
obtained via numerical computations to verify the results given in panel (a). Note that,
compared to the example responses in Fig. 5.6c, some distortions can be observed in the
responses in Fig. 5.7c due to the increment of harmonic components at different response
frequencies.

In the case considered herein, where ωnr > ωns, qs is resonating at frequencies that are
integer multiples of that of qr, as with the cases considered in Fig. 5.6. In contrast to
Fig. 5.6a where the stability boundaries converge as the decrement of Ψ3, they converge
as the increment of Ψ3 in Fig. 5.7a. As such, with the increament of response amplitude
and along the single-mode backbone curve, Sr, the very first mixed-mode backbone curve
to be observed is the 1 : 1 Fourier-real type. This asymptotic feature also results in a
region where no internal resonance can be observed that bifurcates from Sr, see region (7)
in panel (a) for systems with small Ψ3/Ψ4 values.

The backbone curves for an example system with Ψ3/Ψ4 = 30, i.e. in region (1) of
Fig. 5.7a, are shown in Fig. 5.8. The stable and unstable segments are denoted by
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solid and dashed lines respectively. The pitchfork bifurcations, emerging from internal
resonances and leading to mixed-mode backbone curves, are marked by solid dots. As
predicted from Fig. 5.7a, a series of mixed-mode backbone curves, SR,1, SC,1, SC,2, SR,2,
SR,3 and SC,3 can be observed, and they are all detected via numerical continuation.
Note that, some secondary bifurcations on the mixed-mode backbone curves are also
detected, which are marked by diamonds. As these bifurcations are beyond the scope of
the study, the bifurcated branches are not shown here.

In this section, the existence and locations of internal resonances have been considered
and the asymptotic features of bifurcations and their correlated backbone curves have
been demonstrated. It allows quantitative determination of the existence and locations of
internal resonances for any given system by checking the intersections between primary
backbone curves and stability boundaries. In the following section, an analytical study is
given to further extend the technique to a simulation-free method for arbitrary systems.

5.3.5 Topologies of internal resonances: an arbitrary system

In §5.3.3 and §5.3.4, the convergence and divergence of bifurcations (arising from internal
resonances) have been demonstrated respectively via examples in Figs. 5.5, 5.6 and 5.7. In
this section, these insights are used for analytical investigations on two-mode interactions
for a symmetric system with arbitrary parameters, i.e. arbitrary eigenfrequencies, ωnr

and ωns, and coefficients of nonlinear terms, Ψi.

As discussed in §5.3.4, in the (Ψ3/Ψ4, Q
2
r,1) space, each stability boundary has a critical

Ψ3/Ψ4 value, where the bifurcation amplitude, Q2
r,1, diverges to an infinite value (i.e. the

annihilation of internal resonances). This limiting case can be generalised as

Annihilation of 1 : n Fourier-real NNMs, SR,n:
lim

Ψ3/Ψ4→AR,n

Q2
r,1 = ∞, for any BR,n with n ∈ Z+ , (5.19a)

Annihilation of 1 : n Fourier-complex NNMs, SC,n:
lim

Ψ3/Ψ4→AC,n

Q2
r,1 = ∞, for any BC,n with n ∈ Z+ , (5.19b)

where AR,n and AC,n denote critical Ψ3/Ψ4 values for BR,n and BC,n respectively. Substi-
tuting expressions of Ψ3/Ψ4 and Q2

r,1, given by Eq. (5.18), into Eqs. (5.19), the limits
can be analytically translated into

Annihilation of 1 : n Fourier-real NNMs, SR,n:
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lim
Ψ3/Ψ4→AR,n

Q2
r,1 = ∞ ⇐⇒ (δ − ϵ) = 0 and AR,n = 6ϵ for any BR,n , (5.20a)

Annihilation of 1 : n Fourier-complex NNMs, SC,n:
lim

Ψ3/Ψ4→AC,n

Q2
r,1 = ∞ ⇐⇒ (δ − ϵ) = 0 and AC,n = 6ϵ for any BC,n . (5.20b)

It is shown that the limits are associated with functional relationships between δ and ϵ

for each stability boundary, BR,n and BC,n. In addition, recalling the definitions of the
stability boundaries, they are given by Hill’s determinants, i.e. the zero determinants of
coefficient matrices in Eqs. (5.11), which are also funcations of δ and ϵ. This means that
the critical Ψ3/Ψ4 values can be computed via Eqs. (5.20), provided the expressions of
BR,n and BC,n are found.

To find the expressions of stability boundaries, a method is given in [256]; they are derived
based on a physical model – a rigid planar pendulum with a pivot, whose dynamics is
described by the generalised Mathieu equation. The stability boundaries are given by

BR,1(δ, ϵ) : ϵ = 1
4

(√
(9 − 4δ) (13 − 20δ) − (9 − 4δ)

)
,

(
δ < 1/4

)
, (5.21a)

BC,1(δ, ϵ) : ϵ = 1
4

(
(9 − 4δ) ∓

√
(9 − 4δ) (13 − 20δ)

)
,

(
1/4 < δ < 13/20

)
, (5.21b)

BC,2(δ, ϵ) : ϵ =
√

2 (δ − 1) (δ − 4) (δ − 9)
δ − 5 ,

(
13/20 < δ < 1

)
, (5.21c)

BR,2(δ, ϵ) : ϵ = 2
√
δ (δ − 1) (δ − 4)

3δ − 8 , (δ > 1) . (5.21d)

In addition to the rigorous physical interpretation of the dynamical system, expres-
sions (5.21) also provide a simple finite-form formulas to describe stability boundaries.
Nonetheless, as only a limited number of boundaries were derived in [256], to account
for the general case of multiple internal resonances, additional formulas are required.
An alternative method to derive stability boundaires can be found in [235, 254], where
a power series is employed to approximate the boundary. Here, such a power series
approximation is used to find the analytical expressions for stability boundaries of the
1 : 3 internal resonance; they are given by

BR,3(δ, ϵ) : δ = 9
4 + ϵ2

16 − ϵ3

32 + 13ϵ4

5120 + 5ϵ5

2048 − 1961ϵ6

1474560 + · · · , (5.22a)

BC,3(δ, ϵ) : δ = 9
4 + ϵ2

16 + ϵ3

32 + 13ϵ4

5120 − 5ϵ5

2048 − 1961ϵ6

1474560 + · · · , (5.22b)
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0 0.5 1 1.5 2 2.5 3

0

0.5

1.0

1.5

2.0

BR,3 BC,3BR,2BC,2

BC,1

BR,1

Fig. 5.9 Comparison between analytically and numerically solved stability boundaries.
The solid lines represent numerically solved stability boundaires via Eq. (5.11). The
dashed lines represent analyticalled solved stability boundaires, computed via Eqs. (5.21)
and (5.22).

which, in contrast to that in Eqs. (5.21), are infinite-form formulas but can be truncated
to arbitrary order. Note that here only 1 : 1, 1 : 2 and 1 : 3 internal resonances are
considered, as such motions represent the most widely observed cases in engineering
practice; whilst, a further extension to account for other cases could be achieved via
the procedure outlined in this section. It should also be noted that, even though a
power series approximation is used, it does not alter the essential feature of the stability
boundaries as functions of δ and ϵ.

Figure 5.9 presents the analytically defined stability boundaries (dashed lines), given
by Eqs. (5.21) and (5.22), and numerically computed ones (solid lines) via Eqs. (5.11).
It can be observed that those analytical expressions show great agreement with that
numerically computed ones; only small discrepancies can be found with lage values of ϵ.

To find how those stability boundaries connect to asymptotic features and topological divi-
sions of internal resonances, Eqs. (5.21) and (5.22) are substituted into expressions (5.20),
the critical values, AR,n and AC,n, can be found, approximately given by

AR,1 ≈ 0.9864, AC,1 ≈ 2.6969 , (5.23a)
AC,2 ≈ 5.5637, AR,2 ≈ 9.1672 , (5.23b)
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Fig. 5.10 Topologies of Internal Resonances (IRs) for two-mode symmetric systems. Note
that, in this table, 1 : n IRs are considered for n = 1, 2, 3.

AR,3 ≈ 13.6419, AC,3 ≈ 20.6495 . (5.23c)

The constant values of AR,n and AC,n reveal the independence between system param-
eters and these critical conditions, at which the stability boundaries, BR,n and BC,n,
asymptotically approach infinite amplitude. This further indicates that, for arbitrary
systems, the same constant critical parameter, Ψ3/Ψ4, exists at which the bifurcation,
emerging from a specific internal resonance, annihilates with amplitude of an infinite
value.

One could recall previous examples in this chapter, shown in Figs. 5.6 and 5.7, where
the critical Ψ3/Ψ4 values are indeed the same for these two different systems. Another
example can be found in discussions on 1 : 1 internal resonance in Chapter 3; the
bifurcation on the first primary backbone curve is defined by Eq. (3.26) with conditions
for its existence given by expression (3.27). It can be derived that the bifurcation
annihilates with infinite-valued amplitude when Ψ3/Ψ4 = 1, a first-order approximation
of AR,1, computed by keeping leading-order terms of Eq. (5.21a). The third example
can be found in Chapter 4, where whirling (out-of-unison) motions were studied. The
bifurcation, leading to 1 : 1 whirling motions, annihilates when Ψ3/Ψ4 = 3; likewise, it is
a first-order approximation of AC,1 and can be computed by keeping leading-order terms
of Eq. (5.21b).
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5.3 Existence and interpretation of internal resonances

Having constant asymptotic conditions for bifurcations of arbitrary systems, the topologies
of internal resonances can then be investigated for arbitrary eigenfrequencies, ωnr and
ωns, and coefficients of nonlinear terms, Ψ3/Ψ4. Here, the results are summarised in
Fig. 5.10, where the horizontal axis denotes the values of parameter Ψ3/Ψ4; whilst the
vertical axis denotes the eigenfrequency ratio between the two interacting modes; the
solid dots, labelled AR,n and AC,n, are critical values given by Eq. (5.23); the dashed lines
denote the asymptotic boundaries where the bifurcations, leading to specific mixed-mode
backbone curves, annihialate; and where SR,n and SC,n, in each cell, denote the existing
internal resonances for the given system. Note that the colour schema of dots and dashed
lines are in accordance with that in Figs. 5.6 and 5.7.

This figure provides an efficient tool to directly determine the existence of internal
resonances by simply checking the parameters of the equations of motion without any
simulation. It also provides a reference for the practical design of mechanical systems
when a specific type of internal resonance is to be exploited or eliminated. Nonetheless, a
closer look at the specific system can reveal additional useful information. For example,
considering the (Ψ3/Ψ4, Q

2
r,1) projection can reveal the locations of internal resonances.

Besides, as discussed in §5.3.3, the convergence of bifurcations can lead to phase-unlocked
NNMs, which can rarely be observed in the presence of damping and external forcing
[143]. Determining whether two backbone curves are phase-unlocked or not, a further
check about the converging behaviours of bifurcations is required. In addition, to account
for the relevance of NNMs to forced responses, the energy balancing method can be
employed – this will be detailed in Chapter 6.

In summary, this section considered the existence and locations of m : n internal resonance
for a symmetric system. It has been shown that any internal resonance is captured by
a pair of mixed-mode backbone curves with one Fourier-real and one Fourier-complex
branch. These concepts can be viewed as generalisations of the special cases studied in
Chapters 3 and 4, where 1 : 1 Fourier-real and -complex cases3 were studied respectively.
By studying the topological evolutions of these internally resonant pairs, it has been
shown that their converging behaviours lead to uncoupled oscillators with phase-unlocking
resonances – exact cases of that studied in [143]; whilst their diverging behaviours lead
to the annihilation of internal resonances, and thus serving as their topological divisions.
Based on these topological features, a simulation-free method has been proposed to
determine the existence and locations of internal resonance for arbitrary two-mode
system.

3The terminologies, 1 : 1 synchronous and asynchronous motions, used respectively in Chapters 3
and 4, are equivalent to 1 : 1 Fourier-real and -complex motions defined in this chapter.
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5.4 The effect of symmetry breaking on internal res-
onances

Previous discussions in this chapter have centred around symmetric systems with Ψ1 =
Ψ2 = 0. In this section, the effect of symmetry breaking, i.e. Ψ1 ̸= 0 and Ψ2 ̸= 0, on
internal resonances is studied. It will be shown how the proposed technique can be further
extended to asymmetric cases and how this technique can be used in understanding
the fundamental mechanism underpinning internal resonances in asymmetric systems.
Note that some unaddressed nonlinear features, observed in Chapters 3 and 4, will also
be discussed and explained; for example, why the bifurcations leading to synchronous
motions (i.e. 1 : 1 Fourier-real motions) split for asymmetry, as observed in Chapter 3;
whilst that for asynchronous motions (i.e. 1 : 1 Fourier-complex motions) remain intact
for asymmetry for the cable model in Chapter 4.

When taking asymmetry into account, periodic solutions with qs = 0, or the single-mode
backbone curve Sr, are no longer obtainable from equations of motion (3.2) due to
modal coupling arising from nonlinear terms. Instead, only mixed-mode solutions with
qr ̸= 0 and qs ̸= 0 can be found. In this case, the modal coupling is underpinned by two
mechanisms – one is the dynamic coupling considered in previous sections, where the
interactions between qr and qs lead to internal resonances; the other one corresponds to
quasi-static coupling, where the behaviour of a mode is dictated by the other [107, 109].
Here, to account for both quasi-static and dynamic coupling, qs is defined as a combination
of a quasi-static component, g (dictated by qr), and a dynamic component, h, written as

qs = g(qr) + h . (5.24)

As defined in [109], the quasi-static function, g, represents a solution of

ω2
nsg + Ψ1q

3
r + Ψ3q

2
rg + 3Ψ2qrg

2 + Ψ5g
3 = 0 , (5.25)

equivalent to a static solution of qs to Eq. (3.2b). In this representation, any internal
resonance is captured by dynamic interactions between qr and h, or solutions with these
two components.

The Lagrangian of the system is still defined by Eq. (5.1). Replacing qs = g(qr) + h, and
applying the Euler-Lagrange equation, the equations of motion can be obtained with
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5.4 The effect of symmetry breaking on internal resonances

respect to interacting components qr and h, given by( ∂g
∂qr

)2

+ 1
 q̈r + ∂g

∂qr

∂2g

∂q2
r

q̇2
r + ∂g

∂qr

ḧ+ fr + ∂g

∂qr

fs = 0 , (5.26a)

ḧ+ ∂2g

∂q2
r

q̇2
r + ∂g

∂qr

q̈r + fs = 0 , (5.26b)

where

fr = ω2
nrqr + Ψ4q

3
r + 3Ψ1q

2
r (g + h) + Ψ3qr (g + h)2 + Ψ2 (g + h)3 ,

fs = ω2
ns (g + h) + Ψ1q

3
r + Ψ3q

2
r (g + h) + 3Ψ2qr (g + h)2 + Ψ5 (g + h)3 .

By comparing Eqs. (5.2) and (5.26), the additional terms denotes the influence of quasi-
static coupling on modal interactions. Therefore, with the limit of g = 0, i.e. neglecting
quasi-static coupling effect, Eq. (5.26) is reduced to that defined by Eq. (5.2). This
model (5.26) was proposed in [117] to detect internal resonances, between qr and h

during reduced-order modelling. It is used here to account for internal resonances in an
asymmetric system with the presence of quasi-static coupling.

As discussed in §5.3, in compared to the dominant component, qr, the internally resonant
component, h, is assumed to be small. This can be justified by the weakly asymmetric
case considered here, which aims to study the effect of symmetry breaking, rather than
provides a complete investigation of asymmetric case. Ignoring the higher-order small
terms, O(h2), the quasi-static coupling between qr and qs can be captured by Eq. (5.26a),
and it is interpreted as a primary backbone curve with component qr and quasi-static
component g(qr). Whilst the dynamic coupling, or internal resonance, between qr and
h, is captured by Eq. (5.26b). Note that, for details of the derivation, the interested
reader can be directed to [117]. In this context, it is equivalent to considering internal
resonances in the neighbourhood of the primary backbone curve, as with that for the
symmetric case considered in §5.3. Next, it will be shown how this similar formulation
captures the effect of symmetry breaking on internal resonances.

First, the quasi-static coupling function is solved via Eq. (5.25), where g(qr) is approxi-
mated by a Taylor series up to a cubic order4, i.e.

g(qr) ≈ −Ψ1q
3
r

ω2
ns

. (5.27)

4Similar conclusions can be obtained when considering additional higher-order terms in the Taylor
series, as such, a cubic approximation is considered for simplicity.
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Expression (5.27) shows how asymmetry, Ψ1 ≠ 0, leads to quasi-static coupling. Com-
bining expressions (5.25), (5.26b) and (5.27), and neglecting the contributions from
higher-order small terms, the internal resonances between qr and h are captured by

ḧ+
(
ω2

ns + Ψ3q
2
r − 6Ψ2Ψ1

ω2
ns

q4
r + 3Ψ5Ψ2

1
ω4

ns

q6
r

)
h = 6Ψ1

ω2
ns

qrq̇
2
r + 3Ψ1

ω2
ns

q2
r q̈r. (5.28)

The solution for qr is, as previously discussed, approximated using the fundamental
component, qr ≈ Qr,1 cos(ωt), i.e. having a first-order of accuracy. Substituting qr back
to Eq. (5.28), it can be rearranged as

∂2h
∂τ2 +

[
δ0 + ϵ1 cos (τ) + ϵ2 cos (2τ) + ϵ3 cos (3τ)

]
h = P1

[
cos

(
1
2τ
)

+ 3 cos
(

3
2τ
)]
, (5.29)

where

δ0 = ω2
ns

4ω2 + Ψ3

8ω2Q
2
r,1 − 9Ψ2Ψ1

16ω2ω2
ns

Q4
r,1 + 15Ψ2

1 Ψ5

64ω2ω4
ns

Q6
r,1,

ϵ1 = Ψ3

8ω2Q
2
r,1 − 3Ψ2Ψ1

4ω2ω2
ns

Q4
r,1 + 45Ψ2

1 Ψ5

128ω2ω4
ns

Q6
r,1,

ϵ2 = − 3Ψ2Ψ1

16ω2ω2
ns

Q4
r,1 + 9Ψ2

1 Ψ5

64ω2ω4
ns

Q6
r,1,

ϵ3 = 3Ψ2
1 Ψ5

128ω2ω4
ns

Q6
r,1,

P1 = −
3Ψ1Q

3
r,1

16ω2
ns

.

This represents an asymmetric evolution to Eq. (5.8) – a nonhomogeneous extended
Mathieu equation. In comparison to the symmetric case, two additional terms within
the bracket, characterised by coefficients, ϵ2 and ϵ3, act as additional parametric forcing
from qs on h due to asymmetry; in addition, a nonhomogenous term, characterised by
coefficient P1 on the right-hand side of the equation, also arises from asymmetry.

Here, the responses of the internally resonant mode, h, is approximated via a sum of
harmonics (as with the symmetric case in §5.3), i.e.

h = Ha,0 +
∞∑

n=1
Ha,n cos

(
n

2 τ
)

+Hb,n sin
(
n

2 τ
)
. (5.30)

Applying harmonic balancing, the mixed-mode NNMs, emerging from internal resonances,
in the neighbourhood of the primary backbone curve, can be obtained, given by the
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following four equation sets

1 : n Fourier-real NNMs for even n, SR,n:
δ0 ϵ1/2 ϵ2/2
ϵ1 δ0 − 1 + ϵ2/2 (ϵ1 + ϵ3)/2 · · ·
ϵ2 (ϵ1 + ϵ3)/2 δ0 − 4

...




Ha,0

Ha,2

Ha,4
...

 = 0, (5.31a)

1 : n Fourier-complex NNMs for even n, SC,n:
δ0 − 1 − ϵ2/2 (ϵ1 − ϵ3)/2 ϵ2/2
(ϵ1 − ϵ3)/2 δ0 − 4 ϵ1/2 · · ·

ϵ2/2 ϵ1/2 δ0 − 9
...




Hb,2

Hb,4

Hb,6
...

 = 0, (5.31b)

1 : n Fourier-real NNMs for odd n, SR,n:
δ0 − 1/4 + ϵ1/2 (ϵ1 + ϵ2)/2 (ϵ2 + ϵ3)/2

(ϵ1 + ϵ2)/2 δ0 − 9/4 + ϵ3/2 ϵ1/2 · · ·
(ϵ2 + ϵ3)/2 ϵ1/2 δ0 − 25/4

...




Ha,1

Ha,3

Ha,5
...

 =


P1

3P1

0
...

 ,

(5.31c)

1 : n Fourier-complex NNMs for odd n, SC,n:
δ0 − 1/4 − ϵ1/2 (ϵ1 − ϵ2)/2 (ϵ2 − ϵ3)/2

(ϵ1 − ϵ2)/2 δ0 − 9/4 − ϵ3/2 ϵ1/2 · · ·
(ϵ2 − ϵ3)/2 ϵ1/2 δ0 − 25/4

...




Hb,1

Hb,3

Hb,5
...

 = 0. (5.31d)

Solutions of these four equation sets represent asymmetric evolutions to that described
by expressions (5.11). Except for equation set (5.31c), others remain as homogeneous
equation sets. As such, semi-trivial solutions can be obtained for SR,n and SC,n for even
n, and SC,n for odd n, determined by Eqs. (5.31a), (5.31b) and (5.31d) respectively. This
indicates these three types of backbone curves remain as solution branches from the
primary backbone curve via bifurcations. As for equation set (5.31c), only non-trivial
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solutions can be obtained due to nonhomogeneous terms on the right-hand side, indicating
backbone curves related to unfolded, or imperfect, bifurcations.

This demonstrates the effect of symmetry breaking, arising from a cubic nonlinearity, on
the internal resonances – it splits the bifurcations that lead to SR,n for odd n. Likewise, if
the asymmetry is induced by nonlinear terms that have qr with an even valued exponent,
e.g. a quadratic nonlinearity, the bifurcations of SR,n for even n are unfolded; whilst the
other three types remain bifurcating from the primary backbone curve.

It also explains the observed phenomena in previous chapters – the symmetry breaking
induced bifurcation splitting leads to isolated in-unison, or Fourier-real, backbone curves
in the two-mass oscillators (Chapter 3). However, bifurcations to whirling, or Fourier-
complex, motions remain intact for asymmetry of the single-mass ocillator and cable
system (Chapter 4).

Equation sets (5.31) can then be used to determine the existence of internal resonance
by exploiting its relationship with the stability-change bifurcations. As discussed for
the symmetric case in §5.3, the stability boundaries, for asymmetric cases, can also
be determined via Hill’s determinants, i.e. zero determinants of coefficient matrices in
Eqs. (5.31). The first-order approximation derived above results a four-dimensional
parameter space, (δ0, ϵ1, ϵ2, ϵ3), where the stability boundaries differentiate the stable
and unstable regions. Likewise, the primary backbone curve (with contributions from
qr and quasi-static component g) can be mapped to this parameter space, where the
intersections between the backbone curve and the stability boundaries denote bifurcations
leading to mixed-mode backbone curves.

As an example, symmetry breaking is introduced to the system, shown in Fig. 5.8, by
considering Ψ1 = 1.5. The asymmetric evolutions of the backbone curves are computed
via numerical continuation and shown in Fig. 5.11, where the backbone curves for the
symmetric case are denoted via thin grey lines for comparison. It can be observed in
breaking the symmetry two of the bifurcations, those leading to SR,1 and SR,3 have
become imperfect bifurcations; whereas all the other bifurcations remain perfect, as also
indicated by Eqs. (5.31) and discussions above.

Another particular case of interest is when the system is seen as a small perturbation
from the symmetric case. For this case, the symmetry-breaking parameters, Ψ1 and
Ψ3, may be assumed to be small. As such, ignoring the higher-order small terms in
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Fig. 5.11 Effect of symmetry breaking on internal resonances. This plot presents backbone
curves for an asymmetric example system with ωnr = 1, ωns = 0.3, Ψ1 = 1.5, Ψ3 = 30
and Ψ4 = 1. Backbone curves for the symmetric case, where Ψ1 = 0, are shown as thin
grey lines for comparison.

expression (5.29), it can be further simplified to

∂2h

∂τ 2 +
[
δ + ϵ cos(τ)

]
h = P1

cos
(

1
2τ
)

+ 3 cos
(

3
2τ
) , (5.32)

which represents a nonhomogeneous Mathieu equation, with left-hand side terms the
same as that for the symmetric case, considered in §5.3, whilst with an additional
nonhomogenous term on the right-hand side. The formation of expression (5.32) indicates
that an asymmetric perturbation is equivalent to a nonhomogeneous perturbation to the
internal resonances for a symmetric case; and it leads to bifurcation splitting, the same
as elaborations of Eqs. (5.31). In addition, as the frequencies of the nonhomogeneous
terms are half integers to that on the left-hand side, there is no difference in the stability
boundaries between the homogeneous and nonhomogeneous Mathieu equation [257]. This
means the stability boundaries, shown in Fig. 5.3 for symmetric case, can be used to
evaluate near-symmetric cases.

In Fig. 5.12a, the primary backbone curve in Fig. 5.8 (for a symmetric system) is projected
to the (δ, ϵ) space via expression (5.12) as a straight line. The bifurcations, leading
to mixed-mode backbone curves, are marked by solid dots, which approximately lie
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Fig. 5.12 Existence and locations of internal resonances for an asymmetric system. (a)
The primary backbone curve in Fig. 5.8 (symmetric case), projected as a straight line
with bifurcations marked by solid dots. (b) The asymmetric evolutions of the bifurcations
in panel (a) with Ψ1 = 1.5.

on the stability boundaries. The asymmetric evolutions of these bifurcations are also
projected to this space in panel (b) for the system whose backbone curves are shown in
Fig. 5.11. It can be observed that the stability boundaries well capture the existence of
internal resonances for both cases. There are some discrepancies between the numerically
obtained bifurcations and the analytically obtained stability boundaries, arising because
the formula is of a first-order accuracy. This can be addressed by referring to the formula
of a higher-level accuracy, e.g. that derived in §5.3.2.

5.5 Summary

Modal interactions, arising from nonlinear coupling, can be extensively observed in nonlin-
ear systems. When vibrating at large amplitudes, the intricate mechanism underpinning
internal resonances can bring about challenges in analysing and designing nonlinear
systems. This chapter has considered the existence and locations of internal resonances
for a two-mode system with an arbitrary eigenfrequency ratio for an arbitrary response
frequency and amplitude range.
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5.5 Summary

The study began with a motivating example of a nonlinear two-mode pinned-pinned beam
model in §5.2. Using this example, the concepts of 1 : 1 synchronous and asynchronous
NNMs, studied in Chapter 3 and 4, have been extended to general m : n internally
resonant cases. This was achieved by accounting for the geometric features of NNMs in
the complex plane with the proposed terminology – Fourier-real and Fourier-complex
NNMs. In addition, it was shown that the example system exhibits an intricate topology
of internal resonances, i.e. two Fourier-real and two Fourier-complex backbone curves,
among which the 1 : 3 Fourier-real and -complex branches exhibit similar response
frequencies and amplitudes. With this example, the challenges in quantifying internal
resonances was demonstrated – they highlighted the requirement for a rigourous study
to uncover the mechanism that underpins the features of internal resonance, as well as
an efficient method to ease the computational burden in determining the existence and
locations of internal resonances.

In §5.3, a general two-mode symmetric system with cubic nonlinearity has been considered.
The analytical derivations have shown that internal resonances in the neighbourhood of
the primary backbone curve can be approximately captured by the Mathieu equation.
The associated solution sets come in pairs with one Fourier-real and one Fourier-complex
NNMs that exhibit the same frequency commensurate relationship but different phase
relationships. The topological evolutions, i.e. convergence and divergence, of these
internally resonant pairs were then investigated – the convergence of a pair leads to
uncoupled oscillators with phase-unlocking internal resonances; whereas their divergence
leads to the annihilation of internal resonances. Using these insights, critical boundaries,
where the topologies of backbone curves undertake changes, were determined. Based
on such topological features, a simulation-free method has been proposed for efficient
determination of the existence and locations of internal resonances for any two-mode
system with an arbitrary natural frequency ratio.

Discussions in §5.4 extended the symmetric scope to asymmetry. The analytical model
of internal resonances for an asymmetric system has been derived, which is captured
by a non-homogeneous extended Mathieu equation. The solution sets of the model
are asymmetric evolutions to that obtained in §5.3. In breaking the symmetry, the
mechanism underpinning the bifurcation splitting/remaining of internal resonances was
shown to be governed by the non-homogeneous terms. This mechanism also explains
some unaddressed nonlinear behaviours observed in previous chapters, for example, it
explains why symmetry breaking leads to bifurcation splitting and generates isolated
backbone curves for systems with synchronous/Fourier-real NNMs in Chapter 3; it also
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explains why bifurcations to whirling motions remain intact for symmetry breaking, as
observed in the cable system in Chapter 4.

Up to this point, discussions in Chapters 3, 4, and 5 have centred around the concept of
NNMs, i.e. undamped and unforced periodic responses. However, in practice, engineering
systems are usually operating under, or subjected, to forced conditions, where the forced
response curves (FRCs) are extensively considered for analysis and design of nonlinear
systems [31, 30]. In the next chapter, it will be shown how the concept of backbone
curves can be used to understand forced periodic motions.

138



Chapter 6

Multi-harmonic energy balancing analysis us-
ing backbone curves

In this chapter:

• The mechanism of energy balancing of nonlinear systems during periodic responses
is considered at the system, mode, and harmonic levels. From such an energy-based
perspective, the relationships between NNMs and forced responses are established.

• A multi-harmonic energy balancing technique is proposed to interpret forced
responses via NNM solutions. This method is constructed based on a semi-analytical
framework by combining energy balancing principles, force reductions, and phase
constraints.

• The applications of the multi-harmonic energy balancing analysis are demonstrated
using a nonlinear cantilever beam under different forcing scenarios.

• The proposed method is applied in the accurate detection of an isolated forced
response curve, where multiple harmonics play a significant part.

Publications related to this work:

• D. Hong, T. L. Hill, S. A. Neild, 2022. Efficient Energy Balancing Across Multiple
Harmonics of Nonlinear Normal Modes, Nonlinear Dynamics.
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6.1 Introduction

The concept of backbone curves, or NNM branches, defined as unforced undamped
periodic responses [31], has been extensively employed in modal analysis of nonlinear
dynamical systems. For example, modal interactions, bifurcations and instability have
been investigated in a wide range of engineering systems [130, 246, 198, 143]; the interested
reader is directed to §2.2.2 and [31, 100] for an overview.

In previous chapters of this thesis, an NNM-based modal analysis has been employed
in the interpretation and quantification of nonlinear dynamic behaviours. A number of
practice-relevant applications have been presented – in quantifying the isolated backbone
curves in the NLTMD system (Chapter 3); in identifying the phase-varying backbone
curves in a cable system (Chapter 4); in interpreting the intricate internal resonances in
a pinned-pinned beam system (Chapter 5). These applications have demonstrated the
capability of NNMs in capturing the essential nonlinear features, and yet simplifying the
intricate nonlinear problems.

Nonetheless, in practice, engineering systems typically operate under forced scenarios,
in which case the forced response curves (FRCs) are often used in analysis and design
[31, 30]. For example, in studies of the NLTMD system for vibration suppression, the
existence of isolated FRCs [131, 43, 133], an analogue of the isolated backbone curves in
the forced context, has been reported. The existence of isolated FRCs can significantly
affect the performance of a NLTMD as they are challenging to identify and can be
related to large-amplitude responses [131, 198]. Another example, seen in studies of cable
and rotor systems, the whirling motions, the analogue of out-of-unison/Fourier-complex
backbone curves, are important features to quantify [242, 258, 259]. Seen from these
examples, a question arises naturally – how are the FRCs related to their unforced and
undamped analogues, i.e. the backbone curves?

An approach to establish the relationships between backbone curves and forced periodic
responses is the energy balancing analysis, proposed in [139]. This technique considers
the energy principle during periodic responses, namely the net energy transfer in and out
of any mode must be zero, in combination with the assumption that the near-resonant
response is a phase-shift (a perturbation in phase) of an NNM. The energy balancing
method has shown its versatility in both theoretical and experimental studies, for example,
it has been used to predict the existence of isolated FRCs [139, 198, 141, 142]; to quantify
the relative significance of NNMs [143, 260]; and to identify the appropriate number
of exitation forces and their distribution in conducting force appropriation [144]. In
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the motivating example presented in §2.5, the energy balancing method has also been
shown to accurately capture the resonances via backbone curves. Later, this energy
balancing analysis has been extended to account for the non-conservative nonlinearity
with applications in full-scale structures [145, 261]. An alternative approach to build the
connections between forced responses and backbone curves is using the Melnikov analysis,
presented in [140], where the Melnikov function is revealed to be the leading-order term
of periodic energy balancing.

In addition to its versatility, one advantage of the energy balancing method lies in its
analytical framework, achieved by the assumption that a single harmonic is representative
of the modal response. This assumption allows for efficient computations, but, in turn,
can bring inaccuracy in complex scenarios where multiple harmonics are significant. Such
a limitation was demonstrated in [142], where inaccurate predictions can be found during
the merging of an isolated curve to the primary curve. However, the analytical framework
does not allow for a direct extension to account for multiple harmonics, instead, the
computationally expensive numerical scheme is required.

This chapter extends the energy balancing analysis to account for multiple harmonics to
improve its accuracy and robustness in complex application scenarios. This extension
preserves the computational efficiency by employing a semi-analytical framework. To
this end, the rest of this chapter is organised as follows.

In §6.2, an overview of the energy balancing principle for forced periodic responses is
given, highlighting the relationships between forced responses and NNM solutions. The
application of the energy balancing analysis, proposed in [139], is presented using a
nonlinear beam system. Its capability of interpretating forced responses using backbone
curves, as well as its limitation in complex scenarios, are discussed. The limitation is
then explained by considering energy-transfer balancing between harmonics – this also
motivates the study to extend the single-harmonic framework in [139] to multi-harmonic
framework.

In §6.3, the basic assumption of the proposed energy balancing analysis is firstly introduced
– the forced resonant responses are viewed as perturbations from NNMs due to small
phase-shifts. With known inputs of NNM solutions, the energy balancing principle (across
all harmonics of all modes in an NNM) is combined with the force reductions and phase
constraints. This gives rise to a closed-form solution that can be exploited for efficient
computations/interpretation of forced responses using backbone curves. An example
case, where independent forces are applied in quadrature with harmonic displacements,
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is given to demonstrate the application of the proposed method; the results are verified
by comparing to numerical results via force appropriation [89, 90].

In §6.4, the forcing scenario considered in §6.3 is further extended to account for
more practically relevant cases where the applied forcing is in quadrature with the
physical displacement at the excitation point. Example cases are presented to show
the construction of the energy balancing analysis and demonstrate its application in
detecting the existence of an isola with multiple significant harmonics.

Finally, this chapter is closed with a summary in §6.5.

6.2 Energy balancing in nonlinear systems: from
system to harmonic levels

In §2.5, the motivating example presented the application of the energy balancing analysis,
proposed in [139], in interpreting forced responses via backbone curves. However, for
illustration, it was achieved by demonstrating the results without detailed discussions on
its mechanism. This section first reviews the mechanism of energy balancing of nonlinear
systems duing periodic responses at the level of the system and of the mode, and then to
that of the harmonic. From such an energy-based perspective, the relationships between
NNMs and forced responses are highlighted. Discussions in this section provide a basic
concept, based on which an efficient technique is built for applying energy balancing
analysis across multiple harmonics – as introduced in §6.3 and §6.4.

6.2.1 Energy balancing principle at the system level

For a nonlinear system, its dynamics can be expressed, using its linear modal components,
in the form

q̈ + Dq̇ + Λq + Nq(q) = p(t) , (6.1)

where q̈, q̇ and q are vectors of modal accelerations, velocities and displacements
respectively. The diagonal matrix D contains the linear damping coefficients. This
is reflective of a significant number of engineering systems that experience geometric
nonlinearity when vibrating at large amplitudes, in which case the damping may be
assumed small when compared to external forcing and nonlinear stiffness. As such, the
simple case of linear modal damping is often considered [234, 30, 31, 144, 117], which have
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been verified and validated via experimental tests, to name a few, see Refs. [90, 163, 142].
Λ is a diagonal matrix containing the squares of the linear natural frequencies. Vector
Nq(q) contains the nonlinear stiffness terms (assumed to be conservative, and a function
of the displacements, q). The external periodic forcing is captured by the vector p.
When considering a two-mode nonlinear system, e.g. discussions in previous chapters, the
vector of modal coordinate is q = (q1 q2)⊤, and the system is reduced to two nonlinearly
coupled equations.

At the system level, energy-transfer balancing considers the net energy transfer in and
out of a system over one period of motion. As the nonlinear terms considered here are
conservative, this energy transfer can only be achieved via the damping and external
forcing terms. Over one period, the total energy loss by the system due to these
nonconservative terms must sum to zero (as the response cannot remain periodic if the
net energy transfer is non-zero), such that

ED + EP = 0 , (6.2)

where ED and EP denote the one-period energy-transfer terms due to damping and
forcing respectively.

In the modal domain, the nonlinear system, described by Eq. (6.1), can be seen as a
collection of modes, where the equation of motion of the ith mode is written

q̈i + diq̇i + ω2
niqi +Nqi(q) = pi(t) , (6.3)

and where di, ωni and pi are the ith modal damping coefficient, linear natural frequency
and external modal forcing respectively. As such, the energy-transfer terms in Eq. (6.2)
can be translated, using modal components, into summation form

N∑
i=1

(EDi + EP i) = 0 , (6.4)

where EDi and EP i denote energy transfer to the ith mode due to modal damping and
forcing respectively, and N is the total number of modes in the system. Note that, the
nonlinearities, described by Nqi(q), may lead to coupling and energy transfer between
modes1. Here, the nonlinearity caused net energy transfer to the ith mode from other
modes in an NNM over a period of time is termed nonlinear energy transfer and denoted

1One mechanism that can lead to energy exchange between mode is internal resonance, as discussed
in Chapters 3, 4 and 5.
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ENi. The effect of ENi can be seen as an internal energy rearrangement among modes at
the system level; hence, it exhibits a conservative effect and has a zero contribution to
the energy balancing in Eqs. (6.2) and (6.4).

6.2.2 Energy balancing principle at the mode level

The concept of energy balancing analysis can be extended from the system level to the
mode level by considering the energy balancing for each modal component. At this level,
in addition to damping and forcing energy-transfer terms, the nonlinear energy transfer,
ENi, is seen as an external energy contribution to the ith mode, which must be accounted
for. To find these energy-transfer terms, the ith modal equation of motion (6.3) is firstly
multiplied by the velocity of the ith mode, q̇i, and then its time integral over one period
is considered, which gives

EDi + EP i + ENi = 0 , (6.5)

where the terms related to acceleration and linear stiffness are zero due to orthogonal-
ity; and where the energy-transfer terms arising from damping, external forcing, and
nonlinearity are defined respectively as

EDi =
∫ T

0
[diq̇i] q̇idt , (6.6a)

EP i = −
∫ T

0

[
pi(t)

]
q̇idt , (6.6b)

ENi =
∫ T

0

[
Nqi(q)

]
q̇idt . (6.6c)

Eq. (6.5) describes the energy balancing at the mode level, an analogue to that at the
system level, Eq. (6.2); it demonstrates that, for a periodic response, the net energy
transfer in and out of any mode over one period must be zero.

At the mode level, for an NNM (i.e. undamped and unforced periodic response), the
net energy transfer between modes must be zero, i.e. ENi = 0, as no mode may lose or
gain energy over one period and still remain periodic. Therefore, if an NNM solution is
precisely equal to a forced response, Eq. (6.5) implies that the forcing energy gain must
be precisely equal to the damping energy loss for each mode, i.e.

EP i = −EDi . (6.7)

A schematic of this energy transfer is shown in Fig. 6.1a, for a two-mode system.
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EP1 = −ED1

ED1

EN1 = 0

EP2 = −ED2

ED2

EN2 = 0

(a) – On an NNM

q1 q2

EP1

ED1

EN1

EP2

ED2

EN2

(b) – Not on an NNM

q1 q2

Fig. 6.1 A schematic of the energy transfer at the mode level, for a two-mode system. (a)
The case where the forcing and damping match precisely, so that the response may equal
an NNM. (b) The forcing and damping do not match and the response is not precisely
on the NNM.

In most applications, however, the applied forcing cannot precisely satisfy Eq. (6.7),
i.e. the forcing energy gain for each mode does not equal the damping energy loss (for
example, a mode may be damped but unforced). Such a forcing case is referred to here as
an imperfect forcing. Therefore, Eq. (6.5) reveals that, for an imperfect forcing, ENi ̸= 0,
which violates a condition of an NNM (i.e. that ENi = 0). A schematic of this energy
transfer is shown in Fig. 6.1b. This implies that an NNM can never be precisely reached
by a system with imperfect forcing. The effect of imperfect forcing, namely the deviations
in the energy-transfer schema from Fig. 6.1a to Fig. 6.1b, can be quantified by considering
their differences – the non-zero nonlinear energy-transfer terms, ENi.

When considering forced responses, particular cases of interest are the resonant responses
(where the external force and displacement exhibit quadrature), as they usually represent
the most significant responses in a system. In the neighbourhood of resonances, where
ENi ̸= 0, the forced responses may be viewed as a perturbation from an NNM solution
[139, 140]. In this case, the perturbations, leading to an internal energy transfer, ENi, for
periodic responses, can only be achieved via changes in the response frequency, phase, and
amplitude. For a given external forcing, the response frequency must be fixed to remain
periodic; the change of phase can directly lead to an energy exchange between modes;
whilst the amplitude change cannot associate with energy exchange unless accompanied
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L1

f(t)

Fig. 6.2 A schematic of a cantilever beam with a nonlinear spring at the free end.

by a phase change. As such, the effect of amplitude change may be seen as of a second
order when compared to the phase change.

In this study, the perturbation in the phase, termed a phase-shift, of the modal component
is considered – it accommodates the internal energy transfer, ENi, when viewing the
forced response as a perturbation from an NNM. If this phase-shift is sufficiently small,
it may be assumed that the forced response is close to that of an NNM; conversely, a
large phase-shift corresponds to a large change in the response, indicating that the forced
response is significantly different to the NNM. Note that, in [139], the proposed technique
uses a single harmonic to interpret the energy balancing of a mode via Eqs. (6.5) and
(6.7) based on a smallness assumption of phase-shifts; hence it is termed the Mode-level
Energy-Transfer Analysis (META).

In §2.5, the META has already shown its capability in accurately capturing the resonances
using backbone curves for a simple model, see Fig. 2.5. Here, to demonstrate the
application of META, an engineering example is considered, shown in Fig. 6.2 – a
cantilever beam with a cubic nonlinear spring at the free end, and excited at a point on
the part-span position, L1, by a single-harmonic force

f(t) = F1 cos (Ωt) . (6.8)

The deflection of this beam is modelled using the first two modes, and the modal equations
of motion are given by

q̈1 + d1q̇1 + ω2
n1q1 +Nq1 (q1, q2) = ϕ1f(t) , (6.9a)

q̈2 + d2q̇2 + ω2
n2q2 +Nq2 (q1, q2) = ϕ2f(t) , (6.9b)

where ϕi is the modeshape of the ith mode at the excitation point, and where di = 2ωniζ

where ζ is the modal damping. The nonlinear terms are given by

Nq1 = Ψ4q
3
1 + 3Ψ1q

2
1q2 + Ψ3q1q

2
2 + Ψ2q

3
2 , (6.10a)
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Table 6.1 The parameters of the two-mode beam, described by Eqs. (6.9) and (6.10).

Parameter ωn1 ωn2 d1 d2 Ψ1 Ψ2 Ψ3 Ψ4 Ψ5(
×107

)
Value 43.35 134.1 0.434 1.341 -4.005 -6.017 14.73 3.267 7.376

43 44 45 46 47 48 49 50

0

2

4

6
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0

1

2

3

Fig. 6.3 Energy balancing analysis via the Mode-level Energy Transfer Analysis (META).
(a) Predicting resonances when the excitation is applied at L1 = 0.7L. Panel (i) shows
the forcing amplitude, F1, required to share solutions with the first NNM branch at
frequency ω. Panel (ii) shows the first backbone curve and the forced responses for the
two-mode beam in the projection of the response frequency, ω, against the maximum
displacement amplitude of the second linear mode, Q2. The relationships between the
backbone curve and forced responses are identified for two forcing cases, labelled by
squares and dots in both panels. (b) Predicting results when the excitation is applied at
L1 = 0.2L. The energy balancing between harmonics on the forced responses, labelled
‘×’ in the embedded plots, are shown in Fig. 6.4.

Nq2 = Ψ1q
3
1 + Ψ3q

2
1q2 + 3Ψ2q1q

2
2 + Ψ5q

3
2 , (6.10b)

where Ψi denote coefficients of nonlinear terms. The derivation of the beam model can
be found in Refs. [30, 262, 263] or following the procedure outlined in Appendix B. Here,
an example system with parameters given in Table 6.1 is considered, where the linear
stiffness of the spring is tuned such that the two modes exhibit a 1 : 3 internal resonance,
i.e. the fundamental (largest) harmonic of the second mode responds at three times the
frequency of the fundamental harmonic of the first mode.

With equations of motion (6.9) and parameters given in Table 6.1, the first backbone
curve (i.e. the locus of NNMs emerging from the first linear natural frequency) of the

147



Multi-harmonic energy balancing analysis using backbone curves

beam is found using the po-toolbox of the numerical continuation software COCO [99].
It is shown as a blue line in the bottom panel of Fig. 6.3a in the projection of the
response frequency, ω, against the maximum response amplitude of the second mode,
Q2. Note that, in this case, the backbone curve is a family of 1 : 3 Fourier-real, or
synchronous, NNMs whose response in the modal configuration space is schematically
shown in Fig. 5.1c.

To account for forced responses, a periodic force, f(t), is applied at a part-span position,
L1 = 0.7L. The relationship between the backbone curve and the forced responses is
identified via the META using Eq. (6.7). The results are shown in the upper panel of
Fig. 6.3a – the forcing amplitude, F1, required for the forced resonant responses to share
solutions with the backbone curve at response frequency, ω. Here, two forcing cases
(denoted by dashed lines) are considered, where the identified intersections are labelled
a square and three dots respectively. These intersections mean the resonant crossing
points between FRCs and backbone curves when the corresponding forcing is applied. To
verify these predictions, the FRCs are found using numerical continuation and shown as
green and red lines in panel (ii), with respect to the lower- and higher-amplitude forcing
cases in panel (i). Excellent agreements are achieved for both forcing cases – the META
captures the development of resonances on the primary FRC and the existence of the
isola.

The excitation location is then moved from L1 = 0.7L to L1 = 0.2L, and the energy
balancing relationship is again computed via the META, shown in the upper panel of
Fig. 6.3b. As with the previous example, two forcing cases are considered – the META
predicts one intersection for the lower-amplitude forcing, and three crossing points for
the larger-amplitude forcing. Considering the similar predictions between two different
excitation points, shown in panels (i) of Figs. 6.3a and 6.3b, one would also expect similar
results when verifying these predictions. The FRCs for the two forcing cases at L1 = 0.2L
are computed via numcrical continuation and shown in the bottom panel of Fig. 6.3b. It
can be observed that the numerically computed resonances on the primary FRCs are in
strong agreement with the META-identified results. However, unlike the case in Fig. 6.3a,
the META is unable to capture the existence of the isola for the lower-amplitude forcing.
Indeed, one can predict the existence of an isola if the forcing amplitude at the green
dashed line is increased; nonetheless, for cases where the existence of isola is predicted, it
can show significant errors in the results. One example is the larger-amplitude forcing
case (the red dashed line), where the resonances on the isola are not well predicted – see
the discrepancies between predictions (solid dots) and resonances on the isola.
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In practice, the robust identification of the existence of isolas is highly important, as they
can be associated with significant high-amplitude responses in engineering applications,
e.g. the NLTMD systems studied in §3.4. However, for the example presented in Fig. 6.3,
a robust prediction cannot be guaranteed, and hence, seeking an improved method is
needed.

Before introducing the proposed method, the underlying mechanism that governs the
applicability and accuracy of the META should firstly be understood in order to overcome
its limitations. As the META is an energy-based method, this framework is retained but
the energy balancing at the mode level, at which the META is established, is further
extended to account for the periodic energy transfer between harmonics. In this way,
explanations are given for the different META predictions – it is able to yield accurate
predictions when forcing at L1 = 0.7L, but unable to provide accurate results when
the forcing is moved to L1 = 0.2L. In the meantime, potential methods to improve the
accuracy and robustness are sought.

To account for the energy balancing between harmonics, a mode is viewed as a collection
of harmonics, as with the interpretation that a system may be seen as a collection of
modes. This allows the modal coordinates to be expressed as a sum of harmonics

qi =
∑

j∈Hi

ui,j , (6.11)

where ui,j is the jth harmonic of the ith mode, and Hi is a set denoting the harmonics in
the ith mode. Considering Eq. (6.11), the energy-transfer balancing at the mode level,
Eq. (6.5), can be expressed in summation form

∑
j∈Hi

(
EDi,j + EP i,j + ENi,j

)
= 0 , (6.12)

where the terms within the summation represent the net energy transfer to the jth

harmonic of the ith mode due to the damping, forcing and nonlinear terms, respectively.

Here, the periodic energy transfer for resonant responses on the isolas are considered,
with respect to the labelled ‘×’ in the embedded plots of Figs. 6.3a and 6.3b. Note that
these two resonances corresponds to cases where META succeeds and fails in predictions
respectively. Combining Eqs. (6.6), (6.11) and (6.12), the periodic energy-transfer terms
may be computed for each harmonic, and they are shown in Fig. 6.4. Note that, in
the considered case, the cantilever beam exhibits 1 : 3 internal resonance, and only
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Fig. 6.4 Energy balancing between harmonics of the two-mode cantilever beam. The
thin red, green and purple arrows represent the net periodic energy transfer in and out
the harmonics, EDi,j, EP i,j and ENi,j respectively, where the values show the ratio of
energy transfer terms over total energy input Ep. (a) Energy balancing for the forced
response, labelled ‘×’, on the isolated forced responses in Fig. 6.3a when L1 = 0.7L and
F1 = 0.03. (b) Energy balancing for the forced response, labelled ‘×’, on the isolated
forced responses in Fig. 6.3b when L1 = 0.2L and F1 = 0.18.

odd-numbered harmonics are present in the resonances; as such, the energy transfers to
even-numbered harmonics are not shown in Fig. 6.4.

Applying an excitation with forcing frequency, Ω, near the first natural frequency, it
inputs energy to the fundamental component of the first mode, u1,1, and the first harmonic
of the second mode, u2,1. When the forcing is at L1 = 0.7L, Fig. 6.4a shows that the
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major energy input is directed to u1,1, with only one percent of energy imparted to
u2,1. Whilst the major internal energy transfer, caused by nonlinear coupling terms,
occurs between fundamental components2 of the two modes, u1,1 and u2,3, where the
transferred energy is lost via damping. As such, neglecting the small contributions from
harmonics (about one percent of the total energy), the energy balancing, Eq. (6.12), can
still be accurately captured by the fundamental components. The negligible harmonic
contributions underpin the accurate predictions via the META – see Fig. 6.3a.

Whilst, for the case in Fig. 6.4b where the excitation is at L1 = 0.2L, the major energy
input from external forcing is still imparted to u1,1, as with the case in Fig. 6.4a; however,
with an increased amount given to u2,1 (about nine percent of the total energy input). As
for the internal energy transfer between harmonics, ENi,j, in addition to the fundamental
components, a significant involvement of u2,1 can also be observed. As such, without
accounting for the energy-transfer contributions from harmonics (u2,1 in this case), a
significant error in energy balancing analysis via the META is shown in Fig. 6.3b – it is
unable to capture the resonances on the isolated forced responses.

By comparing cases in Fig. 6.3, the limitations of META can be explained by considering
the energy transfer between harmonics, shown in Fig. 6.4. It also highlights the importance
of considering multiple harmonics in energy transfer analysis – the topic of this chapter.
To establish the energy balancing analysis considering multiple harmonics, the mode-level
energy balancing, i.e. Eqs. (6.5) and (6.12), is now extended to the harmonic level.

6.2.3 Energy balancing principle at the harmonic level

As with the extension of energy balancing analysis from the system level to the mode level,
it can be further extended to the harmonic level. This can be achieved by multiplying
the ith modal equation of motion (6.3) with the velocity of the jth harmonic of the ith

mode, u̇i,j, and integrating over a period of time, which gives

EDi,j + EP i,j + ENi,j = 0 . (6.13)

where the integrals with respect to acceleration and linear stiffness reveal to be zero, and
where the energy-transfer terms due to damping, external forcing and nonlinearity are

2Note that the forced response exhibits a 1 : 3 response so u2,3 is the fundamental component of the
2nd mode response.
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defined respectively as

EDi,j =
∫ T

0
[diq̇i] u̇i,jdt , (6.14a)

EP i,j = −
∫ T

0

[
pi(t)

]
u̇i,jdt , (6.14b)

ENi,j =
∫ T

0

[
Nqi(q)

]
u̇i,jdt . (6.14c)

Eq. (6.13) shows the mechanism of energy balancing at the harmonic level – for a periodic
response, the net energy transfer in and out of any harmonic must be zero, an analogue
to that at the system level, Eq. (6.2), and that at the mode level, Eq. (6.5). This may
be seen as the fundamental level as it is established using the fundamental elements –
harmonics, and describes the fundamental mechanism of energy transfer of nonlinear
systems during periodic responses.

At the harmonic level, for an NNM, the net energy transfer between harmonics must be
zero, i.e. ENi,j = 0. Therefore, the relationship between NNMs and forced responses can
be obtained from Eq. (6.13), which reads

EP i,j = −EDi,j . (6.15)

This indicates that the forcing energy gain is balanced by the damping energy loss for
each harmonic – an extension of Eq. (6.7) to the harmonic level.

Using relationship (6.15), the force appropriation technique, has been proposed to identify
NNM branches experimentally via forced-damped responses [90]. In order to satisfy
Eq. (6.15), a quadrature criterion, where the excitation has to compensate for the damping
effect, is achieved by applying 90◦ phase-lagged (with respect to the displacements) forces
that contain all harmonic components of all modes in an NNM.

However, in practice, such a perfect forcing set can never be precisely achieved, which
breaks condition (6.15) and causes the response to deviate from the NNM – a non-zero
energy transfer between harmonics, i.e. ENi,j ̸= 0. Such a non-zero ENi,j may couple all
harmonics of all modes within an NNM – this will be derived analytically in the following
discussions. A general energy-transfer schematic for a two-mode multi-harmonic system
is shown in Fig. 6.5, which represents an extension of that shown in Fig. 6.1b at the
mode level; as well as a generalisation of that used for the examples in Fig. 6.4. This
illustrates a more complex energy-transfer network among all harmonics at the harmonic
level, when compared to taking a higher-level view at the mode level.
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q1 u1,1 u1,2 u1,3
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EP2,1 ED2,1 EP2,2 ED2,2 EP2,3 ED2,3

EN2,1 EN2,2 EN2,3

Fig. 6.5 A schematic of the energy transfer between the harmonics of a two-mode system.

Similar to that at the mode level, to evaluate the deviation between a near-resonant
response (ENi,j ̸= 0) and an NNM solution (ENi,j = 0), the effect of non-zero ENi,j may
be considered. As with the assumption of the META, where a modal phase-shift is used
to evaluate the non-zero ENi, the non-zero nonlinear harmonic energy transfer, ENi,j,
may be evaluated by considering the corresponding harmonic phase-shifts. This allows
the Harmonic-level Energy-Transfer Analysis (HETA) to be analytically formulated,
detailed in the following.

6.3 Harmonic-level Energy-Transfer Analysis

This section considers the extension of the META, proposed in Ref. [139], to account for
energy transfer across multiple harmonics. Based on the energy balancing principle, the
relationships between forced response and NNMs are established to predict the resonances
of FRCs. Before the detailed derivations, a brief overview of the methodology is given
here:

• The forced-damped periodic response is interpreted as a perturbation from an NNM
solution due to harmonic phase-shifts. This also represents the main assumption of
the methodology in this chapter.

• The energy transfer analysis over all harmonics of all modes is then formulated
using Eq. (6.13), which leads to an underdetermined problem, i.e. the unknowns
(forcing amplitude and phase shift) outnumber the equations.
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• The force reduction, along with extra phase constraints imposed by the quadrature
conditions, are introduced to formulate a determined, or solvable, equation set.

• The solution to the equation set denotes the required forcing amplitude and
harmonic phase shifts in order for the NNM to evolve to the forced periodic
response.

To demonstrate the application of the methodology, a nonlinear beam example will be
considered where independent modal forces are applied in quadrature with each mode.

6.3.1 Harmonic phase-shifts of NNMs under quadrature forcing

To account for multiple harmonics, the displacement of the ith mode, for an NNM
response, is approximated as a sum of a finite number of harmonics, such that

q̄i ≈
∑

j∈Hi

ūi,j =
∑

j∈Hi

Ūi,j cos
(
jωt+ θ̄i,j

)
, (6.16)

where the overbar, •̄, indicates that this is an NNM response3, and where ūi,j is the
jth harmonic of the ith modal displacement, q̄i; and Hi is the set of harmonics used
to approximate q̄i. The amplitude and phase of ūi,j are represented by Ūi,j and θ̄i,j

respectively, and the frequency ω is defined as ω = 2πT−1, where T is the period of the
response of the system (i.e. considering all modes).

As with the modal displacements, the external forcing applied to the ith mode may be
separated into harmonic components, written

pi =
∑

j∈Hi

pi,j =
∑

j∈Hi

−Pi,j sin
(
jωt+ θ̄i,j

)
. (6.17)

Note that this assumes that the harmonics of the excitation force are all in quadrature
(i.e. at π/2 out-of-phase, or π/2 phase-lagged) with the corresponding modal harmonic
displacement. This also assumes that all harmonics are forced; however, the unforced
harmonics may be specified as those where the excitation amplitude, Pi,j, is zero – this
is revisited later in §6.3.3.

Following the approach used in [139], as described in §6.2, the forced-damped near-
resonant response may be seen as a perturbation from an NNM solution with a shift
in the phase of the response. Note that this relationship can also be justified using the

3Note that the introduced notations of an NNM solution, q̄i and ūi,j , are to differentiate from that of
a forced response, qi and ui,j .
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Melnikov analysis in [140], where the forced responses are proven to be perturbations
from NNMs when external forcing and damping are small in compared to conservative
terms. Here, this phase-shift is applied to all harmonics of the response, rather than
just the fundamental component (as considered in [139]). The phase-shift of the jth

harmonic of the ith mode is written θ̂i,j and it is assumed small in viewing forced responses
as perturbations from NNMs. Introducing these phase-shifts to Eq. (6.16), the forced
response of the ith mode is written

qi =
∑

j∈Hi

ui,j =
∑

j∈Hi

Ui,j cos
(
jωt+ θ̄i,j + θ̂i,j

)
. (6.18)

Note that, as discussed in §6.2.2, when considering perturbations from an NNM to a
forced response, the change of amplitude may be seen as a second-order effect when
compared to the change of phase. Therefore, it is assumed that all amplitudes in the
forced response are equal to those in the NNM (Ui,j = Ūi,j), i.e. the amplitudes are
unaffected by the application of forcing and damping, as in Ref. [139].

Based on this smallness assumption of phase-shift, the energy transfer analysis at the
harmonic level is now formulated via Eq. (6.13). It will be shown that the energy-transfer
terms, EDi,j, EP i,j and ENi,j, may be approximated as linear functions of the excitation
amplitude, Pi,j, and the phase-shifts, θ̂i,j via known inputs of NNM solutions.

6.3.2 Problem formulation: energy-transfer balancing

Energy balancing principle at the harmonic level, i.e. Eq. (6.13), describes the balancing
of damping, forcing and nonlinear energy-transfer terms for the jth harmonic of the ith

mode, where these terms may be computed respectively using Eq. (6.14). In addition, in
Appendix C, it is derived that these terms may be written as

EDi,j = E†
Di,j , (6.19a)

EP i,j ≈ E†
P i,jPi,j , (6.19b)

ENi,j ≈
N∑

n=1

∑
k∈Hn

E
†(n,k)
Ni,j θ̂n,k , (6.19c)

where the dagger, •†, denotes a known term – i.e. a term that may be computed using
the NNM solution (which is assumed to be known). Whilst the forcing amplitudes,
Pi,j, and phase-shifts, θ̂n,k, are assumed to be unknown and will be computed via the
energy balancing analysis. It can be observed that these energy-transfer terms can be
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approximated as linear functions of the unknowns, i.e. Pi,j and θ̂n,k. The known terms
are found using

E†
Di,j = πj2ωdiU

2
i,j , (6.20a)

E†
P i,j = −πjUi,j , (6.20b)

E
†(n,k)
Ni,j =



1
kω

∫ T

0

∂Nqi

∂qn

˙̄ui,j
˙̄un,kdt ,

when: {i, j} ≠ {n, k} ,

1
jω

∫ T

0

∂Nqi

∂qi

˙̄u2
i,jdt

+ 1
jω

∫ T

0
Nqi

¨̄ui,jdt ,

when: {i, j} = {n, k} .

(6.20c)

Equation (6.19b) shows that the energy transferred to the jth harmonic of the ith mode
from external forcing is only due to the force directly applied to that harmonic (i.e. it
is only a function of Pi,j), of which examples are shown in Fig. 6.4. The nonlinear
counterpart, Eq. (6.19c), represents the nonlinear energy transfer from all harmonics
of all modes in an NNM to the jth harmonic of the ith mode; and it reveals that a
phase-shift in any harmonic of any mode, i.e. the kth harmonic of the nth mode, may
lead to an energy transfer to the jth harmonic of the ith mode. This demonstrates that
any nonlinear energy-transfer term may couple all harmonics of all modes in an NNM,
as shown in Fig. 6.5.

Substituting the expressions of these energy-transfer terms, Eqs. (6.19), into the energy
balancing expression, Eq. (6.13), gives

E†
Di,j + E†

P i,jPi,j +
N∑

n=1

∑
k∈Hn

E
†(n,k)
Ni,j θ̂n,k = 0 . (6.21)

By collecting the energy-transfer terms due to damping, forcing and nonlinearity, the
energy balancing can be formulated from the jth harmonic, to all harmonics of the ith

mode, and to all modes of the system, summarised in Table 6.2, where the total number
of harmonics used to represents all N modes of the system is given by

RH =
N∑

i=1
|Hi| , (6.22)
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Table 6.2 Harmonic-level energy balancing.

Energy balancing for ui,j Expressions for coefficients

E†
Di,j +E†

P i,jPi,j +E†
Ni,j θ̂ = 0 (6.23)

E†(n)
Ni,j =

[
E

†(n,1)
Ni,j E

†(n,2)
Ni,j . . . E

†(n,k)
Ni,j . . . E

†(n,K)
Ni,j

]
(6.24a)

θ̂n =
(

θ̂n,1 θ̂n,2 . . . θ̂n,k . . . θ̂n,K

)⊺

(6.24b)

E†
Ni,j =

[
E†(1)

Ni,j E†(2)
Ni,j . . . E†(n)

Ni,j . . . E†(N)
Ni,j

]
(6.24c)

θ̂ =
(

θ̂
⊺
1 θ̂

⊺
2 . . . θ̂

⊺
n . . . θ̂

⊺
N

)⊺

(6.24d)

Energy balancing for qi Expressions for coefficients

E†
Di + E†

P iPi + E†
Niθ̂ = 0 (6.25)

E†
Di =

(
E†

Di,1 E†
Di,2 · · · E†

Di,j · · · E†
Di,J

)⊺

(6.26a)

E†
P i = diag

[
E†

P i,1 E†
P i,2 · · · E†

P i,j · · · E†
P i,J

]
(6.26b)

Pi = (Pi,1 Pi,2 · · · Pi,j · · · Pi,J )⊺ (6.26c)
E†

Ni =
[
E†

Ni,1
⊺ E†

Ni,2
⊺ · · · E†

Ni,j

⊺ · · · E†
Ni,J

⊺
]⊺

(6.26d)

Energy balancing for the system Expressions for coefficients

E†
D + E†

P P + E†
N θ̂ = 0 (6.27)

E†
D =

(
E†

D1
⊺ E†

D2
⊺

. . . E†
Di

⊺
. . . E†

DN

⊺
)⊺

(6.28a)

E†
P = diag

[
E†

P 1 E†
P 2 · · · E†

P i · · · E†
P N

]
(6.28b)

P =
(

P⊺
1 P⊺

2 . . . P⊺
i . . . P⊺

N

)⊺ (6.28c)

E†
N =

[
E†

N1
⊺ E†

N2
⊺ · · · E†

Ni

⊺ · · · E†
NN

⊺
]⊺

(6.28d)

and where the damping energy vector, E†
D, the forcing amplitude vector, P, and the

harmonic phase-shifts vector, θ̂, all measure {RH ×1}; the forcing energy coefficient
matrix, E†

P , is a square, diagonal matrix measuring {RH ×RH}; and the nonlinear
energy-transfer coefficient matrix, E†

N , is a {RH ×RH} matrix, populated with E
†(n,k)
Ni,j .

Up to this point, the energy transfer analysis is formulated as a set of RH equations, given
by Eq. (6.27), with 2RH unkonwns, consisting of RH phase-shifts, θ̂i,j, and RH forcing
amplitudes, Pi,j – the unknowns outnumber the equations. To solve this underdetermined
equation set, in the following section, it will be demonstrated how quadrature conditions
can reduce the number of variables and introduce extra constraints, leading to a solvable
equation set.
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6.3.3 Problem solving: quadrature harmonic forcing

As previously discussed, the current formulation allows all harmonics of all modes to be
forced. However, in practical applications, the forcing can only be applied to a limited
number of harmonics. Here, the special case is considered where a limited number of
independent harmonic forces are applied in quadrature with the corresponding harmonic
displacements, as defined in Eq. (6.17), termed quadrature harmonic forces. Whilst the
more complex, yet more practical, case, where quadrature physical forces4 are applied,
will be discussed later in §6.4.

To specify this here the harmonics of the non-zero forcing (applied to the ith mode) are
defined as belonging to the set P̃i, i.e. the non-zero subset of Pi. As such, the total
number of non-zero forcing applied to the system is given by

RF =
N∑

i=1
|P̃i| . (6.29)

With this, P may be simplified by discarding the zero-valued elements to reduce the
number of unknowns that need to be estimated. This reduction is achieved by relating
the vector of non-zero forcing amplitudes P̃ (measuring {RF ×1}) to P via the force
reduction matrix, CP , where

P = CP P̃ . (6.30)

The force reduction matrix may be constructed using a {RH ×RH} identity matrix
and removing the columns associated with unforced harmonics. Hence, CP is of size
{RH ×RF}. Substituting Eq. (6.30) into Eq. (6.27) leads to

E†
D + Ẽ†

P P̃ + E†
N θ̂ = 0 , (6.31)

where Ẽ†
P = E†

P CP is also used, and hence Ẽ†
P measures {RH ×RF}. Through force

reduction, the total number of unknowns is now reduced to (RH +RF), i.e. RH phase-
shifts and RF forcing amplitudes. However, it is still underdetermined and additional
RF constraints are required to solve the equations.

4In contrast to a quadrature harmonic forcing, a quadrature physical forcing denotes the case where
the applied force is in quadrature with a displacement at a physical location.
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As it is assumed that all forces are in quadrature with the harmonic they are forcing,
this condition may be enforced using a phase constraint matrix, Cθ, where

Cθθ̂ = 0 . (6.32)

This indicates that the forced harmonics do not exhibit a phase-shift – if the forced
harmonics did exhibit a phase-shift, they would no longer be in quadrature. Here, Cθ is
a {RF ×RH} matrix that constrains the phase-shifts of all forced harmonics to be zero.
In the case where all harmonic forces are independent, the phase constraint matrix is the
transpose of the force reduction matrix, i.e. Cθ = C⊺

P ; hence Cθ may be constructed by
removing the rows associated with unforced harmonic of a {RH ×RH} identity matrix.
The phase constraints introduce RF equations, and hence combining Eq. (6.32) with
the energy balancing expressions, defined by Eq. (6.31), leads the harmonic-level energy-
transfer analysis to a determined, or solvable, equation set.

Equations (6.31) and (6.32) are now combined and written into matrix form as

Av = B , (6.33)

where

v =
 θ̂

P̃

 , A =
 E†

N Ẽ†
P

Cθ 0

 , B =
 −E†

D

0

 , (6.34)

and where the unknowns, i.e. θ̂ and P̃, are collected in the vector v, and the known
coefficients are collected in matrices A and B. As the number of constraints now matches
the number of unknowns, the unknown terms are found using

v = A−1B . (6.35)

This allows the phase-shifts of any unforced harmonics and the amplitudes of any forces,
which are represented in v, to be computed.

In summary, based on the smallness assumption of phase-shifts, the proposed HETA can be
formulated by combining the energy balancing principle (6.27) with force reduction (6.30)
and phase constraints (6.32). Closed-form solutions of unknowns, namely the forcing
amplitudes and harmonic phase-shifts, can be obtained via Eq. (6.35) with known inputs
of NNM solutions; nonetheless, it often results in large-size matrices that, whilst they
are all defined analytically, it is more practical to compute digitally.
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For the case where the forces applied to the harmonics are independent, the use of the
forcing reduction matrix, CP , and the phase constraint matrix, Cθ, could be viewed as
unnecessary: Ẽ†

P may be constructed directly by removing the columns of E†
P that corre-

spond to the unforced harmonics; likewise, the forced phase-shifts and their corresponding
columns in E†

N may be removed (as the forced harmonic exhibits a zero phase-shift).
In this way, a determined lower-dimension problem can be formulated. However, this
approach allows additional constraints to be introduced, as shown later in §6.4. The
implementation of this method is now demonstrated using a simple example system.

6.3.4 Example 1: a quadrature harmonic forcing case

To demonstrate the HETA, the cantilever beam, schematically shown in Fig. 6.2, is
again considered. To simplify this case, a single-harmonic force is applied to each mode
independently, such that the equations of motion are written

q̈1 + d1q̇1 + ω2
n1q1 +Nq1 (q1, q2) = F1 cos (Ωt) , (6.36a)

q̈2 + d2q̇2 + ω2
n2q2 +Nq2 (q1, q2) = F2 cos (3Ωt) , (6.36b)

where the nonlinear forces are given by Eq. (6.10). Note that the case where forcing is
applied to the part-span will be revisited later in §6.4.

The parameters of the system are the same as considered in §6.2.3, given in Table 6.1.
It should be noted that the forcing amplitudes, F1 and F2, are assumed to be unknown
(and to be found using the HETA). Also note that the linear natural frequencies have a
ratio of approximately 1 : 3, i.e. ωn2/ωn1 ≈ 3. This leads to a 1 : 3 modal interaction, as
discussed in detail in [262].

Before applying the HETA, the backbone curves of the system need to be obtained to
provide known parameters to compute the coefficients in Eq. (6.35). The first backbone
curve is presented in Fig. 6.6 by a solid-blue line. The top and bottom panels of Fig. 6.6
show the maximum displacement amplitudes of the first and second modes respectively.
In both of these panels, a distinctive loop region is seen, indicating a strong internal
resonance between the two linear modes. Further discussion of this NNM branch can be
found in [262]. For comparison, the forced responses, obtained via force appropriation
[90], are also presented by thin red lines, with dots. For the system described by
Eq. (6.36), quadrature is achieved when the force applied to the first mode is at 90◦ to
the displacement of the first harmonic, u1,1, and when the second modal forcing is at 90◦

to the displacement of the third harmonic, u2,3 – see [90, 144] for further details. As the

160



6.3 Harmonic-level Energy-Transfer Analysis

backbone curve
Quadrature forcing

Fig. 6.6 The first backbone curve (blue line) and quadrature branch (red line with dots)
for the two-mode beam. The top panel is in the projection of the response frequency, ω,
against the maximum displacement amplitude of the first linear mode, Q1. The bottom
panel is in the projection of ω against the maximum displacement amplitude of the
second mode, Q2. The dotted-black line denotes the first linear natural frequency.

NNMs and the forced responses appear to be close, it is expected that the phase-shifts
will be small.

To apply HETA, a finite number of harmonics must be used to approximate the modal
displacements, as previously discussed in Eq. (6.16). For this example, it is assumed that
the first and third harmonics of each mode are sufficient5, i.e.

H1 = {1, 3} , H2 = {1, 3} , (6.37)

such that

q1 ≈ u1,1 + u1,3 , q2 ≈ u2,1 + u2,3 . (6.38)

Whilst additional harmonics would provide greater accuracy, just two harmonics are
considered here for simplicity.

To construct the energy balancing equations using Eq. (6.31), the coefficients and
unknowns are first assembled into vector/matrix form. The damping energy vector is

5Note that this system exhibits 1 : 3 internal resonances; as such, only odd-numbered harmonics will
be present in the resonant response.
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defined, using Eqs. (6.20a), (6.26a) and (6.28a), as

E†
D =


E†

D1,1

E†
D1,3

E†
D2,1

E†
D2,3

 =


πωd1U

2
1,1

9πωd1U
2
1,3

πωd2U
2
2,1

9πωd2U
2
2,3

 . (6.39)

Then, using Eqs. (6.26b), (6.26c), (6.28b) and (7.15), the matrix of forcing energy
coefficients, and vector of unknown forcing amplitudes, are written as

E†
P =


E†

P 1,1 0 0 0
0 E†

P 1,3 0 0
0 0 E†

P 2,1 0
0 0 0 E†

P 2,3

, P =


P1,1

P1,3

P2,1

P2,3

. (6.40)

As the third harmonic of the first mode, u1,3, and the first harmonic of the second mode,
u2,1, are unforced, the force reduction matrix and reduced vector of forcing amplitudes
may be written

CP =


1 0
0 0
0 0
0 1

 , P̃ =
 P1,1

P2,3

 =
 F1

F2

 , (6.41)

where the forcing amplitudes P1,1 = F1 and P2,3 = F2, from the equations of motion,
i.e. Eq. (6.36), have been substituted. Using the force reduction matrix, the reduced
matrix of forcing energy coefficient is given by

Ẽ†
P = E†

P CP =


E†

P 1,1 0
0 0
0 0
0 E†

P 2,3

 =


−πU1,1 0

0 0
0 0
0 −3πU1,3

 , (6.42)

where Eq. (6.20b) has been used to define the forcing energy coefficients.
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Next, as defined by Eqs. (6.24a), (6.24c), (6.26d) and (6.28d), the matrix of nonlinear
coefficients is written

E†
N =


E

†(1,1)
N1,1 E

†(1,3)
N1,1 E

†(2,1)
N1,1 E

†(2,3)
N1,1

E
†(1,1)
N1,3 E

†(1,3)
N1,3 E

†(2,1)
N1,3 E

†(2,3)
N1,3

E
†(1,1)
N2,1 E

†(1,3)
N2,1 E

†(2,1)
N2,1 E

†(2,3)
N2,1

E
†(1,1)
N2,3 E

†(1,3)
N2,3 E

†(2,1)
N2,3 E

†(2,3)
N2,3

 , (6.43)

where the elements of this matrix are computed using Eq. (6.20c).

Finally, the phase constraint matrix and vector of phase-shifts are written

Cθ = C⊺
P =

 1 0 0 0
0 0 0 1

 , θ̂ =
(
θ̂1,1 θ̂1,3 θ̂2,1 θ̂2,3

)⊺
. (6.44)

Using the expressions from (6.39) to (6.44), the components to apply harmonic-level
energy-transfer analysis, i.e. Eq. (6.35), may be collected as

v =
(
θ̂1,1 θ̂1,3 θ̂2,1 θ̂2,3 F1 F2

)⊺
, (6.45a)

B =
(

−E†
D1,1 −E†

D1,3 −E†
D2,1 −E†

D2,3 0 0
)⊺
, (6.45b)

A =



E
†(1,1)
N1,1 E

†(1,3)
N1,1 E

†(2,1)
N1,1 E

†(2,3)
N1,1 E†

P 1,1 0
E

†(1,1)
N1,3 E

†(1,3)
N1,3 E

†(2,1)
N1,3 E

†(2,3)
N1,3 0 0

E
†(1,1)
N2,1 E

†(1,3)
N2,1 E

†(2,1)
N2,1 E

†(2,3)
N2,1 0 0

E
†(1,1)
N2,3 E

†(1,3)
N2,3 E

†(2,1)
N2,3 E

†(2,3)
N2,3 0 E†

P 2,3

1 0 0 0 0 0
0 0 0 1 0 0


. (6.45c)

Noting that all components in A and B may be computed using an NNM solution. The
vector of unknown phase-shifts and forcing amplitudes may now be computed using
Eq. (6.35), i.e. v = A−1B.

Figure 6.7 shows the forcing amplitudes, |F1| and |F2|, and the phase-shifts, θ̂1,3 and θ̂2,1,
computed via the HETA outlined above and force appropriation. In all panels of Fig. 6.7,
the computationally-cheap analytically-predicted values, obtained via the HETA, are
represented by blue lines, whilst the computationally-expensive numerically-simulated
values, obtained via force appropriation, are shown by red lines with dots. The difference
between the analytically-predicted and numerically-simulated forcing amplitudes, |F1|
and |F2|, is indistinguishable, showing that these have been predicted with a very high
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HETA
Numerical simulation

Fig. 6.7 Comparison between the predictions of HETA (using a two-harmonic approx-
imation for each mode) and the numerically-simulated forced responses. (a) and (d)
The response frequency, ω, against the forcing amplitudes |F1| and |F2| respectively.
(b) and (c) The response frequency, ω, against the phase-shift parameters, θ̂1,3 and θ̂2,1
respectively. In all panels, the blue lines represent analytically-predicted values (using the
NNM data), the red lines (with dots) represent the numerical results and the dotted-black
line denotes the first linear natural frequency.

level of accuracy. Although there is some discrepancy, the phase-shift values, θ̂1,3 and
θ̂2,1, also show a very good agreement, despite the low number of harmonics used to
approximate these responses. The greatest inaccuracy can be seen in phase-shifts, θ̂1,3

and θ̂2,1, near the linear natural frequency, ωn1, (where NNMs are close to the linear
response). This is likely due to numerical error in both the simulated and estimated
values, as the harmonics are very small for low-amplitude NNMs. Additionally, as the
NNM approaches the linear case, the mixed-mode NNM response approaches a linear
single-mode response whose phase is no longer defined.

In addition to the strong agreement between results obtained from these two techniques,
the results computed via HETA also provide useful information in interpreting nonlinear
behaviours. Recalling that harmonic phase-shifts account for the perturbations from
NNMs to forced responses, it follows that, by monitoring the evolutions of phase-shifts, the
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applicability and accuracy of interpreting forced responses via NNMs can be estimated. In
this example, the smallness of phase-shifts along the backbone curve, shown in panels (b)
and (c), justifies the applicability of the proposed method.

To summarise, the results of HETA, shown in blue in Fig. 6.7, have been estimated
via the procedure outlined in this section using only the NNM responses. For the
sake of simplicity, this approach has assumed that the response consists of just two
harmonics, which limits the accuracy of the predictions. However, owing to the semi-
analytical framework, it is convenient to increase the number of harmonics without
adding much computational effort. As such, this provides a more efficient technique,
whilst preserving the necessary high resolution, for resonance predictions when compared
with computationally expensive numerical analysis. The following section will consider
additional, more complex, examples and demonstrate the application of this approach to
cases with a greater number of parameters.

6.4 Accounting for quadrature physical forcing

The formulation of HETA presented in §6.3 is restricted to cases where independent
harmonic forces are applied to each mode of the system; however, in many practical
applications, a force may be applied to multiple modes simultaneously. For example,
a force applied to the mid-span of a beam is able to excite all modes of the system
simultaneously (aside from those that have a node at the forcing location). If one
excitation force is applied to multiple modes, the forcing cannot be in quadrature with
all forced modal responses, and hence the phase constraints used in §6.3 (i.e. the forced
harmonics exhibit zero phase-shifts) become invalid; instead, the modes must be free to
exhibit different phase-shifts. In this section, it is shown that the HETA may be extended
to account for additional forcing conditions – namely where a force is in quadrature
with a displacement at a physical location, rather than a harmonic of a mode. This is
reflective of most practical scenarios where a force is tuned to reach quadrature with
the excitation point. Here, such a forcing is termed a quadrature physical forcing, in
comparison to the quadrature harmonic forcing considered in §6.3.

6.4.1 HETA with quadrature physical forcing

To formulate the HETA with quadrature physical forces, the excitation points are defined
as ℓ ∈ L, whose number of elements is RL; at the excitation point, ℓ, the harmonic
components of the forcing is defined as j ∈ Fℓ, whose number of elements is RFℓ

. Note
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that it is assumed that the forced harmonics are included in all modes, i.e.

Fℓ ⊆
N⋂

i=1
Hi . (6.46)

Consequently, the total number of forcing harmonics, across all excitatioin points, is
given by

RF =
∑
ℓ∈L

RFℓ
. (6.47)

At excitation point, ℓ, the non-zero ith modal forcing can be obtained by introducing the
linear modal transform to the physical forcing, and is given by

p̃ℓ,i = ϕℓ,if̃ℓ(t) , (6.48)

where •̃ denotes the non-zero harmonic forcing, as discussed in §6.3.3, and ϕℓ,i is the mode-
shape of the ith mode at the excitation point, ℓ. Separating into harmonic components,
f̃ℓ can be expressed as

f̃ℓ =
∑

j∈Fℓ

f̃ℓ,j =
∑

j∈Fℓ

−F̃ℓ,j sin
(
jωt+ ψ̃ℓ,j

)
, (6.49)

where F̃ℓ,j and ψ̃ℓ,j are the amplitude and phase of the harmonic forcing, f̃ℓ,j. As such,
the modal forcing, p̃ℓ,i, may be approximated as a sum of harmonics using Eqs. (6.48)
and (6.49), i.e.

p̃ℓ,i =
∑

j∈Fℓ

−ϕℓ,iF̃ℓ,j sin
(
jωt+ ψ̃ℓ,j

)
, (6.50)

of which the jth harmonic component is given by

p̃ℓ,i,j = −ϕℓ,iF̃ℓ,j sin
(
jωt+ ψ̃ℓ,j

)
. (6.51)

The energy transferred via the modal forcing, p̃ℓ,i, to the jth harmonic of the ith mode,
ui,j, can be computed via Eq. (6.14b), given by

ẼP ℓ,i,j = −
∫ T

0
p̃ℓ,iu̇i,jdt ≈ −πjϑdi,jUi,jϕℓ,iF̃ℓ,j , (6.52)
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where

ϑdi,j = cos
(
ψ̃ℓ,j − θ̄i,j

)
. (6.53)

The details of this derivation are given in Appendix C. The phase relationships between
the external forcing and NNMs is captured by ϑdi,j . As such, the effect of external forcing
on energy transfer is captured by the sign of ϑdi,j – either an energy gain or an energy
loss, reflective of the fact that one force may affect modes differently. In contrast, in
the case where independent harmonic forces are applied in quadrature with harmonic
displacements, as discussed in §6.3, the applied forces must lead to forcing energy-gain
terms for the enforced harmonics – see Eqs. (6.19b) and (6.20b). As shown in Appendix C,
ϑdi,j may be related to NNM solutions via quadrature conditions; and hence it is seen as
a known parameter.

As discussed in §6.3.2, the forcing energy-transfer terms can be separated into forcing
energy-transfer coefficients, E†

P ℓ,i,j, and harmonic forcing amplitudes, P̃ℓ,i,j, i.e.

ẼP ℓ,i,j ≈ E†
P ℓ,i,jP̃ℓ,i,j , (6.54)

where

E†
P ℓ,i,j = −πjϑdi,jUi,j and P̃ℓ,i,j = ϕℓ,iF̃ℓ,j . (6.55)

Combining the forcing amplitudes for all harmonics of the ith mode gives

P̃ℓ,i = ϕℓ,iF̃ℓ , (6.56)

where

P̃ℓ,i =
(
P̃ℓ,i,1 P̃ℓ,i,2 . . . P̃ℓ,i,j . . . P̃ℓ,i,J

)⊺
, (6.57a)

ϕℓ,i = diag
[
ϕℓ,i ϕℓ,i . . . ϕℓ,i . . . ϕℓ,i

]
, (6.57b)

F̃ℓ =
(
Fℓ,1 Fℓ,2 . . . Fℓ,j . . . Fℓ,J

)⊺
. (6.57c)

Next, collecting modal forcing amplitudes for all forced modes of the system gives

P̃ℓ = ϕℓF̃ℓ , (6.58)
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where

P̃ℓ =
(

P̃⊺
ℓ,1 P̃⊺

ℓ,2 . . . P̃⊺
ℓ,i . . . P̃⊺

ℓ,N

)⊺
, (6.59a)

ϕℓ =
[

ϕℓ,1 ϕℓ,2 . . . ϕℓ,i . . . ϕℓ,N

]⊺
, (6.59b)

As discussed in §6.3, the reduced forcing energy coefficient matrix, Ẽ†
P,ℓ, can be formulated

via force reduction

Ẽ†
P ℓ = E†

P ℓCP ℓ , (6.60)

where E†
P ℓ is a {RH ×RH} diagonal matrix with leading diagonal elements, E†

P ℓ,i,j, defined
in Eq. (6.55); and the force reduction matrix, CP ℓ, may be constructed using a {RH ×RH}
identity matrix and removing columns associated with unforced harmonics.

The forcing energy-transfer terms are then collected with respect to known terms that
can be computed via NNM solutions and unknown terms to be solved via HETA, i.e.

Ẽ†
F ℓF̃ℓ = E†

P ℓCP ℓϕℓF̃ℓ , (6.61)

where Ẽ†
F ℓ = E†

P ℓCP ℓϕℓ, measuring {RH ×RFℓ
}, and F̃ℓ is a vector, measuring {RFℓ

×1}.

For each excitation point, ℓ, the matrix Ẽ†
F ℓ and vector F̃ℓ may be constructed using the

procedure outlined above. The direct collection of them across all excitation points gives

Ẽ†
F =

(
Ẽ†

F 1 Ẽ†
F 2 . . . Ẽ†

F ℓ . . . Ẽ†
F RL

)
, (6.62a)

F̃ =
(

F̃⊺
1 F̃⊺

2 . . . F̃⊺
ℓ . . . F̃⊺

RL

)⊺
, (6.62b)

where Ẽ†
F is a {RH ×RF} matrix, and F̃ is a {RF ×1} vector.

Other energy-transfer terms, i.e. damping and nonlinear energy-transfer terms, EDi,j and
ENi,j, are the same as those defined in §6.3, and they can be constructed in the same
form as E†

D and E†
N respectively via Eqs. (6.28a) and (6.28d).

As such, for the excitation scenario with quadrature physical forces, the energy balancing
expressions can be formulated by considering the energy balancing principle across all
harmonics of all modes, given by

E†
D + Ẽ†

F F̃ + E†
N θ̂ = 0 , (6.63)
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which consists of RH equations with RH +RF unknowns, i.e. RH phase-shifts and RF

forcing amplitudes. To obtain a determined (solvable) problem, extra RF constraints can
be introduced by considering the quadrature conditions, leading to phase-shift constraints,
similar to the discussions in §6.3.3.

To construct phase-shift constraints, the displacement at excitation point, ℓ, is written
yℓ and may be expressed as a sum of the modal displacements

yℓ =
N∑

i=1
ϕℓ,iqi . (6.64)

Considering the modal displacement as a sum of harmonic components, as in Eq. (6.16),
gives

yℓ =
N∑

i=1

∑
j∈Hi

ϕℓ,iui,j , (6.65)

and hence the jth harmonic of the physical displacement yℓ may be written

yℓ,j =
N∑

i=1
ϕℓ,iui,j . (6.66)

Here as yℓ,j represents the harmonic displacement which is in quadrature with the forcing,
it may be written as a sinusoid with amplitude Yℓ,j and phase ψ̃ℓ,j, i.e.

Yℓ,j cos
(
jωt+ ψ̃ℓ,j

)
=

N∑
i=1

ϕℓ,iUi,j cos
(
jωt+ θi,j

)
, (6.67)

where Eq. (6.18) has been used to express ui,j as a sinusoid and where θi,j = θ̄i,j + θ̂i,j.

If the jth harmonic of the force is in quadrature with yℓ,j , then the phase, ψ̃ℓ,j , of yℓ,j must
be equal for both the NNM and the forced case. To find how this leads to a constraint
between the modal phase-shift terms, the time- and phase-dependent components of
Eq. (6.67) may be separated by first writing

Yℓ,j

[
cos (jωt) cos

(
ψ̃ℓ,j

)
− sin (jωt) sin

(
ψ̃ℓ,j

)]
= (6.68)

N∑
i=1

ϕℓ,iUi,j

[
cos (jωt) cos

(
θi,j

)
− sin (jωt) sin

(
θi,j

)]
.
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From this, the cos (jωt) and sin (jωt) components may be balanced to give the relation-
ships

Yℓ,j cos
(
ψ̃ℓ,j

)
=

N∑
i=1

ϕℓ,iUi,j cos
(
θi,j

)
, (6.69a)

Yℓ,j sin
(
ψ̃ℓ,j

)
=

N∑
i=1

ϕℓ,iUi,j sin
(
θi,j

)
. (6.69b)

The displacement amplitude Yℓ,j may now be removed by dividing Eq. (6.69b) by
Eq. (6.69a) to give

tan
(
ψ̃ℓ,j

)
=

N∑
i=1

ϕℓ,iUi,j sin
(
θi,j

)
N∑

i=1
ϕℓ,iUi,j cos

(
θi,j

) . (6.70)

If the phase, ψ̃ℓ,j, is equal for both the NNM and forced case, it therefore follows that
Eq. (6.70) may be satisfied for both θi,j = θ̄i,j + θ̂i,j (i.e. forced responses) and θi,j = θ̄i,j

(i.e. NNMs). With the smallness assumption of phase-shifts, it leads to
 N∑

i=1
ϕℓ,iUi,j sin

(
θ̄i,j

)+
 N∑

i=1
ϕℓ,iUi,j cos

(
θ̄i,j

)
θ̂i,j


 N∑

i=1
ϕℓ,iUi,j cos

(
θ̄i,j

)−

 N∑
i=1

ϕℓ,iUi,j sin
(
θ̄i,j

)
θ̂i,j

 =

N∑
i=1

ϕℓ,iUi,j sin
(
θ̄i,j

)
N∑

i=1
ϕℓ,iUi,j cos

(
θ̄i,j

) . (6.71)

This restriction represents how the quadrature condition (the applied forcing is in
quadrature with a displacement at a physical location) imposes a constraint between the
phase-shifts of the modal harmonics. It may be simplied to

N∑
i=1

N∑
n=1

ϕℓ,iϕℓ,nUi,jUn,j cos
(
θ̄i,j − θ̄n,j

)
θ̂i,j = 0 . (6.72)

In this case, each harmonic of each forcing location will be associated with an unknown
forcing amplitude, but will also lead to an additional constraint given by Eq. (6.72). For
the case where multi-point, multi-harmonic forces are applied, such phase constraints
introduce as many constraints as the number of unknown forcing amplitudes, RF , which
may be expressed

Cθθ̂ = 0 , (6.73)
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where Cθ denotes the phase constraint matrix, similar to that in Eq. (6.32). Note that,
in the case discussed in §6.3, where quadrature harmonic forcing is considered, the phase
constraint matrix restricts zero phase-shifts to the enforced harmonics; however, here,
the phase constraint matrix enforces relationships between harmonic phase-shifts.

Therefore, the number of unknowns (RH phase-shifts and RF forcing amplitudes) matches
the number of equations (given by the energy balancing, i.e. Eq. (6.63), and the phase
constraints, i.e. Eq. (6.73)). Combining Eqs. (6.63) and (6.73), the harmonic-level energy-
transfer analysis with quadrature physical forcing may be constructed in the same form
as Eq. (6.35), i.e.

v = A−1B . (6.74)

where

A =
 E†

N Ẽ†
F

Cθ 0

 , B =
 −E†

D

0

 , v =
 θ̂

F̃

 . (6.75)

This allows the phase-shifts of all harmonics, θ̂, and the physical forcing amplitudes, F̃,
to be computed via known parameters obtained from NNM solutions.

6.4.2 Example 2: a quadrature physical forcing case

To formulate the HETA for a quadrature physical forcing scenario, the two-mode beam
model, schematically shown in Fig. 6.2, is again considered. Here a two-harmonic physical
force is considered, given by

f(t) = F1 cos (Ωt) + F2 cos (3Ωt) , (6.76)

which is applied to the part-span position at L1 = 0.1L, such that the equations of
motion are written

q̈1 + d1q̇1 + ω2
n1q1 +Nq1 (q1, q2) = ϕℓ,1f(t), (6.77a)

q̈2 + d2q̇2 + ω2
n2q2 +Nq2 (q1, q2) = ϕℓ,2f(t), (6.77b)

where the nonlinear forces are given by Eq. (6.10). The parameters of the system are the
same as those considered in §6.2.3 and §6.3.4, given in Table 6.1. Each modal displacement,
qi, is approximated by three harmonics, namely the odd-numbered harmonics up to the
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5th order, i.e.

H1 = {1, 3, 5} , H2 = {1, 3, 5} , (6.78)

such that

q1 ≈ u1,1 + u1,3 + u1,5 , q2 ≈ u2,1 + u2,3 + u2,5 . (6.79)

As with the example demonsrated in §6.3.4, firstly the known energy-transfer coefficients
are assembled into vector or matrix forms. Using Eqs. (6.20a), (6.26a) and (6.28a), the
vector of damping energy-transfer terms, EDi,j, is given by

E†
D =



E†
D1,1

E†
D1,3

E†
D1,5

E†
D2,1

E†
D2,3

E†
D2,5


=



πωd1U
2
1,1

9πωd1U
2
1,3

25πωd1U
2
1,5

πωd2U
2
2,1

9πωd2U
2
2,3

25πωd2U
2
2,5


. (6.80)

The diagonal matrix of forcing energy coefficients, whose leading elements, E†
P ℓ,i,j, are

defined by Eq. (6.55), is given by

E†
P ℓ =



E†
P ℓ,1,1 0 0 0 0 0
0 E†

P ℓ,1,3 0 0 0 0
0 0 E†

P ℓ,1,5 0 0 0
0 0 0 E†

P ℓ,2,1 0 0
0 0 0 0 E†

P ℓ,2,3 0
0 0 0 0 0 E†

P ℓ,2,5


, (6.81)

The force reduction matrix, CP ℓ, the modeshape coefficient matrix, ϕℓ, and the non-zero
forcing amplitude vector, F̃, may be obtained via equations from Eq. (6.55) to Eq. (6.60).
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These are given by

CP ℓ =



1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0


, ϕℓ =


ϕℓ,1 0
0 ϕℓ,1

ϕℓ,2 0
0 ϕℓ,2

 , F̃ℓ =
 F1

F2

 . (6.82)

Using Eq. (6.61), the matrix of forcing energy-transfer coefficients, Ẽ†
F , is written

Ẽ†
F ℓ = E†

P ℓCP ℓθℓ =



ϕℓ,1E
†
P ℓ,1,1 0

0 ϕℓ,1E
†
P ℓ,1,3

0 0
ϕℓ,2E

†
P ℓ,2,1 0

0 ϕℓ,2E
†
P ℓ,2,3

0 0


, (6.83)

Next, as in §6.3, the matrix of nonlinear energy-transfer coefficients may be obtained
using Eqs. (6.24c), (6.26d) and (6.28d), i.e.

E†
N =



E
†(1,1)
N1,1 E

†(1,3)
N1,1 E

†(1,5)
N1,1 E

†(2,1)
N1,1 E

†(2,3)
N1,1 E

†(2,5)
N1,1

E
†(1,1)
N1,3 E

†(1,3)
N1,3 E

†(1,5)
N1,3 E

†(2,1)
N1,3 E

†(2,3)
N1,3 E

†(2,5)
N1,3

E
†(1,1)
N1,5 E

†(1,3)
N1,5 E

†(1,5)
N1,5 E

†(2,1)
N1,5 E

†(2,3)
N1,5 E

†(2,5)
N1,5

E
†(1,1)
N2,1 E

†(1,3)
N2,1 E

†(1,5)
N2,1 E

†(2,1)
N2,1 E

†(2,3)
N2,1 E

†(2,5)
N2,1

E
†(1,1)
N2,3 E

†(1,3)
N2,3 E

†(1,5)
N2,3 E

†(2,1)
N2,3 E

†(2,3)
N2,3 E

†(2,5)
N2,3

E
†(1,1)
N2,5 E

†(1,3)
N2,5 E

†(1,5)
N2,5 E

†(2,1)
N2,5 E

†(2,3)
N2,5 E

†(2,5)
N2,5


, (6.84)

where the elements in this matrix may be computed using Eq. (6.20c).

The phase-shift constraints, defined in Eq. (6.72), may be assembled into matrix form
as Eq. (6.73), where the matrix of phase-shift constraint coefficients, Cθ, and vector of
phase-shifts, θ̂, are given

Cθ =
 Cθ1,1 0 0 Cθ2,1 0 0

0 Cθ1,3 0 0 Cθ2,3 0

 , (6.85a)

θ̂ =
(
θ̂11 θ̂13 θ̂15 θ̂21 θ̂23 θ̂25

)⊺
, (6.85b)
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where

Cθ1,1 = ϕ2
ℓ,1U

2
1,1 + ϕℓ,1ϕℓ,2U1,1U2,1 cos

(
θ̄1,1 − θ̄2,1

)
,

Cθ2,1 = ϕ2
ℓ,2U

2
2,1 + ϕℓ,2ϕℓ,1U2,1U1,1 cos

(
θ̄2,1 − θ̄1,1

)
,

Cθ1,3 = ϕ2
ℓ,1U

2
1,3 + ϕℓ,1ϕℓ,2U1,3U2,3 cos

(
θ̄1,3 − θ̄2,3

)
,

Cθ2,3 = ϕ2
ℓ,2U

2
2,3 + ϕℓ,2ϕℓ,1U2,3U1,3 cos

(
θ̄2,3 − θ̄1,3

)
.

Combining equations from Eq. (6.80) to Eq. (6.85), the energy transfer analysis may
be formulated in the form as Eq. (6.74). Therefore, the unknowns, i.e. the physical
forcing amplitudes, F̃ℓ, and the phase-shifts, θ̂, may be computed. Here the results
obtained from the HETA are compared with the forced responses obtained via the force
appropriation technique, proposed in [90].

Figure 6.8 shows the solved parameters, i.e. physical forcing amplitudes, |F1| and |F2|,
and harmonic phase-shifts, i.e. θ̂1,1, θ̂1,3, θ̂1,5, θ̂2,1, θ̂2,3 and θ̂2,5. In all panels of Fig. 6.8,
the predicted results obtained via HETA are shown as solid blue lines whilst the simulated
results obtained using force appropriation are shown as red lines with dots. The forcing
amplitudes obtained from both techniques are indistinguishable – see panels (a) and
(e) in Fig. 6.8. Excellent agreement is generally achieved between analytical predictions
and numerical simulations for most phase-shifts. Some discrepency lies in the prediction
of θ̂1,3 near the region where a strong internal resonance is shown between two linear
modes (the loop region in panels (a) and (e)). This discrepancy may arise from the large
phase-shift in this region, whilst this technique is derived based on the small phase-shift
assumption. Nonetheless, the numerical results indicate a drastic change in the sign of
phase-shift from positive to negative or vice versa, which is also captured by the results
obtained from HETA. The other discrepancy lies in the prediction of θ̂2,1 near the natural
frequency region, however, the trend over response frequency is again captured in good
agreement.

In addition, it can be observed that some harmonics, i.e. u1,3, u1,5 and u2,5, exhibit large
harmonic phase-shifts near the internally resonant region. However, these harmonics
have negligible amplitudes, as such their effect on the overall response is still minimal. In
contrast, the fundamental components, i.e. u1,1 and u2,3, which show large-amplitude and
significant effect on the responses, have small phase-shifts along the predicted branch.
As with that discussed in §6.3.4, tracking the evolutions of phase-shifts can estimate the
applicability of energy balancing analysis when using NNMs to interpret forced responses.
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HETA
Numerical simulation

Fig. 6.8 Comparison between the predictions of HETA (using a three-harmonic approxi-
mation for each mode) and the numerically-simulated forced responses. (a) and (e) The
response frequency, ω, against the forcing amplitudes F1 and F2 respectively. (b), (c),
(d), (f), (g) and (h) The response frequency, ω, against the phase-shift parameters, θ̂1,1,
θ̂1,3, θ̂1,5, θ̂2,1, θ̂2,3 and θ̂2,5 respectively. In all panels, the blue lines represent analytically-
predicted values (using the NNM data), the red lines (with dots) represent the numerical
results and the dotted-black line denotes the first linear natural frequency.

In practice, force appropriation has been extensively employed in nonlinear modal tests
to identify NNMs via forced responses [89, 90, 162, 163, 144]. To achieve this, a limited
number of actuators are tuned to exhibit quadrature with the displacement at each
excitation point, similar to the example considered in this section. This cannot satisfy the
perfect forcing condition (all harmonics of all modes are forced in quadrature) and must
lead to deviations between NNMs and forced resonances; such deviations, as demonstrated
previously, can be captured by harmonic phase-shifts. In the example presented in Fig. 6.8,
the internally resonant region can be accurately captured via force appropriation, which
is indicated by the small phase-shifts of large-amplitude fundamental components. This
means that the energy balancing analysis, proposed in this chapter, can also be used to
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aid nonlinear modal tests in designing an appropriate number of excitations and their
arrangement based on the criterion of small phase-shifts.

6.4.3 Example 3: isola prediction

Determining the existence of the isolated FRCs, or isolas, is of great importance in the
analysis of nonlinear responses [107, 141, 142]; one example lies in the application of a
vibration absorber such as a NLTMD, where isolas can significantly affect the vibration
suppression performance, as discussed in §2.3.1. Using the energy balancing analysis
to predict the existence of isolas has proven to be an efficient method [141]. However,
as discussed using examples in Fig. 6.3b, when responses contain multiple significant
harmonics, predicting the existence of isolas can be challenging – a key motivation for
the study in this chapter. In this section, an improved and more robust method is
demonstrated in predicting the existence of isolas using the proposed energy balancing
analysis.

For comparison, the example system, considered in §6.2, is revisited. The nonlinear
beam is modelled by a two-mode model, described by Eqs. (6.9) and (6.10), where the
parameters are given in Table 6.1. A mono-point, single-harmonic forcing, expressed by
Eq. (6.8), is applied to the part-span position at L1 = 0.2L, the same excitation scenario
as the case in Fig. 6.3b. Note that the lower-amplitude forcing, denoted by the dashed
green line in Fig. 6.3b, represents the case where the modal-level energy-transfer analysis
is unable to capture the existence of isola.

To formulate the HETA, each mode is approximated by three harmonics, i.e. the odd-
numbered harmonics up to the 5th order, the same as considered in §6.4.2. Therefore,
the formulation, in this example, is equivalent to that given in §6.4.2 with F2 = 0, and
hence it is not re-constructed here. The solved parameters, i.e. forcing amplitude, F1,
and phase-shifts, θ̂1,1, θ̂1,3, θ̂1,5, θ̂2,1, θ̂2,3 and θ̂2,5, are shown as blue lines in Fig. 6.9. In
panel (a), the predicted forcing amplitudes, solved via the single-harmonic META, are
shown as a green line in comparison with that obtained via the multi-harmonic HETA.
Near the natural frequency, the difference between results obtained via the META and
HETA is indistinguishable; as response frequency increases, the discrepancy between the
two lines grows, indicating an increasing significance of the harmonics.

Considering a forcing amplitude of F1 = 0.18, the HETA predicts one intersection, also
shown in Fig. 6.3b (the existence of an isola is not captured); whilst the META predicts
three intersections, labelled by solid dots and marked by (i), (ii), and (iii) in each
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HETA
META

Fig. 6.9 Predicting the existence of an isola using Harmonic-level Energy-Transfer Analysis
(HETA). The HETA-predicted forcing amplitude and phase-shifts are shown as blue
lines in each panel; the META-predicted forcing amplitude is shown as a red line for
comparison in panel (a). Considering a forcing amplitude of F1 = 0.18, denoted by a
dashed line in panel (a), the resonant crossing points on the NNM branch are labelled by
solid dots and marked by (i), (ii) and (iii).

panel of Fig. 6.9. This indicates that there are three resonant crossing points between
the backbone curve and forced responses. The perturbations, from NNM solutions to
resonances, for these three predictions can be evaluated by referring to the phase-shifts
from panels (b) to (g). In each panel, it is shown that the phase-shift at point (i) is the
largest of the three, whilst that at point (iii) is the smallest. Thus, it can be expected
that the largest perturbation, from an NNM solution to a resonance, occurs at point (i),
and the smallest one is at point (iii).

To verify these results, the forced responses of the beam system are computed via
numerical continuation and shown as red lines in the left panel of Fig. 6.10, along with
which the backbone curve is shown as a blue line. Three HETA-predicted crossing
points on the backbone curve are likewise denoted by solid dots, whilst the numerically
obtained resonances are labelled by ‘×’. It can be observed that the resonances, predicted
via the HETA, show great agreement with the numerical simulations, capturing the
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backbone curve

forced response
HETA prediction

Fig. 6.10 Verification and comparison of the HETA-predicted results using forced responses.
In the left panel, the forced responses of the beam system with F1 = 0.18 is computed
via numerical continuation and shown as red lines. The HETA-predicted crossing points
on the NNM branch are shown as solid dots, denoted by (i), (ii) and (iii); whilst the
numerically obtained resonances are labelled by ‘×’ signs. In the right panels, the time-
parameterised responses for crossing points on the backbone curve, the HETA-predicted
resonances and the numerically obtained resonances are compared.

resonances on both the primary response curve and the isola. To aid comparison, the
corresponding time-parameterised responses for the NNM solutions, HETA-predicted
resonances (accommdating the NNM solutions with predicted phase-shifts), and the
numerically obtained resonances are shown in the right-hand panels. In these panels, the
perturbations from NNM solutions to resonances are accurately quantified by the phase-
shifts – HETA-predicted responses well match the numerically computed resonances.

In this example, predicting the existence of an isola is considered via the HETA. Results
show that the HETA can accurately predict all the resonant crossing points between the
backbone curve and forced responses, showing an improved accuracy when compared
with the META. The perturbations from crossing points on the backbone curve to the
resonances are also shown to be accurately quantified by the phase-shifts. This provides
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an approximation of the forced response by accommodating the NNM solutions with
predicted phase-shifts.

6.5 Summary

From an energy-based perspective, studies in this chapter have extended the scope of
undamped and unforced periodic responses, considered in previous chapters, to forced
and damped scenarios. This was achieved by considering the energy balancing analysis,
across multiple harmonics of modal components in an NNM, to establish the relationships
between NNMs and forced responses. The proposed method has demonstrated its
applicability, efficiency, and robustness in using NNMs to interpret forced resonances
when the smallness assumption of phase-shifts is satisfied.

In §6.2, an overview was given of the mechanism of energy balancing during periodic
responses of a nonlinear system – the balancing of net energy transfer (arising from
nonlinearity, external forcing, and damping) in and out of the system. Based on this
mechanism, the proposed mode-level energy-transfer analysis in [139] has been demon-
strated in predicting forced responses to highlight its applicability and limitations. Due
to a single-harmonic assumption, it can be constructed in an analytical framework that
allows for efficient and accurate prediction only when harmonic contributions are negligi-
ble; however, inaccurate and even erroneous predictions have also been observed when
harmonics show a significant effect on the responses.

In §6.3, the limitations arising from the single-harmonic assumption have been overcome
by constructing the multi-harmonic energy-transfer analysis; in addition, the semi-
analytical framework preserves the computational efficiency. This energy balancing
analysis was established by viewing forced responses as phase-shift perturbations from
NNMs. Combining the energy balancing principle with force reduction and phase-shift
constraints, a closed-form solution has been analytically derived. With known inputs
of NNM solutions, the proposed method has shown its applicability and efficiency in
predicting resonances when compared to numerical simulations.

In §6.4, the multi-harmonic energy balancing technique has been extended to more
practical scenarios where the excitations are in quadrature with displacements at physical
locations. The predicted results were compared to that achieved via force appropriation,
where a great agreement can be generally achieved. As such quadrature forcing scenarios
are extensively used in nonlinear modal tests via force appropriation, the proposed
method can guide the positioning of actuators in experiment designs.
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Also in §6.4, the proposed method has been demonstrated in predicting an isola that
contains multiple significant harmonics. It outperforms the single-harmonic method
and shows an improved accuracy and robustness – the locations of resonances and the
deviations from NNMs to resonances were both accurately predicted.

In implementing this technique, the applicability and accuracy of the proposed method
can be directly evaluated via the computed harmonic phase-shifts (the perturbations
from NNMs to forced responses). By accommodating the known NNMs with phase-shifts,
an approximation of forced responses can be obtained, which could be used for further
studies, e.g. stability and bifurcation analysis. Owing to the semi-analytical framework,
this technique can be easily extended to account for more complex scenarios, e.g. multiple
harmonics of multiple modes of NNMs, and multiple forcing harmonics at multiple
locations, without adding much computational effort.
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Chapter 7

Understanding targeted energy transfer using
backbone curves

In this chapter:

• An overview of Targeted Energy Transfer (TET) is given to establish the relation-
ships between key features of TET and backbone curves. It also highlights the use
of backbone curves in interpreting damped transient responses.

• The backbone curve topology, required to realise TET, is interpreted from a
symmetry-breaking perspective. By exploring the bifurcation scenarios, such a
required backbone curve can be identified from other backbone curve topologies.

• Based on the mechanism of symmetry breaking, an analytical method is proposed
to identify the physical parameter conditions in order to realise TET in a structure-
NES system.

• The uncovered symmetry-breaking mechanism is verified and demonstrated using a
nonlinear beam system.

Publications related to this work:

D. Hong, T. L. Hill, S. A. Neild, 2021. Understanding targeted energy transfer from
a symmetry breaking perspective, Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 477(2251) 20210045.
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7.1 Introduction

Nonlinear normal modes, or backbone curves, represent the underlying conservative
dynamics of a nonlinear system and are widely used in nonlinear modal analysis of
damping devices, e.g. the Nonlinear Energy Sink (NES) [216, 45, 46], and flexible
structures, e.g. the cables [129], beams [36–38], and micro-electromechanical systems
[264, 116, 124]. Some examples have also been studied in previous chapters.

One important reason that underpins the extensive applications of backbone curves lies in
the connections between backbone curves and forced periodic responses, established via the
energy balancing analysis – see Ref. [139] and Chapter 6. Using this method, backbone
curves can be employed for efficient analysis of complex forced periodic behaviours,
e.g. detecting the existence of isolas [107, 141, 142], predicting forced responses [262, 137],
interpreting the significance of NNMs in forced responses [143, 140], to name a few.

In addition, as discussed in §2.2.3, connections between the backbone curves and damped
transient responses can be established through the concept of resonant capture – for weakly
coupled nonlinear systems, the transient responses can be locked in the neighbourhood
of backbone curves [57, 146]. Using this mechanism, experimental tests can make use
of free damped responses to identify backbone curves [90]; conversely, the conceptually
simpler and computationally cheaper backbone curves can be used to interpret complex
damped transient behaviours. One important application lies in the so-called Targeted
Energy Transfer (TET) [57, 146, 206]. The concept of TET relates to the irreversible
transfer of energy from one component to another. Building on the concept of resonant
capture, many studies have employed an NNM-based framework to investigate TET, see
§2.3.1 for a survey.

In engineering practice, making use of TET, the NES is extensively employed for vibration
suppression by irreversibly absorbing the vibration from the primary system. In the
geometric sense, the essential asymmetry, i.e. mass and potential asymmetry between
the primary system and NES, leads to localised NNMs (at the primary system and
the NES respectively), which bring about TET [205, 265, 266]. Such an asymmetry
is also a practical prerequisite as the energy-dissipating device (the NES) is usually
designed to be a much smaller size when compared to the primary system. To explore the
fundamental mechanism that underpins the required asymmetry, this chapter employs
a symmetry-breaking perspective to trace how the required conditions stem from a
perfect symmetric case. This study builds upon the concept of resonant capture and
uses backbone curves to interpret damped transient TET. From insights obtained in
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previous chapters on backbone curve topologies, the necessary backbone curves, as well
as parameter conditions, for the realisation of TET are identified. To achieve this, the
rest of this chapter is organised as follows.

In §7.2, an overview of the TET phenomenon is given by considering a classic example
system that consists of a linear primary system and a nonlinearisable NES. Using time-
domain responses, the key features of TET are presented – the occurrence of irreversible
energy transfer when the initial energy is above a critical level. Next, based on the concept
of resonant capture, it will be demonstrated how these features of damped transient
responses can be understood by considering the underlying conservative backbone curves.

In §7.3, discussions continue on the example system (a linear primary system with a
nonlinearisable NES). The study here first introduces a symmetrised model, from which
the essentially asymmetric example system is interpreted from a symmetry-breaking
perspective. The backbone curve topology, underpinning the existence of TET, is then
studied by considering how it may be viewed as an evolution from a symmetric case.
Discussions in this section reveal how the bifurcation splitting, induced by symmetry
breaking, governs the features of TET.

In §7.4, the example system is extended to a general two-mode case. From insights
obtained in previous sections, the backbone curve topologies are explored from a symmetry-
breaking perspective. By accounting for bifurcation scenarios, the necessary backbone
curve topology (which underpins the realisation of TET), found in §7.3, is identified
from other topologies. Additionally, analytical modal parameter conditions are derived
to distinguish the system that exhibits TET from others.

The achievements will then be demonstrated using two example systems. The first
example is a structure-NES system where the primary system is not necessarily linear and
the NES is not necessarily nonlinearisable – a generalisation of that considered in §7.3.
By mapping the modal parameter conditions to physical parameters, the realisation of
TET in the structure-NES system is investigated. Approximate analytical conditions are
derived to determine the required parameters of the NES in order to exhibit TET. The
second example system is a real physical nonlinear beam system. This example is used to
verify and demonstrate the uncovered symmetry-breaking mechanism in the realisation
of TET. It will be shown how symmetry breaking leads to the required backbone curves;
additionally, numerical simulations are presented to verify the existence of TET.

Finally, this chapter is closed with a summary in §7.5.
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m1 m2

α1

k1

c1

α2

k2

c2

x1 x2

Fig. 7.1 A schematic diagram of a primary system, shown in blue, with a Nonlinear Energy
Sink (NES), shown in red. The primary system, with mass value m1, has displacement
x1 and is grounded by a linear spring, a cubic nonlinear spring and a damper, with
coefficients k1, α1, and c1 respectively. The NES, with mass value m2, has displacement
x2 and is attached to the primary system by a linear spring, a cubic nonlinear spring
and a damper, with coefficients k2, α2, and c2 respectively.

7.2 Targeted Energy Transfer

As discussed in §2.3.1 and §7.1, the TET phenomenon represents the nonlinear behaviour
where the energy is transferred irreversibly from the energy-imparted component to
another component during transient responses when the energy input is above a critical
value [57, 146, 206]. In this section, an overview of the realisation and features of TET is
given, highlighting the connections between the damped transient responses (capturing
TET) and the underlying conservative periodic responses, i.e. backbone curves.

To study TET, the example system that consists of a primary system and a NES is
considered. The NES is attached to the primary system and for the energy to flow from
the primary system to the NES, from which the energy is dissipated. In line with much of
the literature [57, 146, 45], the primary system is modelled here as a mass-spring oscillator
that captures the targeted mode of the full system. Schematically shown in Fig. 7.1, this
primary system (shown in blue), has mass value m1, displacement x1, and is grounded
by a linear spring, a linear damper, and a cubic nonlinear spring with coefficients k1, c1,
and α1 respectively. The NES (shown in red) is represented as the second mass with
mass values, m2, where m2 ≪ m1, and displacement x2. This device is attached to the
primary system via a linear spring, a linear damper, and a cubic nonlinear spring with
coefficients k2, c2, and α2 respectively. The dynamics of the system can be described by
the equations of motion

m1ẍ1 + c1ẋ1 + c2 (ẋ1 − ẋ2) + k1x1 + k2 (x1 − x2) + α1x
3
1 + α2 (x1 − x2)3 = 0 , (7.1a)

m2ẍ2 + c2 (ẋ2 − ẋ1) + k2 (x2 − x1) + α2 (x2 − x1)3 = 0 , (7.1b)
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Table 7.1 Parameters of the example system, schematically shown in Fig. 7.1.

m1 m2 k1 k2 α1 α2 c1 c2

1 0.05 1 0 0 1 0.005 0.005

where •̇ and •̈ represent the first and second time-derivatives of displacement, i.e. velocity
and acceleration respectively. Many studies of TET consider a linear primary system,
with α1 = 0, and a NES with k2 = 0 [57, 146, 45]. 1 This classic case is first considered
here for demonstration; whilst the more general case, where the primary system consists
of nonlinearity, α1 ≠ 0, and where the NES has a linear spring component, k2 ̸= 0, will be
considered in later sections. Such a general case is reflective of more practical application
scenarios, e.g. a nonlinear beam with a NES [267], a drill-string system with a NES [268],
as well as in experimental setups [136, 269]. Here, the example system has parameters
given in Table 7.1. Note that, the NES has a much smaller mass value than the primary
system m2/m1 = 0.05 – a practical requirement in design that the damping device is
much smaller than the system it is protecting.

To study the phenomenon of TET, the primary system is given a non-zero initial velocity
(whilst the system is in equilibrium and the velocity of the NES is zero), representing an
energy impulse to the primary system. Given an initial velocity of the primary system,
the time-domain responses of the system can be computed via inbuilt ODE solvers in
Matlab. When ẋ1(0) = 0.1, the time histories of the primary system and NES are
presented in Fig. 7.2a. From the top panel, it can be observed that the responses are
dominated by the primary system, i.e. the responses over time of the primary system
are much larger than that of the NES. In addition to the displacement evolutions over
time, the dominancy of the primary system can also be observed from an energy-based
perspective by considering the instantaneous energy ratio in the NES, defined as

Eins,NES = ENES

EP + ENES

=
1
2m2ẋ

2
2 + 1

2k2 (x2 − x1)2 + 1
4α2 (x2 − x1)4

1
2m1ẋ2

1 + 1
2k1x2

1 + 1
4α1x4

1 + 1
2m2ẋ2

2 + 1
2k2 (x2 − x1)2 + 1

4α2 (x2 − x1)4 , (7.2)

where EP and ENES denote the instantaneous energy of the primary system and NES
respectively. In this case, the time-evolution of Eins,NES is shown in the bottom panel of

1The differences between a NES and a NLTMD (considered in Chapter 3) should be noted: unlike a
NES, a NLTMD has a linear spring, with which the eigenfrequency of the NLTMD can be tuned to a
target mode of the full system.
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Fig. 7.2 Reponses and energy transfer in the time domain for the example system,
represented by Fig. 7.1, with parameters listed in Table 7.1. Response histories for the
primary system and NES (top panels), and instantaneous energy carried by the NES
(bottom panels) with an initial velocity of ẋ1(0) = 0.1 and ẋ1(0) = 0.2 in the primary
system, shown in panels (a) and (b) respectively.

Fig. 7.2a, where only a very limited amount of energy (less than five percent of the total
energy) is transferred to the NES over time.

Next, the initial velocity is increased from ẋ1(0) = 0.1 to ẋ1(0) = 0.2, and again the
response histories of the two components and the instantaneous energy ratio carried by
the NES are computed and shown in Fig. 7.2b. In contrast to the low-initial-velocity case
in Fig. 7.2a, significant differences are observed. For this high-initial-velocity case, the
time-domain responses are dominated by the NES – it has larger-amplitude responses
than the primary system; likewise, a more significant energy ratio can be seen in the NES
– see the bottom panel of Fig. 7.2b, where, in addition, a more complex phenomenon
can be observed. Based on the time-domain response features, the high-initial-velocity
responses may be divided into the following stages [45]:

1. Nonlinear beating (0 → 50s): for the first stage, the energy is transferring back
and forth between the primary system and the NES, seen from the oscillation of
Eins,NES in the bottom panel of Fig. 7.2b.
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Fig. 7.3 Energy ratio dissipated by the NES with respect to a varied initial velocity in
the primary system for the example system with parameters listed in Table 7.1. Two
example cases, studied above via Fig. 7.2, are labelled by ‘×’ and ‘◦’ respectively.

2. Resonant capture, or resonant decay (50 → 120s): following the nonlinear
beating, the energy is irreversibly transferred to the NES, until almost all energy is
localised in the NES.

3. Escape (after about 120s): in the final stage, the majority of the remaining energy
is returned back to the primary system, when the total energy has already decayed
to a low level.

Shown in the bottom panel of Fig. 7.2b, for this high-initial-velocity case, the energy,
imparted to the primary system, is transferred irreversibly to the NES during transient
responses of resonant capture, or resonant decay.

Indeed, whether the majority of the initial energy impulse remains in the primary system,
shown in Fig. 7.2a, or is transferred to the NES, Fig. 7.2b, is determined by a critical
energy level [57, 45, 147]. To find this critical value, one can track the energy dissipation
by the NES with respect to a varied initial impulse. Firstly, the energy dissipated by the
NES over the responses can be defined as

Ed,NES = c2
∫ T

0 (ẋ2 − ẋ1)2 dt
c2
∫ T

0 (ẋ2 − ẋ1)2 dt+ c1
∫ T

0 ẋ2
1dt

∣∣∣∣∣∣
T →∞

, (7.3)
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Note that, to compute Ed,NES, the infinite upper limit T is approximated to a finite value
such that the total energy in the system is decayed to less than 1% of the initial value.
In Fig. 7.3, the critical energy level can be clearly seen – the steep transition seen around
ẋ1(0) = 0.11; whilst the low- and high-initial-velocity cases, studied above, are located
on either side of this critical energy level.

In summary, when the initial energy impulse in the primary system is below the critical
level, the majority of the energy remains in the primary system with little being transferred
to the NES. Conversely, when the initial energy impulse in the primary system is above
the critical level, the majority of energy may be irreversibly transferred to the NES. The
above-critical-value case is related to the realisation of TET [57, 146], characterised by
the three-stage nonlinear transient phenomenon.

Up to this point, it has been demonstrated how the realisation of TET can be captured
by the time-domain responses and time-evolution of energy localisations, see Fig. 7.2.
Additionally, this damped transient phenomenon can also be captured by the underlying
conservative periodic dynamics, or backbone curves. Their relationship, termed resonant
capture, has been investigated in [216, 45] – when TET occurs, the transient responses
are locked in the neighbourhood of NNM manifolds. This relationship is further explored
here to demonstrate how the key features of TET, namely the critical energy level and
the behaviour of irreversible energy transfer, link to backbone curves.

To achieve this, the backbone curves of the example system are computed via numerical
continuation [99]. They are then mapped to the initial velocity space2, (ẋ2(0), ẋ1(0)),
shown as solid lines in Fig. 7.4a – both of the primary backbone curves show 1 : 1
synchronous, or Fourier-real, responses with one in-phase, S+

R,1, and the other one anti-
phase, S−

R,1.3 Note that, besides the primary branches where the system exhibits 1:1
responses, tongue branches where the system shows m : n resonance (m,n ∈ Z+) can also
be observed, see the loop regions in the embedded plot of Fig. 7.4a. As will be shown in
the following, the resonant capture, observed in the example case in Fig. 7.2b, is related

2A backbone curve in the initial velocity space denotes the projection when all modes achieve their
maximum velocities. As the NES system only has synchronous, or Fourier-real, backbone curves, the
maximum velocities are reached when all modes pass through the equilibrium position. As such, the
energy in the system consists of only kinetic energy without potential energy. This energy composition
is similar to the initial conditions considered in this chapter where an initial velocity is given to the
primary system when the system is at equilibrium; therefore, such a projection is termed the initial
velocity space.

3The 1 : 1 Fourier-real backbone curves, S±
R,1, are equivalent to that termed 1 : 1 synchronous

backbone curves, S±
1,2, in Chapters 3 and 4. To see how the Fourier-real and -complex terminologies

generalise the synchronous and asynchronous ones, the interested reader is directed to Chapter 5.
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Fig. 7.4 Critical energy level, in the targeted energy transfer, captured by the backbone
curves of the example system, shown in Fig. 7.1, where all parameters aside from α2
are given in Table 7.1, and where α2 = 1 and α2 = 0.5 for the solid and dotted lines
respectively. (a) Backbone curves in the initial velocity space (ẋ2(0), ẋ1(0)). The colour
scale, representing the backbone curves, shows the energy in the NES, scaled by total
energy in the system. (b) Energy ratio dissipated by the NES with a varied initial energy,
indicated by an initial velocity, ẋ1(0), in the primary system.

to fundamental, or 1 : 1, resonant capture that is locked in the neighbourhood of the
primary branches. It is such a case that will be further explored in the following, whilst
for other types of resonant capture, the interested reader may refer to [45]. Additionally,
in Fig. 7.4a, these backbone curves are shown using a colour scale representing the energy
in the NES, scaled by the total energy in the system, for the solutions passing through
the equilibrium, i.e.

Einitial,NES =
[

1/2 ·m2ẋ
2
2

1/2 ·m1ẋ2
1 + 1/2 ·m2ẋ2

2

]
t=0

. (7.4)

In this figure, the energy localisation in the primary system is denoted in blue on the
colour scale; whilst that in the NES is denoted in red. Consequently, the topology of the
primary backbone curves can be characterised, considering the energy localisation:
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1. Fourier-real, anti-phase backbone curve, S−
R,1: at low energy levels, the energy is

localised in the primary system (blue), whilst at high energy levels, the energy is
localised in the NES (red).

2. Fourier-real, in-phase backbone curve, S+
R,1: at low energy levels, the energy is

localised in the NES (red), whilst at high energy levels, the energy is localised in
the primary system (blue).

To establish the links between the backbone curve topology and the features of TET,
the total energy ratio dissipated by the NES for a varied initial velocity, computed via
Eq. (7.3), is presented in Fig. 7.4b (in comparison to the backbone curves in panel (a)).
It can be seen that the critical energy level, determining whether TET can be achieved
or not, is related to the fold on S−

R,1, denoted by the dashed line. Besides the example
system, whose backbone curves are shown as solid lines, another case where α2 = 0.5 is
also shown in Fig. 7.4 using dotted lines, where again, the critical energy level is related
to the fold. It will be demonstrated in §7.3 that the generation of this fold may be seen
as the result of bifurcation splitting due to symmetry breaking.

In addition to the existence of a critical energy level, another feature of TET lies in
the irreversible energy transfer during transient resonant capture. To demonstrate the
relationships between backbone curves and this behaviour, the time-domain responses in
Fig. 7.2 are first projected to the initial velocity space where x1(t) = 0 (when ẋ1 > 0).
Using these examples, the NES responses with an initial energy impulse below the critical
level (Fig. 7.2a) and that above the critical level (Fig. 7.2b) are shown as red dots in
Fig. 7.5a and 7.5b respectively. These dots are connected via solid red lines to indicate
the path of the decaying response (with initial states labelled ‘×’). Next, combining
the transient response decays (Fig. 7.5) and the energy localisation features of backbone
curves (Fig. 7.4), the link between the irreversibility of the TET phenomenon and the
backbone curves can be explained, namely,

1. When the initial energy in the primary system is below the critical energy level,
the transient response of the system is locked by and decays down S−

R,1 (Fig. 7.5a),
which exhibits energy localisation in the primary system at low energy levels
(Fig. 7.4a). As such, the majority of the energy input remains in the primary
system over time with very limited amount being transferred to the NES, as the
example in Fig. 7.2a.

2. When the initial energy in the primary system is above the critical energy level,
following the nonlinear beating, the resonant capture represents transient responses
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Fig. 7.5 Resonant decay captured by the backbone curves for the example system, shown
in Fig. 7.1, where all parameters are given in Table 7.1. The backbone curves of the
system are shown as solid blue lines; the initial conditions with non-zero velocity in the
primary system are marked by ‘×’; and resonant decays are represented by extreme
values, where x1 = 0 (when ẋ1 > 0), as red dots, and connected by thin-red lines to
indicate the decaying path. (a) Resonant decay of the system when an initial velocity,
ẋ1(0) = 0.1, is in the primary system, where the time histories are shown in Fig. 7.2a.
(b) Resonant decay of the system when an initial velocity, ẋ1(0) = 0.2, is in the primary
system, where the time histories are shown in Fig. 7.2b.

that are locked by and decaying down S+
R,1 (Fig. 7.5b). Note that, in this case,

the response decays down the fundamental branch, exhibiting the feature of 1 : 1
resonant capture, without triggering subharmonic resonant captures. As indicated
by the energy localisation characteristics of S+

R,1 in Fig. 7.4a, resonant decay down
S+

R,1 relates to change of energy from the primary system, at high energy levels, to
the NES, at low energy levels. Therefore, the resonant decay exhibits irreversible
energy transfer from the primary system to the NES, as observed in Fig. 7.2b.

The example here shows the connections between features of TET and backbone curves.
To assist in understanding this connection through the use of backbone curves, it is useful
to consider the system in its modal representation as this domain is normally used in
backbone curve analysis [79, 31, 130, 245]. In addition, using the modal representative
also allows symmetry of the system to be identified via coefficients of the nonlinear
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term – as demonstrated in Chapters 3 to 5; this assists the analysis of TET from a
symmetry-breaking perspective.

The dynamics of the two-mass system can be transformed from the physical coordi-
nates, given by Eq. (7.1), to the modal domain by introducing linear modal transform
(i.e. Eq. (3.11)). Consequently, the modal equations of motion can be derived

q̈1 + d1q̇1 + d12q̇2 + ω2
n1q1 + Ψ4q

3
1 + 3Ψ1q

2
1q2 + Ψ3q1q

2
2 + Ψ2q

3
2 = 0 , (7.5a)

q̈2 + d12q̇1 + d2q̇2 + ω2
n2q2 + Ψ1q

3
1 + Ψ3q

2
1q2 + 3Ψ2q1q

2
2 + Ψ5q

3
2 = 0 , (7.5b)

where ωn1 and ωn2 are the first and second linear natural frequencies, d1, d2, and d12

denote modal damping coefficients, and Ψi represent coefficients of the nonlinear terms.
As the underlying conservative system is equivalent to the two-mass oscillator considered
in Chapter 3, these Ψi are defined by expressions (3.13) with α3 = 0. In this example case,
where the NES does not have a linear spring, i.e. k2 = 0, the modeshape matrix, given
in Eq. (3.11), is an anti-diagonal matrix, i.e. ϕ11 = 0 and ϕ22 = 0. As such, x1 = ϕ12q2

and x2 = ϕ21q1, which means the responses in the primary system and the NES, x1 and
x2, are exactly captured by modal coordinates, q2 and q1, respectively. Therefore, in the
initial modal velocity space (q̇1(0), q̇2(0)), the primary backbone curves are topologically
equivalent to those shown in Fig. 7.4a, and may be described:

1. Fourier-real, anti-phase backbone curve, S−
R,1: at low energy levels, the energy is

localised in q2 (the primary system), whilst at high energy levels, the energy is
localised in q1 (the NES).

2. Fourier-real, in-phase backbone curve, S+
R,1: at low energy levels, the energy is

localised in q1, whilst at high energy levels, the energy is localised in q2,

and as expected, such backbone curve topology captures the features of TET using the
modal representative of the system.

Through investigations for TET in applications to a NES, the damped transient responses
of nonlinear systems are shown to be captured by the backbone curves via the mechanism
of resonant capture.4 As such, it provides a method to account for the realisation of TET
– by identifying the required backbone curve topology that locks the transient responses,
during which the energy is irreversibly transferred from the primary system to the NES.
Nonetheless, with the required backbone curves identified, a practical-relevant issue can

4Note that, this is compared to that considered in Chapter 6, where the connections between forced
damped periodic responses and backbone curves are established.
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arise – how is such backbone curve topology mapped to the physical parameters of the
system?

As demonstrated in §7.1, the essential asymmetry brings about backbone curves with
such energy localisation properties that lead to TET [205, 265, 266]. By looking at
how such backbone curve topology evolves from a symmetric case due to symmetry
breaking, the essential asymmetry will be interpreted in the following studies. From this
symmetry-breaking perspective, the required physical parameters will also be identified
for the example system in Fig. 7.1. In addition, using the insights, the realisation of TET
(through symmetry breaking) will be presented in a nonlinear beam system.

7.3 Relating targeted energy transfer to symmetry
breaking

In this section, the example two-mass system, which consists of a linear primary system
(α1 = 0) and a nonlinearisable NES (k2 = 0), is used to demonstrate the TET phenomenon
from a symmetry-breaking perspective. This is achieved by introducing a symmetrised
model – a degenerated model of the example system. This section provides a geometric
perspective to interpret TET and, in addition, offers a quantitative method to distinguish
the systems that exhibit TET from general nonlinear systems, detailed in §7.4.

As demonstrated in §7.2, backbone curves can capture damped transient responses where
TET occurs. Here, to compute backbone curves, i.e. unforced undamped periodic solution
branches, the damping terms in Eq. (7.5) are first removed to give the equations of
motion for the underlying conservative system, i.e.

q̈1 + ω2
n1q1 + Ψ4q

3
1 + 3νΨ1q

2
1q2 + Ψ3q1q

2
2 + νΨ2q

3
2 = 0 , (7.6a)

q̈2 + ω2
n2q2 + νΨ1q

3
1 + Ψ3q

2
1q2 + 3νΨ2q1q

2
2 + Ψ5q

3
2 = 0 , (7.6b)

where coefficients of nonlinear terms are given by

Ψ1 = ϕ3
21ϕ12α2 , Ψ2 = ϕ21ϕ

3
12α2 , Ψ3 = 3ϕ2

21ϕ
2
12α2 , Ψ4 = ϕ4

21α2 , Ψ5 = ϕ4
12α2 , (7.7)

and where Ψ1 and Ψ2 are multiplied by ν, i.e. a ‘symmetry-breaking’ parameter with
0 ⩽ ν ⩽ 1. The case with ν = 1 represents the underlying conservative dynamics
of the system and is termed the original model. As demonstrated in Chapter 3, a
system with non-zero Ψ1 and Ψ2 is dynamically asymmetric and only has mixed-mode
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backbone curves with imperfect bifurcations; instead, a dynamically symmetric system
has zero Ψ1 and Ψ2. For the original model of the system, it should be highlighted
that no parameter combinations of the example system can lead to Ψ1 = Ψ2 = 0, see
expressions (7.7). Therefore, to relate this essentially asymmetric model to symmetry
breaking, a corresponding symmetrised model is introduced by enforcing ν = 0 whilst
the other modal parameters remain unchanged. As such, the original model may be
seen as an evolution from the symmetrised model due to symmetry breaking, (i.e. where
ν becomes non-zero). Whilst introducing the parameter ν is artificial, and cannot be
realised in the original two-mass system, it allows the symmetry to be continued directly
in a single parameter. Thus, the physically unobtainable gap of symmetry can be filled
to identify the symmetry-breaking mechanism that leads to the realisation of TET. In
addition, as will be shown in §7.4.2, the uncovered symmetry-breaking mechanism can
be applied beyond the specific two-mass systems considered here.

To find the backbone curves via Eq. (7.6), the harmonic balance method is used. Firstly,
one can observe that the backbone curves for the two-mass oscillator exhibit synchronous
responses, see Figs. 7.4 and 7.5, and Refs. [169, 136]; it means that the phase relationships
between modal coordinates are either in-phase or anti-phase. In this case, the modal
solution is approximated by its leading-order term, i.e. the fundamental harmonic, given
by

qi ≈ ui = Ui cos (ωrit) , (7.8)

where ui denotes the fundamental component of qi, and where Ui and ωri represent the
amplitude and response frequency of ui respectively. Note that this solution is equivalent
to that given by Eq. (3.5) with assumed phase relationships (either in-phase or anti-phase)
substituted.

Next, considering the case where TET is realised via fundamental resonant capture, the
response frequencies of the two modal coordinates are assumed to be equal, namely,
ωr1 = ωr2 = ω. With modal responses in expression (7.8) substituted into equations
of motion (7.6), and the non-resonant terms removed, the expressions for computing
backbone curves may be obtained after some algebraic manipulations, given by

4
(
ω2

n1 − ω2
)
U1 + 3Ψ4U

3
1 + 3Ψ3U1U

2
2 + 3νp

(
Ψ2U

3
2 + 3Ψ1U

2
1U2

)
= 0 , (7.9a)

4
(
ω2

n2 − ω2
)
U2 + 3Ψ5U

3
2 + 3Ψ3U

2
1U2 + 3νp

(
Ψ1U

3
1 + 3Ψ2U1U

2
2

)
= 0 , (7.9b)
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where p = +1 and −1, denote in-phase and anti-phase relationships between two modal
coordinates respectively. As the system is equivalent to that considered in Chapter 3, the
derivations of backbone curves are not given here, instead some key results are directly
presented. For details of derivations, the reader is directed to Chapter 3.

7.3.1 Backbone curves of the symmetrised model

Firstly, the symmetrised case where ν = 0 is considered. In this case, two nontrivial
solution sets may be found with respect to either

(a) S1: U1 ̸= 0 and U2 = 0, and S2: U1 = 0 and U2 ̸= 0;
or (b) S±

R,1: U1 ̸= 0 and U2 ̸= 0,

where S1 and S2 denote single-mode backbone curves, whilst S+
R,1 and S−

R,1 represent in-
phase and anti-phase backbone curves respectively (also known as mixed-mode backbone
curves). Analytical frequency-amplitude expressions for S1, S2 and S±

R,1 are given by
Eqs. (3.22), (3.23) and (3.24) respectively in §3.4.1.

In symmetric cases, these mixed-mode backbone curves may be seen as solution branches
bifurcating from the single-mode backbone curves via Bifurcation Points (BPs). Here,
the bifurcation on S1 is denoted BP1; whilst that on S2 is denoted BP2. The frequency-
amplitude expressions of these bifurcations have also been derived in §3.4.1, they are
given by

BP1 on S1 : ω2 = Ψ4ω
2
n2 − Ψ3ω

2
n1

Ψ4 − Ψ3
, U2

1 =
4
(
ω2

n2 − ω2
n1

)
3 (Ψ4 − Ψ3)

, (7.10a)

BP2 on S2 : ω2 = Ψ3ω
2
n2 − Ψ5ω

2
n1

Ψ3 − Ψ5
, U2

2 =
4
(
ω2

n2 − ω2
n1

)
3 (Ψ3 − Ψ5)

. (7.10b)

Note that, these branch points can exist when the frequency-amplitude relationships are
associated with real positive amplitude and frequency, i.e.

existence of BP1 on S1 : Ψ4 − Ψ3 > 0, (7.11a)
existence of BP2 on S2 : Ψ3 − Ψ5 > 0. (7.11b)

Using conditions (7.11), the bifurcation scenarios and the backbone curve topologies of
the example system can be determined by coefficients of the nonlinear terms (7.7). After
some algebraic manipulation, it is revealed that BPs can exist on both S1 and S2 when
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Fig. 7.6 Symmetry-breaking interpretation of the backbone curves that capture the
realisation of targeted energy transfer for the example system with parameters given in
Table 7.1. (a) Backbone curves for the symmetrised model in the initial modal velocity
space (q̇1(0), q̇2(0)). The single-mode backbone curves, S1 and S2, are denoted by grey
lines. The in-phase and anti-phase backbone curves, S+

R,1 and S−
R,1, are denoted by blue

and red curves respectively. The bifurcation points are denoted by black dots, labelled
BP1 and BP2. (b) Evolutions of backbone curves due to symmetry breaking in the initial
modal velocity space (q̇1(0), q̇2(0)). The backbone curves for the example system are
shown by solid curves. Two intermediate asymmetric cases, with ν = 0.05 and ν = 0.5,
are shown by dotted and dot-dashed curves respectively.

m2 < m1/3, which can usually be satisfied for the application of a NES, where the NES
is a small mass compared to the primary system (m2 ≪ m1). The backbone curves for
the symmetrised model of the example system, with parameters given in Table 7.1, are
shown in Fig. 7.6a in the initial modal velocity space, (q̇1(0), q̇2(0)), – two single-mode
backbone curves, S1 and S2, are connected by mixed-mode backbone curves, S±

R,1, via
BPs.

7.3.2 Backbone curves of the asymmetric model

Following the symmetrised case, the asymmetric case with non-zero Ψ1 and Ψ2 is now
considered. Due to non-zero Ψ1 and Ψ2, single-mode backbone curves, S1 and S2, are no
longer exist, instead, only mixed-mode backbone curves can be found. The frequency-
amplitude relationships can be obtained by rearranging Eqs. (7.9a) and (7.9b), which
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gives

ω2 = ω2
n1 + 3

4

[
Ψ4U

3
1 + Ψ3U

2
2U1 + pν

(
Ψ2U

3
2 + 3Ψ1U

2
1U2

)]
U−1

1 , (7.12a)

0 =
(
−3pνΨ2U

−1
1

)
U4

2 + 3 (Ψ5 − Ψ3)U3
2 +

[
9pν (Ψ2 − Ψ1)U1

]
U2

2 + (7.12b)[
4ω2

n2 − 4ω2
n1 + 3 (Ψ3 − Ψ4)U2

1

]
U2 + 3pνΨ1U

3
1 .

Here, the backbone curves for the original asymmetric case (ν = 1), as well as two
intermediate asymmetric cases (ν = 0.5 and ν = 0.05), are computed via Eq. (7.12)
and shown in Fig. 7.6b for comparison to the symmetrised case (ν = 0) in panel (a).
Figure 7.6 shows how the backbone curve topology for the original model may be seen
as an asymmetric evolution from that in panel (a) due to symmetry breaking – it splits
the bifurcation points on single-mode backbone curves, S1 and S2, and results in one
in-phase and one anti-phase backbone curve, S+

R,1 and S−
R,1.

As demonstrated in §7.2 for the two-mass system, the backbone curve topology captures
the key features of TET, i.e. the critical energy level and resonant capture (where
the irreversible energy transfer occurs). From a symmetry-breaking perspective, the
generation of backbone curve topology that underpins the realisation of TET may be
understood via Fig. 7.6:

1. the generation of the critical-energy-level-related fold on S−
R,1: the critical

energy level, shown in Fig. 7.4b, is captured by the fold on S−
R,1. The generation

of this fold may be seen as the result of BP2 (on S2) splitting due to symmetry
breaking, shown in Fig. 7.6.

2. the generation of the irreversible-energy-transfer-related backbone curve,
S+

R,1: TET triggered by fundamental resonant capture represents resonant decay
follows the in-phase backbone curve, S+

R,1, which exhibits energy localisation in
q2 at high energy levels, and in q1 at low energy levels. This transition of energy
localisation, an analogue to the irregularity-caused modal veering [37, 270, 137],
may be seen as a result of bifurcation splitting caused by symmetry breaking.

Introducing a symmetrised model through parameter ν, the realisation of TET is inter-
preted using backbone curves from a symmetry-breaking perspective. This provides a
mechanism to understand how the backbone curves of a structure-NES system, which
exhibits TET, may evolve from the symmetric case – two single-mode backbone curves
interconnected by two mixed-mode backbone curves via bifurcation points. By under-
standing how the simpler, symmetric case is related to the asymmetric case exhibiting
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TET, the fundamental properties leading to TET may be studied in greater detail and,
therefore, it can provide a method to differentiate a system that exhibits TET from
others.

Studies in this section have focused on a two-mass system where the primary system is
linear and the NES has no linear component (α1 = 0 and k2 = 0); whilst, in the following
section, the example system is extended to general two-mode cases, among which the
systems that exhibit TET are identified.

7.4 Identifying systems that exhibit TET

In §7.3, the special backbone curves that underpin the realisation of TET have been
investigated. Due to parameter restrictions, the example system exhibits only one
backbone curve topology, presented in Fig. 7.6. However, in practice, a system may
exhibit different backbone curve topologies due to different bifurcation scenarios, for
example, the symmetric cases considered in Chapters 3, 4, and 5. In this section, the
special case is extended to a general two-mode system by removal of the parameter
restrictions; by investigating the bifurcation scenarios, the required backbone curve
topology to exhibit TET is identified from general cases. Note that discussions here
focus on TET realised via 1 : 1 Fourier-real resonant capture; thus, they serve as a direct
extension to the case considered in previous sections.

For such a general case, its backbone curve topology is investigated again from a
symmetry-breaking perspective by studying the asymmetric evolutions of backbone
curves. It is recalled that the backbone curve topology for a symmetric case is governed
by its bifurcation conditions, determined by expressions (7.11). In this case, there are
four different bifurcation conditions, namely

with both BP1 and BP2 : Ψ4 − Ψ3 > 0 and Ψ3 − Ψ5 > 0 , (7.13a)
with BP1 and without BP2 : Ψ4 − Ψ3 > 0 and Ψ3 − Ψ5 < 0 , (7.13b)
without BP1 and with BP2 : Ψ4 − Ψ3 < 0 and Ψ3 − Ψ5 > 0 , (7.13c)
without both BP1 and BP2 : Ψ4 − Ψ3 < 0 and Ψ3 − Ψ5 < 0 . (7.13d)

Four corresponding backbone curve topologies can be computed via Eqs. (3.22), (3.23)
and (3.24) and shown in Fig. 7.7a, where the vertical axis, i.e. Ψ3 − Ψ5 = 0, denotes
the critical condition for existence of BP2, whilst the horizontal axis, i.e. Ψ4 − Ψ3 = 0,
denotes that for the existence of BP1. Note that backbone curves shown in the initial
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Fig. 7.7 Evolutions of backbone curve topologies due to symmetry breaking. (a) Backbone
curve topologies in initial modal velocity space, (q̇1(0), q̇2(0)), for the symmetrised model
with ν = 0. The axes denote the critical boundaries for the existence of bifurcations,
defined by Eq. (7.11). The single-mode backbone curves, S1 and S2, are shown as grey
lines, the in-phase and anti-phase backbone curves, S+

R,1 and S−
R,1, are shown as blue and

red curves respectively. Bifurcations on S1 and S2 are denoted by black dots, labelled
BP1 and BP2 respectively. (a1) (the first quadrant) S1 and S2 are connected by S+

R,1
and S−

R,1 via BP1 and BP2. (a2) (the second quadrant) S+
R,1 and S−

R,1 bifurcate from S1
via BP1. (a3) (the fourth quadrant) S+

R,1 and S−
R,1 bifurcate from S2 via BP2. (a4) (the

third quadrant) Two single-mode backbone curves, S1 and S2, without bifurcations. (b)
Backbone curve topologies in initial modal velocity space, (q̇1(0), q̇2(0)), for asymmetric
cases perturbed from symmetrised model with ν = 0.05. Backbone curve topologies in
panels (b1) → (b4) may be seen as evolutions from those in panel (a), due to symmetry
breaking.

velocity space in Fig. 7.7 may be seen as a mapping of that in the frequency-amplitude
plot [143]. The advantages of presenting backbone curves in the initial velocity space
lie in two aspects: it has a direct connection to the initial state, or initial energy, of the
primary system; the fold of the backbone curve can be directly related to the critical
energy level, a key feature of the targeted energy transfer.

For any system in the first quadrant, it exhibits a backbone curve topology that S1 and
S2 are interconnected by S±

R,1 via BP1 and BP2. The structure-NES system, with α1 = 0
and k2 = 0, has a symmetrised model locating in this quadrant, as discussed in §7.3.1.
In addition to this case, three other cases, i.e. with BP1 and without BP2 (the second
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quadrant), without BP1 and with BP2 (the fourth quadrant), and without both BP1
and BP2 (the third quadrant), may also be identified. For any system in the second or
the fourth quadrant, it has backbone curves in panels (a2) or (a3) – the mixed-mode
backbone curves, S±

R,1, bifurcate from the single-mode backbone curve, S1 or S2, and
extend to higher energy levels. Whilst for a system in the third quadrant, only two
single-mode backbone curves, S1 and S2, are observed, as neither BP1 nor BP2 exists,
see panel (a4). As with parameter changes, the system may cross the axes (boundaries),
leading to a change in backbone curve topology. For example, when the system crosses
the axis from the first quadrant to the second quadrant, the bifurcations, denoted BP2,
degenerate to infinite frequency and amplitude, leading to a change of backbone curve
topology from panels (a1) to (a2).

Symmetry breaking is then introduced to the symmetric case to study the asymmetric
evolutions of these backbone curves. The backbone curves for an asymmetric case may
be computed via Eq. (7.12). With ν = 0.05, the asymmetric evolutions of the symmetric
examples (in Fig. 7.7a) are shown in Fig. 7.7b. Note that, for asymmetric cases, the axes
are used to approximately demonstrate the evolution of backbone curve topologies, rather
than the exact boundaries. Panel (b1) shows the same topology as that for the example
system in Fig. 7.6b. Whilst for those in panels (b2) and (b3), the split of bifurcations
results in two primary backbone curves (passing through the origin) and one isolated
backbone curve. In panel (b4), the two single-mode backbone curves, S1 and S2, in
panel (a4), evolve to mixed-mode backbone curves, S−

R,1.

For these asymmetric cases in Fig. 7.7b, aside from the backbone curves in panel (b1),
which show the same topology as those seen in the example system considered in previous
sections, other backbone curve topologies, in panels (b2) → (b4), exhibit fundamentally
different features in energy localisation. With an initial energy in q1 (or q2), systems
with backbone curves shown in panels (b2) → (b4) do not show the necessary energy
localisation features in backbone curves to exhibit TET, and hence energy remains in q1

(or q2) without being transferred to the other mode.

From this symmetry-breaking perspective, to identify the system that exhibits TET from
general systems is to distinguish the backbone curve topology shown in panel (b1) from
all cases in Fig. 7.7b. This can also be achieved by tracing the degenerated symmetric
cases where these asymmetric cases are evolved from, i.e. by distinguishing the symmetric
topology in panel (a1) from those in Fig. 7.7a.

In the following sections, these insights are used to identify TET in nonlinear systems.
The first example (in §7.4.1) is an extension of that considered in previous discussions,
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namely a general structure-NES system where α1 and k2 are not necessarily zero. In this
case, the required physical parameters to realise TET are derived. The other example
(in §7.4.2) is a nonlinear beam system, where it will be demonstrated how symmetry
breaking leads to the realisation of TET.

7.4.1 Identifying the structure-NES system that exhibits TET

The discussions above focused on identifying the TET-required backbone curves for
a general two-mode system in the modal domain, without considering the physical
parameter conditions to realise TET. To relate the modal parameter conditions (7.13)
to physical parameter conditions, the two-mass oscillator, shown in Fig. 7.1, is again
considered but the parameter restrictions, i.e. α1 = 0 and k2 = 0, used in §7.2 and §7.3,
are removed to account for a more general case. This generically asymmetric case is
explored by considering its evolution from the symmetrised case, via symmetry breaking.
Using this technique, the special backbone curve topology (i.e. Fig. 7.6, or Fig. 7.7a1)
can be identified, which allows the physical parameter conditions, leading to TET, to be
determined.

Considering non-zero k2 and α1, the modeshape matrix, Φ, is no longer anti-diagonal5,
and the coefficients of nonlinear terms, Ψi, are instead given by expressions (3.13) (this
general case exhibits the same underlying conservative system as the NLTMD-inspired
system considered in Chapter 3). Without the parameter restrictions, this general case
can exhibit more complex backbone curve topologies than that considered in §7.2 and
§7.3, where the symmetrised model exhibits only one backbone curve topology (Fig. 7.6).
To explore these, the existence of BPs is considered for the symmetrised model using
conditions (7.13). There are two critical boundaries for the existence of bifurcatioins,
namely, Ψ4 −Ψ3 = 0 and Ψ3 −Ψ5 = 0 (the axes of Fig. 7.7). To find these two boundaries,
combining expressions (7.11), (3.13) and (3.12) reveals

critical boundary, f1(m1, m2, k1, k2, α1, α2), for the existence of BP1:

Ψ4 − Ψ3 = 0 : α2,crit

α1,crit
= − (P1P2 + P3)P4

(P5P2 + P6) (P2 + P7)2 , (7.14a)

critical boundary, f2(m1, m2, k1, k2, α1, α2), for the existence of BP2:
5In this case, the physical displacement of the primary system, x1, is no longer exactly represented

by the second modal coordinate, q2; likewise, the displacement of the NES, x2, is no longer exactly
captured by q1. Nonetheless, an accurate approximation to this is still achieved if k2 is sufficiently small.
In addition, it will be demonstrated in the following that a sufficiently small k2 is necessary in order to
exhibit TET. Thus, the following discussions continue to consider the backbone curve topology in the
modal domain.

201



Understanding targeted energy transfer using backbone curves

Table 7.2 Backbone curve topologies for the symmetrised model in regions of Fig. 7.8.

Region Symmetric backbone curve topology Exhibits TET

(a) with both BP1 and BP2, schematically shown in Fig. 7.7a1 O

(b1) and (b2) with BP1 and without BP2, schematically shown in Fig. 7.7a2 X

(c) with BP2 and without BP1, schematically shown in Fig. 7.7a3 X

(d) without both BP1 and BP2, schematically shown in Fig. 7.7a4 X

Ψ3 − Ψ5 = 0 : α2,crit

α1,crit
= − (−P1P2 + P3)P4

(−P5P2 + P6) (−P2 + P7)2 , (7.14b)

where parameters, Pi, are given by

P1 = 2(k2m2 + k1m2 − k2m1),

P2 =
√
k2

2(m1 +m2)2 − 2k1k2(m1 −m2)m2 + k2
1m

2
2,

P3 = (k1m2 + k2m2 − k2m1)2 + 4k2
2m1m2,

P4 = 4k2
2m

3
2,

P5 = 2
[
(k1 + k2)m2

2 + k2m
2
1 − (k1 − 2k2)m1m2

]
,

P6 = P3(m1 +m2),
P7 = (k1 − k2)m2 − k2m1.

(7.15)

Expressions (7.14) map the boundaries from the modal parameter space to the physical
parameter space, (m1,m2, k1, k2, α1, α2). In addition, as with the axes (Ψ4 − Ψ3 and
Ψ3 − Ψ5) of Fig. 7.7 that divide the modal parameter space into regions, f1 and f2 also
divide the physical parameter space into regions, distinguishing the existence of BPs and
topologies of backbone curves.

To demonstrate this, it is useful to project the boundaries, f1 and f2, to the subspace,
(k2, α2), i.e. the NES-parameter space. Therefore, it allows considering the parameter
conditions on the NES in order to exhibit TET in practical design. Here, a primary
system with m1 = 1, k1 = 1, and α1 = 1 is considered, and the NES has a mass value
of m2 = 0.05. Using expressions (7.14), the space (k2, α2) may be divided into several
major regions6, labelled (a), (b1), (b2), (c), and (d) in Fig. 7.8, where these regions are
shaded using the same colour schema as that in Fig. 7.7.

6Some small regions, and regions related to negative coefficients of nonlinear terms, do not exhibit
the topology of interest and are not considered here.
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Fig. 7.8 Divisions of the NES-parameter space, (k2, α2), considering the existence of
bifurcations on backbone curves for the symmetrised model with m1 = 1, k1 = 1 and
α1 = 1. Solid purple and brown curves denote the critical boundaries for the existence of
branch points, defined by expressions (7.14). Asymptotes of the boundaries, denoted by
dotted lines, are defined by expressions (7.16). These boundaries divide the space into
five major regions, labelled with (a), (b1), (b2), (c) and (d). Backbone curve topologies for
the symmetrised model in these regions are correspondingly described in Table 7.2 and
shown in panels of Fig. 7.7a. Backbone curves and numerical simulations for example
systems in each region are shown in Fig. 7.9.

In this figure, the purple and brown lines denote f1 and f2 respectively; the dotted purple
and brown lines represent asymptotic lines of f1 and f2 respectively, given by

asymptotic line of f1 : k2,crit1 =

[
3 (m1 −m2) − 2

√
3m1m2

]
k1m2

3 (m1 +m2)2 , (7.16a)

asymptotic line of f2 : k2,crit2 =

[
3 (m1 −m2) + 2

√
3m1m2

]
k1m2

3 (m1 +m2)2 , (7.16b)

denoting critical linear stiffness values of the NES.

The backbone curve topologies for the symmetrised model in these regions are given in
Table 7.2 with respect to these shown in Fig. 7.7a. Using these divisions, the backbone
curve topologies for the original model may be approximately classfied, along with which
the existence of TET is evaluated:
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Fig. 7.9 Backbone curves and energy transfer characteristics of example systems with
m1 = 1, m2 = 0.05, k1 = 1,α1 = 1 and c1 = c2 = 0.005, in Fig. 7.8. The figure is
divided by boundaries, f1 and f2, into four regions, with respect to that in the same
colour scheme in Fig. 7.8 – region (a) the first quadrant; regions (b1) and (b2) the second
quadrant; region (c) the fourth quadrant and region (d) the third quadrant. Backbone
curves of the example system are shown in panel (•1); the energy ratio dissipated by the
NES with respect to a varied ẋ1(0) is presented in panel (•2); Instantaneous energy in the
NES over time with respect to two example initial conditions (a low- and a high-initial
velocity labelled ‘×’) are shown in panels (•3) and (•4).
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1. region (a): In this region, an example system with k2 = 0.02 and α2 = 1 is first
considered – the backbone curves of this system are shown in panel (a1) in the
first quadrant of Fig. 7.9. The energy ratio dissipated by the NES, with respect to
the initial velocity in the primary system, is shown in panel (a2), where a critical
energy level may be seen, similar to that in Fig. 7.4b. The instantaneous energy
carried by the NES with ẋ1(0) below the critical energy level (panel (a3)) and above
the critical energy level (panel (a4)), again, show the same features as those seen
in the example system (Fig. 7.2). Capturing the key features of TET, this region,
shaded in green in Figs. 7.8 and 7.9, represents the physical parameter conditions
to exhibit TET. It should be noted that, as α2 increases, the critical energy level
decreases. This can be explained by the symmetrised backbone curves where the
amplitude of BP2 (associated with the critical energy level) is decreased with an
increasing α2.

2. region (b): Decreasing α2 from the example case in region (a), the system crosses
f2 and moves to region (b1). In this region, a example system with k2 = 0.02 and
α2 = 0.005 is presented in the second quadrant of Fig. 7.9. The corresponding
backbone curves are shown in panel (b1), whose topology is fundamentally different
to that in region (a). In addition to two primary backbone curves (passing through
the origin), one isolated backbone curve may be observed. Such a backbone curve
topology, indeed, can be seen as evolved from that shown in Fig. 7.7a2. When
applying the primary system with an initial velocity, the energy dissipated by the
NES is presented in panel (b2), where no critical energy level may be seen. Two
example cases, denoted (b3) and (b4) in panel (b2), are shown in the bottom panels –
the instantaneous energy in the NES over time; they both indicate that very limited
energy can be transferred to the NES as the initial energy level varies. Likewise, in
region (b2) of Fig. 7.8, similar backbone curve topologies and energy transferring
features can be observed.

3. region (c): By increasing k2, the system in region (a) can cross the boundary, f1,
and moves to region (c) – see Fig. 7.8. An example with k2 = 0.05 amd α2 = 0.005
is presented in the fourth quarant of Fig. 7.9. Its backbone curves, in panel (c1), are
asymmetric evolutions of those shown in Fig. 7.7a3. Like the system in region (b)
of Fig. 7.8, systems in region (c) exhibit two primary backbone curves and one
isolated backbone curve. Note that, in these two cases, the isolated backbone curves
can vanish with infinite frequency and amplitude, for details of the conditions,
the interested reader is directed to discussions in Chapter 3. For the example in
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region (c), the energy ratio dissipated by the NES is shown in panel (c2) – more
energy may be dissipated by the NES for a low ẋ1(0) than a high value. When
ẋ1(0) = 0.3, a strong oscillation of energy between the primary system and the NES
may be seen from panel (c3). Whilst, as ẋ1(0) increases to 3, the instantaneous
energy in the NES (panel (c4)) indicates a trend of energy transferring from the
primary system to the NES, but it is less efficient than the example system in
region (a). Even though the system in this region exhibits some similarity to that
in region (a), key features of TET are not present, e.g. a critical energy level and
the energy localisation in the primary system for low initial velocity cases.

4. region (d): A further increment of the linear stiffness of the NES leads the system
to region (d). An example system with k2 = 0.07 and α2 = 1 is shown in the
third quadrant of Fig. 7.9. The backbone curves are shown in panel (d1), whilst
the energy ratio dissipated by the NES is presented in panel (d2). In this region,
like those in regions (b) and (c), no critical energy level can be seen. Shown in
panels (d3) and (d4) are the instantaneous energy carried by the NES over time for
a low- and high-initial-energy cases respectively. It is observed again that limited
amount of energy can be transferred to the NES, and less is transferred if k2 is
further increased.

Comparing the examples in region (a) and (b1), the existence of region (b1) characterises
the minimum degree of nonlinearity necessary for the system to exhibit TET, shown as
boundary f2 and described by expression (7.14b). Whilst the existence of the boundary
f1 denotes the requirement of a small linear stiffness in the NES, quantified by the
asymptotic line of f1, i.e. k2,crit1, and described by expression (7.16a). It should also be
noted that, in the case of a linear primary system (i.e. α1 = 0), the two boundaries, f1

and f2, degenate as they are no longer defined – see Eqs. (7.14). However, the asymptotes,
given by Eqs. (7.16), can still be solved as they are only dependent on the underlying
linear system; they quantify the required maximum value of linear stiffness in the NES
– only those below this value can exhibit TET – a quantifiable ‘non-linearisability’ as
reported in the literature [57, 146, 45].

Even though these boundaries are obtained based on the symmetrised model, they classify
the fundamentally different behaviours (shown in Fig. 7.9) and allow one to identify the
approximate parameter conditions (region (a) in Fig. 7.8) where a system may exhibit
TET.
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L1

L2

fixed end

fixed end

main beam cross beam

movable tip mass

Fig. 7.10 A schematic diagram of the beam system that consists of a main beam and a
cross-beam. The main beam has two fixed ends; a cross-beam is welded at the mid-span
position of the main beam; and two movable tip masses are attached to the cross-beam
with set screws.

Table 7.3 Parameters of the nonlinear beam ROM with symmetric and asymmetric
layouts, reported in [137]. The underlying conservative dynamics of the ROM is given by
Eq. (4.14) with restoring force defined by Eq. (4.15).

ωn1 ωn2 Ξ1 Ξ2 Ξ3 Ξ4

symmetric layout 101.938 105.859 −0.749 2.653 -362.117 −0.147
asymmetric layout 101.744 104.634 15.126 0.406 179.984 0.0985

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5

symmetric layout -90.968 0.653 2.997 · 105 1.509 · 108 2.558 · 105

asymmetric layout 3.438 · 107 2.332 · 106 2.708 · 107 1.325 · 108 8.535 · 105

7.4.2 Identifying TET in a beam system

In this section, another example (a nonlinear beam) is considered to demonstrate the
realisation of TET induced by symmetry breaking. The beam model is schematically
depicted in Fig. 7.10 – the main beam (with a rectangular cross section) has two fixed
ends and is joined to a cross-beam (with a circular cross section) at the mid-span position;
two additional movable concentrated masses are attached to the cross-beam. The length,
width, and height of the main beam are 1000 mm, 12 mm, and 6 mm, respectively; whilst
the length and diameter of the cross-beam are 400 mm and 12 mm respectively. The
distances between the centres of the tip masses to the axis of the main beam are denoted
L1 and L2 respectively. By adjusting the positions of two tip masses, the torsional inertia
can be changed; in addition, they also govern the layout symmetry, namely, the system
is symmetric when L1 = L2 whilst asymmetric when L1 ̸= L2.
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Fig. 7.11 Backbone curves of the nonlinear beam model in the initial modal velocity
space, (q̇1(0), q̇2(0)). (a) Backbone curves for the symmetric layout with L1 = L2. (b)
Backbone curves for the asymmetric layout with L1 ̸= L2.

Such a beam system has been considered in [271, 144] to investigate the effect of geometric
nonlinearity via theoretical and experimental studies. The tip masses were tuned such
that the system exhibits strongly coupled bending and torsion modes with closely spaced
eigenfrequencies – this gives rise to significant 1 : 1 modal interactions. In [137], the
symmetry-breaking induced nonlinear modal veering was considered based on a reduce-
order model (ROM) derived via the implicit condensation and expansion method [106].
Here, the two-mode ROM derived in [137] is used, which captures modal interactions
between the first bending mode, q1, and the first torsion mode, q2. Note that this example
aims to use a real physical system to demonstrate that symmetry breaking can lead to
TET, rather than provide a detailed study on the beam system. Therefore, the modelling
is not given here, but the interested reader is directed to [137] for details.

The ROM can be described by equations of motion in the same form as Eq. (4.14)
with nonlinear restoring forces defined by Eq. (4.15). In order to investigate the effect
of symmetry breaking, two layouts of the beam system are considered with respect
to a symmetric layout where L1 = L2 = 177.5 mm, and an asymmetric layout where
L1 = 182 mm and L2 = 0.95L1 = 172.9 mm. For these two cases, the parameters of the
equations of motion are given in Table 7.3, obtained during reduced-order modelling.

208



7.4 Identifying systems that exhibit TET

Fig. 7.12 Energy ratio dissipated by q1 with respect to a varied initial velocity in q2 for
the asymmetric nonlinear beam system.

One can find that, for the symmetric case, Ψ1 ≈ 0 and Ψ2 ≈ 0, in line with the definition
of symmetry given in §7.3.1.

With coefficients of nonlinear terms, Ψi, for the symmetric layout, it can be found
that the system satisfies parameter conditions (7.11); therefore, it is expected that,
on each single-mode backbone curve (emerging from the eigenfrequency), there is one
bifurcation leading to mixed-mode backbone curves. Consequently, symmetry breaking
introduced by asymmetric positioning of the tip masses can lead to the required backbone
curve topology for the realisation of TET. These analytical results are then verified
via numerical continuation – the computed backbone curves for the symmetric and
asymmetric layouts are shown in Figs. 7.11a and 7.11b respectively in the initial modal
velocity space, (q̇1(0), q̇2(0)). The backbone curves indeed show topological similarity to
that in Fig. 7.6.

A varied initial impulse energy is then imparted in q2, i.e. an initial velocity in q2, to
consider the energy dissipation of two modes. The numerical simulation results are shown
in Fig. 7.12 for two damping cases where the two modes have the same linear modal
damping d1 = d2, and where d1 = 2d2. In both cases, when the initial energy impulse is
lower than the critical level, q̇2(0) ≈ 0.38, the energy input is concentrated in q2 without
transferring to q1 – similar to the below-critical-value case considered in §7.2. Meanwhile,
when the initial energy input is above the critical level, a significant increment of energy
is shown to be transferred to q1 where it is subsequently dissipated. The energy ratio
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dissipated by q1 is shown to be dependent on the relative damping of modes and a further
increment of transferred energy can be expected if d1 increases.

From the simulated results, one can conclude that the asymmetric nonlinear beam system
indeed exhibits TET. Such a nonlinear behaviour is captured by its backbone curve
topology, shown in Fig. 7.11b – an asymmetric evolution from that in Fig. 7.11a. Results
in this section verify and demonstrate the uncovered symmetry-breaking mechanism in
the realisation of TET.

7.5 Summary

Based on the concept of resonant capture, studies in this chapter made use of backbone
curves to interpret damped transient responses. Particularly, this chapter used backbone
curves to understand the nonlinear phenomenon of TET, where the vibration energy
is irreversibly transferred from one component to the other during transient responses.
From a symmetry-breaking perspective, the required backbone curves to realise TET have
been identified. The uncovered symmetry-breaking mechanism, as well as the required
parameter conditions, were demonstrated via examples and can be used to aid practical
designs.

In §7.2, an overview of TET was given to highlight its features and establish its connections
to the underlying conservative backbone curves. It was demonstrated that the features of
TET, namely, the critical energy level and irreversible energy transfer, are both captured
by the energy localisation properties of backbone curves. This underpins the applicability
of backbone curves in interpreting TET – the fundamental idea of studies in §7.3 and
§7.4.

In §7.3, the required backbone curves to realise TET were interpreted from a symmetry-
breaking perspective. Using this method, the features of TET were shown to be governed
by symmetry-breaking induced bifurcation splitting. The bifurcation splitting generates a
fold on the backbone curve that determines the critical energy level; in addition, it leads
to a backbone curve with energy localisation transiting from one mode to the other mode,
capturing the irreversible energy transfer. Therefore, studies in this section uncovered
the symmetry-breaking mechanism to realise TET, and provided a method to identify
TET via backbone curve topologies.

In §7.4, by extending the example system that was considered in previous sections to
general cases, the necessary backbone curves, found in §7.3, were distinguished from
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other cases. The required modal parameter conditions were also derived analytically for
practical use.

Lastly, two example systems were used to demonstrate the achievements. The first
example was the structure-NES system, where the physical parameter conditions were
identified to realise TET. These parameter conditions are characterised by a maximum
level of linear stiffness and a minimum level of nonlinear stiffness of the NES device. The
second example was a nonlinear beam system, where the identified symmetry-breaking
mechanism was verified and demonstrated. In breaking the symmetric layout, the
necessary backbone curves to achieve TET were found; additionally, simulation results
also verified the existence of TET.
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Chapter 8

Conclusions and furture work

In this thesis, nonlinear phenomena that emerge from modal interactions have been
investigated. This has generated theoretical insights into the mechanisms that underpin
the nonlinear behaviours, which can aid practical designs and analysis of engineering
systems. In this chapter, a summary of the achievements is presented, along with the
corresponding conclusions; additionally, some potential avenues of future research are
also discussed.

8.1 Conclusions

Synchronous NNMs and isolated backbone curves

Chapter 3 began by giving an overview of the geometric features of Nonlinear Normal
Modes (NNMs) that emerge from modal interactions, particularly, with an emphasis on
the synchronous motions.

Next, a two-mass chain oscillator was considered to present the existence of isolated
backbone curves. When the system has a symmetric layout, it was demonstrated that
there exists a bifurcation on the primary backbone curve, leading to synchronous backbone
curves, in line with a vast body of literature. It was shown that, as with the breaking
of the symmetric layout, the bifurcation splits and leads to the existence of isolated
backbone curves. Additionally, the study revealed that the bifurcation, indicative of a
symmetric system, can be preserved under certain parameter conditions. As such, it
meant that a physically asymmetric system may act equivalently to a symmetric one,
and the corresponding parameter conditions are termed having dynamic symmetry in
this thesis.
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Using these insights, a two-mass oscillator with an asymmetric layout, in the form of
a primary system with a nonlinear tuned mass damper attached, was considered to
investigate the conditions for the existence of isolated backbone curves. The physical
parameter conditions to have dynamic symmetry were derived analytically which, as
discussed above, led the asymmetric system to exhibit backbone curves with a bifurca-
tion leading to mixed-mode synchronous backbone curves. In practice, the parameter
optimisation (linear parameters of the NLTMD) for vibration suppression performance is
not in line with the conditions for dynamic symmetry. As such, optimising the NLTMD
breaks these conditions and leads to the emergence of isolated backbone curves. Based
on the optimised NLTMD system, the evolutions of backbone curves in the nonlinear
parameter space (to be optimised parameters) were then explored. It was found that the
parameter space can be divided into several regions, within which the backbone curves
show equivalent topologies, whilst the boundaries define the emergence and annihilations
of isolated backbone curves. Those conditions were then derived analytically which
govern the existence of isolated backbone curves.

Chapter 3 presented the following key points:

• The dynamics of an asymmetric system can act equivalently to a symmetric system
when conditions for dynamic symmetry are satisfied. This highlights the connections
between these two vastly different systems yet also provides a method to study
asymmetric systems.

• The conditions for the existence of isolated backbone curves are derived, which also
distinguish the backbone curve topologies in the parameter space. The existence
of isolated backbone curves can be reliably and efficiently determined using these
analytical conditions.

Asynchronous NNMs and phase-varying backbone curves

In Chapter 4, the concept of NNMs was firstly revisited by extending the synchronous
NNMs, considered in Chapter 3, to include asynchronous NNMs. Their difference was
highlighted by referring to the phase relationships between interacting modes: the
synchronous NNMs are characterised by phase relationships that are either in-phase or
anti-phase (either 0 or π); whilst for asynchronous NNMs, the phase relationships can
be an arbitrary value (neither 0 nor π). A special case of asynchronous NNM that has
been reported in the literature is the out-of-unison NNM (whirling motions) whose phase
relationship is π/2, whilst the more general case was investigated in this chapter.
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To achieve this, the existence of general asynchronous NNMs was demonstrated using
a single-mass, two-mode system from a symmetry-breaking perspective. It was shown
that, with the breaking of the symmetric layout, the special out-of-unison NNMs can be
transformed into general asynchronous NNMs. Further analytical derivations revealed
that these asynchronous NNMs are on a backbone curve that exhibits phase-amplitude
coupling – the phase relationships between modal components are varying along the
backbone curve. As such, this new class of nonlinear periodic behaviour was defined as a
phase-varying backbone cuvre, distinguishing from the commonly observed phase-fixed
ones. Next, the existence of phase-varying backbone curves in common engineering
structures was demonstrated using a cable model. An additional support was attached to
the cable near one end to mimic the engineering practice of installing a grounded device
for vibration suppression. It was shown that the support can break the symmetric layout
and transform the out-of-unison backbone curve into phase-varying ones.

Based on the results, the conclusions of Chapter 4 are as follows:

• The general asynchronous NNMs may be seen as evolutions of special out-of-
unison NNMs due to symmetry breaking. A family of such general asynchronous
NNMs formulates a phase-varying backbone curve, which represents a new class of
nonlinear behaviours.

• The existence of phase-varying backbone curves, and their accompanying general
asynchronous NNMs, highlights the importance of determining phase relationships
in computing nonlinear responses, of which a key implication is the use of harmonic
balancing method.

Topological mappings of backbone curves

In Chapter 5, discussion began by extending the 1 : 1 internal resonance, considered in
Chapters 3 and 4, to general m : n cases using a motivating example of a pinned-pinned
beam. This was achieved by accounting for the geometric features in the complex plane
(the Fourier components in an NNM) with the proposed terminology, namely the Fourier-
real and Fourier-complex NNMs. The Fourier-real NNMs denote the generalisation of
synchronous NNMs – both modal coordinates are composed of real Fourier components;
whilst the Fourier-complex NNMs are genearlised asynchronous NNMs – one mode is
composed of real Fourier components and the other mode consists of complex Fourier
components. In this beam example, an intricate topology of internal resonances was found
that consists of four mixed-mode backbone curves; in addition, two of these backbone
curves show similar response frequencies and amplitudes. An extra computational cost
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was needed to determine the whole picture of internal resonance, and hence, Chapter 5
employed an analytical method to overcome this challenge and provide a method for
efficient and robust determination of internal resonance.

To achieve this, a general two-mode symmetric system was considered. Analytical
derivations revealed that, in the neighbourhood of a primary backbone curve, the
internal resonance can be approximately captured by the Mathieu equation. The solution
sets of the Mathieu equation are associated with the Fourier-real and Fourier-complex
generalisations given above. It was shown that the mixed-mode backbone curves (emerging
from internal resonances) exist in pairs with one Fourier-real and one Fourier-complex
type. Additionally, the bifurcations leading to these mixed-mode backbone curves were
derived, which are governed by Hill’s determinants. Using these insights, the convergence
and divergence of bifurcation pairs were explored to account for the existence of internal
resonances. It was found that the convergence of bifurcations leads to phase-unlocked
resonances due to undetermined phase relationships; whilst the divergence of bifurcations
annihilates the correlated internal resonance. A further analytical study revealed that
the existence of internal resonances is governed by two parameter conditions, namely the
eigenfrequency ratio and nonlinear parameter ratio.

Discussions then extended to the asymmetric case to investigate the symmetry-breaking
effect on internal resonances. The asymmetric evolutions of internal resonances were de-
rived, which are captured by a non-homogeneous extended Mathieu equation. Symmetry-
breaking induced bifurcation splitting/remaining phenomena, observed throughout the
thesis, were shown to be governed by the non-homogeneous terms.

Based on the achievements, the conclusions of Chapter 5 can be drawn:

• Backbone curves can show intricate topologies due to the existence of internal
resonance. Based on geometric features, these backbone curves exist in pairs with
one Fourier-real and one Fourier-complex type. The convergence of these backbone
curves brings about phase-unlocked resonances whilst the divergence of them leads
to the annihilation of internal resonances.

• Analytical studies gain an in-depth understanding of the mechanism that governs
the features of internal resonances. They also provide a rigorous and efficient
method for determining the existence and locations of internal resonances. This
can aid the designs of relevant engineering systems when specific types of internal
resonances are exploited or eliminated.
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Interpreting forced periodic responses using backbone curves

Chapter 6 began by giving an overview of the energy balancing mechanism at the
system level, to that at the mode level and harmonic level. From this energy-based
perspective, the relationships between backbone curves and forced periodic responses were
established. Based on a single-harmonic assumption, the applicability and limitations of
energy balancing analysis were demonstrated in predicting forced responses. The results
showed that it yielded accurate predictions when harmonic contributions are negligible,
however, it showed inaccurate and even incorrect predictions when harmonic contributions
are significant. As harmonic contributions in the responses are challenging to know
beforehand, the single-harmonic energy balancing method may not give robust and reliable
predictions. To overcome the limitations, whilst preserving the computational efficiency,
Chapter 6 employed a semi-analytical framework to establish the multi-harmonic energy
balancing method.

By viewing forced responses as phase-shift perturbations from NNMs, the proposed
method was formulated by combining the energy balancing mechanism with force reduc-
tions and quadrature constraints. With known inputs of NNM solutions, the formulas
gave rise to closed-form solutions which can be used to compute the required forcing
amplitudes and harmonic-phase shifts from NNMs to forced responses. The technique
has been demonstrated in a number of examples in comparison with numerical force ap-
propriation, which all showed a strong agreement. Lastly, the technique has been applied
in isola prediction, and it outperforms the single-harmonic formulation in accurately
capturing the existence of an isola that has multiple significant harmonics.

The conclusions of Chapter 6 can therefore be drawn as follows:

• The harmonics can show significant contributions to nonlinear responses. When
applying the energy balancing analysis, it is of great importance to evaluate their
significance, or adopt a multi-harmonic formulation, to ensure robust and accurate
predictions of forced responses.

• The multi-harmonic energy balancing method is established based on a semi-
analytical framework that allows efficient predictions of forced responses with
known NNM inputs. The applicability and accuracy of the proposed multi-harmonic
energy balancing method can be directly estimated from the computed harmonic
phase-shifts.

• The proposed method can be used to aid experimental backbone curve identification
in finding an appropriate number of excitation points and their distributions.
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Understanding targeted energy transfer using backbone curves

In Chapter 7, the key features of Targeted Energy Transfer (TET) were first demonstrated
using a two-mode system that consists of a primary system with a nonlinear energy sink
attached. In line with many studies, a linear primary system and a nonlinearisable NES
were considered. The irreversible energy transfer and critical energy level were both shown
to be captured by the underlying backbone curves. Indeed, it is the mass and potential
asymmetry between the primary system and NES that leads to the backbone curves that
underpin the transient TET. To explore the realisation of TET, Chapter 7 was devoted
to understanding the essential asymmetry from a symmetry-breaking perspective.

To achieve this, a symmetrised model was introduced, which allows the original system
to be interpreted as an asymmetric evolution. Therefore, the backbone curves (capturing
key features of TET) were interpreted as bifurcation splitting due to symmetry breaking.
The bifurcation splitting generates a fold on one backbone curve that governs the
critical energy level; whilst it leads the other backbone curve to show energy localisation
transiting from one mode to the other, capturing the irreversible energy transfer. Based
on the uncovered symmetry-breaking mechanism, the required backbone curves for the
realisation of TET can be distinguished from others, and hence, it provides a method to
identify systems that exhibit TET.

This method was then demonstrated using two example systems. The first example
represents a generalised structure-NES system where the primary structure has a nonlinear
spring and the NES has a linear spring. The analytically identified parameter conditions
were characterised by a minimum requirement of nonlinear stiffness and a maximum
limit of linear stiffness of the NES. The other example was a nonlinear beam system,
where the uncovered symmetry-breaking mechanism was verified and demonstrated. In
breaking the symmetric layout, the required backbone curves for the realisation of TET
were found. Numerical simulations also justified the existence of TET in the nonlinear
beam system.

The conclusions of Chapter 7 can therefore be drawn as follows:

• Based on the concept of resonant capture, backbone curves can capture the key
features of transient TET, namely the irreversible energy transfer and critical
energy level.

• Symmetry breaking represents one mechanism that underpins the realisation of
TET and provides a method to identify the system that exhibits TET.
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8.2 Future work

This thesis presents theoretical and practical insights into nonlinear behaviours. The
work has also revealed many potential paths for future research; these are given as follows.

Modal interactions of high-dimensional systems

In this thesis, modal interactions between two modes have been studied by considering
their geometric features. In Chapter 3, the synchronous NNMs and their correlated
isolated backbone curves were analytically determined; next, Chapter 4 considered
the counterpart – the asynchronous NNMs and phase-varying backbone curves; lastly,
Chapter 5 generalised these results for arbitrary m : n two-mode interactions. As two-
mode interactions represent the most commonly observed scenarios, the achievements of
this thesis can effectively be used to aid modelling, analysis, and designs of nonlinear
systems.

However, in literature, higher-dimensional modal interactions have been reported in both
experimental and theoretical studies. Further exploration is needed to reveal how the
findings in this thesis can be further extended to three-mode interactions and more general
cases. There are several scientific questions that can be considered: the mechanism that
governs multi-mode interactions; the effect of other non-interacting modes on modal
interactions, and in turn, the effect of modal interactions on other non-interacting modes.
This can further the understanding of complex nonlinear behaviours in high-dimensional
systems and provide practical insights into engineering applications to better handle and
exploit these features. One key implication lies in reduced-order modelling, where the
selection of the reduced basis is often based on prior knowledge or computational trials.
If the general mechanism governing modal interactions can be revealed, it can provide
guidance in the reduced basis selection. Furthermore, it may even automate the basis
selection to generate a reduced-order model that effectively and efficiently suits different
scenarios (different types of modal interactions may occur under different conditions).

Accounting for nonlinear damping in the energy balancing analysis

In Chapter 6, the multi-harmonic energy balancing method was established based on
linear modal damping. This case represents many engineering systems that experience
geometric nonlinearity, where the damping may be assumed small and linear when
compared to the restoring force and external force. In practice, many nonlinear systems
can also manifest nonlinear phenomena due to nonlinear damping, for example, bolted
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joints and rubber damping devices. As these systems are usually operating under cyclic
forcing conditions, the energy balancing principle can still be applied, however, with
an extension to account for the nonlinear damping effect. This extension is meaningful
in terms of studies of nonlinear damping systems as analysis and optimisations of such
systems are typically associated with computationally expensive simulations. The semi-
analytical1, multi-harmonic framework can significantly ease the computational burden
whilst preserving the required accuracy, especially when considering multi-harmonic
responses in the presence of non-smooth damping.

Optimising the vibration suppression performance of a NLTMD

In this thesis, conditions for the existence of isolated backbone curves have been analyti-
cally derived. These can directly be used in parameter optimisation of structure-NLTMD
systems to eliminate the existence of isolated backbone curves. Even though the existence
of isolated backbone curves and their correlated isolas can show significant impact, in
practice, the damping devices are often optimised to achieve the best performance in
vibration suppression, rather than target eliminating the existence of isolas. In this
case, how to reliably guarantee the non-existence of isolas whilst achieving the best
performance needs further study. This can be realised by employing the energy balancing
analysis in the resonance analysis of NLTMD systems. Firstly, the energy balancing
analysis can reliably predict the existence of isolas, as demonstrated in Chapter 6. Next,
it can be used to predict amplitudes of resonant responses for any given forcing amplitude,
therefore, it can be used to evaluate the vibration suppression performance. Hence, a
nonlinear generalised equal-peak optimisation can potentially be formulated based on
this technique.

Targeted energy transfer

In this thesis, Targeted Energy Transfer (TET) has been studied in a number of example
systems in Chapter 7. In line with much literature, these examples exhibit TET via
irreversible energy transfer that is locked in the neighbourhood of synchronous, or Fourier-
real, backbone curves. Likewise, as the counterpart of synchronous backbone curves,
asynchronous backbone curves may also attract irreversible energy transfer if they are
stable. In this case, the irreversible energy transfer can direct energy from one mode to
the other via whirling-like motions. This can outperform the classic TET in cases where
whirling motions are more favorable to the primary systems than in-phase/anti-phase

1The extension to nonlinear damping case may require extra assumptions to retain this semi-analytical
framework.
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motions. However, more detailed studies on the applicability, advantages, and efficiency
are needed.

Another avenue of future research is on the realisation of TET without adding peripheral
devices, e.g. without an additional nonlinear energy sink. In Chapter 7, the realisation
of TET was explored based on the symmetry-breaking mechanism. As demonstrated
via the nonlinear beam example, TET was realised by adjusting the distribution of tip
masses, which breaks the symmetric layout without additional devices. This indicates
the potential to realise in-built TET behaviours in a nonlinear system via deliberate
adjustment of the layout. This can be of great significance in optimising nonlinear
systems by achieving a more predictable system as energy input in either mode can end
up localised in a particular mode due to TET. Therefore, this optimising methodology
may allow for a long-lasting design since potential failures of the system can be more
reliably estimated based on the energy localised mode. However, a trade-off between
the breaking of a regular layout and a better performance needs to be considered; in
addition, how such in-built TET can be realised in more general nonlinear systems (not
necessarily an asymmetric beam) also needs further exploration.
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Appendix A

List of coefficients

Parameters of the zero discriminant for determining
the existence of isolated backbone curves in Chapter 3
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5
11ϕ12

)
δ11δ

5
12

+
(

−8ϕ6
11 + 90ϕ4

11ϕ
2
12 − 404

9 ϕ2
11ϕ

4
12 − 2

3ϕ
6
12

)
δ4

11δ
2
12

+
(

−8ϕ6
12 + 90ϕ2

11ϕ
4
12 − 404

9 ϕ4
11ϕ

2
12 − 2

3ϕ
6
11

)
δ2

11δ
4
12 (A.4)

+
(

−88
3 ϕ

5
11ϕ12 + 3536

27 ϕ3
11ϕ

3
12 − 88

3 ϕ
5
12ϕ11

)
δ3

11δ
3
12,

243



List of coefficients

and where δ11 = ϕ11 − ϕ21 and δ12 = ϕ12 − ϕ22.

Nonlinear parameters of the equations of motion for
the single-mass, two-mode system in Chapter 4

The equations of motion for the single-mass, two-mode system in the physical domain
are given by Eq. (4.3), where the parameters of Nx are defined as

β1 = k2 cos (δ) sin2 (δ)
2L2

,

β2 = −

[
3 cos2 (δ) − 1

]
sin (δ) k2

2L2
,

β3 = −
L1L3k2 cos (δ)

[
3 cos2 (δ) − 2

]
+ L3L2k1 − L1L2k3

2L1L2L3
,

β4 = k2 sin (δ) cos2 (δ)
2L2

,

γ1 = −

[
5 cos2 (δ) − 1

]
sin2 (δ) k2

8L2
2

, (A.5)

γ2 =
k2 sin (δ) cos (δ)

[
5 cos2 (δ) − 3

]
2L2

2
,

γ3 = −
15L2

1L
2
3k2 cos2 (δ)

[
cos2 (δ) − 1

]
+ 2L2

3L
2
2k1 + 2L2

1L
2
3k2 + 2L2

1L
2
2k3

4L2
1L

2
2L

2
3

,

γ4 = −
k2 cos (δ) sin (δ)

[
5 cos2 (δ) − 2

]
2L2

2
,

γ5 =
cos2 (δ)L2

1L
2
3k2

[
5 cos2 (δ) − 4

]
+ L2

3L
2
2k1 + L2

1L
2
2k3

8L2
1L

2
2L

2
3

.

Using linear modal transform, Eq. (4.3) can be mapped to the modal domain, given by
Eq. (4.4), where the parameters of Nq are given by

Ξ1 = (3β1ϕ12 + β2ϕ22)ϕ2
11 + 2 (β2ϕ12 + β3ϕ22)ϕ11ϕ21 + (β3ϕ12 + 3β4ϕ22)ϕ2

21,

Ξ2 = (3β1ϕ11 + β2ϕ21)ϕ2
12 + 2 (β2ϕ11 + β3ϕ21)ϕ12ϕ22 + (β3ϕ11 + 3β4ϕ21)ϕ2

22,

Ξ3 =3
[
β1ϕ

3
11 + β2ϕ

2
11ϕ21 + β3ϕ11ϕ

2
21 + β4ϕ

3
21

]
,

Ξ4 =3
[
β1ϕ

3
12 + β2ϕ

2
12ϕ22 + β3ϕ12ϕ

2
22 + β4ϕ

3
22

]
,

Ψ1 = (4γ1ϕ12 + γ2ϕ22)ϕ3
11 + (3γ2ϕ12 + 2γ3ϕ22)ϕ2

11ϕ21
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+ (2γ3ϕ12 + 3γ4ϕ22)ϕ11ϕ
2
21 + (γ4ϕ12 + 4γ5ϕ22)ϕ3

21, (A.6)
Ψ2 = (4γ1ϕ11 + γ2ϕ21)ϕ3

12 + (3γ2ϕ11 + 2γ3ϕ21)ϕ2
12ϕ22

+ (2γ3ϕ11 + 3γ4ϕ21)ϕ12ϕ
2
22 + (γ4ϕ11 + 4γ5ϕ21)ϕ3

22,

Ψ3 =2
[(

6γ1ϕ
2
12 + 3γ2ϕ12ϕ22 + γ3ϕ

2
22

)
ϕ2

11 +
(
6γ5ϕ

2
22 + 3γ4ϕ12ϕ22 + γ3ϕ

2
12

)
ϕ2

21

+
(
3γ2ϕ

2
12 + 4γ3ϕ12ϕ22 + 3γ4ϕ

2
22

)
ϕ11ϕ21

]
,

Ψ4 =4
[
γ1ϕ

4
11 + γ2ϕ

3
11ϕ21 + γ3ϕ

2
11ϕ

2
21 + γ4ϕ11ϕ

3
21 + γ5ϕ

4
21

]
,

Ψ5 =4
[
γ1ϕ

4
12 + γ2ϕ

3
12ϕ22 + γ3ϕ

2
12ϕ

2
22 + γ4ϕ12ϕ

3
22 + γ5ϕ

4
22

]
.

245





Appendix B

A nonlinear beam model

In this section, a nonlinear beam with two immovable ends in the axial direction is
considered. From Refs. [252, 30, 52], the equation of motion for this beam can be
described by a von Kármán model, given by

ρA
∂2w(x, t)
∂t2

+ EI
∂4w(x, t)
∂x4 −N(t)∂

2w(x, t)
∂x2 = 0 , (B.1)

where parameters ρ, A, E, I and N denote the density, cross-sectional area, Young’s
modulus, second moment of area and axial force of the beam, respectively; and where
w(x, t) represents the transverse deflection at axial position x at time t, and N(t) is the
dynamic tension, given by

N(t) = EA

2L

∫ L

0

(
∂w(x, t)
∂x

)2

dx , (B.2)

which leads to nonlinear terms in Eq. (B.1).

The nonlinear beam is expanded via the Galerkin method. Using its underlying linear
modes to separate the space and time dependence of the transverse deflection gives

w(x, t) =
∞∑

i=1
ϕi(x)qi(t) , (B.3)

where ϕi(x) denotes the ith modeshape at axial position x, and qi(t) is the ith modal
displacement over time. Substituting Eq. (B.3) into Eqs. (B.1) and (B.2), it leads to

ρA

 ∞∑
i=1

ϕiq̈i

+ EI

 ∞∑
i=1

ϕ
′′′′

i qi

− EA

2L

∫ L

0

 ∞∑
i=1

ϕ
′

iqi

2

dx


 ∞∑

i=1
ϕ

′′

i qi

 = 0 , (B.4)

247



A nonlinear beam model

where ϕ′
i, ϕ

′′
i and ϕ

′′′′
i denote the first, second and fourth derivative of ϕi, with respect

to x, respectively; q̈i is the second derivative of qi with respect to t, namely the modal
acceleration. Next, multiplying Eq. (B.4) by the modephase of the nth modal coordinate,
ϕn, and intergrating over the length of the beam reveals

ρA

 ∞∑
i=1

(∫ L

o
ϕiϕndx

)
q̈i

+ EI

 ∞∑
i=1

(∫ L

o
ϕ

′′′′

i ϕndx
)
qi


− EA

2L

 ∞∑
i=1

∞∑
j=1

∞∑
k=1

(∫ L

0
ϕ

′

iϕ
′

jdx
)(∫ L

0
ϕ

′′

kϕndx
)
qiqjqk

 = 0 . (B.5)

Recalling the orthogonal relationships of the underlying linear modes gives
∫ L

0
ϕiϕndx = 0 and

∫ L

0
ϕ

′′′′

i ϕndx = 0 when i ̸= n . (B.6)

With these orthogonal conditions, Eq. (B.5) can be reduced to

ρA

(∫ L

o
ϕ2

ndx
)
q̈i + EI

(∫ L

o
ϕ

′′′′

n ϕndx
)
qi

− EA

2L

 ∞∑
i=1

∞∑
j=1

∞∑
k=1

(∫ L

0
ϕ

′

iϕ
′

jdx
)(∫ L

0
ϕ

′′

kϕndx
)
qiqjqk

 = 0 . (B.7)

Equation (B.7) can then be rearranged as

q̈n + ω2
nnqn +

 ∞∑
i=1

∞∑
j=1

∞∑
k=1

µi,j,k,nqiqjqk

 = 0 , (B.8)

where

ωnn =
EI

(∫ L
o ϕ

′′′′
n ϕndx

)
ρA

(∫ L
o ϕ2

ndx
) and µi,j,k,n =

E
(∫ L

0 ϕ
′
iϕ

′
jdx

) (∫ L
0 ϕ

′′
kϕndx

)
2Lρ

(∫ L
o ϕ2

ndx
) . (B.9)

Equation (B.8) represents the conservative (i.e. undamped and unforced) motions for the
nth mode. To find the natural frequency, ωnn, and coefficients of nonlinear terms, µi,j,k,n,
linear modeshapes are required from the underlying linear system. The modeshapes can
be obtained from finite element analysis, or alternatively, by employing an analytical
approach.

Here, a pinned-pinned beam is considered to demonstrate how analytical approch is
implimented. Firstly, the underlying linear system can be obtained by the removal of
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nonlinear terms associated with dynamic axial force, i.e.

ρA

 ∞∑
i=1

(∫ L

o
ϕiϕndx

)
q̈i

+ EI

 ∞∑
i=1

(∫ L

o
ϕ

′′′′

i ϕndx
)
qi

 = 0 . (B.10)

For the underlying linear system, the modal parameters can be determined from the
boundary conditions. In this case, considering the pinned-pinned boundary conditions
gives

w|x=0 = 0, ∂2w

∂x2

∣∣∣∣∣
x=0

= 0, w|x=L = 0, ∂2w

∂x2

∣∣∣∣∣
x=L

= 0. (B.11)

With these boundary conditions, the natural frequency and modephase can be obtained
from Eq. (B.10), i.e.

ωnn =
(
nπ

L

)2
√
EI

ρA
, and ϕn(x) = sin

(
nπ

x

L

)
. (B.12)

Substituting Eq. (B.12) back to Eqs. (B.8) and (B.9), a pinned-pinned beam with a
two-mode truncation can be obtained

q̈1 + ω2
n1q1 + Ψ4q

3
1 + Ψ3q

2
2q1 = 0 , (B.13)

q̈2 + ω2
n2q2 + Ψ5q

3
2 + Ψ3q

2
1q2 = 0 , (B.14)

where

Ψ3 = µ1,2,2,1 + µ2,1,2,1 + µ2,2,1,1, Ψ4 = µ1,1,1,1, Ψ5 = µ2,2,2,2 . (B.15)
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Appendix C

Computing the energy-transfer terms

In Chapter 6, the energy balancing for the jth harmonic of the ith mode is given by

EDi,j + EP i,j + ENi,j = 0 , (C.1)

which shows the relationship between the damping, forcing and nonlinear energy-transfer
terms, where these terms are computed using

EDi,j =
∫ T

0
[diq̇i] u̇i,jdt , (C.2a)

EP i,j = −
∫ T

0

[
pi(t)

]
u̇i,jdt , (C.2b)

ENi,j =
∫ T

0

[
Nqi(q)

]
u̇i,jdt . (C.2c)

It is now shown that these terms may be written as linear functions of the forcing
amplitudes, Pi,j, and phase-shifts, θ̂i,j, which are assumed to be unknown and to be
solved via the energy balancing analysis.

Damping energy-transfer term

Substituting the harmonic expansion of the modal velocities, from Eq. (6.18), into the
expression for the damping energy loss, Eq. (C.2a), gives

EDi,j =
∫ T

0

di

∑
k∈Hi

u̇i,k

 u̇i,jdt . (C.3)
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Computing the energy-transfer terms

Noting that u̇i,0 = 0 and that

∫ T

0
u̇i,ku̇i,jdt = 0 , when: k ̸= j , (C.4)

Eq. (C.3) may be simplified to

EDi,j = di

∫ T

0
u̇2

i,jdt . (C.5)

Substituting the expression for u̇i,j, from Eq. (6.18), into Eq. (C.5) then gives

EDi,j = di

∫ T

0

[
−jωUi,j sin

(
jωt+ θ̄i,j + θ̂i,j

)]2
dt , (C.6a)

= πj2ωdiU
2
i,j , (C.6b)

where T = 2πω−1 has been used.

Note that the linear modal damping is considered here, whilst a discussion on nonlinear
damping can be found in [145].

Forcing energy-transfer term

Substituting the harmonic expansion of external forcing, Eq. (6.17), into the expression
for the forcing energy loss, Eq. (C.2b), gives

EP i,j = −
∫ T

0

∑
k∈Hi

pi,k

 u̇i,jdt . (C.7)

Noting that
∫ T

0
pi,ku̇i,jdt = 0 , when: k ̸= j , (C.8a)

and:
∫ T

0
pi,0u̇i,jdt = 0 , for all j , (C.8b)

Eq. (C.7) is simplified to

EP i,j = −
∫ T

0
pi,ju̇i,jdt . (C.9)
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The harmonic forcing, pi,j and velocity, u̇i,j, are assumed as

pi,j = −Pi,j sin
(
jωt+ ψi,j

)
, (C.10a)

u̇i,j = −jωUi,j sin
(
jωt+ θi,j

)
= −jωUi,j sin

(
jωt+ θ̄i,j + θ̂i,j

)
. (C.10b)

where Pi,j and ψi,j are the amplitude and phase of the forcing respectively. Substituting
the expressions for pi,j and u̇i,j into Eq. (C.9), gives

EP i,j =
∫ T

0

[
−Pi,j sin

(
jωt+ ψi,j

)]
× (C.11a)[

jωUi,j sin
(
jωt+ θ̄i,j + θ̂i,j

)]
dt ,

≈ −πjPi,jUi,j cos
(
ψi,j − θ̄i,j

)
, (C.11b)

where it has been assumed that the phase-shift, θ̂i,j, is small. The phase difference,
ψi,j − θ̄i,j, accounts for the effect of external forcing on harmonic ui,j – either an energy
gain or an energy loss.

For the case where quadrature harmonic forcings are considered, i.e. §6.3, the phase of
the harmonic forcing, ψi,j, may be assumed to be equal the phase of the velocity, θ̄i,j.
This further simplifies Eq. (C.11) to

EP i,j ≈ −πjPi,jUi,j . (C.12)

Assuming the displacement amplitude, Ui,j, is known but the forcing amplitude, Pi,j, is
unknown, the forcing energy term may be separated into the known, E†

P i,k, and unknown,
Pi,k, components, i.e.

EP i,j ≈ Pi,jE
†
P i,j , where: E†

P i,j = −πjUi,j , (C.13)

where the dagger, •†, denotes a known term.

Whilst, for the case where quadrature physical forcings are considered, as in §6.4, the
phase relationship between the external forcing and the harmonic can be determined
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Computing the energy-transfer terms

using the phase constraints Eq. (6.70) with the substitution of θi,j = θ̄i,j, i.e.

tan
(
ψℓ,j

)
=

N∑
i=1

ϕℓ,iUi,j sin
(
θ̄i,j

)
N∑

i=1
ϕℓ,iUi,j cos

(
θ̄i,j

) . (C.14)

In this context, the phase difference, ψi,j − θ̄i,j , can be evaluated using the NNM solutions;
therefore, it can be seen as a known parameter.

Nonlinear energy-transfer term

As with the forcing energy-loss term, the known and unknown components must be
separated in the nonlinear energy-loss term, Eq. (6.14c). Before considering the (unknown)
phase-shifts, θ̂i,j, the responses are divided into the NNM responses (assumed to be
known) and the perturbations (assumed to be unknown) – i.e. qi = q̄i + q̂i where, as
previously, q̄i represents the NNM response and where q̂i is the perturbation to the ith

modal displacement due to the forcing. Following this, the vector of modal displacements
may be written q = q̄ + q̂, and the harmonics are written ui,j = ūi,j + ûi,j . Substituting
these into the nonlinear energy-loss term, Eq. (6.14c), leads to

ENi,j =
∫ T

0

[
Nqi (q̄ + q̂)

] [
˙̄ui,j + ˙̂ui,j

]
dt . (C.15)

Assuming the perturbation terms are small, the Taylor series expansion may be applied
to the nonlinear force to give

ENi,j ≈
∫ T

0

Nqi (q̄) +
 N∑

n=1

[
dNqi

dqn

]
q=q̄

q̂n


×

[
˙̄ui,j + ˙̂ui,j

]
dt , (C.16)

which may be expanded out to

ENi,j ≈
∫ T

0

[
Nqi (q̄) ˙̄ui,j

]
+
[
Nqi (q̄) ˙̂ui,j

]
(C.17)

+


 N∑

n=1

[
dNqi

dqn

]
q=q̄

q̂n

 ˙̄ui,j


+


 N∑

n=1

[
dNqi

dqn

]
q=q̄

q̂n

 ˙̂ui,j

 dt .
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As the unperturbed response represents an NNM, the first term in the integral of
Eq. (C.17) represents the net energy transfer due to the nonlinear coupling of an NNM
response. As an NNM cannot exhibit a net energy transfer, it follows that

∫ T

0
Nqi (q̄) ˙̄ui,jdt = 0 . (C.18)

Assuming that the perturbations, q̂n and ûi,j, are small it also follows that the final
term in the integral of Eq. (C.17) is negligible. Therefore, Eq. (C.17) may be further
approximated to

ENi,j ≈
∫ T

0

[
Nqi (q̄) ˙̂ui,j

]
+


 N∑

n=1

[
dNqi

dqn

]
q=q̄

q̂n

 ˙̄ui,j

 dt . (C.19)

The perturbations, q̂n and ûi,j, are now written in terms of the phase-shifts, θ̂i,j. To
achieve this, Eq. (6.18) is used to write the jth harmonic of the ith mode as

ui,j = ūi,j + ûi,j = Ui,j cos
(
jωt+ θ̄i,j + θ̂i,j

)
, (C.20a)

= Ui,j cos
(
jωt+ θ̄i,j

)
cos

(
θ̂i,j

)
(C.20b)

−Ui,j sin
(
jωt+ θ̄i,j

)
sin

(
θ̂i,j

)
,

≈ ūi,j − Ui,j sin
(
jωt+ θ̄i,j

)
θ̂i,j , (C.20c)

where it has been assumed that θ̂i,j is small. It therefore follows that

ûi,j ≈ −Ui,j sin
(
jωt+ θ̄i,j

)
θ̂i,j = 1

jω
˙̄ui,j θ̂i,j , (C.21)

and hence the perturbation terms in Eq. (C.19) may be written

˙̂ui,j ≈ 1
jω

¨̄ui,j θ̂i,j , and q̂n =
∑

k∈Hn

θ̂n,k

kω
˙̄un,k . (C.22)

Substituting these into Eq. (C.19) gives

ENi,j ≈
∫ T

0

 N∑
n=1

∂Nqi

∂qn

 ∑
k∈Hn

θ̂n,k

kω
˙̄un,k


 ˙̄ui,jdt+ θ̂i,j

jω

∫ T

0
Nqi (q̄) ¨̄ui,jdt . (C.23a)

≈

 N∑
n=1

∑
k∈Hn

θ̂n,k

kω

(∫ T

0

∂Nqi

∂qn

˙̄un,k
˙̄ui,jdt

)+ θ̂i,j

jω

∫ T

0
Nqi (q̄) ¨̄ui,jdt . (C.23b)

255



Computing the energy-transfer terms

As with the forcing energy-loss term, this may be separated into the known components
(i.e. the NNM responses) and unknown components (the phase-shifts) as follows

ENi,j ≈
N∑

n=1

∑
k∈Hn

E
†(n,k)
Ni,j θ̂n,k , (C.24)

where the known component is written

E
†(n,k)
Ni,j =



1
kω

∫ T

0

∂Nqi

∂qn

˙̄ui,j
˙̄un,kdt ,

when: {i, j} ≠ {n, k} ,

1
jω

∫ T

0

∂Nqi

∂qi

˙̄u2
i,jdt

+ 1
jω

∫ T

0
Nqi

¨̄ui,jdt ,

when: {i, j} = {n, k} .

(C.25)

As previously discussed, the dagger, •†, denotes a known term.
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