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A B S T R A C T   

The Beetle Elytron Plate (BEP) is a new class of biomimetic sandwich core that features excellent compressive 
strength, energy absorption capacity and flexural properties. These characteristics make BEPs suitable as po-
tential replacements of classical honeycomb cores in sandwich panels. This work describes the behaviour of the 
in-plane engineering elastic constants of parametric BEP topologies for the first time. The beetle elytron cores 
configurations are simulated using Finite Element models, including full-scale models and representative unit 
cells with periodic boundary conditions for asymptotic homogenization. The models are also benchmarked 
against experimental results obtained from ASTM tensile tests related to the in-plane Young’s modulus, Poisson’s 
ratio and shear modulus. The benchmarked models are then used to perform a parametric analysis against the 
geometry characteristics of the cellular configurations. Results obtained from this work will provide a solid 
foundation for further research on BEP structures and expand their applications into wider engineering fields.   

1. Introduction 

Sandwich structures are composed of thin skins and hollow core 
layers. Sandwich panels offer several advantages in terms of mechanical 
properties, such as light weight, high strength and specific stiffness 
[1–3]. Hence, sandwich panels are used in many engineering applica-
tions, ranging from aerospace [4,5], civil [6–8], marine [9,10] as well as 
in biomedical areas [11–13]. A wide variety of core types are used to 
meet design requirements, including foams [14–17], trusses [18–20] 
and cellular structures [21–23]. Bionics also have played a very 
important role in the development of new types of core materials. In 
nature, to survive and adapt to the natural environment, living beings 
tend to generate some unique biological structures with special func-
tions as a result of their evolution history [24 25]. Thus, bio-inspired 
sandwich structures [26–28] have recently attracted significant 
research interest. Tasdemirci et al investigated a thin-walled structure 
inspired from the Balanus barnacle from both an experimental and a 
numerical standpoint, with emphasis on load-carrying and energy ab-
sorption applications [29]. Abo Sabah et al designed a novel sandwich 
beam inspired by the woodpecker’s head, achieving an enhanced low- 
velocity impact behaviour [30]. It is well known that honeycomb 
(hexagonal) tessellations are often encountered in biological systems.4 
The mechanical properties of honeycombs, such as compression 

[31–33], high energy dissipation [34–36], impact resistance [37–40], 
and ballistic performance [41], are always of critical importance for a 
wide range of applications in aerospace [42], transportation [43–45] 
and civil engineering [46,47]. 

Beetles are present in our planet since the earliest Permian (295 
million years ago) [48]. Beetles are characterized by the presence of an 
elytra that possess a remarkable three-dimensional structure to protect 
the body of the insect and also to facilitate its flight. The elytra features 
specific mechanical configurations [49], cuticles [50] and structural 
colors [50]. The beetle elytra are considered a class of high-strength, 
lightweight biological structures [51–53]. In 1994, Xiang et al. 
described the beetle elytron as a sandwich structure consisting of upper 
and lower skins, and a trabecular core structure [54]. Chen et al. re-
ported that in the elytron of the Allomyrina dichotoma (A. dichotoma) 
beetle (Fig. 1a, red circle showing its forewings/elytra) thousands of 
trabeculae are present (Fig. 1b) [55]. A bionic-inspired sandwich plate 
based on the microstructure of the elytron of the A. dichotoma beetle 
[56,57], characterized by a hollow-trabecula honeycomb core structure, 
was proposed as early as 2003 [58]. The same configuration was then 
progressively modified during the following decade, and named as 
Beetle Elytron Plate in 2016 [59]. Observing the architecture of the 
A. dichotoma elytron shows that not all trabeculae are located at the 
intersections of the cell walls, as approximately 10% of trabeculae are 
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instead located in the middle of the cell walls [57,60–62] BEPs can be 
therefore subdivided into two geometries. The first is the end-trabecular 
beetle elytron plate (EBEP), in which the trabeculae are placed solely at 
the joint of the cell walls. The second is the middle-trabecular beetle 
elytron plate (MBEP) [60], which has the trabeculae located in the 
middle of the cell walls. 

Both the EBEP- and the MBEP-inspired structures made of different 
materials have shown clear advantages in terms of compressive prop-
erties and energy absorption capabilities compared to classical honey-
comb plates, and this has been confirmed by experiments and finite 
element (FE) simulations [63–65]. Chiral and hierarchical honeycombs 
with configurations similar to the BEP topologies also show some 
excellent mechanical properties, as demonstrated by analytical and 
numerical simulations [66–68]. Three-point and cantilever sandwich 
beams with BEP cores subjected to bending also exhibit increased 
ductility compared to analogous configuration with honeycombs 
[69,70]. The response of a BEP structure under different types of load 
however depends on the equivalent elastic and nonlinear properties of 
the core [71–74]. To the best of the Authors’ knowledge, no compre-
hensive study of the engineering elastic moduli of EBEPs and MBEPs has 

been performed so far. In this work, we investigate the in-plane tensile 
modulus, Poisson’s ratio and shear modulus of both EBEP and MBEP 
cores. The investigation is carried out using a numerical parametric 
analysis benchmarked by experiments. BEP cores are also compared to 
classical hexagonal honeycomb configurations. The numerical analysis 
is performed using Representative Volume Elements (RVE) models with 
Periodic boundary conditions (PBCs), followed by volumetric homoge-
nization. Simulations on full scale models have also been performed to 
cross-validate the RVE results. Finally, uniaxial and off-axis 45◦ tensile 
tests have been performed to validate the numerical results. 

2. Materials and methods 

2.1. Geometry 

Periodic structures are characterized by the repetition of a minimum 
unit cell or namely, a representative volume element (RVE). Fig. 3 shows 
the geometries of RVEs in honeycombs (Fig. 3a), and in the BEP topol-
ogies (Fig. 3b, EBEP cores, and, Fig. 3c, MBEP cores). For the purpose of 
comparison, the results from the asymptotic homogenization are 

Fig. 1. Adult Allomyrina dichotoma beetle and the microstructure of its elytra.  

Fig. 2. Full-scale FE models. (a1) hexagonal honeycomb (α = 0,β = 0.067) and (a2) EBEP configuration (α = 0.3, β = 0.167) for the uniaxial tensile simulations. 
(b1) hexagonal honeycomb (α = 0, β = 0.067) and (b2) MBEP configuration (α = 0.3, β = 0.167) for the 45◦ off-axis tensile simulation. 
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obtained from two different RVEs for the same type of core configuration 
(Fig. 3a1 and a2, b1 and b2, c1 and c2). All the RVEs are composed by 
cylinders with radius r and cell walls with length l = 9mm, thickness t 
and inclined with an angle equal to 120◦ between two walls (upper row 
in Fig. 3). The thickness of the RVE along the z-direction (lower row in 
Fig. 3) is indicated as h. The mechanical properties of the structures can 
be expressed using some nondimensional parameters like the cylindrical 
radius ratio α = r/l and the thickness ratio β = t/l (Fig. 3). It is notice-
able that not all the α and β values are admissible. For examples, the α 
values need to be limited within 0.5 to avoid the merging of two adja-
cent cylinders. The β values also are delimited when the thickness of ribs 
is equal to r/2, otherwise the cylinders would not be hollow. Additional 
parameters that characterize the mechanical behaviour of the cellular 
structures are the material properties of the cell walls (in-plane Young’s 
modulus Es, shear modulus Gc and density ρc in our case). In this work, 
we have used 5 groups of the α (α = 0, 0.1, 0.2, 0.25, 0.3) and β (β =
0.067, 0.089, 0.111, 0.133, 0.167) parameters, respectively. The hex-
agonal honeycomb structures have however only 5 groups of β due to the 
absence of cylinders in their cells, so their α values are set to zero. 

Another important parameter that defines the mechanical perfor-
mance of the cellular structures is the relative density ρ/ρc, which is 
defined by: 

ρ
ρc

=
A
Ac

(1) 

In (1), A is the area of solid material within a representative unit cell 
and Ac is the total cross-sectional area of the unit cell. Formula (1) is 
related to a prismatic cellular structure with constant height along the z 
(out-of-plane) direction. From inspection, the relative density of the 
EBEP configurations can be written as: 

ρ
ρc

=
8
9

̅̅̅
3

√
παβ +

2
3

̅̅̅
3

√
β
(

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

β2 + αβ
√ )

−

̅̅̅
3

√

3
(2α + β)2

• arcsin
(

β
2α + β

)

(2) 

For the MBEP configurations, the relative density becomes: 
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All the details of the configurations used in this article, with their 
names and corresponding parameters, can be found in the Appendix 
Figure A1 and Appendix Figure A2. 

2.2. Finite element models 

All the numerical models are developed using the commercial code 
ABAQUS 2018b. The in-plane elastic engineering properties have been 
simulated using full-scale representative models of the honeycomb 
structures and the BEP topologies. Those full-scale models provide a 
further benchmark to the asymptotic homogenization models repre-
sented by the RVEs with periodic boundary conditions (PBCs). 

2.2.1. Full-scale representative models 
Three groups of full-scale FE models representing different configu-

rations have been prepared. The first is representative of the hexagonal 
honeycomb structure group with α = 0 and β = 0.067, 0.167. The second 
and third groups represent EBEP and MBEP configurations with α = 0.1, 
0.3 and β = 0.067, 0.167, respectively. Each model has a length l =

9mm. The dimensions of the uniaxial and off-axis 45◦ tensile test sam-
ples are 251mm× 108mm× 3mm. These dimensions are also adopted for 
the experimental specimens. Fig. 2 shows four models: two are for 
uniaxial tensile simulations (Fig. 2a), the others are for the 45◦ off-axis 
tensile loading (Fig. 2b). The full-size representative volumes have 77 
unit cells; this figure is consistent with the minimum cell numbers rec-
ommended by the ASTM C365/C365M-16 standard. After a mesh 
convergence analysis, a discretization with at least two through-the- 
thickness elements has been adopted by using C3D8I elements 
(Fig. 2a, b). For all the full-scale models, the boundary conditions have 
been applied to the top and bottom rectangular part (Fig. 2) along the x- 
direction. On the top bar, each node was subjected to a constant tensile 

Fig. 3. Configurations of the different representative unit volumes (RVEs) in (a) honeycomb structures, (b) EBEP cores and (c) MBEP cores.  
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force (linear elastic analysis). On the bottom bar, all degrees of freedom 
(DOF) have been clamped. As a close approximation to the effective 
boundary conditions existing in the experimental tests, the degrees of 
freedom of the nodes belonging to the top bar subjected to the tensile 
force were coupled to translate together along the loading direction, 
while the other two translational DOFs were clamped. All the rotational 
degrees of freedom belonging to the top and bottom bars along the x- 
direction have been blocked to ensure a local stiffening effect existing in 
the real samples. The average tensile strains were calculated vertically 
and horizontally (as shown in the Appendix Figure A3), to be consistent 
with the experimental measurements. The total tensile stress has been 
calculated from the cross-sectional average of the tensile force along the 
loading direction of the structure. 

2.2.2. RVE models 
All the parametrical dimensions of RVEs shown in Fig. 3 have been 

created with the Fusion360 CAD software, and then incorporated into 
ABAQUS 2018b separately. Meshes are generated using C3D8I elements, 
with two to three elements along the wall thickness t and maintaining a 
constant square aspect ratio. Considering that the honeycombs and the 
BEP cores are periodic structures with two planes of symmetry in the 
transverse and ribbon directions, the numerical analysis can become 
more tractable using periodic RVE models to calculate the engineering 
elastic properties. In this work, the modelling strategy applied to the 
RVEs involves the volumetric homogenization and the application of 
Periodic Boundary Conditions (PBCs) at the RVE boundaries. 

The PBCs used in this work are strain-controlled boundary conditions 
that provide equal strain fields to the RVE boundaries (∂ΦRVE). PBCs are 
implemented in ABAQUS/Standard by using linear constraint equations 
in Python [75,76]. The mesh nodes are constrained with different 
equations, depending on their position on the ∂ΦRVE at vertices, edges 
and faces to avoid kinematic over-constraining in nodes that belong to 
more than surface, i.e., vertex and edges. The displacement of opposite 
mesh nodes at the ∂ΦRVE are coupled as follows, i.e.: 

u+
x − u−

x = ε0
ij(x

+ − x− ), ∀x ∈ ∂ΦRVE (4)  

where x+, x− are the coordinates of opposite paired nodes, ε0
ij is the 

applied strain and u is the resulting displacement [77]. The detailed 
constraint equations which are used in this work can be found in [78]. 

The numerical homogenization approach has been used to compute 
the elastic engineering constants of two uniaxial moduli in the x-y plane 
and of the in-plane shear modulus. For each loading case, only one of the 
six possible independent components of the volume average strain 
tensor in the Cartesian 3D space ε is assigned with a unit value different 
from zero. The homogenization technique assumes that the strain (ε0

ij) 
applied to the RVE boundaries (∂ΦRVE) is equal to the volume average 
strain (εij) inside the RVE: 

εij =
1

VRVE

∫

VEFF

εijdV = ε0
ij,∀i, j = 1, 2, 3 (5) 

In (5), VRVE is the volume of the RVE and VEFF is the volume of the 
honeycomb or the BEP core unit [77]. 

The stiffness matrix C6×6 of the RVE 3D homogenized material is 
populated column by column with the volume-averaged stress compo-
nents σ, based on the relationship below: 

σα = Cαβεβ,whereα, β = 1,⋯, 6. (6) 

Each column of the stiffness matrix corresponds to one static anal-
ysis. The volume-averaged stresses are calculated in the Gauss points 
within each solid element for each of the six loading cases [77]: 

Cαβ = σα =
1

VRVE

∫

VEFF

σαdV =
1

VRVE

∑N

el=1
σel

α Vel,whenεβ = 1. (7) 

The values of the in-plane tensile moduli E1,E2, shear modulus G12 

and Poisson’s ratios ν12, ν21 have been calculated from the compliance 
matrix S, which is the inversion of the stiffness matrix [79,80]: 

S =
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(8)  

2.3. Manufacturing and experimental tests 

As shown in Fig. 4, specimens have been produced using a laser 
cutting facility to pattern the PMMA panels (Trotec Laser Speedy 360 
laser cutter with a 100 W sealed CO2 laser). During the cutting progress, 
to reduce thermal residual stresses in samples, the speed is set up as 1.0 
mm/s. We also use vector ordering to minimize the number of laser 
beam passes. Fig. 4a1 and b1 are indicative of the samples of the hon-
eycomb configurations; Figs. a2 and b2, a3 and b3 show the EBEP and 
MBEP cores, respectively. The mechanical properties of the PMMA 
material have been determined following the ASTM D638-14 standard 
and using a Shimadzu Machine (1 kN load cell, 1 mm/min) on dog-bone 
specimens (Type I, T = 3 mm). The PMMA specimens show a Young’s 
modulus of 3.26 ± 0.08GPa and a Poisson’s ratio ν = 0.42 ± 0.02. The 
CAD models of the specimens shown in Fig. 4 have been created using 
Fusion360 and then exported to the laser cutter considering a kerf of 0.1 
mm. The dimensions of each sample have a length l = 9mm, with α =
0 (Fig. 4a1 and b1), 0.1 (top row in Fig. 4a2 and a3, b2 and b3) or 0.3 
(bottom row in Fig. 4a2 and a3, b2 and b3) and β = 0.067 (left column in 
Fig. 4a2 and a3, b2 and b3) or 0.167 (right column in Fig. 4a2 and a3, b2 
and b3). The dimensions of the uniaxial tensile test samples are 251mm×

108mm× 3mm(Fig. 4a). An off-axis 45◦ tensile test has also been per-
formed to determine the homogenized in-plane shear modulus, 
following the ASTM D3518/D3518M-18 standard. The dimensions of 
the shear test samples are the same as those of the uniaxial test speci-
mens (Fig. 4b). The in-plane tensile tests have been performed using a 
Shimadzu test machine with a 1 kN load cell and a constant displace-
ment rate of 1 mm/min (Fig. 4a4 and b4). An Imetrum video gauge 
system has been used to track the strain along the loading and the 
transverse directions. 

The incremental Poisson’s ratio definition is used in this work [81]: 

ν12 = −
ε2

ε1
(9) 

The in-plane tensile modulus is calculated according to ASTM D638- 
14 as follows: 

E1 =
P1

bhε1
(10) 

The in-plane shear modulus is calculated from the following 
expression according to ASTM D3518/D3518M-18: 

G12 =
P1

2bh(ε1 − ε2)
(11) 

in which b and h are the width and the thickness of the laser-cutting 
samples. The loading force is P1, ε1 and ε2 are the strains along loading 

X. Yu et al.                                                                                                                                                                                                                                       



Composite Structures 300 (2022) 116155

5

(x-direction) and transverse (y-) directions. Values of ε1, ε2 are calcu-
lated in each sample from the average of strains 4, 5, 6, 7 and strains 1, 2, 
3, as shown in Appendix Figure A3a, b, respectively. We chose these 
edge points to calculate the strain as it resulted in less noise compared to 
using data from the central points. 

3. Results and discussions 

In this section, the in-plane engineering elastic properties of the BEP 
and honeycomb configurations, including the in-plane Young’s 
modulus, Poisson’s ratio and shear modulus versus the α and β param-
eters are described. Those results are obtained from simulations related 
to the RVEs and full-scale FE models, and the experimental tests. It is 
worth mentioning that the results related to the simulations on the two 
types of RVE configurations are the same. The RVE simulation results 
obtained from the hexagonal honeycomb structures have been verified 
by comparisons with the analytical results existing in open literature 
[82]. A general good agreement between them is observed, with errors 
ranging from 0.01% to 4.70%. 

3.1. In-plane tensile modulus 

Fig. 5a shows the results from RVE simulations and presents the 
nondimensional Young’s modulus E1/Es/(ρ/ρc) versus α. Because of the 
in-plane symmetry, the modulus E2 is the same as E1, apart from small 
numerical errors. The results related to the hexagonal honeycomb 
structures are showed within the purple area where the value of α is 
zero. The results ascribed to the EBEP and MBEP configurations are 
presented in the red and blue area, respectively. From the bottom to the 
top, each configuration has five groups of scatters, showing different 
cases related to the parameter β ranging from 0.067 to 0.167. From 
Fig. 5a, we can clearly observe an increasing trend for the nondimen-
sional modulus E1 versus α for the EBEP topologies, while the exact 
opposite occurs for the MBEP configurations. The cylinders placed at the 
joints of the cell walls in the EBEP cores appear to provide an increased 
resistance to the in-plane tensile deformation. As the cylinder becomes 
bigger in EBEP cores, the connecting rib becomes shorter. The signifi-
cant increase of the tensile modulus of EBEP cores is thus caused by the 
greater bending resistance provided by both larger cylinders and shorter 
ribs. On the contrary, the MBEP cores that feature the hollow cylinders 
in the middle of the walls show a lower in-plane tensile modulus, even 
when compared to the classical hexagonal configurations without those 

Fig. 4. Experimental samples for the uniaxial tensile test (a) and off-axis 45◦ tensile test (b). (a1) and (b1) are honeycomb structures; (a2) and (b2), (a3) and (b3) are 
configurations of the EBEP and MBEP cores, respectively. (a4) and (b4) show the Shimadzu test machine used in this work. 
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cylinders. 
Fig. 6 shows the deformed shapes from the full-scale simulations of 

the hexagonal lattice and the BEP configurations. The hexagonal lattice 
with the thickest cell walls (β = 0.167) and the BEP configurations with 
the largest cylinders (α = 0.3), as well as the thickest cell walls are 
chosen as examples (Fig. 6a1, b1 and c1). Fig. 6a2, b2 and c2 show the 
deformed and initial shapes of the central unit cell from each configu-
ration. The undeformed unit cells are indicated using red dash lines. The 
deformation factor is set as 5 in ABAQUS for all the structures. From 
Fig. 6a1, b1 and c1, it is evident that the cell walls of the BEP and the 
hexagonal honeycombs will mainly bear the load and also provide the 
load transfer between cells when the honeycombs are subjected to an in- 
plane tensile force. The load transfers from the cell walls to the end 
nodes of the ribs, which are represented by the cylindrical joints in the 
BEP honeycombs and the ends of the cell walls in the pure hexagonal 
configurations (Fig. 6b2, c2). In this way, the joint becomes a critical 
load-bearing component during the progress of the loading across the 
whole lattice structure. In EBEP structures (Fig. 6b2), the cylinders with 
the closed section located at the joints of the unit cell provide an 
improved torsional and tensile resistance compared to hexagonal hon-
eycombs (Fig. 6a2) and MBEP structures (Fig. 6c2), whose joints have 
three open-shaped ribs tessellation at 120◦. In the case of the MBEP 
configurations, even though cylinders are still present, their main load- 
bearing points are the same of those of hexagonal honeycombs; this 

feature makes the tensile modulus of MBEPs not exceeding the one of 
hexagonal honeycombs. Moreover, the cylinder distributed in the mid-
dle of cell wall provides added material to the original hexagonal cell 
configuration. MBEP topologies therefore show a disadvantage 
compared to the EBEP structures, because the position of the added 
cylinder does not provide the load transfer capability present in the 
EBEP case and the resulting increase of mass is adverse to the specific 
tensile stiffness. 

Fig. 5b shows the nondimensional Young’s modulus E1/Es/(ρ/ρc)

versus β obtained from the RVE simulations. The stiffness performance 
of the pure hexagonal structures is also contained within the purple area, 
while the results of the EBEP and MBEP configurations are present in the 
red and blue areas, respectively. The EBEP configurations are regrouped 
along four curves, showing different cases related to α ranging from 0.1 
to 0.3; the normalized moduli increase with the increase of α. In 
contrast, the MEBP configuration decrease their normalized stiffness 
when α increases from 0.1 to 0.3. The pure hexagonal structures feature 
only one curve, because their α value is zero. As shown in Fig. 5b, both 
the hexagonal lattice and BEP structures have an increase of the 
nondimensional in-plane tensile modulus when the cell walls become 
thicker (i.e., when β increases). The thicker ribs provide stiffer con-
straints inside the whole cellular structure. It is worth mentioning that 
the dependency versus β 3 of nondimensional tensile modulus of the 
hexagonal honeycombs and the BEP configurations has been analysed. 

Fig. 5. Nondimensional in-plane Young’s modulus versus the unit cell geometry parameters α (a) and β (b) from RVE simulations; (c) shows comparison between 
numerical results from RVE, full-scale models and experimental results. The numbers above the columns related to the full-scale and RVE FE results show the error 
between those values and the experimental ones. 
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This dependency provided information about the importance of the 
bending deformation mechanism of the ribs to affect the in-plane engi-
neering constants [82,83]. Results show that the EBEP configurations 
show some departures from a linear proportionality when the value of 
the cube of β increases. This phenomenon become more obvious in the 
cases of larger α values. The hexagonal lattice and the MBEP configu-
rations however show almost straight lines. The differences between 
them show that the presence of the cylinders in the EBEP configurations 
change the load-bearing configuration of the whole structure; the cyl-
inders make the lattice configuration to resist the external tensile 
loading under a multi-deformation other than bending dominated 
deformation. For further validation, Fig. 5c shows the comparison be-
tween the results from FE simulation, with RVEs and full-scale models, 
and the experiments. Each group with three columns shows the results 
about one type of specimen. For the pure hexagonal structures, the two 
left groups in Fig. 5c are related to specimens with α = 0 and β = 0.067 
or 0.167. For the EBEP and the MBEP structures, four specimens of each 
configuration with α = 0.1 or 0.3 and β = 0.067 or 0.167 are presented in 
Fig. 5c, respectively. In each group, the red column indicates the 
experimental results, while the yellow and blue ones illustrate the full- 
scale and RVE simulation results. The numbers above the columns of 
full-scale and RVE results show the error between their values and the 
experimental one, where the negative error reflects lower simulation 
values compared to the experimental ones. The opposite is true for the 
positive errors. It is possible to appreciate a good consistency between 
the full-scale simulating and the experimental results, with all the errors 
being below 7%. The minimum error of 0.22% is for the MBEP_0.1A 
group, the one with the smallest cylinders (α = 0.1) and thinnest cell 

walls (β = 0.067). The EBEP and hexagonal lattice configurations that 
feature the same geometric parameters also exhibit similar small errors 
(0.3% of EBEP_0.1A and 1% of HP_0A). When we are comparing the two 
sets of simulations (RVE and full-scale models), it is noteworthy that 
most errors are under 10%, except for the three groups HP_0E (11.3%), 
EBEP_0.1E (12.3%) and MBEP_0.1E (11.2%). Those groups all feature 
the smallest cylinders (or no cylinders in the case of the hexagonal lat-
tice), but the thickest cell walls (α = 0 or 0.1, β = 0.167). One can also 
observe that the EBEP, MBEP and original hexagonal honeycombs, 
which feature thick cell walls and small cylinders, have the tensile 
moduli more sensitive to the size of the models. This sensitivity causes 
more discrepancies between the results of RVE FE models (representing 
a lattice with an infinite number of unit cells), and the full-scale FE 
models (77 unit cells). 

3.2. Poisson’s ratio 

Fig. 7a shows the RVE simulation results of the in-plane Poisson’s 
ratio ν12 versus α. Because of the in-plane symmetry, the Poisson’s ratio 
ν21 is the same as ν12, except for small numerical errors. The results 
related to hexagonal honeycomb structures are located within the pur-
ple area where α value is zero. The Poisson’s ratios of the EBEP and 
MBEP configurations are distributed in the red and blue areas, respec-
tively. The values of the Poisson’s ratios range between 0.36 and 0.98. 
Each configuration has five groups of curves related to the geometry 
parameter β ranging from 0.067 to 0.167. From Fig. 7a, it is possible to 
observe that the Poisson’s ratio ν12 decreases versus α for the two BEP 
topologies, especially for the EBEP cores. When the cylinder radius is 

Fig. 6. Deformation diagrams from full-scale simulations on tensile modulus. (a1) HP_0E (b1) EBEP 0.3E and (c1) MBEP_0.3E. (a2), (b2), (c2) show the deformations 
in one unit cell. 
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small, the stress distribution within the EBEP core under tension is 
similar to the hexagonal honeycomb structure, as shown in Fig. 6a1. 
However, when the size of the cylinder becomes large, the force line 
tends to become straight (see the green lines in Fig. 6b1). It is known that 
the Poisson’s ratio for a straight (rectangular honeycomb) is virtually 0, 
so compared with the EBEP core that has smaller cylinders (Fig. 6a1), 
the core with larger cylinders (Fig. 6b1) will have a Poisson’s ratio that is 
closer to 0. The EBEP configurations show however a higher sensitivity 
versus α compared to the MBEP structures; the latter have a more stable 
Poisson’s ratios behaviour against the r/l ratio. The different perfor-
mance of the two cellular with the cylinders is again caused by the 
relative locations of the same cylinders. The EBEP configurations show 
the broader range of available Poisson’s ratios (between 0.36 and 0.97). 
The above-mentioned differences in terms of effects of the cylinders 
provide the EBEP structures with a larger set of possible mechanical 
properties, while the MBEP configurations have a narrower design space 
in terms of Poisson’s ratios (between 0.77 and 0.98). It is worth of notice 
that the hexagonal configurations with no cylinders feature the nar-
rowest range of Poisson’s ratios (0.89–0.99 for the range of β considered 
in this work – Fig. 7b). 

Fig. 7b shows the results of in-plane Poisson’s ratio ν12 versus β from 
RVE simulations. The hexagonal lattice structures have only one curve, 
with α equals to zero. The EBEP and MBEP configurations are defined by 
the points corresponding to the four sets of α parameters ranging from 

0.1 to 0.3. The in-plane Poisson’s ratios of both the hexagonal lattices 
and the BEP structures are decreasing as the β value increases. Similar 
behaviours have been reported in the hexagonal and re-entrant honey-
combs [82,84–87]. It is noteworthy that the MBEP configurations have a 
decreasing Poisson’s ratio versus β that is like the one exhibited by the 
honeycomb structures, while the decreasing trends in EBEP configura-
tions are more obvious. This also proves the aforementioned point that 
the properties of the whole EBEP core are significantly affected by the 
specific location of the cylinders, making them behave in a different 
manner from the baseline hexagonal lattice with no cylinders. The MBEP 
cores possess the same configuration of cell walls joint as the hexagonal 
honeycomb lattices and therefore provide a similar behaviour to the 
latter under comparable geometry configurations (top curve of the 
MBEP group compared to the hexagonal lattice one in Fig. 7b). 

Fig. 7c shows the comparison between the results belonging to the 
RVE FE and full-scale models’ simulations, and the experiments. The 
two groups at the left show the results related to the honeycomb lattices 
(α = 0 and β = 0.067 and 0.167); the other groups show the corre-
sponding results from specimens of BEPs with α = 0.1 or 0.3 and β =
0.067 or 0.167. The experimental results show higher Poisson’s ratios 
values than those provided by the simulations, and the relative errors 
are larger compared to those measured for the tensile modulus. The 
differences between RVE simulations and experiments are also likely 
caused by the limited dimensions of the experimental specimens, 

Fig. 7. In-plane Poisson’s ratios versus the unit cell geometry parameters α (a) and β (b) from RVE simulations; (c) shows comparison between numerical results from 
RVE, full-scale models and experimental results. The numbers above the columns related to the full-scale and RVE FE results show the error between those values and 
the experimental ones. 
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compared to the RVE FE models representing infinite tessellations. The 
size of the models however is the same for the full-scale simulations and 
the experiments; the errors between them are therefore relatively low 
(below 6%). 

3.3. In-plane shear modulus 

Fig. 8a shows the results of the nondimensional in-plane shear 
modulus G12/Es/(ρ/ρc) versus α from RVE simulations. The shear 
modulus is normalized with the Young’s modulus of core material Es and 
the relative density ρ/ρc. In this case, the geometry parameter β ranges 
from 0.067 to 0.167. From Fig. 8a, we can observe a similar increasing 
trend of the nondimensional G12 for larger α values in the case of the 
EBEP topologies; the nondimensional shear modulus of the MBEP 
structures is however decreasing for increasing α values. Fig. 9 shows the 
deformation shapes from the full-scale simulations of the hexagonal 
lattice and the BEP configurations. The deformed and initial shapes of 
the central unit cell from each configuration are present in Fig. 9a2, b2 
and c2. The deformation factor is set as 5 in ABAQUS for all the struc-
tures. The reason behind the different behaviours between the EBEP and 
the MBEP configurations is similar to the one observed in the case of the 
in-plane tensile modulus (see section 3.1): the cylinders of the EBEPs are 
located in key load-bearing positions of the unit cell (Fig. 9b2) and they 

provide a larger resistance to in-plane torsion than the simple three cell 
walls connected at the joint, typical of the hexagonal lattice (Fig. 9a2) 
and the MBEP configurations (Fig. 9c2). 

Fig. 8b shows the nondimensional in-plane shear modulus G12/Es/

(ρ/ρc) versus β extracted from RVE simulations. The curves related to the 
EBEP and MBEP configurations are ordered as four groups, according to 
the α values. From Fig. 8b, it is evident that the nondimensional in-plane 
shear modulus increases when the thickness of the cell walls increases, 
both for the hexagonal lattice and the BEP structures. Fig. 8c shows the 
comparison between the results from FE simulations with the RVE (blue 
columns), full-scale models (yellow columns) and the experiments (red 
columns). Also in this case, the comparison is based on the two types of 
hexagonal lattice (with α = 0 and β = 0.067 or 0.167) and four speci-
mens (with α = 0.1 or 0.3 and β = 0.067 or 0.167) of the EBEP and MBEP 
cores, respectively. From Fig. 8c, it is possible to notice a good consis-
tency between the full-scale simulations and the experimental results, 
with all the errors being below 7%. Nevertheless, the differences be-
tween the RVE simulations and the experiments tend to be larger than 
those between the full-scale simulations and tests. Similar to the datasets 
related to the tensile modulus, all the configurations with the thickest 
cell walls (β = 0.167) show relatively larger differences between the RVE 
simulations and the experimental results, compared to those with the 
thinnest cell walls. 

Fig. 8. Nondimensional in-plane shear modulus versus the unit cell geometry parameters α (a) and β (b) from RVE simulations; (c) shows comparison between 
numerical results from RVE, full-scale models and experimental results. The numbers above the columns related to the full-scale and RVE FE results show the error 
between those values and the experimental ones. 
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4. Conclusions 

In this work, the in-plane nondimensional engineering elastic con-
stants of both end- and middle-trabecular beetle elytron plate cores are 
investigated by performing a parametric analysis via experiments and 
numerical techniques. In addition, the comparison between BEP cores 
and classical hexagonal honeycomb structures is also presented. The 
numerical analysis has been performed using Representative Volume 
Elements (RVE) models of BEPs and honeycomb topologies with Peri-
odic boundary conditions (PBCs) and volumetric homogenization. Each 
RVE model has been simulated using two types of cell tessellations for 
cross-benchmark. Furthermore, simulations on full-scale models have 
also been performed to be compared against the RVE simulations. Uni-
axial and off-axis 45◦ tensile tests have also been conducted to further 
validate the numerical results. The data show that the in-plane nondi-
mensional tensile modulus of the EBEPs raise significantly as the size of 
the cylinder increases, while the modulus of the MBEP cores slowly 
drops. Although both MBEP and EBEP cores have hollow cylinders in 
their unit cells, the cylinders in EBEP cores are located at the joints of 
cell walls; their torsional and tensile resistance can be fully performed 
because the joints are critical points for load bearing. In the case of 
MBEP configurations, their main load-bearing points are the same of 
those of the hexagonal honeycombs. Moreover, their cylinders cause 
extra material compared to the original hexagonal lattice. As a result, 
MBEP topologies show a disadvantage related to the tensile modulus 
under comparison with the EBEP structures. The Poisson’s ratios of the 
EBEP cores show a high sensitivity versus the geometry parameters α 

and β, while those of the MBEP cores are less affected by the variation of 
the cell geometry. The position of the cylinders in the EBEP structures is 
key to provide the load-transfer capabilities that affect the properties of 
the whole lattice structure. As the dimensions of the cylinders increase, 
the stiffness of lattice gradually grows higher from the one of the 
baseline pure hexagonal configurations, thus making the mechanical 
properties of the EBEP cores more sensitive to the geometry parameters. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The Authors acknowledge the support of the Faculty of Engineering 
of the University of Bristol. XY is grateful for the support from the China 
Scholarship Council. FS also acknowledges the support of the ERC-2020- 
AdG 101020715 NEUROMETA project. 

Data availability 

The raw/processed data required to reproduce these findings cannot 
be shared at this time as the data also forms part of an ongoing study. 

Fig. 9. Deformation diagrams from full-scale simulations on in-plane shear modulus. (a1) HP_0E (b1) EBEP 0.3E and (c1) MBEP_0.3E. (a2), (b2), (c2) show the 
deformations in one unit cell. 

X. Yu et al.                                                                                                                                                                                                                                       



Composite Structures 300 (2022) 116155

11

Appendix  

Figure A1. Names and configurations (type 1) of RVEs with different geometry parameters.  

Figure A2. Names and configurations (type 2) of RVEs with different geometry parameters.  
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