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Zusammenfassung

Der Schwerpunkt dieser Arbeit liegt auf der projektiven Norm auf endlich-
dimensionalen reellen oder komplexen Tensorprodukten. Es gibt verschiedene
mathematische Themengebiete mit Bezügen zur projektiven Norm, so zum Bei-
spiel im Kontext der Operatoralgebren oder der Quantenphysik.

Die projektive Norm auf multipartiten Tensorprodukten gilt als weniger leicht
zugänglich. Daher verwenden wir eine Methode aus der konvexen algebraischen
Geometrie zur Approximation der projektiven Einheitskugel durch konvexe
Obermengen, sogenannte Thetakörper. Für reelle multipartite Tensorprodukte
erhalten wir Thetakörper, die der projektiven Einheitskugel nahe kommen. Dies
führt beispielsweise zu einer Verallgemeinerung der Schmidt-Zerlegung. In einem
zweiten Schritt wird die Methode auch für komplexe Tensorprodukte angewendet,
in einem dritten Schritt auf separable Zustände.

In einem allgemeineren Kontext kann die projektive Norm mit Binomidealen in
Verbindung gebracht werden, insbesondere mit Hibi-Relationen. In diesem Sinne
beschäftigen wir uns auch mit einer Verallgemeinerung der projektiven Einheits-
kugel, hier Hibi-Körper genannt, und ihren Thetakörpern. Es hat sich gezeigt,
dass viele Aussagen auch in diesem allgemeinen Zusammenhang gelten.

Quantenverschränkung

Verschränkung ist ein fundamentales Konzept in der Quanteninformationstheorie.
Viele überraschende Effekte, die die klassische Mechanik von der Quantenphysik
unterscheiden, stehen mit verschränkten Zuständen im Zusammenhang. In der
klassischen Mechanik ist der Zustand eines aus mehreren voneinander unabhän-
gigen Teilsystemen zusammengesetzten Systems vollständig durch die Zustände
seiner Teilsysteme bestimmt. Dies ist bei verschränkten Zuständen nicht der
Fall.

Viele Fragestellungen zur Verschränkung sind noch offen. Man könnte sich bei-
spielsweise fragen, wie man herausfinden kann, ob ein Zustand verschränkt ist
oder nicht. Dieses sogenannte Separabilitätsproblem zu lösen ist im Allgemeinen
nicht einfach. Es gibt jedoch einige notwendige oder hinreichende Bedingungen
an Verschränkung. So liefert eine affine Hyperebene, welche die Eigenschaft hat,
dass alle separablen (d. h. nicht verschränkten) Zustände auf einer Seite liegen,
eine hinreichende Bedingung. Sie ist dann ein sogenannter Verschränkungszeu-
ge. Weiterhin gibt es sogenannte Verschränkungsmaße, welche den Grad der
Verschränkung angeben. Neben gebräuchlichen Verschränkungsmaßen wie der
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von-Neumann-Entropie gibt es auch solche, welche auf der projektiven Tensor-
norm basieren, siehe [Arv] und [Rud]. Insbesondere ist die projektive Norm ein
Verschränkungsmaß für reine Zustände.

Zur Verschränkung siehe auch die Übersichten in [HHHH], [Sok] oder [Aud].

Die projektive Tensornorm

Zusätzlich zur Verschränkung gibt es weitere Anwendungen der projektiven
Norm, so zum Beispiel im Umfeld der Informationstheorie, Signalanalyse und
komprimierten Erfassung. Hier ist sie wichtig bei der sogenannten Rekonstrukti-
on von Tensoren von niedrigem Rang, siehe [RS2]. Andere gebräuchliche Namen
für die projektive Norm sind „nukleare Norm“ oder „größte Kreuznorm“.

In dieser Arbeit betrachten wir die projektive Norm auf endlichdimensionalen
reellen oder komplexen Tensorprodukten. Da es im Allgemeinen nicht einfach ist,
die projektive Norm global zu bestimmen, konzentrieren wir uns auf einzelne
Klassen von Vektoren wie beispielsweise die maximalen Vektoren, siehe [Arv].
Dies sind Einheitsvektoren, die die projektive Norm maximieren. Sie bestimmen
auch eine wichtige Kenngröße der projektiven Einheitskugel, den innere Radius.
Dies ist der Radius der größten in ihr enthaltenen euklidischen Einheitskugel.

Summen von Quadraten und Thetakörper

Zur Beschreibung von kompakten konvexen Mengen, wie beispielsweise Einheits-
kugeln von Normen oder der Menge der separablen Zustände, nutzen wir in
dieser Arbeit eine spezielle Methode aus der konvexen algebraischen Geometrie,
sogenannte Thetakörper. Thetakörper können immer dann betrachtet werden,
wenn die Menge als die konvexe Hülle einer reellen affinen Varietät geschrieben
werden kann, vergleiche [BPT]. In diesem Fall bilden deren Thetakörper eine
Kette konvexer Obermengen, welche gegen die Ursprungsmenge konvergiert.

Ein Thetakörper wird durch affine Halbräume definiert. Die zugehörigen linearen
Funktionale haben bestimmte reelle algebraische Eigenschaften im Zusammen-
hang mit Summen von Quadraten (Sos). Grundsätzlich sei die Sos-Methode "breit
anwendbar, effektiv, überraschend mächtig und einfach", siehe [PS2].

Tatsächlich kann für unseren Zweck die projektive Einheitskugel in einem re-
ellen, bipartiten, endlichdimensionalen Tensorprodukt vollständig durch einen
Thetakörper beschrieben werden. Dies wurde unabhängig voneinander sowohl
in [Sto] als auch in der Masterarbeit [Lang] gezeigt und ist eine wichtige Mo-
tivation dafür, sich nun auch auf die projektive Tensornorm auf multipartiten
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Tensorprodukten zu konzentrieren. In dieser Hinsicht kann diese Arbeit als eine
Fortsetzung der Masterarbeit angesehen werden.

Die projektive Norm und Thetakörper — Die Einheitskugel der projektiven
Norm ist gleich der konvexen Hülle der Einheitsproduktvektoren. Die letztere
Menge kann als reelle algebraische Varietät ausgedrückt werden, und zwar
sowohl für reelle als auch für komplexe endlichdimensionale Tensorprodukte.
Für den komplexen Fall nutzen wir den Ansatz in [Voi] und führen sogenannte
komplexe Thetakörper ein. Damit kann die projektive Einheitskugel sowohl im
Reellen als auch im Komplexen durch Thetakörper approximiert werden.

Dieser Ansatz bringt Tensorprodukte mit konvexer Optimierung, reeller algebrai-
scher Geometrie und Summen von Quadraten in Verbindung.

Im Hinblick auf die Quantenverschränkung können Thetakörper also zu einem
besseren Verständnis der projektiven Norm als Verschränkungsmaß beitragen. Ein
anderer interessanter Gesichtspunkt ist, Thetakörper als neue und eigenständige
Verschränkungsmaße in Ergänzung zur projektiven Norm anzusehen.

In dieser Arbeit untersuchen wir verschiedene Gesichtspunkte der projektiven
Einheitskugel, reell und komplex, und ihrer Thetakörper, so neben den inneren
Radien beispielsweise auch deren Geometrie oder das zugrundeliegende Ideal.

Da die Thetakörper-Methode zunächst für reelle Vektorräume gedacht ist, liegt es
nahe, bei der Untersuchung mit dem reellen Fall zu beginnen und den komplexen
Fall auf dieser Grundlage zu entwickeln. Dafür spricht auch, dass sich das Ideal
für den komplexen Fall aus dem Ideal für den reellen ableiten lässt. An vielen
Stellen war es möglich, Gemeinsamkeiten und Unterschiede der beiden Fälle
herauszuarbeiten und auf ihre Besonderheiten einzugehen.

Es folgen nun die Hauptresultate dieser Arbeit bezüglich der Anwendung der
Thetakörper-Methode auf die projektive Norm.

Reelle Tensorprodukte — Wir konzentrieren uns auf das multipartite Tensorpro-
dukt Rn ⊗ · · · ⊗ Rn, wobei n > 2. Die Anzahl der Tensorfaktoren ist beliebig.

Im Fall n ∈ {2, 4, 8} gelingt es uns, eine Klasse maximaler Vektoren zu finden und
damit den inneren Radius des projektiven Einheitsballs zu bestimmen. Die maxi-
malen Vektoren definieren wir mittels sogenannter Design-Hyperebenen. Soweit
wir wissen, waren maximale Vektoren in dieser Allgemeinheit bisher noch nicht
bekannt. Die zugrunde liegende kombinatorische Methode setzt Tensorprodukte
mit lateinischen Quadraten und orthogonalen Designs in Beziehung.

Im allgemeineren Fall n > 2 gelingt es uns, eine Klasse von Vektoren mit projekti-
ver Norm 1 und damit eine obere Schranke an den inneren Radius des projektiven



x Zusammenfassung

Einheitsballs zu finden. Dazu stellen wir eine weitere Klasse affiner Hyperebenen
vor, die sogenannten Paritätshyperebenen. Auch diese werden auf kombinatorische
Weise definiert. Soweit wir wissen, war die Klasse von Vektoren mit projektiver
Norm 1 im Allgemeinen noch nicht bekannt.

Die Resultate können als eine Verallgemeinerung der Schmidt-Zerlegung für
bestimmte Klassen von Vektoren und als eine Ergänzung der Schranken in [Arv]
für reelle Tensorprodukte angesehen werden.

Komplexe Tensorprodukte — Wir werden sehen, dass sich der reelle Fall in
vielerlei Hinsicht als recht geradlinig erweist. Der komplexe Fall scheint dagegen
komplizierter zu sein, sodass bereits Ergebnisse für kleine Dimensionen oder
bipartite Tensorprodukte interessant sind.

Im Fall C2 ⊗ C2 können wir zeigen, dass der erste komplexe Thetakörper gleich
der projektiven Einheitskugel ist.

In allen anderen Fällen Cn1⊗· · ·⊗Cnr , wobei r > 2 und n1, . . . ,nr > 2, erhalten wir
maximale Vektoren für den ersten komplexen Thetakörper. Insbesondere beträgt
sein innerer Radius konstant 1/

√
2, womit er relativ weit von der projektiven

Einheitskugel entfernt ist. In diesem Sinne führen der reelle und der komplexe
Fall zu qualitativ unterschiedlichen Ergebnissen für den ersten Thetakörper.

Separable Zustände — In einem dritten Schritt zeigen wir, dass die Thetakörper-
Methode auf die Menge der separablen Zustände angewendet werden kann. Dies
ermöglicht es, Sos-Polynome als Verschränkungmaß zu verwenden.

Das Ideal, welches wir dabei verwenden, wird aus dem Ideal für die projektive
Norm auf komplexen Tensorprodukten generiert. Der Ansatz baut also in einem
gewissem Sinn auf dem Tensorproduktfall auf.

Das Join-Meet-Ideal — Ein weiterer Schwerpunkt dieser Arbeit ist die Anwen-
dung der Thetakörper-Methode auf eine Verallgemeinerung der projektiven
Einheitskugel.

Die Motivation hierfür ist, dass die Menge der Produktvektoren im reellen Fall
eine sogenannte Hibi-Varietät ist, die durch das sogenannte Join-Meet-Ideal indu-
ziert wird. Dieses Ideal wird von Hibi-Relationen erzeugt. Dies sind Polynome,
deren Variablen über distributiven Verbänden indiziert sind, vergleiche hierzu
[Hibi] und [HHO].

Nun bilden die Einheitsvektoren in der Hibi-Varietät wiederum eine Varietät,
die durch das Norm-Join-Meet-Ideal induziert wird. Um auch den komplexen Fall
zu verallgemeinern, führen wir das Konzept der komplexen Hibi-Relationen ein,
um eine entsprechende reelle Varietät zu beschreiben. Die konvexe Hülle dieser
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Varietäten, der (komplexe) Hibi-Körper, kann somit als eine Verallgemeinerung der
projektiven Einheitskugel, reell und komplex, angesehen werden.

Wir werden sehen, dass viele Aussagen über die projektive Einheitskugel und
ihre Thetakörper auch in diesem allgemeinen Kontext gelten. Während die
ursprüngliche Motivation darin bestand, die projektive Norm zu verstehen,
können die Einführung des Hibi-Körpers und die Ergebnisse nun auch als
eigenständiger Beitrag zur Untersuchung des (Norm-)Join-Meet-Ideals angesehen
werden.

Insbesondere unsere elementare Methode zur Charakterisierung des ersten The-
takörpers durch einen Spektraeder, vergleiche ergänzend auch [BCR], wird sich
als sehr nützlich erweisen, insbesondere für die Anwendung auf Tensorprodukte.
Für diesen Fall stellen wir auch ein Computerprogramm in der Sprache Python
zur Verfügung.

Darüber hinaus entwickeln wir für das Verständnis der Struktur des Join-Meet-
Ideals einen aus unserer Sicht neuen Ansatz über eine Medianbasis. Damit lassen
sich auch bereits bekannte Aussagen wie beispielsweise über Gröbnerbasen in
[HHO] auf vereinfachte Weise zeigen.

Übersicht

Kapitel 1 dient der Einführung von Gröbnerbasen und homogenen Polynomen
als Vorbereitung auf die Untersuchung des Join-Meet-Ideals.

In Kapitel 2 führen wir Grundbegriffe zur konvexen Geometrie, zur reellen
algebraischen Geometrie und zu Thetakörpern ein.

In Kapitel 3 beschäftigen wir uns mit der projektiven Norm, insbesondere mit
der Geometrie der projektiven Einheitskugel, mit der Charakterisierung der
Einheitsproduktvektoren als reelle affine Varietät, reell und komplex, und mit
der Geschichte der Anwendung von Thetakörpern auf die projektive Norm.
Insbesondere bereitet dieses Kapitel die Anwendung der Thetakörper-Methode
auf die projektive Einheitskugel vor.

Im kurzen Kapitel 4 behandeln wir endliche distributive Verbände zur Vorberei-
tung auf Kapitel 5.

In Kapitel 5 führen wir den Hibi-Körper als eine Verallgemeinerung der projekti-
ven Einheitskugel ein. Zudem widmen wir uns auch dem Join-Meet-Ideal. Wir
bestimmen zunächst eine Vektorraumbasis für dieses Ideal, die Median-Basis.
Weitere Themen sind Gröbnerbasen, vergleiche [Hibi] und [RS2], und die Ver-
schwindeideale des (Norm-)Join-Meet-Ideals und deren „Komplexifizierung“.
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Dies ist hilfreich für Erwägungen zur Symmetrie von Thetakörpern. Schließlich
führen wir noch einige nützliche Begriffe für den Tensorprodukt-Fall ein.

In Kapitel 6 charakterisieren wir den ersten Thetakörper für den Hibi-Körper
durch einen Spektraeder. Dies vereinfacht die Suche nach konkreten Polynomen
mit Sos-Eigenschaft, welche ihn bestimmen. Auf dieser Grundlage stellen wir im
reellen Fall eine hinreichende Bedingung an Sos-Polynome vor, welche für die
späteren Kapitel zentral ist. Dazu entwickeln wir das Konzept einer Aufspaltungs-
Join-Meet-Partition. Im komplexen Fall können wir mit der genannten Charakteri-
sierung maximale Vektoren für den ersten Thetakörper bestimmen.

In Kapitel 7 führen wir die Design-Hyperebenen und eine weitere Klasse affiner
Hyperebenen ein, die Skip-Hyperebenen. Wir beginnen mit einer kurzen Einfüh-
rung zu lateinischen Quadraten und zu orthogonalen Designs. Das Hauptresultat
ist die Identifikation maximaler Vektoren für die projektive Norm auf Rn⊗· · ·⊗Rn,
wobei n ∈ {2, 4, 8}.

In Kapitel 8 stellen wir die Paritätshyperebenen vor. Wir beginnen mit einigen
hierfür dienlichen Aussagen mit Bezug zur Sortierung und zur homologischen
Algebra. Das Hauptresultat ist die obere Schranke an den inneren Radius der
projektiven Einheitskugel in Rn ⊗ · · · ⊗ Rn, wobei n > 2.

In Kapitel 9 beschäftigen wir uns mit der Anwendung der Thetakörper-Methode
auf die Menge der separablen Zustände.

In Kapitel 10 fassen wir die Ergebnisse bezüglich der projektiven Einheitskugel
und separabler Zustände zusammen und diskutieren diese. Außerdem definieren
wir eine Verallgemeinerung der Schmidt-Zerlegung im reellen Fall.

Grafische Übersichten

Die Landkarte auf Seite xxiii dient als grafische Übersicht.

Die Anordnung der Blasen in der Landkarte folgt im Uhrzeigersinn der Struktur
dieser Arbeit. Die Farben zeigen an, ob ein Thema hauptsächlich neue Aspekte
enthält oder ob es sich hauptsächlich um Hintergrundwissen handelt. Es wird
auch auf die wichtigsten Ergebnisse und auf einige Forschungsgebiete verwiesen.
Eine Legende für die Landkarte findet sich in Abbildung 1 auf Seite xxii.

Wann immer es im Hinblick auf eine klare Struktur der Landkarte möglich
ist, sind die Beziehungen zwischen den einzelnen Blasen sichtbar. So basiert
beispielsweise Abschnitt 7.3 auf Abschnitt 6.3. Dies wird durch einen Querverweis
in einer zusätzlichen Blase am unteren Rand dargestellt. Andere Beziehungen wie
die zwischen Abschnitt 1.2 und Abschnitt 5.3 ergeben sich aus dem Kontext.
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Eine weitere grafische Übersicht ist Abbildung 2 auf Seite xxv. Sie zeigt die
wichtigsten Ergebnisse bezüglich der Approximation des Hibi-Körpers durch
Thetakörper. Im Folgenden wird die Bedeutung der einzelnen Abbildungen und
der zugehörigen Sätze erläutert.

Abbildung 2 (a) zeigt, dass der Hibi-Körper H der konvexen Hülle der Schnitt-
menge der Hibi-Varietät V mit der euklidischen Einheitssphäre S1 entspricht. Die
(komplexen) Thetakörper, hier bezeichnet mit Tk, k ∈ N, sind konvexe Obermen-
gen von H.

Satz 6.1.1 zeigt, dass der Hibi-Körper die Einheitskugel einer Norm ist. Außerdem
ist jeder Thetakörper in der euklidischen Einheitskugel S enthalten, und in einigen
Fällen kann gezeigt werden, dass er auch die Einheitskugel einer Norm ist. Satz
6.2.2 charakterisiert T1 durch einen Spektraeder. In einigen Fällen werden wir
zeigen, dass Thetakörper die Symmetrien des Hibi-Körpers respektieren.

Eine wichtige Folgerung für den reellen Fall liefert Satz 6.3.6. Es gibt zwei
verschiedene Anwendungen dieses Satzes auf die projektive Einheitskugel H in
Rn ⊗ · · · ⊗ Rn. Abbildung 2 (b) veranschaulicht den Fall n ∈ {2, 4, 8}, in dem die
Design-Hyperebenen den Rand von T1 berühren und wir maximale Vektoren
für die projektive Einheitskugel und ihren inneren Radius erhalten, vergleiche
hierzu Satz 7.3.4. Abbildung 2 (c) zeigt den allgemeineren Fall n > 2, in dem die
Paritätshyperebenen zu oberen Schranken für den inneren Radius von H führen,
siehe Satz 8.3.5 (die Klasse von Vektoren mit projektiver Norm 1 ist hier im Bild
nicht dargestellt).

Der komplexe Fall Cn ⊗ · · · ⊗ Cn ist auf Abbildung 2 (d) dargestellt. Der innere
Radius des ersten komplexen Thetakörpers TC

1 lässt sich mit Satz 6.4.2 genau
bestimmen. Da er nicht von der Dimension des affinen Raumes abhängt, ist er
eine eher schwache Abschätzung des inneren Radius von H.

Hintergrundinformationen

Diese Arbeit kann als eine Fortsetzung der Masterarbeit [Lang] angesehen werden.
Insbesondere liefert die Masterarbeit einige zusätzliche Hintergrundinformatio-
nen. Sie ist jedoch nicht notwendig für das Verständnis dieser Arbeit, welche
unabhängig davon gelesen werden kann.

Weiterhin gibt es Bezüge zu einigen speziellen mathematischen Themengebieten.
Die benötigten Grundlagen werden an passender Stelle jeweils kurz angeführt.

Der Quellcode der zu dieser Arbeit gehörenden Programme findet sich unter:
https://git.rwth-aachen.de/lang.sand/geometryprojectivetensornorm

https://git.rwth-aachen.de/lang.sand/geometryprojectivetensornorm


xiv Zusammenfassung

Schlüsselwörter

Projektive Norm, nukleare Norm, Thetakörper, Summen von Quadraten, konvexe
algebraische Geometrie, reelle algebraische Geometrie, konvexe Optimierung,
konvexe Relaxationen, Quantenverschränkung, Verschränkungszeugen, Binom-
ideale, Hibirelationen, orthogonale Designs.

Verzeichnisse
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Englische Einleitung

Diese Zusammenfassung ist im Wesentlichen eine Übersetzung der nun folgenden
englischen Einleitung, welche durch mehrere Abbildungen ergänzt wird, siehe
hierzu die Landkarte auf Seite xxiii und Abbildung 2 auf Seite xxv.
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Introduction

The main focus of this thesis is on the projective norm on finite-dimensional
real or complex tensor products. There are various mathematical subjects with
relations to the projective norm. For instance, it appears in the context of operator
algebras or in quantum physics.

The projective norm on multipartite tensor products is considered to be less
accessible. So we use a method from convex algebraic geometry to approxi-
mate the projective unit ball by convex supersets, so-called theta bodies. For
real multipartite tensor products we obtain theta bodies which are close to the
projective unit ball, leading to a generalisation of the Schmidt decomposition. In
a second step the method is applied to complex tensor products, in a third step
to separable states.

In a more general context, the projective norm can be related to binomial ideals,
especially to so-called Hibi relations. In this respect, we also focus on a generali-
sation of the projective unit ball, here called Hibi body, and its theta bodies. It
turns out that many statements also hold in this general context.

Quantum entanglement

Entanglement is a fundamental concept in quantum information theory, given
that many surprising effects which distinguish classical mechanics from quantum
physics are related to entangled states. In classical mechanics the state of a
system which is a compound of several independent subsystems is completely
determined by the states of its subsystems. This is not the case for entangled
states.

Many questions about entanglement are still open. For example, one could
ask how to prove whether a state is entangled or not. In general, solving this
so-called separability problem is not easy. However, there exist some necessary or
sufficient conditions for entanglement. For example, an affine hyperplane with
the property that all separable (i.e. non-entangled) states lie on one side provides
a sufficient condition. This hyperplane is then a so-called entanglement witness.
In addition, there are so-called entanglement measures which indicate the degree
of entanglement. Aside from common entanglement measures such as the von
Neumann entropy, there are also those based on the projective tensor norm, see
[Arv] and [Rud]. In particular, the projective norm is an entanglement measure
for pure states.

Overviews concerning entanglement can be found in [HHHH], [Sok] or [Aud].



xvi Introduction

The projective tensor norm

In addition to entanglement, there are other applications of the projective norm,
for example in the context of information theory, signal analysis and compressive
sensing. Here it is important for low rank tensor recovery, see [RS2]. Other
common names for the projective norm are "nuclear norm" or "greatest cross
norm".

The main subject of this thesis is the projective norm on finite-dimensional real or
complex tensor products. Since it is in general not easy to determine the projective
norm globally, we focus on specific classes of vectors such as the maximal vectors,
see [Arv]. These are unit vectors which maximise the projective norm. They also
determine an important characteristic of the projective unit ball, the inner radius.
This is the radius of the largest Euclidean unit ball that is contained within it.

Sums of squares and theta bodies

In this thesis we use a special method from convex algebraic geometry, so-called
theta bodies, to describe compact convex sets such as unit balls of norms or the
set of separable states. Theta bodies can be considered whenever the set is the
convex hull of a real affine variety, see [BPT]. In this case, its theta bodies form a
chain of convex supersets converging to the original set.

A theta body is defined by affine half-spaces. The associated linear functionals
have certain real algebraic properties related to sums of squares (sos). It is said
that the sos method is "broadly applicable, effective, surprisingly powerful and
simple", see [PS2].

Indeed, for our purpose, the projective unit ball in a real bipartite finite-dimensional
tensor product can be described as a theta body. This has been shown indepen-
dently in [Sto] and in the Master’s thesis [Lang] and motivates to focus on the
projective tensor norm in real multipartite tensor products now. In this respect,
this thesis can be regarded as a continuation of the Master’s thesis.

The projective norm and theta bodies — The unit ball of the projective norm is
equal to the convex hull of the unit product vectors. The latter can be expressed
as a real algebraic variety, for both real and complex tensor products. For the
complex case we use the approach in [Voi] and introduce so-called complex theta
bodies. The projective unit ball can thus be approximated by theta bodies in the
real case as well as in the complex case.

This approach relates tensor products to convex optimisation, real algebraic
geometry and sums of squares.
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With respect to quantum entanglement, theta bodies can therefore contribute
to a better understanding of the projective norm as an entanglement measure.
On the other hand, it can be also interesting to consider theta bodies as new
entanglement measures in addition to the projective norm.

In this thesis we investigate several aspects of the projective unit ball and its
theta bodies, real and complex, for example, besides the inner radii, also their
geometry or the underlying ideal.

Since the theta body method is initially intended for real vector spaces, it is
reasonable to begin the investigation with the real case and to develop the
complex case on this basis. This is also indicated by the fact that the ideal for
the complex case can be derived from the ideal for the real case. Often it was
possible to work out similarities and differences between the two cases and to
address their specific characteristics.

Now, we summarise the main results of this thesis concerning the application of
the theta body method to the projective norm.

Real tensor products — We focus on the multipartite tensor product Rn⊗· · ·⊗Rn,
where n > 2. The number of tensor factors is arbitrary.

In the case where n ∈ {2, 4, 8} we are able to find a class of maximal vectors and
thus to determine the inner radius of the projective unit ball. We define them by
using so-called design hyperplanes. As far as we know, maximal vectors in this
general context were not known before. The underlying combinatorial method
relates tensor products to latin squares and orthogonal designs.

In the more general case n > 2 we are able to find a class of vectors with projective
norm 1 and thus an upper bound on the inner radius of the projective unit ball.
For this purpose, we introduce another class of affine hyperplanes, the so-called
parity hyperplanes. They are defined by combinatorial means as well. As far as we
know, this class of boundary vectors was in general not known before.

The results can be seen as a generalisation of the Schmidt decomposition for
specific classes of vectors and as an enhancement to the bounds in [Arv] for real
tensor products.

Complex tensor products — We will see that the real case is straightforward
in many respects. However, the complex case seems to be more complicated,
so that results even for small dimensions or bipartite tensor products become
interesting.

In the case C2 ⊗ C2 we show that the first complex theta body is equal to the
projective unit ball.
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In all other cases Cn1 ⊗ · · · ⊗ Cnr , where r > 2 and n1, . . . ,nr > 2, we obtain
maximal vectors for the first complex theta body. In particular, its inner radius
is constant and equals 1/

√
2, which proves that it is relatively far away from

the projective unit ball. In this respect, the real and the complex case lead to
qualitatively different results for the first theta body.

Separable states — In a third step, we show that the theta body method can
be applied to the set of separable states. This offers the possibility of using sos
polynomials as entanglement measures.

The ideal we use in our approach is generated from the ideal used for the
projective norm on complex tensor products. Therefore, it seems useful for future
investigations to continue with the complex case for the projective norm and to
proceed with the separable states on this basis.

The join-meet ideal — Another focus of this thesis is on the application of the
theta body method to a generalisation of the projective unit ball.

The motivation for this is that the set of product vectors in the real case is a
so-called Hibi variety which is induced by the so-called join-meet ideal. This ideal
is generated by polynomials called Hibi relations whose variables are indexed by
distributive lattices, see [Hibi] and [HHO].

Now, the unit vectors in the Hibi variety form again a variety induced by the
norm-join-meet ideal. In order to generalise the complex case as well, we introduce
the concept of complex Hibi relations in order to describe a corresponding real
variety. The convex hull of these varieties, the (complex) Hibi body, can thus be
considered as a generalisation of the projective unit ball, real and complex.

We will see that many statements about the projective unit ball and its theta
bodies also hold in this general context. Even though the basic idea was to
understand the projective norm, the concept of Hibi bodies and the results can be
considered as an independent contribution to the study of the (norm-)join-meet
ideal.

In particular, our elementary method to characterise the first theta body by a
spectrahedron, see additionally also [BCR], will prove to be very useful. We
support this with a computer program written in Python.

In addition, we develop an approach for the understanding of the structure of
the join-meet ideal using a median basis. From our point of view, this approach is
new. Moreover, it allows to show well-known statements about Gröbner bases
such as those in [HHO] in a simpler way than before.



Preface xix

Overview

In Chapter 1 we provide a short introduction to Gröbner bases and to homoge-
neous polynomials in preparation for the investigation of the join-meet ideal.

In Chapter 2 we introduce basic notions of convex geometry, real algebraic
geometry, and theta bodies.

In Chapter 3 we deal with the projective norm, in particular with the geometry
of the projective unit ball, with the characterisation of the unit product vectors
as a real affine variety, real and complex, and with the history of the application
of theta bodies to the projective norm. In particular, this chapter prepares the
application of the theta body method to the projective unit ball.

In Chapter 4 we briefly introduce finite distributive lattices for Chapter 5.

In Chapter 5 we introduce the Hibi body as a generalisation of the projective
unit ball. In addition, we pay attention to the join-meet ideal. We first determine
a vector space basis for it, the median basis. Further topics are Gröbner bases,
compare [Hibi] and [RS2], and the vanishing ideals of the (norm-)join-meet ideal
and their "complexification". This is helpful for discussions on the symmetry of
theta bodies. Finally, we introduce some notions for the tensor product case.

In Chapter 6 we characterise the first theta body for the Hibi body by a spectrahe-
dron. This simplifies the search for concrete sos polynomials that determine it. In
the real case, we introduce a sufficient condition for sos polynomials which is
essential for the following chapters. For this purpose, we develop the concept
of a splitting join-meet partition. In the complex case, we can determine maximal
vectors for the first theta body by using the characterisation mentioned above.

In Chapter 7 we introduce design hyperplanes and another class of affine hyper-
planes, the skip hyperplanes. We begin with a brief introduction to latin squares
and to orthogonal designs. The main result is the identification of maximal
vectors for the projective norm in Rn ⊗ · · · ⊗ Rn, where n ∈ {2, 4, 8}.

In Chapter 8 we introduce parity hyperplanes, starting with some statements that
are useful for this purpose with respect to sorting and to homological algebra.
The main result is the upper bound on the inner radius of the projective unit ball
in Rn ⊗ · · · ⊗ Rn, where n > 2.

In Chapter 9 we deal with the application of the theta body method to the set of
separable states.

In Chapter 10 we summarise and discuss the results with respect to the projective
unit ball. In addition, we define a generalisation of the Schmidt decomposition in
the real case and we suggest how to proceed further.
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Graphical Overviews

The mind map on page xxiii serves as a graphical overview.

The alignment of the bubbles in the mind map follows the structure of this thesis
in clockwise direction. The colours indicate whether a topic mainly contains new
aspects or whether it is mainly background. The mind map also shows main
results and some references to research areas. A legend for the mind map is
given in Figure 1 on page xxii.

Whenever possible with respect to a clear structure of the mind map, relations
between individual bubbles are visible. For example, Section 7.3 bases on Section
6.3. This relation is shown by a cross reference in an extra bubble at the lower
margin. Other relations such as the relation between Section 1.2 and Section 5.3
follow from the context.

Another graphical overview is given in Figure 2 on page xxv. It shows the
main results concerning the approximation of the Hibi body by theta bodies. In
the following, we explain the meaning of each subfigure and of the underlying
theorems.

Figure 2 (a) illustrates that the Hibi body H corresponds to the convex hull of
the intersection of the Hibi variety V with the Euclidean unit sphere S1. The
(complex) theta bodies, here denoted by Tk, k ∈ N, are convex supersets of H.

Theorem 6.1.1 shows that the Hibi body is the unit ball of a norm. Moreover,
each theta body is contained in the Euclidean unit ball S, and in some cases it
can be shown that it is also the unit ball of a norm. Theorem 6.2.2 characterises
T1 by a spectrahedron. In some cases, we will show that a theta body respects the
symmetries of the Hibi body.

An important corollary in the real case is provided by Theorem 6.3.6. There
are two different applications of this theorem to the projective unit ball H in
Rn ⊗ · · · ⊗ Rn. Figure 2 (b) illustrates the case n ∈ {2, 4, 8} where the design
hyperplanes meet the boundary of T1, see Theorem 7.3.4, that is to say we obtain
maximal vectors for the projective unit ball and its inner radius. Figure 2 (c)
illustrates the more general case n > 2 where the parity hyperplanes lead to
upper bounds on the inner radius of H, see Theorem 8.3.5 (the class of vectors
with projective norm 1 is not visualised here).

The complex case Cn ⊗ · · · ⊗ Cn is illustrated in Figure 2 (d). The inner radius of
the first complex theta body TC

1 can be determined exactly with Theorem 6.4.2.
Since it does not depend on the dimension of the affine space, it is a rather weak
estimation of the inner radius of H.
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Background Information

This thesis can be regarded as a continuation of the Master’s thesis [Lang]. In
particular, the Master’s thesis provides some additional background information.
However, it is not necessary for the understanding of this thesis which can be
read independently.

Moreover, there are relations to some special mathematical subjects. The required
background information is presented briefly throughout the thesis.

The source code of the programs which belong to this thesis is located at:
https://git.rwth-aachen.de/lang.sand/geometryprojectivetensornorm

Keywords

Projective norm, nuclear norm, theta bodies, sums of squares, convex alge-
braic geometry, real algebraic geometry, convex optimisation, convex relaxations,
quantum entanglement, entanglement witnesses, binomial ideals, Hibi relations,
orthogonal designs.

Notation and Index

This thesis contains an index of notation and an index.

https://git.rwth-aachen.de/lang.sand/geometryprojectivetensornorm


xxii Introduction

References to research areas

Background (sometimes adapted)

Background with new aspects

New concepts (with references to other works)

Mainly new and independent results

Main results

Figure 1: Legend for the mind map on page xxiii.
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(a) The Hibi body with (complex)
theta bodies.

Theorem 6.1.1: The Hibi Norm

Theorem 6.2.2: Theta Bodies and
Spectrahedra

T1H

S

(b) Theta bodies in Rn ⊗ · · · ⊗ Rn,
n ∈ {2, 4, 8}.

Theorem 6.3.6: Sos Polynomials
and Splitting Join-Meet-Partitions

Theorem 7.3.4: Design Hyper-
planes as Sos Polynomials
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S

(c) Theta bodies in Rn ⊗ · · · ⊗ Rn,
n > 2.
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Splitting Join-Meet-Partitions

Theorem 8.3.5: Parity Hyperplanes
as Sos Polynomials
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(d) The first complex theta body in
Cn⊗· · ·⊗Cn, contrasting C2⊗C2

with the other cases.

Theorem 6.4.2: The Inner Radius of
the First Complex Theta Body

Theorem 6.4.3: The First Complex
Theta Body in a Special Case

Figure 2: The Hibi body with (complex) theta bodies.





Chapter 1

POLYNOMIAL IDEALS

Let K[~x ] := K[x1, . . . , xn] be the multivariate polynomial ring in n variables over
a field K. Given a set P ⊆ K[~x ] of polynomials we want to decide whether a
polynomial f ∈ K[~x ] can be expressed in terms of P as a finite sum f =

∑
p∈P ap ·p,

where ap ∈ K[~x ]. In other words, we ask whether f lies in the ideal generated
by P. According to the Hilbert Basis Theorem, every ideal in K[~x ] has a finite
generating set (see [CLS], Chapter 1, §5), so we can assume that P is finite. This
problem is often called the ideal membership problem. At the same time, we could
ask whether two ideals are equal, which is called the ideal equality problem.

The aim of this chapter is to give a concise overview of these problems. For each
polynomial ideal there are finite generating sets, so-called Gröbner bases, which
guarantee that the ideal membership problem can be solved with an algorithm
in a finite number of steps. For details we refer to textbooks on computational
algebraic geometry and Gröbner bases such as [BW], [CLS] or [Stu].

The last section deals with homogeneous polynomials and homogeneous ideals.
Details can be found in textbooks on algebraic geometry such as [GW] or [Har].



2 Chapter 1 – Polynomial Ideals

1.1 Term Orders

This section deals with term orders according to [CLS].

1.1.1 Terms and Monomials

A term in the variables x1, . . . , xn is a product of the form xα1
1 ·. . .·xαnn ∈

K[~x ], where αk ∈ N0 for all k ∈ {1, . . . ,n} and 1 = x0
1 · . . . · x0

n. The set
of all terms in n variables is an abelian monoid under multiplication.
In what follows, terms are identified with elements in Nn0 , that is,

xα = xα1
1 · . . . · xαnn ↔ α = (α1, . . . ,αn).

This identification transforms term multiplication into addition on
Nn0 . A monomial is a polynomial of the form a · xα, where a ∈ K,
a 6= 0 and α ∈ Nn0 . The notion follows [BW].

The terms are a standard basis of K[~x ], regarded as a vector space
over the field K, that is, each polynomial f ∈ K[~x ] can be written
uniquely as f =

∑
α∈Nn0

aαx
α with aα ∈ K, where aα = 0 for almost

all α ∈ Nn0 . Elements of the set {xα : α ∈ Nn0 ,aα 6= 0} are called terms
of f.

1.1.2 Monomial Ideals

Let f,g ∈ K[~x ] with g 6= 0, then g divides f, written g | f, if there
exists h ∈ K[~x ] with g ·h = f. In this case, we write h = f

g
. Therefore,

xα | xβ, where α = (α1 . . . ,αn),β = (β1 . . . ,βn) ∈ Nn0 , if and only if
αk 6 βk for all k ∈ {1, . . . ,n}. Two non-zero polynomials f,g ∈ K[~x ]
are said to be coprime if h | f and h | g for h ∈ K[~x ] implies h ∈ K. A
term xα with α = (α1 . . . ,αn) ∈ Nn0 is called square-free, if αk ∈ {0, 1}
(which means that xα is not divisible by x2

k) for all k ∈ {1, . . . ,n}.

An ideal I is called a monomial ideal, if there exists a subset A ⊆ Nn0
such that I = Id(xα : α ∈ A). That is, a monomial ideal is generated
by terms. According to [CLS, Chapter 2, §4], it has the following
property:

Proposition. Let A ⊆ Nn0 and I := Id(xα : α ∈ A). For all xβ ∈ I, we have β ∈ Nn0 ,
if and only if xα | xβ for some α ∈ A.
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Proof. A polynomial f ∈ I has the form f =
∑
α∈A gαx

α, where gα ∈ K[~x ]
(almost all zero). Hence, each term of f is divisible by a term in
{xα : α ∈ A}. �

Based on this statement, one can conclude that every monomial ideal
is finitely generated by terms (see [CLS, §4, Dickson’s Lemma]).

1.1.3 The Degree of a Polynomial

Definition. Let |α| :=
∑n
k=1 αk denote the degree of α = (α1, . . . ,αn) ∈ Nn0 and of

the term xα. The degree deg(f) of a polynomial f ∈ K[~x ] is defined as
the maximum of the degrees of its terms, whereupon we agree with
deg(0) := −∞.

If deg(f) 6 1 (that is, f has the form f = a0 +
∑n
k=1 akxk with ak ∈ K

for all k ∈ {1, . . . ,n}), then f is called an affine functional.

For each k ∈ N0, let K[~x ]k denote the polynomials of degree less or
equal than k.

1.1.4 Term Orders

Definition. A term order 6 on Nn0 is a total order on Nn0 (that is, it is antisymmet-
ric, transitive, and, in addition, any two elements are comparable),
satisfying

(i) If α 6 β and γ ∈ Nn0 , then α+ γ 6 β+ γ.
(ii) Every non-empty subset of Nn0 has a smallest element under
6, that is, 6 is a well-ordering.

As usual, we also write α < β if α 6 β and α 6= β.

The latter condition is equivalent to the statement that every strictly
decreasing sequence in Nn0 eventually terminates.

According to the identification of terms with elements in Nn0 , any
term order on Nn0 induces a total order on the terms of K[~x ], which
is called a term order on K[~x ]. Furthermore, any term order 6 on
K[~x ] defines a total order on the variables x1, . . . , xn. We say that 6
is based on this total order.

Definition. Let α,β ∈ Nn0 . The following relations are term orders:
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(i) (Lexicographical Order) We say α >lex β if the leftmost non-zero
entry in α− β ∈ Zn is positive.

(ii) (Graded Lexicographical Order) We say α >grlex β if |α| > |β| or, if
|α| = |β|, we have α >lex β.

(iii) (Graded Reverse Lexicographical Order) We say α >grevlex β if |α| >
|β| or, if |α| = |β|, the rightmost non-zero entry in α− β ∈ Zn
is negative.

The term xk is identified with (0, . . . , 0, 1, 0, . . . , 0) ∈ Nn0 (the kth entry
equals 1). In this respect, each of the three term orders base on the
order x1 > x2 > · · · > xn.

The following example and the following proposition justify the
term "reverse lexicographical". It will be useful in Section 5.3 and in
Section 5.4.

Example. We give some examples to outline the difference between the pro-
posed term orders. The brackets and the commas in the notation for
elements in Nn0 are omitted:

1 0 0 0 >lex 0 1 1 1, 1 0 0 1 >lex 0 1 1 0,
1 0 0 0 <grlex 0 1 1 1, 1 0 0 1 >grlex 0 1 1 0,
1 0 0 0 <grevlex 0 1 1 1, 1 0 0 1 <grevlex 0 1 1 0.

The following diagram shows grlex (upper case) and grevlex (lower
case):

1 1 0 0 > 1 0 1 0 >
1 0 0 1
0 1 1 0

>
0 1 1 0
1 0 0 1

> 0 1 0 1 > 0 0 1 1 .

In this respect, the main difference is that x1x4 >grlex x2x3, but
x1x4 <grevlex x3x4.

For any α ∈ Nn0 , let supp(α) := {k ∈ {1, . . . ,n} : αk 6= 0} ⊆ {1, . . . ,n} be
the support of α and of the term xα.

The following simple observation will be helpful in Chapter 5:

Proposition. Let α,β ∈ Nn0 with |α| = |β| and with αk,βk ∈ {0, 1} for all k ∈
{1, . . . ,n}. Let A := supp(α)\ supp(β) and let B := supp(β)\ supp(α).
Then we have:

(i) α >grlex β, if and only if

min (A) < min (B) .
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(ii) α >grevlex β, if and only if

max (A) < max (B) .

(Where max and min refer to the "standard order" 1 < 2 < . . . on N)

Proof. Let α,β ∈ Nn0 with |α| = |β|. Now, we have α >grlex β, if and only
if the entries of α exceed those of β in the leftmost position, where
they differ, and we have α >grevlex β, if and only if the entries of β
exceed those of α in the rightmost position, where they differ. �

1.1.5 The Multidegree of a Polynomial

Definition. Let 6 be a term order on Nn0 and let f =
∑
α∈Nn0

aαx
α ∈ K[~x ] be a

non-zero polynomial.
(i) The multidegree of f is

mdeg(f) := max (α ∈ Nn0 : aα 6= 0) ,

where max refers to 6.
(ii) The leading term of f is LT(f) := xmdeg(f).

(iii) The leading coefficient of f is LC(f) := amdeg(f).

For convenience, we agree with mdeg(0) := −∞. For any subset
M ⊆ K[~x ], we write LT(M) := {LT(f) : f ∈M \ {0}}.

The leading term has the following properties, see [CLS, Chapter 2,
§2, Lemma 8]:

Proposition. For all non-zero polynomials f,g ∈ K[~x ], we have
(i) LT(f+ g) 6 max (LT(f), LT(g)),

(ii) LT(f · g) = LT(f) · LT(g).

Proof. Statement (i) can be obtained immediately. Let α1,α2,β1,β2 ∈ Nn0 .
Let us assume that α1 6 β1 and α2 6 β2. Since 6 is a term order, it
follows that α1 + α2 6 β1 + β2. This shows (ii). �

Example. If we consider K[ x22, x21, x12, x11] with the graded reverse lexicograph-
ical order based on x22 > x21 > x12 > x11, then the leading term of
the polynomial x22x11 − x21x12 is x21x12. It is coprime with the leading
term x2

22 of the polynomial x2
22 + x

2
21 + x

2
12 + x

2
11 − 1.
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1.2 Polynomial Reduction and Gröbner Bases

In this section, we introducte reduction relations, the multivariate
polynomial division and Gröbner bases according to [BW].

1.2.1 Reduction Relations

Definition. A binary relation −→ on a set G is called a reduction relation, if
it is strictly antisymmetric (that is, g −→ h and h −→ g is not
possible). A reduction relation is said to be noetherian, if every
strictly decreasing sequence g1 −→ g2 −→ g3 −→ . . . eventually
terminates. The reflexive-transitive closure of a reduction relation
−→ is denoted by ?−→ and the reflexive-transitive-symmetric closure
of −→ (that is, the smallest equivalence relation on G extending −→)
is denoted by ?←→. For g,h ∈ G, we say g reduces to h, if g ?−→ h.
An element h ∈ G is said to be a normal form of g ∈ G (with respect
to −→), if g ?−→ h and if h is maximal (that is, it cannot be properly
reduced).

Details can be found in [BW], where reduction relations are used as
an approach to Gröbner bases.

Reduction relations will also appear in Section 5.2.

1.2.2 Multivariate Polynomial Division

Throughout this section, we fix a term order 6 on Nn0 . We note that
the definitions below depend on the term order.

Definition. Let P be a non-empty and finite subset of K[~x ] with 0 /∈ P. A non-
zero polynomial f ∈ K[~x ] reduces to g modulo P, written f −→P g, if
there exists p ∈ P, a term t of f and a term s such that s · LT(p) = t
and

f =
a

LC(p)
· s · p+ g,

where a is the coefficient of t in f.

In this case, g evolves from f by replacing the monomial a · t in f by



Polynomial Reduction and Gröbner Bases 7

the polynomial h := a · (t − 1
LC(p) · s · p), where mdeg(h) < mdeg(t).

Hence, we obtain

mdeg(f) > max (mdeg(f− g), mdeg(g)) .

Reducing modulo P is a binary relation on K[~x ]. In [BW, Theorem
5.21] it is stated that −→ P is a noetherian reduction relation on
K[~x ], that is, normal forms always exist. This statement relies on
the requirement that term orders are well-orderings. The reduction
relation −→P is also called the multivariate polynomial division. In the
more general case f ?−→P g we also say that f reduces to g modulo P.
A normal form of f with respect to −→P is also called a normal form
of f modulo P.

It is convenient to define that f is the single normal form of f modulo
∅ and that 0 is the single normal form of 0 modulo P.

For practical purposes, the determination of a normal form of a
given polynomial can be realised by means of a division algorithm on
K[~x ].

Normal forms with respect to −→P have the following form:

Proposition. Let P be a non-empty and finite subset of K[~x ] with 0 /∈ P. Let
f ∈ K[~x ] be a non-zero polynomial and let r ∈ K[~x ] be a normal
form of f with respect to −→P . Then there exist qp, r ∈ K[~x ], p ∈ P,
such that

f =
∑
p∈P

qp · p+ r

and such that the following conditions are fulfilled:
(i) For all p ∈ P with qp 6= 0, we have mdeg(f) > mdeg(qp · p).

(ii) For all p ∈ P, none of the terms of r is divisible by the leading
term of p.

Proof. See [BW, Proposition 5.22]. A sketch of the proof can be found here:
If r is a normal form of f and r 6= f, then there exist polynomials
r1, . . . , rl such that r0 := f −→P r1 −→P . . . −→P rl = r. Hence, there
exist polynomials s1, . . . , sl ∈ Id(P), each having the form sk = qk ·pk,
where qk ∈ K[~x ] and pk ∈ P, such that for all k ∈ {1, . . . , l}, we have

rk−1 = sk + rk
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and

mdeg(rk−1) > max(mdeg(sk), mdeg(rk)).

It follows that f =
∑l
k=1 sk + r, where mdeg(f) > mdeg(sk) for all

k ∈ {1, . . . , l}. Condition (ii) holds since r is a normal form. �

Example. Let P := {x, x+ 1} ⊆ K[x].

(i) Normal forms modulo P are not unique, since x ?−→P 0 and
x ?−→P − 1.

(ii) From f ∈ Id(P) does not automatically follow f ?−→P 0, since
1 ∈ Id(P), which is a normal form modulo P.

(iii) The multivariate polynomial division has no additive property
in general. If f1, f2,g1,g2 ∈ K[~x ] with f1 −→P g1 and f2 −→P g2,
then we do not have f1 + f2 −→P g1 + g2 in general: In contrast
to −x and x + 1, the polynomial 1 = (−x) + (x + 1) does not
reduce to zero modulo P.

(iv) If a non-zero polynomial f has the form

f =
∑
p∈P

qp · p+ r

and conditions (i) and (ii) from Proposition 1.2.2 are fulfilled,
then r does not have to be a normal form of f modulo P in
general. Indeed, we have x+ 2 = (2(x+ 1) − x) + 0 ∈ Id(P), but
x+ 2 does not reduce to zero modulo P.

1.2.3 Gröbner Bases and the Ideal Membership Problem

If f ?−→P 0, then f ∈ Id(P). However, Example 1.2.2 has shown that
the converse statement is not true in general. The following theorem
which is adapted from [BW, Theorems 5.35 and 5.62] and [CLS,
Chapter 2, §6] deals with subsets P for which the converse is always
true. In this case, normal forms are unique:

Theorem. Let G be a finite subset of K[~x ] with 0 /∈ G and I := Id(G). The
following are equivalent:

(a) The reduction relation −→G has unique normal forms.
(b) For all f ∈ I, we have f ?−→G 0.
(c) For all f ∈ K[~x ], we have f ∈ I if and only if each normal form

of f modulo G vanishes.
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(d) For all f ∈ K[~x ], there exists a unique representation f = g+ r
with g ∈ I and r ∈ K[~x ] such that none of the terms of r are
divisible by any LT(g), g ∈ G.

(e) The normal forms modulo G form a system of unique repre-
sentatives for the partition {f+ I : f ∈ K[~x ]} of K[~x ].

(f) We have Id(LT(G)) = Id(LT(I)).
(g) For all 0 6= f ∈ I, there exists g ∈ G such that LT(g) | LT(f).
(h) For all 0 6= f ∈ I, there exists qp ∈ K[~x ] for all p ∈ P with

mdeg(f) > mdeg(qp · p) such that f =
∑
p∈P qp · p.

Definition. A finite subset G ⊆ K[~x ] with 0 /∈ G is called a Gröbner basis, if it
satisfies the equivalent conditions of Theorem 1.2.3. If I ⊆ K[~x ] is
an ideal, then a Gröbner basis of I is a Gröbner basis G ⊆ K[~x ] with
Id(G) = I.

We note that the definition of a Gröbner basis requires a term order.
A Gröbner basis is called universal, if it is a Gröbner basis with
respect to any term order on Nn0 . We note that Gröbner bases are
not uniquely determined in general, even if the term order remains
unchanged. In the literature it is common to define a Gröbner basis
according to (f) or (g). The representation in (h) does not have to be
unique.

Given an ideal and a finite generating set (which always exists
according to the Hilbert Basis Theorem), the Buchberger algorithm
guarantees that a Gröbner basis can be found within a finite number
of steps, see [CLS, Chapter 2, §7]. Thus, the ideal membership
problem can be solved with the aid of Gröbner bases.

1.2.4 The Buchberger Criterion

Let α,β ∈ Nn0 . Let γ ∈ Nn0 be defined by γk := max(αk,βk) for all
k ∈ {1, . . . ,n}. The term xγ is called the least common multiple of α
and β. Two non-zero polynomials f,g ∈ K[~x ] are called relatively
prime if LT(f) and LT(g) are coprime.

Definition. The S-polynomial of two non-zero polynomials g,h ∈ K[~x ] is

S(g,h) := LC(h) · Xγ

LT(g)
· g − LC(g) · Xγ

LT(h)
· h,

where γ ∈ Nn0 is the least common multiple of mdeg(g) and mdeg(h).
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Proposition. Let G be a finite subset of K[~x ] with 0 /∈ G. Let g,h ∈ G be relatively
prime. Then S(g,h) ?−→G 0.

Proof. See [CLS, Chapter 2, §9, Proposition 4]. �

The following theorem gives a necessary and sufficient condition
that a set of polynomials is a Gröbner basis. It will be useful in
Section 5.3.

Theorem. (Buchberger Criterion)
Let G be a finite subset of K[~x ] with 0 /∈ G. The following are
equivalent:

(a) G is a Gröbner basis.
(b) For all g,h ∈ G, g 6= h, we have S(g,h) ?−→G 0.

Proof. See [CLS, Chapter 2, §6, Theorem 6]. �

1.2.5 The Ideal Equality Problem

Definition. A Gröbner basis G is called reduced if for all g ∈ G the following
holds:

(i) LC(g) = 1,
(ii) No term of g lies in Id(LT(G) \ {g}).

Every ideal in K[~x ] has a uniquely defined reduced Gröbner basis,
see [CLS, Chapter 2, §7, Theorem 5]. Thus, the ideal equality problem
can be solved by comparing the reduced Gröbner bases.

1.2.6 A Basis of the Coordinate Ring

Let I ⊆ K[~x ] be an ideal. The set K[~x ]/I is a vector space over K and
is referred to as the coordinate ring with respect to I. Let G ⊆ K[~x ] be
a Gröbner basis of I and let

B0 := {xβ : β ∈ Nn0 , xβ /∈ Id(LT(G))}, and
B := B0 + I.

The following statement can be found in [BPT, Example A.37].
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Proposition. A vector space basis of the coordinate ring K[~x ]/I is given by B.

Proof. According to Theorem 1.2.3 (e) and Proposition 1.1.2, each element
in K[~x ]/I has a representative which lies in the linear hull of B0,
that is, B generates K[~x ]/I. Furthermore, B consists of linearly
independent elements. To see this, let f be in the linear hull of B0

and let f ∈ I. Assuming that f 6= 0, we obtain LT(f) ∈ Id(LT(G))
according to Theorem 1.2.3 (f). But this is impossible. Hence, f = 0.�

Hence, a basis of the coordinate ring can easily be deduced from a
Gröbner basis by deciding for each term whether it is divisible by
one of the leading terms of the Gröbner basis.

1.3 Homogeneous Polynomials

Details on homogeneous polynomials can be found in textbooks on
algebraic geometry such as [Hat, Chapter 1].

Definition. A non-zero polynomial f ∈ K[~x ] is called homogeneous of degree d ∈
N0 if each of its terms has the same degree d. The zero polynomial is
called homogeneous of all degrees d ∈ N0. An ideal I in K[~x ] is called
homogeneous if it is generated by homogeneous polynomials.

Each polynomial f ∈ K[~x ] has a unique decomposition f =
∑
d>0 fd,

where fd is a homogeneous polynomial of degree d. The elements
of an ideal I in K[~x ] which are homogeneous of degree d ∈ N0 form
a vector space Id over K, the homogeneous part of degree d of I.

The following statement about homogeneous polynomials, on which
projective algebraic geometry is based on, will be useful:

Proposition. An ideal I in K[~x ] is homogeneous if and only if it equals the direct
sum of its homogeneous parts.

Proof. Let I be homogeneous, that is, there exist homogeneous polynomials
fi, i ∈ I, which generate I. Let f ∈ I, that is, there exist polynomials
gi, i ∈ I, almost all equal to zero, such that f =

∑
i∈I gi fi. Each

polynomial gi has a decomposition gi =
∑
d>0 gi,d, where gi,d is

homogeneous of degree d. The polynomial gi,d fi is homogeneous
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and lies in I. Hence,

f =
∑
d>0

∑
i∈I

gi,d fi

is a linear combination of homogeneous polynomials in Id, d > 0.
On the other hand, if I equals the direct sum of the vector spaces Id,
d ∈ N0, it is homogeneous by definition. �

Corollary. Let I be an ideal in K[~x ] which is generated by homogeneous poly-
nomials f1, . . . , fm of the same degree d > 0. Let d ′ ∈ N0. Then
the homogeneous part Id+d ′ is generated by the polynomials g fi,
where g is a term of degree d ′ and i ∈ {1, . . . ,m}. In particular, if
d ′ = 0, then each polynomial in Id is a linear combination of the
polynomials f1, . . . , fm.

Proof. For all f ∈ I, there exist homogeneous polynomials gi,e ∈ K[~x ] of
degree e > 0, i ∈ {1, . . . ,m}, such that

f =
∑
e>0

m∑
i=1

gi,e fi.

The polynomial gi,e fi has degree d + e. Now, let f ∈ Id+d ′ . For all
e 6= d ′, it follows that

∑m
i=1 gi,e fi = 0. �



Chapter 2

CONVEX ALGEBRAIC GEOMETRY AND

THETA BODIES

The computation of the projective norm or a test on separability can be difficult
in general. An approach is to investigate the unit ball of the projective norm or
the set of all separable states as a convex set.

In order to obtain information about a convex set, it can also be helpful to investi-
gate a convex superset with specific properties, a so-called convex relaxation.

In this respect, we recall that a closed convex set in Rn is characterised by the
set of all those affine half-spaces in which it is contained. This set can be large,
so it could be helpful to look more closely at subsets which are easier to handle.
This may describe the convex set completely, but even if not, it describes a convex
relaxation.

Figure 2.1 shows a convex set (grey) and a convex relaxation (white and gray)
which is defined by the intersection of four affine half-spaces whose complements
are indicated by colours.

A

BC

D

Figure 2.1: A relaxation of a convex set.
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In this chapter, we introduce theta bodies according to [BPT]. Theta bodies are
convex relaxations defined by affine half-spaces related to sums of polynomial
squares.

In this respect, this chapter deals with convex algebraic geometry, which is the
interplay between convex geometry and real algebraic geometry. The focus lies
on sums of squares and theta bodies.

Section 2.1 deals with the notions of (real) algebraic geometry based on the
standard literature.

Section 2.2 describes how a complex variety can be regarded as a real variety.
This allows us to define complex theta bodies in Section 2.5.

Section 2.3 deals with the basic notions of convex geometry in complex and in
real vector spaces. We pay special attention to the fact that convexity is a real
notion.

Section 2.4 deals with some notions which can be helpful to understand a norm
with the aid of its unit ball, which is, in particular, a convex set.

Section 2.5 deals with theta bodies.
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2.1 Real Algebraic Geometry

Basics about algebraic geometry can be found in textbooks such as
[GW], [Har], [Hat] or [Hul]. Basics about real algebraic geometry
can be found in the standard textbook [BCR].

2.1.1 Basic Concepts of Algebraic Geometry

The polynomial ring in n variables over K is denoted by K[x1, . . . , xn]
or by K[~x ].

A polynomial in K[~x ] can be regarded as a functional on Kn. In this
respect, Kn is called the real or the complex affine space.

The set of zeros of a polynomial f ∈ K[~x ] or a subset M ⊆ K[~x ] is
denoted by

ZK(f) := {v ∈ Kn : f(v) = 0} and
ZK(M) := {v ∈ Kn : g(v) = 0 for all g ∈M},

respectively. Such sets are called real or complex affine algebraic vari-
eties, briefly varieties. We immediately obtain ZK(M) = ZK(Id(M)).
According to the Hilbert Basis Theorem, each affine variety is defined
by a finite set of polynomials.

For any V ⊆ Kn, let

IK(V) := {f ∈ K[~x ] : f(v) = 0 for all v ∈ V}.

This set is called the real and the complex vanishing ideal of V , respec-
tively.

The following useful properties of varieties can be found in [Hat,
Proposition 1.1 and Proposition 1.2]:

Proposition. Let M,N ∈ K[~x ] with M ⊆ N, let S be an arbitrary index set and let
(Ms)s∈S be a family of subsets of K[~x ]. Then we have

(i) ZK(N) ⊆ ZK(M),
(ii) ZR(K[~x ]) = ∅ and ZR(0) = Kn,

(iii)
⋂
s∈S ZK (Ms) = ZK

(⋃
s∈SMs

)
, that is, arbitrary intersections

of varieties are also varieties, and
(iv) ZK(M) ∪ ZK(N) = ZK(Id(M) ∩ Id(N)), that is, finitely many

unions of varieties are also varieties.
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Proof. The statements (i)-(iii) can be easily verified. To show (iv), we first
note that ZK(M)∪ZK(N) ⊆ ZK(Id(M)∩Id(N)) can be obtained imme-
diately. The remaining implication can be shown by contraposition.
Assuming that v /∈ ZK(M) ∪ ZK(N), there exist f ∈ M and g ∈ N
with f(v) 6= 0 and g(v) 6= 0. Since fg(v) 6= 0 and fg ∈ Id(M) ∩ Id(N),
we obtain v /∈ ZK(Id(M) ∩ Id(N)). �

Remark. The complements of the algebraic varieties form the basis of a topol-
ogy on the affine space Kn, the Zariski topology. The Zariski topology
is both an essential concept of algebraic geometry and an example
for a topology which is (usually) not Hausdorff.

2.1.2 Hilbert’s Nullstellensatz

Definition. An ideal I ⊆ C[~x ] is said to be a radical ideal, if for all f ∈ C[~x ] and
for all m ∈ N, the statement fm ∈ I implies f ∈ I.

The following well-known theorem can be regarded as a characteri-
sation of vanishing ideals in the complex case.

Theorem. (Hilbert’s Nullstellensatz)
Let I ⊆ C[~x ] be an ideal. Then I = IC(ZC(I)) if and only if it is a
radical ideal.

Proof. See [Har, Theorem 5.1]. �

Remark. The radical
√
I of an ideal I ⊆ C[~x ] is defined as the smallest radical

ideal of C[~x ] containing I. It is given by all f ∈ C[~x ] such that fm ∈ I
for some m ∈ N, cf. [Har, Lecture 5].

2.1.3 The Real Nullstellensatz

Also for the real case, there exists a characterisation of vanishing
ideals. The corresponding theorem will be useful below when we
deal with symmetries of theta bodies.

Definition. An ideal I ⊆ R[~x ] is said to be real, if for all s ∈ N and for all
g1, . . . ,gs ∈ R[~x ] the statement

∑s
t=1 g

2
t ∈ I implies g1, . . . ,gs ∈ I.
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Theorem. (Real Nullstellensatz)
Let I ⊆ R[~x ] be an ideal. Then I = IR(ZR(I)) if and only if I is real.

Proof. See [BCR, Proposition 4.4.6]. �

Remark. The real radical R
√
I of an ideal I ⊆ R[~x ] is defined as the smallest

real ideal of R[~x ] containing I. It is given by all f ∈ R[~x ] with the
property that there exists m ∈ N and g1, . . . ,gs ∈ R[~x ] such that
f2m +

∑s
t=1 g

2
t ∈ I, see [BCR, Proposition 4.1.7].

Example. Since the real numbers are not algebraically closed, the real case and
the complex case are different. To illustrate this, let I := Id(x2 + 1) ⊆
K[x]. In the case where K = R, it can be easily verified that 1 ∈ R

√
I,

in other words, R[x] = R
√
I. Indeed, we obtain R[x] = IR(ZR(I)) since

the polynomial x2 + 1 has no real zero. On the other hand, we have
1 /∈ IC(ZC(I)), that is, C[x] 6= IC(ZC(I)).

2.1.4 Projective Varieties

One could ask how varieties behave under intersections. As an
example, there exists exactly one point of intersection between two
distinct lines in the plane, if they are not parallel. However, the
one-point perspective suggests parallel lines to meet "at infinity".
This viewpoint has the advantage that there is always exactly one
"point of intersection".

Those ideas can be realised by projective spaces. In Subsection 2.1.1
we considered the vector space Kn as a (real or complex) affine space,
that is, as a set of "points", at which polynomials in K[x0, . . . , xn] can
be evaluated.

The real or complex projective space Pn is defined as the set of all
one-dimensional subspaces in Kn+1, that is, the set of all lines in
Kn+1 which pass the origin. A line in Kn+1, passing through v :=

(v0, v1, . . . , vn) ∈ Kn+1, v 6= 0, represents a point in Pn. This point is
denoted by [v] or by v0 : v1 : · · · : vn. It is equal to λv0 : λv1 : · · · : λvn
for each factor λ 6= 0.

With respect to the affine space Kn+1, a polynomial f ∈ K[x0, . . . , xn]
can be evaluated at each point v ∈ Kn+1. In general, the result for
another representative of [v] is different. Assuming that f is homoge-
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neous leads to the result f(λv) = λdeg(f)f(v) for each λ ∈ K. Thus, in
the case that f vanishes on v, it vanishes also at each representative
of [v]. Hence, according to the definitions in Subsection 2.1.1, the set
of zeros of a homogeneous polynomial f ∈ K[x0, . . . , xn] or a subset
M of homogeneous polynomials in K[x0, . . . , xn] can be defined by

ZK(f) := {[v] ∈ Pn : f(v) = 0} and
ZK(M) := {[v] ∈ Pn : g(v) = 0 for all g ∈M},

respectively. Such sets are called real or complex projective algebraic
varieties, briefly (projective) varieties. The generated ideal Id(M) is ho-
mogeneous and we immediately obtain ZK(M) = ZK(Id(M)). Thus,
a projective variety is the set of zeros of a homogeneous ideal.

According to Proposition 2.1.1, one can show that arbitrary inter-
sections and finitely many unions of projective varieties are also
projective varieties.

In this respect, it is appropriate to define points, lines, planes and so
on as follows: Since the coordinate functions are homogeneous, any
injective linear map from Kk+1 to Kn+1, where k ∈ {0, . . . ,n}, can also
be considered as a function from Pk to Pn. The image is called a
k-plane of Pn. The 0-planes are called points, the 1-planes lines and
the 2-planes planes. Now, it can be easily verified that two distinct
lines always have exactly one point in common.

Indeed, k-planes are projective varieties, since they can always be
expressed as the set of zeros of appropriate linear forms.

2.1.5 A�ine Varieties as Projective Varieties

There are several possibilities to identify the affine space Kn with a
subset of Pn. For example, a point (v1, . . . , vn) ∈ Kn can be identified
with the point 1 : v1 : · · · : vn by "fixing" the first entry (this function
is denoted by α). Another possibility is to identify Kn with the "half
sphere" {w = (w0, . . . ,wn) ∈ Kn+1 : ‖w‖ = 1,w0 > 0}.

An affine variety in Kn+1, defined by homogeneous polynomials,
can also be regarded as a projective variety in Pn.

An affine variety in Kn, which is defined by an arbitrary ideal,
can also be regarded as a projective variety in the following sense:
Each polynomial f ∈ K[x0, . . . , xn] can be assigned uniquely to a
homogeneous polynomial fh ∈ K[x0, . . . , xn+1]: Let k := deg(f) be
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the degree of f. Each term t of f is assigned to the term x
k−deg(t)
0 · t,

which has degree k. If v = (v1, . . . , vn) ∈ Kn vanishes at f, then
1 : v1 : · · · : vn vanishes at fh, that is, the set of zeros of fh in α(Kn)
equals α(ZK(f)).

2.1.6 Dimension and Degree of a Projective Variety

Now, let K = C.

In the following, we outline some notions and properties of projective
varieties which can be helpful at a later stage to understand the theta
bodies which are interesting for us.

A projective variety V ⊆ Pn is called irreducible, if it is not possible to
write it as the union of two projective varieties, both different from V .
It can be shown (see [Har] for details) that any projective variety can
be expressed uniquely as a finite union of irreducible components.

Definition. The dimension of an irreducible projective variety V ⊆ Pn, written
dim(V), is the length k of a maximal chain of irreducible subvarieties

V0 ( V1 ( V2 ( · · · ( Vk = V ,

where V0 is a point. The dimension of an arbitrary projective variety
is defined as the maximum of the dimensions of its irreducible
components.

This definition of "dimension" goes along with the concept of "di-
mension" of manifolds, see [Har] for details.

For example, a hypersurface is the set of zeros of a homogeneous
polynomial. It can be shown that the hypersurfaces are exactly those
varieties in Pn with dimension n− 1.

The degree of the set of zeros of an irreducible homogeneous polyno-
mial is defined as its degree.

An alternative viewpoint could be motivated as follows: Let f ∈
R[x,y] be a polynomial of the form y = f0(x), where f0 ∈ R[x] has
degree 2. The degree of f is equal to the maximal number of points
of intersections of ZR(f) in the x-y-plane with a horizontal line.

The degree of a projective variety is defined in [Har]. The definition
involves so-called "general planes", which means that a statement
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should be true for "almost all" planes. We give a rough sketch:

Let V ⊆ Pn be an irreducible k-dimensional projective variety. Let P
be a "general (n− k)-plane" in Pn. Then the "degree" of V , written
deg(V), is the number of points of intersection of P with V .

2.1.7 The Hilbert Function

Projective varieties can be regarded as intersections of hypersur-
faces: A variety V ⊆ Pn is determined by a homogeneous ideal
I ⊆ C[x0, . . . , xn], generated by a set of homogeneous polynomials,
each defining a hypersurface which contains V . Moreover, for each
degree m ∈ N0, each polynomial which lies in the homogeneous part
Im defines a hypersurface which contains V .

The function

H : N0 → N0

m 7→ dim (C[x0, . . . , xn]m/Im)

is called the Hilbert function. It "collects" the codimensions of the
homogeneous part Im with respect to the space of homogeneous
polynomials of degree m.

The Hilbert function gives rise to a polynomial whose leading term
gives the dimension and the degree of V :

Theorem. There exists a univariate polynomial p : C → C, called Hilbert poly-
nomial, and m0 ∈ N such that H(m) = p(m) for all m > m0. We
have

(i) dim(V) = deg(p),
(ii) deg(V) = LC(p) · deg(p)!.

Proof. See [Har, Proposition 13.2 and page 166]. �

2.1.8 Transformations of Varieties

We conclude this section with our simple, but useful observation that
linear transformations of varieties go along with transformations
of the associated vanishing ideal. It will be essential for the proofs
which are related to symmetries of theta bodies.
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Proposition. Let V ⊆ Kn be a real or a complex affine algebraic variety and
let I := IK(V) be the real or complex vanishing ideal of V . Let
A ∈Mn(K) be an invertible matrix. Then we have

IK(A(V)) = I ◦A−1.

If A(V) = V , then we have I = I ◦A−1.

Proof. The following equivalence holds:

f ∈ IK(A(V)) ⇔ f(v) = 0 for all v ∈ A(V)
⇔ f ◦A ∈ IK(V) = I

⇔ f ∈ I ◦A−1.

If A(V) = V , then we have I = IK(V) = IK(A(V)) = I ◦A−1. �

2.2 Complex Varieties as Real Varieties

We will see in Section 2.5 that the concept of theta bodies requires
special properties of the real numbers which the complex numbers
miss, for example, that squares are always positive numbers. Indeed,
a key feature which distinguishes real algebraic geometry from
complex algebraic geometry is that polynomials which are sums of
squares are always positive.

However, a vector space over the complex numbers can also be
considered as a vector space over the reals with double dimension.
This simple observation helps to apply concepts which work in the
real setting also to a complex setting.

The main theorem of this section shows that a complex variety can
always be identified uniquely with a real variety, see Theorem 2.2.5.
The idea is to decompose a complex polynomial into its real part
and its imaginary part according to [Voi]. This allows us to define
complex theta bodies in Section 2.5.

2.2.1 The Decomplexification of Complex A�ine Spaces

The complex vector space Cn can be identified (real-linear) with the
real vector space R2n. This can be done by separating the real and
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the imaginary part from the complex coordinates, by way of example
with the following real linear isometry:

ı : Cn → R2n

(vk)
n
k=1 7→ (Re(vk), Im(vk))

n
k=1 .

The basis vectors of R2n are indexed by the set {1, . . . ,n}× {1, 2}, so
that for all k ∈ {1, . . . ,n}, the images of ek and of i ek are denoted by
ek,1 and ek,2, respectively. For all v ∈ Cn, the image ı(v) is also called
the decomplexification of v, see [KM, §12, page 75].

2.2.2 The Real and the Imaginary Part of the Coe�icients

Using the notation from Section 1.1, a term in C[x1, . . . , xn] has the
form xα = xα1

1 · . . . · xαnn , where α = (α1, . . . ,αn) ∈ Nn0 .

We first consider the following real linear maps:

Re0 : C[x1, . . . , xn] → R[x1, . . . , xn]

c · xα 7→ Re(c) · xα,
Im0 : C[x1, . . . , xn] → R[x1, . . . , xn]

c · xα 7→ Im(c) · xα.

Proposition. Let f,g ∈ C[x1, . . . , xn]. Then

Re0(f · g) = Re0(f) · Re0(g) − Im0(f) · Im0(g),
Im0(f · g) = Re0(f) · Im0(g) + Im0(f) · Re0(g).

Proof. Let c,d ∈ C and let xα, xβ ∈ C[x1, . . . , xn]. It suffices to show the
statement for f := cxα and g := dxβ:

Re0(f · g) = Re0(cd · xα+β) = Re(cd) · xα+β

= Re(c)Re(d)xα+β − Im(c) Im(d)xα+β

= Re0(f)Re0(g) − Im0(f) Im0(g),
Im0(f · g) = Im(cd) · xα+β

= Re0(f) Im0(g) + Im0(f)Re0(g).
�

Lemma. Let g ∈ C[x1, . . . , xn]. We have

g = Re0(g) + i Im0(g).
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Hence, for all v ∈ Rn ⊆ Cn, it follows that

Re(g(v)) = Re0(g)(v),
Im(g(v)) = Im0(g)(v),

and

ZC(g) ∩ Rn = ZR(Re0(g), Im0(g)).

Proof. The equation g = Re0(g) + i Im0(g) can be easily verified. For any
v ∈ Cn with real coordinates (that is, v ∈ Rn), we obtain Re(g(v)) =
Re0(g)(v) and Im(g(v)) = Im0(g)(v). Furthermore, we obtain

v ∈ ZC(g)⇔ g(v) = 0
⇔ Re(g(v)) = 0 and Im(g(v)) = 0
⇔ v ∈ ZR(Re0(g)) and v ∈ ZR(Im0(g)).

Now, v ∈ ZC(g) if and only if v ∈ ZR(Re0(g), Im0(g)). �

We note that the last lemma requires that v ∈ Rn. In particular, it
states that for any finite subset M ⊆ C[x1, . . . , xn], we obtain

ZC(M) ∩ Rn = ZR(Re0(M) ∪ Im0(M)).

Hence, the real coordinates of a complex variety can be expressed
as a real variety. In what follows, we want to express the whole
complex variety as a real variety. To do so, it seems to be helpful to
consider real coordinates for both the real and the imaginary part
of each complex coordinate, using the decomplexification ı from
Subsection 2.2.1. But this requires to work in a polynomial ring with
more variables, since for both the real and the imaginary part there
has to be a corresponding functional.

2.2.3 The Real and the Imaginary Part of a Polynomial

We consider the ring homomorphism

 : C[x1, . . . , xn] → C[x1,1, x1,2, . . . , xn,1, xn,2]

xk 7→ xk,1 + i · xk,2,

that is, for all terms xα1
1 · . . . · xαnn = xα, where α = (α1, . . . ,αn) ∈ Nn0 ,

we have

(xα) = (x1,1 + i · x1,2)
α1 · . . . · (xn,1 + i · xn,2)

αn
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and the function is complex linear.

For the purpose of a clear subscription, the basis vectors in the
corresponding affine space C2n are indexed by the set {1, . . . ,n}×{1, 2},
so that the terms xk,s, where k ∈ {1, . . . ,n} and s ∈ {1, 2}, are (regarded
as a function) determined by

xk,s(el,t) :=

{
1, k = l and s = t,
0, otherwise

for all l ∈ {1, . . . ,n} and for all t ∈ {1, 2}.

Definition. For all f ∈ C[x1, . . . , xn], let

Re(f) := Re0((f)),
Im(f) := Im0((f)).

be the real and the imaginary part of f, respectively.

Proposition. Let f,g ∈ C[x1, . . . , xn]. Then

Re(f · g) = Re(f) · Re(g) − Im(f) · Im(g),
Im(f · g) = Re(f) · Im(g) + Im(f) · Re(g).

Proof. The statement follows from Proposition 2.2.2, since  is a ring homo-
morphism. �

The real and the imaginary part of the term xα (see above) can be
derived explicitly as follows: For all β = (β1, . . . ,βn) ∈ Nn0 and
γ = (γ1, . . . ,γn) ∈ Nn0 , let xβ1 := xβ1

1,1 · . . . · xβnn,1 and xβ2 := xβ1
1,2 · . . . · xβnn,2.

Now, let

Aα := {(β,γ) ∈ (Nn0 )2 : β+ γ = α},
Aα,1 := {(β,γ) ∈ Aα : |γ|mod 2 = 0}, and
Aα,2 := {(β,γ) ∈ Aα : |γ|mod 2 = 1}.

Then

Re(xα) =
∑

(β,γ)∈Aα,1

i|γ| xβ1 · x
γ
2 ,

Im(xα) =
∑

(β,γ)∈Aα,2

−i|γ|+1 xβ1 · x
γ
2 .

Furthermore, we have Re(i xα) = − Im(xα) and Im(i xα) = Re(xα).



Complex Varieties as Real Varieties 25

2.2.4 The Decomplexification of a Complex Ideal

Let I ⊆ C[x1, . . . , xn] be an ideal.

Definition. The ideal ı(I) in the polynomial ring R[x1,1, x1,2, . . . , xn,1, xn,2] which is
generated by Re(f) and Im(f), where f ∈ I, is called the decomplexifi-
cation of the complex ideal I. An ideal in R2n is called decomplexified, if
it is the decomplexification of a complex ideal.

The decomplexification of I is generated by the real and imaginary
parts of the polynomials in I, but it suffices to consider a generating
set of I:

Proposition. Let F ⊆ I be a generating set of I. Then the decomplexification ı(I) is
generated by Re(f) and Im(f), where f ∈ F.

Proof. Let IF be the ideal in R[x1,1, x1,2, . . . , xn,1, xn,2] which is generated by
Re(f) and Im(f), where f ∈ F. We show that ı(I) = IF.
By definition, we have IF ⊆ ı(I). On the other hand, each h ∈ I
is a sum of polynomials g · f, where g ∈ C[x1, . . . , xn] and f ∈ F.
Proposition 2.2.3 says that both Re(gf) and Im(gf) are in IF. Hence,
Re(h) ∈ IF and Im(h) ∈ IF, so that ı(I) ⊆ IF. �

Remark. We note that it is not clear until now whether the decomplexification
(that is, the function ı on the ideals of C[x1, . . . , xn]) is injective.

2.2.5 The Decomplexification of a Complex Variety

The following theorem is an adaption of Theorem 3.1.4 in [Voi]:

Theorem. Let f ∈ C[x1, . . . , xn] and let I ⊆ C[x1, . . . , xn] be an ideal. For all
v ∈ Cn, we have

Re(f(v)) = Re(f)(ı(v)),
Im(f(v)) = Im(f)(ı(v)),

that is,
(i) f = Re(f) ◦ ı + i · Im(f) ◦ ı,

(ii) ı(ZC(f)) = ZR(Re(f), Im(f)), and
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(iii) ı(ZC(I)) = ZR(ı(I)).

In particular, there exists an injection from the varieties in Cn to the
varieties in R2n.

Proof. We first state that

f(v) = Re ((f)(ı(v))) + i · Im ((f)(ı(v))) , (2.1)

which implies the equation

Re (f(v)) = Re ((f)(ı(v))) . (2.2)

Since ı(v) ∈ R2n, Lemma 2.2.2 can be applied with g := (f) ∈
C[x1,1, x1,2, . . . , xn,1, xn,2], which leads to the equation

Re ((f)(ı(v))) = (Re0((f))) (ı(v)), (2.3)

which equals Re(f)(ı(v)) by definition of the real part of f. Hence,
equations (2.2) and (2.3) yield Re(f(v)) = Re(f)(ı(v)). Similar argu-
ments lead to Im(f(v)) = Im(f)(ı(v)), so that (i) follows from equation
(2.1). Now, we obtain

v ∈ ZC(f)⇔ f(v) = 0
⇔ Re(f(v)) = 0 and Im(f(v)) = 0
⇔ Re(f)(ı(v)) = 0 and Im(f)(ı(v)) = 0
⇔ ı(v) ∈ ZR(Re(f)) ∩ ZR(Im(f)),

which shows (ii). Finally, let M ⊆ C[x1, . . . , xn]. Proposition 2.1.1 (iii)
yields ı(ZC(M)) = ZR(Re(M) ∪ Im(M)). �

Definition. Let V ⊆ Cn be a complex affine variety. Let I ⊆ C[x1, . . . , xn] such
that V = ZC(I). The real affine variety ı(V) = ZR(ı(I)) is called
the decomplexification of the variety V . A variety in R2n is called
decomplexified, if it is the decomplexification of a complex variety.

We note that up to now, the symbol "ı" stands for the decomplex-
ification of a complex set, of a complex ideal, and of a complex
variety, see the index of notation on page 305. In Subsection 2.2.10
this symbol will also stand for the decomplexification of a complex
operator.

There is a one-to-one correspondence between complex varieties in
Cn and decomplexified real varieties in Rn.
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2.2.6 Comparison of the Zariski Topologies

Each complex variety can be identified with a real variety. This
allows to compare the corresponding Zariski topologies. For this
purpose, we consider the Euclidean unit sphere (Kn)1 in Kn. The
Euclidean norm of v = (v1, . . . , vn) ∈ Cn is given by

‖v‖2 =

n∑
k=1

vk · vk =

n∑
k=1

v2
k,1 + v

2
k,2.

The unit sphere (Rn)1 is a real manifold in Rn with dimension n− 1.
It is also a real variety, induced by the polynomial

∑n
k=1 x

2
k − 1 ∈

R[x1, . . . , xn]. Hence, also (R2n)1 is a real manifold in R2n with dimen-
sion 2n− 1, which is an odd number. This set is the decomplexifica-
tion of the unit sphere (Cn)1, that is, (R2n)1 = ı((Cn)1). As a real vari-
ety, it is induced by

∑n
k=1(x

2
k,1 + x

2
k,2) − 1 ∈ R[x1,1, x1,2, . . . , xn,1, xn,2].

Proposition. The unit sphere (Cn)1 is not a complex variety, that is, the unit sphere
(R2n)1 is not decomplexified. In particular, the Zariski topology
in the complex affine space Cn is strictly coarser than the Zariski
topology in the corresponding real affine space R2n.

Proof. Let V ⊆ Cn be a variety. Due to [Hul, Section 3], the set of smooth
points of V is open and dense in V . For each smooth point v ∈ V ,
there exists a neighbourhood U of v in V such that U is a manifold.
The dimension r of U equals the dimension of the tangential space
at v, which is a vector space over C. Hence, we may conclude that,
regarded as a real manifold, U has dimension 2r, which is even. The
dimension of ı((Cn)1) as a real manifold is odd, and hence, (Cn)1 is
not a complex variety. �

Example. The Zariski closed sets in C are given by finitely many points, the
empty set and C. But in R2, also the coordinate axes are Zariski
closed sets, since they are the sets of zeros of the ideals Id(x1) and
Id(x2) in R[x1, x2]. Hence, each of them cannot be decomplexified.

2.2.7 Decomplexified Ideals as Vector Spaces

Any ideal I ⊆ C[x1, . . . , xn] can also be considered as a vector space
over C.
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Proposition. Let I ⊆ C[x1, . . . , xn] be an ideal with I 6= C[x1, . . . , xn] and let B ⊆ I.
Let B ′ := Re(B) ∪ Im(B). If B is linearly independent in I as a vector
space over C, then B ′ is linearly independent in ı(I) as a vector space
over R. In particular, B ′ is a basis of LH(B ′).

Proof. Each polynomial in B is non-constant, since I 6= C[x1, . . . , xn] (which
means that 1 /∈ I). Let f1, . . . , fk be non-constant linearly indepen-
dent polynomials in C[x1, . . . , xn]. We show that the polynomials
Re(f1), . . . , Re(fk), Im(f1), . . . , Im(fk) are linearly independent.

To do this, we assume that Re(f1), . . . , Re(fk), Im(f1), . . . , Im(fk) are
linearly dependent, that is, there exists

λ1,1, . . . , λ1,k, λ2,1, . . . , λ2,k ∈ R,

which are not all zero, such that

g :=

k∑
l=1

(λl,1 Re(fl) − λl,2 Im(fl)) = 0.

This yields g = Re(fλ) for

fλ :=

k∑
l=1

λlfl,

where λl := λl,1 + iλl,2 and 0 6= λ := (λ1, . . . , λk) ∈ Cn. Hence, for all
v ∈ Cn, we obtain

0 = g(ı(v)) = (Re(fλ))(ı(v)) = Re(fλ(v)).

Hence, fλ is a multivariate polynomial whose real part is zero. A
holomorphic function on C which is non-constant maps open sets on
open sets. Thus, each section of fλ is a constant function, so that fλ is
a constant function. It follows that 1, f1, . . . , fk are linearly dependent.
By assumption, f1, . . . , fk are linearly independent, which implies
that also 1, f1, . . . , fk are linearly independent, since 1 /∈ I. This is a
contradiction. �

The last statement requires I 6= C[x1, . . . , xn] since Im(1) = 0.

Example. The following example illustrates that even if B ⊆ I is a basis of I, the
decomplexification ı(I) can be larger than LH(B ′). Let I := Id(x) ⊆
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C[x]. Then B := {xk : k ∈ N} is a basis of I as a vector space over C.
We obtain

Re(B) = {x1, x2
1 − x

2
2, x

3
1 − 3x1x

2
2, . . . },

Im(B) = {x2, 2x1x2, 3x2
1x2 − x

3
2, . . . }.

Now, we can see that x2
1 /∈ LH(B ′) but x2

1 ∈ ı(I) = Id(x1, x2). Neverthe-
less, it could be interesting to find a basis of ı(I).

2.2.8 Decomplexified Ideals and Sums of Squares

Let I ⊆ C[x1, . . . , xn] be an ideal. Below, we investigate theta bodies
of the decomplexification ı(I) in specific settings. The question
arises whether the property of being an affine functional and a
sum of squares modulo I can be expressed in real terms to obtain
affine functionals which are sums of squares modulo ı(I). Let l ⊆
C[x1, . . . , xn] be an affine functional such that l = s+ h for h ∈ I and
a sum of squares s ∈ C[x1, . . . , xn]. Now, Re(l) and Im(l) are also
affine functionals, and both Re(h) and Im(h) are in ı(I) by definition.
Hence, both properties, to be an affine functional and to be in I, are
"compatible" with the real setting.

However, the property of being a sum of squares is not "compatible"
with the real setting: Let f ∈ C[x1, . . . , xn], then Re(f2) = Re(f)2 −

Im(f)2, which is no sums of squares in general. Also Im(f2) = 2 Re(f) ·
Im(f) is no sums of squares in general. Indeed, from Proposition
2.2.7, it follows that there exists no non-constant polynomial f such
that Re(f) and Im(f) are scalar multiples of each other.

2.2.9 Gröbner Bases of Decomplexified Ideals

Let I ⊆ C[x1, . . . , xn] be an ideal. We assume that a Gröbner ba-
sis G of I is given, with respect to a term order on C[x1, . . . , xn].
Now, one could ask for a Gröbner basis of the decomplexifica-
tion ı(I). For instance, it suggests itself to ask whether the set
G ′ := {Re(g), Im(g) : g ∈ G} is a Gröbner basis of ı(I) with respect
to an appropriate term order on R[x1,1, x1,2, . . . , xn,1, xn,2]. In Section
5.4 we investigate this question in a special case. As we will see, a
positive answer depends strongly on the underlying term order and
does not seem to be canonically guaranteed.
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2.2.10 The Decomplexification of Complex Operators

Interpreting the complex number field as a real vector space, the
multiplication with a complex number z ∈ C can be represented by
a 2× 2 matrix ı(z):

R2 → R2,

v 7→
(

Re(z) − Im(z)

Im(z) Re(z)

)
· v.

A linear map f : Cn → Cm can be identified with a real linear map
ı(f) ∈ R2n → R2m, which is called the decomplexification of f, see
[KM, §12, page 75]. A corresponding m × n matrix A = (ai,j)

n
i,j=1

(with complex entries) can be assigned to a 2m×2n matrix ı(A) with
real entries, representing the decomplexification of f: For instance,
depending on the order on the basis, ı(A) = (ı(ak,l))k=1,...,m;l=1,...,n

or

ı(A) =
(

Re(A) − Im(A)

Im(A) Re(A)

)
,

see also [KM, Theorem 12.3] and [BN, Theorem 1.4.2].

The Euclidean scalar products fulfils the equality Re(〈 · , · 〉Cn) =

〈 · , · 〉R2n .

Proposition. Let A ∈Mm,n(C) and B ∈Mn,m ′(C).
(i) ı(A · B) = ı(A) · ı(B).

(ii) If A is invertible, then ı(A) is invertible and ı(A−1) = ı(A)−1.
(iii) ı(A?) = ı(A)t.

Proof. The product of two matrices or the transpose of a matrix can be
determined block by block. �

Corollary. If A is quadratic and normal/self-adjoint/unitary/positive, then
ı(A) is normal/symmetric/orthogonal/positive (respectively).

Proof. This statement follows from the last proposition. �

An affine functional in C[x1, . . . , xn] has the form

l = c0 + c1x1 + · · ·+ cnxn,
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where ck ∈ C. The real and the imaginary part are given by

Re(l) = Re(c0) +

n∑
k=1

(Re(ck)Re(xk) − Im(ck) Im(xk)) and

Im(l) = Im(c0) +

n∑
k=1

(Im(ck)Re(xk) + Re(ck) Im(xk)).

Remark. There is also another approach to consider a complex affine-linear
map as a real affine-linear map, using the component functions to-
gether with Theorem 2.2.5. Let A : Cn → Cm be an affine-linear map,
that is, there exist polynomials fk =

∑n
l=1 ck,lxl+ck,0 ∈ C[x1, . . . , xn]1,

where ck,l, ck,0 ∈ C, such that A(v) = (f1(v), . . . , fm(v))t for all
v ∈ Cn. Now, the linear part of A can be represented by the m× n
matrix B := (ck,l)k=1,...,m;l=1,...,n. The translation is represented by
C := (c1,0, . . . , cm,0)

t ∈ Cm. From Theorem 2.2.5, it follows that

A = Re(A) ◦ ı + i · Im(A) ◦ ı.

In terms of matrices, arranging ı(v) = (Re(v), Im(v))t, we obtain

ı(A(v)) = ı

 (Re(f1) + i · Im(f1)) (ı(v))
...

(Re(fm) + i · Im(fm)) (ı(v))


=

(
Re(B) − Im(B)

Im(B) Re(B)

)
·
(

Re(v)
Im(v)

)
+

(
Re(c)
Im(c)

)
= ı(B) · ı(v) + ı(c).

2.3 Convex Geometry

This section deals with basic notions from convex geometry accord-
ing to the textbooks [Gru], [Roc] and [SW].

As above, we can consider a complex vector space as a real vector
space with double dimension. For both spaces, the definition of
convexity uses only real numbers. Therefore, convex sets in the
former are convex sets in the latter and vice versa. In this respect, we
compare some notions that are related to convexity over the real and
complex numbers such as affine half-space, face, or extreme point.

The next section deals with those convex sets which are the unit ball
of a norm.
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Details for both sections can also be found in books or in articles on
functional analysis such as [Con], [BN], or [Arv]. With a focus on
theta bodies, see [BPT], [Voi], or [Lang].

2.3.1 Convex Sets

Definition. A point z ∈ Kn is called a convex combination of points v1, . . . , vm ∈
Kn, if it can be written as z = λ1 · v1 + · · ·+λm · vm, where 0 6 λk 6 1
for all k ∈ {1, . . . ,m} and λ1 + · · · + λm = 1. In this case, it is called
proper, if z /∈ {v1, . . . , vm}. A subset C ⊆ Kn is called convex, if all
convex combinations of points in C are contained in C. The convex
hull co(S) of a subset S ⊆ Kn is defined as the intersection of all
convex sets C ∈ Kn with S ⊆ C. A compact convex set is called
a convex body, which is called proper, if it has an interior point. A
proper convex body C is called strictly convex, if all proper convex
combinations of points in C are contained in the interior of C.

The convex hull co(S) of a set S ⊆ Kn is the set of all convex combi-
nations of points of S, see [Gru, Lemma 3.1]. Due to Carathéodory’s
Theorem, each point in co(S) can be written as a convex combination
of n + 1 points of S, see [Gru, Theorem 3.1]. The convex hull of a
compact set is a convex body, see [Gru, Corollary 3.1]. The closure
of a convex set is convex, see [Gru, Proposition 3.1]. The convex hull
of a closed set does not have to be closed in general. As an example
may serve the convex hull of the union of a line and a point which
is not on the line.

We note that decomplexification from Subsection 2.2.1 preserves
convexity, that is, the notions for Cn trace back to the notions for
R2n which may be more geometrically intuitive.

2.3.2 A�ine Hyperplanes and A�ine Half-Spaces

We have seen above that convexity is defined using real numbers, so
it would be sufficient to introduce the following notions only for the
real case. Nevertheless, we decided explicitly to include both cases
to avoid confusion.

As usual, the set of zeros of a non-constant affine functional is called
an affine hyperplane in Kn. It is a translate of a linear subspace of
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dimension n− 1. The decomplexification of an affine hyperplane in
Cn has real dimension 2n − 2, which implies that it does not trace
back to an affine hyperplane in R2n, which has dimension 2n − 1.
However, the complex case can be traced back to the real case by
using the real part of an affine functional (in the literature, it is
common to consider "real" affine functionals on Cn, see [BN, Section
1.5]).

Definition. A translate of a real linear subspace of Kn is called a real affine
subspace. The real affine hull of a set M ⊆ Kn is the smallest real affine
subspace which contains M. A subset H ⊆ Kn is called an affine
half-space if there exists an affine functional l of degree 1 such that

H = Hl = {y ∈ Kn : Re(l(y)) > 0}.

The set

Pl := {y ∈ Kn : Re(l(y)) = 0}

is called a real affine hyperplane.

The notions are adapted from [BN]. The real affine hull of M ⊆ Kn
is given by all points λ1 · v1 + · · · + λm · vm, where vk ∈ M and
λk ∈ R for all k ∈ {1, . . . ,m} and where λ1 + · · · + λm = 1, see [Roc].
For any non-constant affine functional l, we have Kn = Hl ∪ H−l,
and the boundary of both Hl and Hl is given by Pl, which is a
real affine subspace of Kn. According to Theorem 2.2.5, for all
y ∈ Kn, we obtain Re(l(y)) = Re(l)(ı(y)). Thus, ı(Hl) = HRe(l) and
ı(Pl) = PRe(l).

Proposition. There is a one-to-one correspondence between affine half-spaces in
Cn and in R2n (and real affine hyperplanes, respectively).

Proof. As we have seen, the decomplexification of an affine half-space (a real
affine hyperplane) in Cn equals an affine half-space (/ hyperplane,
respectively) in R2n.
On the other hand, each affine half-space (/ hyperplane) in R2n is
induced by a non-constant polynomial of the following form:

l0 = c0,1 +

n∑
k=1

(ck,1 · xk,1 + ck,2 · xk,2),
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where ck,1, ck,2 ∈ R. Now, with ck := ck,1+ick,2 ∈ C, the polynomial l0
is the real part of the non-constant polynomial c0+c1 ·x1+ · · ·+cn ·xn
in C[x1, . . . , xn]. �

Theorem. (Separation Theorem for Convex Bodies)
A convex body in Kn equals the intersection of all those affine
half-spaces in which it is contained.

Proof. See [Gru, Theorem 4.4]. �

The following term is adapted from convex optimisation.

Definition. LetM ⊆ Kn. Each convex superset of aM is called a convex relaxation
of M.

Usually, the term "relaxation" refers to a modelling strategy which
replaces a difficult optimisation problem by a related optimisation
problem which is, at the best, easier to solve. See, for example,
[CT].

Let C be a convex set which is the intersection of affine half-spaces
H. Now, for any H ′ ⊆ H, the intersection of all affine half-spaces in
H ′ is a convex relaxation of C. This special case will be important.

2.3.3 Support Functionals

The real parts of two non-constant affine functionals define the same
real affine hyperplane if and only if they are equal up to a non-zero
real multiple.

A real affine hyperplane defines two affine half-spaces. At least one
of them contains 0. The real part of a corresponding affine functional
is non-negative on 0. It is uniquely determined up to a non-negative
constant. Now, for all y = (y1, . . . ,yn)t ∈ Kn, we consider the affine
functional

ly := 1 − 〈 · ,y〉 = 1 − (y1 · x1 + · · ·+ yn · xn).

Proposition. The affine half-spaces with interior point 0 are represented by the
real parts of the affine functionals ly for y 6= 0.
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Proof. Let yk = yk,1 + iyk,2. We first note that

Re(ly) = 1 −
n∑
k=1

(yk,1xk,1 + yk,2xk,2) = l
ı(y),

that is, ı(Hly) = Hlı(y) and ı(Ply) = Plı(y) . Hence, it suffices to consider
the real case. Let l be a non-constant affine functional with the
required properties. Its real part is positive on 0, that is, there exists
λ > 0 and y ′ ∈ Kn with l = λ · ly ′ . �

Let P be a real affine hyperplane. Amongst all points in P, there
exists a unique point which is closest to zero. In this respect, we
consider the following affine functionals:

Definition. For all y ∈ Kn, y 6= 0, let

ly := 1 −
〈
· ,

y

‖y‖2

〉
= 1 −

1
‖y‖2 · (y1 · x1 + · · ·+ yn · xn)

be the support functional to y.

We immediately obtain ly(0) = 1 and ly(y) = 0. The distance of Ply
to zero is minimal at y and the linear subspaces LH(y) and Ply − y,
regarded as linear subspaces in R2n, are orthogonal. In this respect,
the vector y is called the support vector of Ply .

For all v,w ∈ Kn, v,w 6= 0, the statements v = w/‖w‖2 and w = v/‖v‖2

are equivalent. It follows that ly = ly/‖y‖
2 and ly = ly/‖y‖2 . Conse-

quently, also the support functionals are suitable as representatives
for the affine half-spaces with interior point 0.

0

y

P

H

Figure 2.2: The support functional to y.

Figure 2.2 illustrates the real affine hyperplane P := Ply , which is
perpendicular to y, and the corresponding affine half-space H := Hly ,
which is indicated by hashed lines.
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Example. Figure 2.3 illustrates a convex set C. The Euclidean unit sphere is
denoted by S. The support functional ly to the boundary vector y
induces an affine half-space in which C is contained. In contrast,
C is not contained in the affine half-space which is induced by the
support functional ly ′ to the boundary vector y ′. Theorem 2.4.7 will
make this precise.

C 0

‖y‖ · S

y

Ply

y ′

Ply ′

Figure 2.3: Support functionals to boundary vectors.

2.3.4 Witness Half-Spaces, Hyperplanes, and Functionals

Let y ∈ Kn, y 6= 0. The real part of the support functional ly provides
a test whether a given vector z ∈ Rn lies in the corresponding affine
half-space Hl or not.

Definition. Let C be a convex body with interior point 0. Let H be an affine
half-space such that C ⊆ H. Then H is called a witness half-space
for C, the corresponding real affine hyperplane is called a witness
hyperplane for C, and the corresponding support functional is called
a witness functional for C. If it is clear from the context, we often just
write witness.

By Theorem 2.3.2, C can be characterised by its witness half-spaces.
They provide a test whether a given vector z ∈ Kn is contained in
C:

Membership Test
- If there exists a witness functional l for C with Re(l(z)) < 0,

then z is not contained in C.
- If Re(l(z)) > 0 for all witness functionals l of C, then z ∈ C.

Figure 2.4 illustrates the membership test: Let l be a witness func-
tional of C. The real affine hyperplane P := Pl is represented by a
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blue line segment. Now, the witness functional outlines whether a
given point z on the coloured line segment from the origin lies on
the "left side" of P ("yes"). If this is not the case, then z /∈ C ("no").

C

no

0

yes

yes

P

Figure 2.4: Membership test with a witness functional.

In a figurative language, z is a "defendant" which can be "absolved" of
"guilt" (that is, being in C) based on the "testimony" of a "witness".

2.3.5 Faces and Extreme Points

Definition. A point z of a convex set C ⊆ Kn is called an extreme point of C, if z is
no proper convex combination of points of C. The set of all extreme
points of C is denoted by ext(C).

Let C be a convex body. Due to a finite-dimensional version of the
Krein-Milman Theorem, the set ext(C) equals the smallest subset
S ⊆ C with respect to the set inclusion such that C = co(S), see [Gru,
Theorem 5.5]. In particular, C = co(ext(C)), that is, C is characterised
by its extreme points.

Even if C is compact, ext(C) is not compact in general. An example
is the set E := {(y1,y2, 0) : y2

1+y
2
2 = 1,y1 6= 1}∪{(1, 0, 1), (1, 0,−1)} ⊆ R3

(since E = ext(co(E))).

Definition. Let C ⊆ Kn be a convex set. A non-empty subset F ⊆ C is called a
face of C, if for all z ∈ C, the following holds: If z is a non-trivial
convex combination of v,w ∈ C, then v,w ∈ F. Let F be a face of C.
If F 6= C, then it is called proper. It is called maximal, if it is proper
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and there are no proper faces F ′ of C with F ⊆ F ′ and F 6= F ′. It is
called exposed, if there exists a non-constant affine functional l such
that F = C ∩ Pl. The dimension dim(F) of F is the dimension of its
affine hull.

Extreme points are the faces with dimension zero. A proper face
of a convex set C is a closed subset of the boundary of C, see [Roc,
Theorems 18.1 and 18.2]. If F,G are faces of C with F ⊆ G and F 6= G,
then dim(F) < dim(G) due to [Roc, Theorem 18.1]. If C is contained
in an affine half-space Hl, and if C∩Pl 6= ∅, then C∩Pl is an exposed
face of C. Figure 2.5 shows an extreme point e of a convex set C
which is contained in a maximal face M. The face {e} is not exposed.
Nevertheless, due to [BN, Theorem 4.4], each proper face of C is
contained in an exposed face. The previous statements imply that
each face is contained in a maximal face of C which is exposed (see
also Figure 2.5).

C
M

e

Figure 2.5: Exposed and not exposed faces.

Proposition. Let C be a convex set and let F be a face of C. Then ext(F) = ext(C)∩F.
If, in addition, F is an exposed face, that is, there exists a real affine
hyperplane P such that F = C ∩ P, then ext(F) = ext(C) ∩ P.

Proof. Both assertions can be easily verified. �

The following statement can be found in [Lang, Proposition 6.2.3].

Proposition. If an arbitrary intersection of exposed faces of C is not empty, it is
an exposed face.

Proof. Let F1 and F2 be induced by support functionals l1 and l2. Either
F1 ∩ F2 is empty or it is induced by the support functional 1/2(l1 + l2).
In the latter case, dim(F1 ∩ F2) < min(dim(F1), dim(F2)). To show the
infinite case, let F be a system of exposed faces of C such that the
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intersection of all faces is not empty. The partially ordered set X of
all finite intersections of faces in F (ordered by inverted set inclusion)
has the property that every total ordered subset, which is not empty,
has a largest element, since the dimensions are decreasing. Following
Zorn’s Lemma, X contains at least one largest element, that is, the
intersection of all faces in F terminates after finitely many steps. �

2.3.6 The Real Polar and the Absolute Polar

Definition. Let C ⊆ Kn. The real polar of C is defined by

C◦ := {y ∈ Kn : ∀ z ∈ C : Re(〈z,y〉) 6 1}
= {y ∈ Kn : ∀ z ∈ C : Re(ly(z)) > 0}
= {y ∈ Kn\{0} : C ⊆ Hly} ∪ {0}.

A set D ⊆ Kn with C = D◦ is called a real prepolar of C.

Some examples can be found in [Lang]. The following common
statements can be deduced immediately:

Proposition. Let C ⊆ Kn. Then we have
(i) If D ⊆ Kn with C ⊆ D, then C◦ ⊆ D◦.

(ii) The real polar C◦ is convex and closed.
(iii) If C is a convex body with interior point 0, then C◦ is also a

convex body with interior point 0.
(iv) In the case where K = C, we have ı(C◦) = (ı(C))◦ .

Proof. The proofs of (i) and (ii) are straightforward.
To show (iii) we note that besides of 0 the set C◦ consists of all
y ∈ Kn\{0} such that C lies in the affine half-space Hly . Now, Hly
equals Hlỹ , where ỹ := 1

‖y‖2 · y. In particular, we have ‖y‖ = 1
‖ỹ‖ . On

the one hand, if there exists λ1 > 0 such that λ1 · B1,‖·‖ ⊆ C, then
C◦ ⊆ 1

λ1
· B1,‖·‖. On the other hand, if there exists λ2 > 0 such that

C ⊆ λ2 ·B1,‖·‖, then 1
λ2
·B1,‖·‖ ⊆ C◦.

Finally, we show (iv) with Theorem 2.2.5:

ı(C◦) = {y ∈ R2n : ∀ z ∈ ı(C) : ly(z) > 0} = (ı(C))◦ .
�

Hence, the complex case can be traced back to the real case.
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Theorem. (Bipolar Theorem)
Let C ⊆ Kn, then (C◦)◦ = cl(co(C ∪ {0})).

Proof. See [Wer, Satz VIII.3.9]. �

The Bipolar Theorem realises a dual relationship between convex
bodies with interior point 0. It is closely related to the Separating
Theorem for Convex Bodies Theorem 2.3.2, that is, a closed convex
set in Kn can be described by the intersection of all those affine
half-spaces in which it is contained.

Corollary. Let C be a closed convex set with 0 ∈ C. A set D ⊆ Kn is a
real prepolar of C if and only if the affine half-spaces Hly , where
y ∈ D\{0}, define C. In this case, we have C◦ = cl(co(D ∪ {0})).

Proof. We have

D◦ = {y ∈ Kn : ∀ z ∈ D : Re(〈z,y〉) 6 1}
= {y ∈ Kn : y ∈ Hlz , z ∈ D\{0}.

The last statement is a consequence of the Bipolar Theorem. �

Hence, if C ⊆ Kn has a real prepolar D and H is an affine half-space
with C ⊆ H, then there exists y ∈ cl(co(D∪ {0})) such that H = Hly .

Definition. Let C ⊆ Kn be a convex set with 0 ∈ C. The absolute polar of C is
defined by

C• := {y ∈ Kn : ∀ z ∈ C : |〈z,y〉| 6 1}.

A subset M of Kn is called balanced in K, if for any λ ∈ K, |λ| = 1,
and z ∈M, we have λ · z ∈M.

In the real case the real polar and the absolute polar are equal. The
notion of the real polar in Cn can be identified with the notion of
the absolute polar in R2n. Also for balanced sets, the real polar and
the absolute polar are equal, see [BN, Remark 8.3.2]. In those cases,
the term polar refers to both the real and the absolute polar.
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2.4 Convex Sets and Norms

A subset M of Kn is called absorbing, if 0 ∈M and if the Minkowski
functional

y 7→ inf
{
r ∈ (0,∞] : y ∈ r ·M

}
is finite for every y ∈ Kn.

If C ⊆ Kn is convex, bounded, balanced and absorbing, then the
Minkowski functional is a norm, denoted by ‖ · ‖C, whose unit ball
equals the closure of C, see [Con, Proposition 1.14]. Hence, there is
a one-to-one correspondence between norms on Kn and balanced
convex bodies C with interior point 0.

Let ‖ · ‖C be a norm on Kn with corresponding unit ball C. In
this section, we deal with some notions which can be helpful to
understand the norm ‖ · ‖C with the aid of the convex set C or its
polar.

2.4.1 Geometric Approach

The following simple observation can help to understand ‖ · ‖C if
the extreme points or the faces of C are known.

Let C := {co(E) : E ⊆ ext(C)} and let y ∈ Kn. Then

‖y‖C = inf
{
r ∈ (0,∞] : y ∈ r · B, where B ∈ C

}
,

see also Figure 2.6 (the coloured line segments refer to elements of
C).

0

y

ext(C)

C

Figure 2.6: Geometric approach to ‖ · ‖C.

2.4.2 The Norm Maximisation Problem

Another approach to ‖ · ‖C is its maximum on the unit sphere.
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Definition. The convex optimisation problem of finding the value

max{‖z‖C : ‖z‖ = 1}

is called the norm maximisation problem for ‖ · ‖C.

This optimisation problem will play an important role in the follow-
ing chapters. It will be also discussed at the end of this section.

2.4.3 Dual Norms and the Polar

Now, we show that the polar of C provides information about ‖·‖C.

Definition. The dual norm ‖ · ‖C,? of ‖ · ‖C on Kn is given by

‖z‖C,? = sup{|〈z,y〉| : y ∈ C}.

The following statement shows that the dual norm equals the norm
corresponding to the polar, see also [BN, Example 8.3.3]:

Proposition. We have ‖ · ‖C,? = ‖ · ‖C• = ‖ · ‖C◦ = sup{Re(〈 · ,y〉) : y ∈ C}.

Proof. Since C is balanced, we obtain C• = C◦, and for all z ∈ Kn, we have

z ∈ C• ⇔ ‖z‖C,? 6 1.
�

Example. The dual norm of the 1-norm is the max norm and the dual norm of
the 2-norm is the 2-norm.

2.4.4 Exposed Faces and the Polar

The following statement is a part of Satz 6.2.11 in [Lang].

Lemma. The proper exposed faces of C have the form C ∩ Plv , where v ∈ C◦ ,
‖v‖C◦ = 1.

Proof. Let F be a proper exposed face of C, then there exists v ∈ Kn, v 6= 0,
such that F = C ∩ Plv . The definition of the real polar yields v ∈ C◦ .
Then 1 > ‖v‖C◦ = sup{Re(〈v,y〉) : y ∈ C}. Since F is proper, there
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exists y0 ∈ C with y ∈ Plv , that is, 1 = Re(〈v,y0〉). Consequently, we
obtain ‖v‖C◦ = 1.
On the other hand, let v ∈ C

◦ with ‖v‖C◦ = 1. We show that
F := C ∩ Plv is a proper exposed face of C. By definition of ‖ · ‖C◦ ,
there exists y0 ∈ C with 1 = ‖v‖C◦ = Re(〈v,y0〉), that is, y0 ∈ Plv .
Hence, F is not empty. Now, let z ∈ F be arbitrary. From z ∈ Plv
we obtain 1 = Re(〈v, z〉). Assuming that λ · z ∈ C for λ > 1, then
‖v‖C◦ = sup{Re(〈v,y〉) : y ∈ C} > λ > 1, which is a contradiction.
Hence, z is a boundary point of C. �

2.4.5 Dual Faces

Definition. Let F be a face of C. The dual face F of F is defined by

F := {y ∈ C◦ : ∀ z ∈ F : Re(〈z,y〉) = 1}
= {y ∈ C◦\{0} : ∀ z ∈ F : Re(ly(z)) = 0}
= {y ∈ C◦\{0} : F ⊆ Ply}

=
⋂
z∈F

(C
◦ ∩ Plz).

In the case where F = ∅, the dual face is defined by F := C
◦ .

As an intersection of exposed faces, the dual face of F is either empty
or an exposed face of C◦ (this follows from Proposition 2.3.5.II and
Lemma 2.3.5). We note that also this notion can be traced back to
the real case. In [Lang], some properties of dual faces are outlined.
At this point, we remind on Propositions 6.2.17 and 6.2.18:

Proposition. Let F and F ′ be faces of C with F ⊆ F ′. Then we have
(i) (F ′) ⊆ F .

(ii) F is exposed, if and only if (F ) = F.
(iii) F is proper, if and only if F is a proper face of C◦.
(iv) In the case where F contains an exposed extreme point e ∈ C,

we have F = {e} if and only if F is a maximal face of C◦ .

Proof. Statement (i) follows immediately from the definition.
To show (ii) we first note that (F ) is an exposed face and F ⊆ (F ) .
If F is exposed, then there exists v ∈ C◦ such that F = C ∩ Plv , that
is, for all y ∈ C, we have 1 = Re(〈v,y〉) if and only if y ∈ F. Let
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v ′ ∈ (F ) ⊆ C. From v ∈ F we obtain 1 = Re(〈v, v ′〉), that is, v ′ ∈ F.

Now, we show (iii). If F is not proper (that is, F = C), then F = ∅. On
the other hand, if F is proper, then F is contained in a maximal face
M of C. Statement (ii) yields M = (M ) . This implies ∅ 6=M ⊆ F .
Since F contains an extreme point e (which is also an extreme point
of C using Proposition 2.3.5.I), we have F ⊆ {e} 6= C◦.

Finally, we show (iv). Let e ∈ F be an exposed extreme point of C. If
F = {e}, then {e} is a proper face of C◦ using (iii). Now, we assume
that there exists a maximal face M of C◦ with {e} ⊆M and {e} 6=M.
In this case, we obtain ∅ 6= M ⊆ ({e} ) = {e} using (ii) and (iii),
which implies M = {e}. Thus, we obtain M = (M ) = {e} , which
is a contradiction. To show the second implication, we first note that
F ⊆ {e} . If F is maximal, then F = {e} . Since {e} is exposed, there
exists w ∈ {e} such that the equation 1 = Re(〈v,w〉) for v ∈ C has
the unique solution v = e. But since w ∈ F , any v ∈ F solves the
equation. Hence, v = e. �

Example. Figure 2.7 shows different relationships between faces and their
dual faces, see [Lang, Beispiel 6.2.20]. The Euclidean unit sphere is
denoted by S. The proper faces of the convex set C are represented
by the maximal faces {a}, {c}, co(b, c), and by the face {b}, which is
not even exposed. The proper faces of C◦ are represented by the
maximal faces {d}, co(e, f), and by the face {e}. Relationships between
those faces are summarised in the table which follows below.

a

b

c

d

e

f

0

C

C
◦
S

Figure 2.7: A convex set and its real polar.
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Face F F (F )

{a} {d} {a}

{b} {e} co(b, c)

{c} co(e, f) {c}

co(b, c) {e} co(b, c)

2.4.6 The Inner and the Outer Radius

The following notions from [Arv] are among the most important in
this thesis.

Definition. (i) The inner radius r(C) of C is given by the radius of the greatest
Euclidean ball with center 0 which is contained in C:

r(C) := sup{r > 0 : r ·B1,‖·‖ ⊆ C}

(ii) The outer radius o(C) of C is given by the radius of the smallest
Euclidean ball with center 0 in which C is contained:

o(C) := inf{r > 0 : C ⊆ r ·B1,‖·‖}

From now on, we assume that C has a subset V which satisfies the
following conditions:

V0: (V is normed)
For all v ∈ V , we have ‖v‖ = 1.

V1: (V is balanced)
For all λ ∈ (K)1, we have λ · V ⊆ V .

V2: (V separates points)
For all z ∈ Kn with 〈z, v〉 = 0 for all v ∈ V , we have z = 0.

V3: (V generates C)
C = cl(co(V)).

In this case, C is contained in the Euclidean unit ball B1,‖·‖.

Theorem. If V is a subset of C which satisfies V0 - V3, then the inner radius of
C can be characterised by the following equations:

r(C) = inf{‖z‖ : ‖z‖C = 1} = inf{‖z‖C◦ : ‖z‖ = 1},



46 Chapter 2 – Convex Algebraic Geometry and Theta Bodies

o(C◦) =
1
r(C)

= sup{‖z‖ : ‖z‖C◦ = 1} = sup{‖z‖C : ‖z‖ = 1},√
2(1 − r(C)) = sup{d(z,V) : ‖z‖ = 1}.

Proof. See [Arv, Theorem 3.2]. �

The last theorem motivates different ways to determine the inner
radius of C, for example, with the polar. In particular, it shows the
following:
• The solution of the norm maximisation problem for ‖ · ‖C is

given by 1/r(C).
• The maximum of ‖ · ‖C◦ on (Kn)1 is given by r(C).
• We have C ⊆ B1,‖·‖ ⊆ C

•
= C

◦ .
• With Proposition 2.4.3, for any z ∈ Kn, we have

‖z‖C◦ = ‖z‖C,? 6 ‖z‖ 6 ‖z‖C = ‖z‖C◦,?.

Remark. The theorem requires that C has a subset V with the properties V0 -
V3. Otherwise, even C ⊆ C◦ is not true, see [Lang, Beispiel 6.2.7].

2.4.7 Maximal Vectors

Also here, we assume that C has a subset V which satisfies V0 - V3.
The following notion goes back to [Arv].

Definition. A unit vector y ∈ Kn is called maximal for C or for the norm ‖ · ‖C, if
it maximises the distance to V , that is, if

d(y,V) = sup{d(z,V) : ‖z‖ = 1}.

The following theorem is an adaption of [Sok, Theorem 3.4.6] and
[Lang, Satz 6.2.14].

Theorem. Let y ∈ (Kn)1. Let v := r(C) · y and w := 1/r(C) · y. The following are
equivalent:

(a) y is maximal for C.
(b) d(y,V) =

√
2(1 − r(C)).

(c) d(y,C) = sup{d(z,C) : ‖z‖ = 1} = 1 − r(C).
(d) ‖y‖C = 1

r(C)
.

(e) y solves the norm maximisation problem.
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(f) v is contained in a maximal face M of C.
(g) w is an exposed extreme point of C◦ .

In this case, M = C ∩ Plv and {w} = C
◦ ∩ Plw are dual faces of each

other.

Proof. The equivalence of (a) and (b) follows directly from Theorem 2.4.6.
Now, we show (a)⇔ (d)⇔ (e): According to [Sok, Theorem 3.4.6], y
is a maximal vector for C if and only if ‖y‖C = 1

r(C)
. In this case, the

last value equals sup{‖z‖C : ‖z‖ = 1} according to Theorem 2.4.6, that
is, y solves the norm maximisation problem.
To show (f) ⇒ (a), we first note that the distance of M to zero
takes its minimum exactly at v since ‖v‖ = r(C). By assumption,
d(0,M) = r(C). It follows that v lies in M, that is, in the boundary
of C. Hence, y is maximal.
To show (a) ⇒ (g), we look at the support functional lw of w.
The distance of lw to zero takes its minimum exactly at w. From
C
◦ ⊆ ‖w‖ · B1,‖·‖, it follows that C◦ ∩ Plw = {w}, that is, w is an

exposed extreme point of C◦ . The equation {w} =M follows from
Proposition 2.4.5.
Now, we show (g) ⇒ (f). Using Proposition 2.4.5, {w} is a max-
imal face of C. Since ‖w‖ = o(C

◦
), we obtain v = 1/‖w‖2 · w, and

{w} = {z ∈ C : Re(〈z,w〉) = 1} = C ∩ Plv . From v ∈ {w} =: M and
‖v‖ = r(C) we obtain d(0,M) = r(C).
Now, also the equivalence of (b) and (c) is clear. �

Hence, the norm maximisation problem can be solved by maximal
vectors and their maximal faces. In addition, it can be solved by
extreme points of C◦ with maximal length.

In the case of the last theorem, M comes closest to zero amongst all
faces of C and w has the largest distance to zero amongst all extreme
points of C◦ . The following table serves as an overview:

‖ · ‖C ‖ · ‖ ‖ · ‖C
◦

v 1 r(C) r(C)2

y 1/r(C) 1 r(C)

w 1/r(C)
2 1/r(C) 1



48 Chapter 2 – Convex Algebraic Geometry and Theta Bodies

Example. Figure 2.8 shows a maximal vector y for a convex set C, its corre-
sponding maximal face M and its corresponding extreme point w of
the polar C◦ . Let S denote the Euclidean unit sphere.

0

y

w

v

M

C

C
◦

S

r(C) · S

1/r(C) · S

Figure 2.8: A maximal vector.

Remark. Let r(C) := r, let y be a maximal vector for C and let z ∈ V

with d(y,V) = d(y, z). Figure 2.9 illustrates the equation d(y,V) =√
2(1 − r).

√
2(1 − r)1

r 1 − r

z

y
0

Figure 2.9: Maximal vectors and their distance to V .



Sums of Squares and Theta Bodies 49

2.5 Sums of Squares and Theta Bodies

In this section, we introduce the concept of theta bodies according to
[BPT]. Given a convex set with the property that the extreme points
or a larger subset is a real affine variety, the theta bodies are a chain
of convex relaxations.

The main idea is that the affine functionals which define a theta
body can be handled from an algebraic perspective. In particular,
they have to be written as a sum of squares in the coordinate ring
corresponding to the underlying variety. Indeed, in the case of real
affine spaces, the variety lies on one side of the affine half space,
since a sum of squares is a polynomial with non-negative values.
According to this observation, the concept of theta bodies seems to
work only in real affine spaces. However, we present a way to use it
also in complex settings by introducing complex theta bodies.

Basics and notion can be found in [BCR] and in [BPT].

2.5.1 Sums of Squares and Cones

Let I ⊆ R[x1, . . . , xn] =: R[~x ] be an ideal.

Definition. Let k ∈ N0.
(i) A polynomial s ∈ R[~x ] is called a k-sum of squares (k -sos), if

there exist h1, . . . ,hs ∈ R[~x ], where the degrees of h1, . . . ,hs
each do not exceed k, such that s has the form

s = h2
1 + · · ·+ h2

s.

It is called a proper k-sum of squares, if it is 0 -sos or k -sos, but
not (k− 1) -sos.

(ii) A polynomial f ∈ R[~x ] is called a k-sum of squares modulo I
(k -sos-mod I), if there exists a k-sum of squares s ∈ R[~x ] and
h ∈ I, such that f has the form

f = s+ h.

A polynomial which is a k-sum of squares (modulo I) is also called
a sum of squares (modulo I, respectively).
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According to Subsection 1.1.3, let R[~x ]k denote the polynomials
whose degrees do not exceed k. Let Σ denote the set of all sum of
squares, and let Σ2k denote the set of all k-sum of squares in R[~x ]. If
we consider the leading term of a sum of squares, then it is obvious
that Σ2k = Σ ∩ R[~x ]2k.

Definition. Let R be a commutative ring with 1. A subset P ⊆ R is called a cone,
if P satisfies the following conditions:

(i) For all r, s ∈ P, we have r+ s ∈ P and r · s ∈ P.
(ii) For all r ∈ R, we have r2 ∈ P.

A cone P is called proper, if −1 /∈ P.

Hence, Σ is a proper cone in R[~x ], and Σ/I = {f+ I : f ∈ Σ} is a cone
in R[~x ]/I.

In general, an affine functional is not a sum of squares, but it can be a
sum of squares modulo an ideal. This special case will be interesting
for us below.

2.5.2 Positivstellenmengen

Definition. The Positivstellenmenge of a polynomial f ∈ R[~x ] or a subset M ⊆
R[~x ] is denoted by

W(f) := {x ∈ Rn : f(x) > 0} and
W(M) := {x ∈ Rn : g(x) > 0 for all g ∈M}, respectively.

Moreover, f is called non-negative on a subset S ⊆ Rn, if f(x) > 0 for
all x ∈ S, that is, if S ⊆W(f).

The real numbers are a special case of an ordered field. This property
guarantees that W(M)∪W(−M) = Rn. Hence, for example, the Pos-
itivstellenmenge of an affine functional is an affine half-space. Even
more important for our applications is the property that squares, that
is, polynomials of the form f2, are non-negative on Rn. Consequently,
sums of squares are non-negative on Rn.

Let I ⊆ R[~x ] be an ideal. Then ZR(I) ⊆W(I). This observation will
be useful below.
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Remark. Given a set A ⊆ Rn, we may ask for the cone of all polynomials
which are non-negative on A. In particular, we may ask whether this
cone contains polynomials which are not equal to a sum of squares.
An answer is given by the Positivstellensatz, see [BCR, Corollary 4.4.3].
For M = Rn, this question is known as Hilbert’s 17th problem, see
[BCR, Theorem 6.1.1]. In particular, Hilbert showed the existence
of a real polynomial in two variables which is non-negative on R2

without being a sum of squares, see [Hil]. The Real Nullstellensatz
Theorem 2.1.3 is a corollary of the Positivstellensatz. Both theorems,
their proofs and other versions of the Positivstellensatz are also
presented in the Master’s thesis [Lang].

2.5.3 Theta Bodies

From now on, let I ⊆ R[~x ] be an ideal.

A theta body of I is defined as the intersection of the Positivstel-
lenmengen which come from polynomials which are both an affine
functional and a sum of squares modulo I, see [BPT].

More details on the basic idea and intuition of theta bodies can be
found in [Sto, Appendix B]. Some other viewpoints on theta bodies
are outlined and summarised in [BPT]: Theta bodies as so-called
semialgebraic sets, as so-called projected dual cones, as so-called
projected spectrahedra, theta bodies and moment matrices, and more.
Some of these viewpoints are presented in detail in the Master’s
thesis [Lang]. Here, we only deal with the aspects that are required
specifically for this thesis.

Let Ck := Ck(I) be the set of all affine functionals in R[~x ] which
are k -sos-mod I. The kth theta body Tk is defined by the intersection
of Rn with all affine half-spaces which come from non-constant
polynomials in Ck:

Definition. Let k ∈ N. The kth theta body of I is the set

Tk := Tk(I) := {x ∈ Rn : l(x) > 0 for all l ∈ Ck} .

The number k denotes the degree of Tk.

A theta body is a closed and convex superset of the real algebraic
variety V := ZR(I). If a polynomial is k -sos-mod I, so it is also
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(k+ 1) -sos-mod I. Thus, the theta bodies are a descending chain of
relaxations of the closed convex set C := cl(co(V)):

T1 ⊇ T2 ⊇ · · · ⊇ Tk ⊇ Tk+1 ⊇ · · · ⊇ C ⊇ V .

In this respect, we say that the theta bodies approximate C. However,
we will deal with the question of how "close" the theta bodies come
to C. The chain is illustrated in Figure 2.10.

C

T1

Tk

Tk+1

V

Figure 2.10: Approximation by theta bodies.

Remark. We recall that the Real Nullstellensatz Theorem 2.1.3 says that van-
ishing ideals correspond to real ideals. It also says that the real
radical R

√
I is the largest ideal amongst all ideals defining ZR(I), so

we have Tk(
R
√
I) ⊆ Tk(I). In an applied context, it may therefore be

tempting to replace I with its real radical to yield a "better" approxi-
mation. In this respect, if I is real, then Tk(I) can also be referred to
as the kth theta body of V . In practice, however, the real radical can
be quite "large", which makes it difficult to deal with. Therefore, if
the underlying ideal is specified, then the notion kth theta body of V
is also possible.

Example. By definition, a k-sum of squares modulo I is also a k + 1-sum of
squares modulo I. The inverse statement does not hold in general.
However, to get a sense for the theta body chain, we make the
following observation. Let f ∈ R[~x ] be a k-sum of squares modulo
I, that is, there exists a k-sum of squares s = s2

1 + · · · + s2
t and a
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polynomial h ∈ I such that l = s+ h. In this example, we show how
to write f as a proper (!) k + 1-sum of squares s̃ modulo I. To do
this, we assume that there exits h0 ∈ I with deg(h0) 6 k + 1. Now,
let h1, . . . ,ht ∈ I such that the maximum of the degrees of h1, . . . ,ht
equals k+ 1 (this is possible due to the assumption). Then f can be
written as f = s̃+ h̃ with

s̃ := (s1 + h1)
2 + · · ·+ (st + ht)

2 and

h̃ := h− 2(s1h1 + · · ·+ stht) − (h2
1 + · · ·+ h2

t).

One can easily see that s̃ is a proper k+ 1-sum of squares and h̃ ∈ I.
For instance, using a polynomial u ∈ I with deg(u) = k + 1, one
obtains f = (s+ u2) + (h− u2). Nevertheless, the more complicated
question is how to find a polynomial which is a k+ 1-sum of squares
modulo I but no k-sum of squares modulo I.

2.5.4 A Real Prepolar of a Theta Body

For any y ∈ Rn, we recall that ly = 1 − 〈 · ,y〉, see Subsection 2.3.3.
Now, let k ∈ N. We consider the set

Dk := Dk(I) := {y ∈ Rn : ly is k -sos-mod I},

which is convex and contains 0. In the case where 0 ∈ Tk, each
affine half-space, which contains Tk, can be represented by an affine
functional ly, where y ∈ Rn with y 6= 0, see Proposition 2.3.3, and
we have

Ck = {λ · ly : y ∈ Dk, λ > 0}.

In this case, we immediately see that Dk is a real prepolar of Tk:

Proposition. If 0 ∈ Tk, then Tk = (Dk)
◦ and (Tk)

◦ = cl(Dk).

Proof. The first assertion follows directly from Corollary 2.3.6. The second
assertion holds with the Bipolar Theorem Theorem 2.3.6. �

This observation will be useful in Chapter 6.
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2.5.5 Convergence of Theta Bodies

Definition. The theta bodies of I converge, if

∞⋂
k=1

Tk = cl(co(ZR(I))).

The kth theta body is called exact, if Tk = cl(co(ZR(I))).

The following important theorem is a corollary of the Theorem of
Schmüdgen, see [Sch].

Theorem. If ZR(I) is compact, then we have

∞⋂
k=1

Tk = co(ZR(I)).

Proof. See [BPT, Theorem 7.32]. �

Remark. In [Lang], this theorem, the Theorem of Schmüdgen and their proofs
are presented in detail. In particular, the idea was that this might give
some clues to understand the theta bodies and their convergence.

2.5.6 Theta Bodies provide Witnesses

Let I ⊆ R[~x ] be an ideal such that ZR(I) is compact and such that
0 is an interior point of C := cl(co(ZR(I))). For each k ∈ N, every
polynomial in Dk is a witness for C according to Subsection 2.3.4.
Now, since the theta bodies of I converge, we can test whether a
given vector z ∈ Rn lies in C (see also Figure 2.4):

Membership test
- If there exists k ∈ N and l ∈ Dk with l(z) < 0, then z is not

contained in C.
- If l(z) > 0 for all k ∈ N and for all l ∈ Dk, then z ∈ C.

Of course, in general, we may expect to know only finitely many
witnesses, which is not sufficient to show z ∈ C. However, the wit-
nesses which are known could serve as a measure for the "closeness"
of z to C.
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2.5.7 The Symmetry Group of a Theta Body

Now, we deal with the symmetry group of a theta body. Our obser-
vations will be useful in Section 6.1.

Proposition. Let V ⊆ Rn be a real affine variety. Let I := IR(V) ⊆ R[~x ] be the
vanishing ideal of V . Then we have

SymRn(V) ⊆ SymRn(Tk(I))

for all k ∈ N.

Proof. Let A ∈ Mn(R) be an invertible matrix with A(V) = V (that is,
A ∈ SymRn(V)).

Preliminary Statement: For all f ∈ R[~x ], we have deg(f) = deg(f ◦A).
Proof: The assertion holds for terms. This can be seen as follows:
Let p := xα1

1 · . . . · xαnn , where α1, . . . ,αn ∈ N0. For each variable xt,
t ∈ {1, . . . ,n}, let yt denote a term in (A(x1, . . . , xn))t whose degree is
maximal. The part of yα1

1 · . . . ·yαnn does not vanish in p ◦A. Since the
assertion holds for terms, it also holds for arbitrary polynomials.

Statement 1: Let l ∈ R[~x ]. We show that the following are equivalent:
(a) l is an affine functional and k -sos-mod I.
(b) l ◦A is an affine functional and k -sos-mod I.

Proof : Let l be an affine functional which is k -sos-mod I. There
exist polynomials h1, . . . ,hs ∈ R[~x ]k and there exists h ∈ I with
l =

∑s
t=1 h

2
t + h. We obtain

l ◦A =

s∑
t=1

(ht ◦A)2 + h ◦A.

According to the preliminary statement, the degree of ht ◦A equals
the degree of ht for all t ∈ {1, . . . , s}. According to Proposition 2.1.8,
we obtain h ◦ A ∈ I. Thus, l ◦ A is also an affine functional and
k -sos-mod I. The equivalence holds since V is also invariant under
A−1.

Statement 2: We have Tk(I) = A(Tk(I)).
Proof : From x ∈ Tk(I) we obtain l(A(x)) = (l ◦ A)(x) > 0 for each
polynomial l which is an affine functional and k -sos-mod I, that is,
A(x) ∈ Tk(I). �
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Proposition. Let V0 ⊆ Rn be a real affine variety, let V := V0 ∩ (Rn)1 = {v ∈
V0 : ‖v‖ = 1}, and let C := co(V). Let I := IR(V0) ⊆ R[~x ] be the
vanishing ideal of V0. With u := x2

1 + · · · + x2
n − 1 ∈ R[~x ], we first

have V = ZR(J) = ext(C), where J := Id(I,u). Moreover, if I is a
homogeneous ideal, then we have

SymRn(V) ∩ Un(R) = SymRn(C) ∩ Un(R) ⊆ SymRn(Tk(J))

for all k ∈ N.

Proof. Let A ∈ Mn(R) be an orthogonal matrix with A(V0) = V0 (that is,
A ∈ SymRn(V0) ∩ Un(R)).
Statement 1: For all l ∈ R[~x ], the following are equivalent:

(a) l is an affine functional and k -sos-mod J.
(b) l ◦A is an affine functional and k -sos-mod J.

Proof : Let l be an affine functional which is k -sos-mod J. There exist
polynomials h1, . . . ,hs ∈ R[~x ]k and there exist h ∈ I and g ∈ R[~x ]
with l =

∑s
t=1 h

2
t + h+ g · u. We obtain

l ◦A =

s∑
t=1

(ht ◦A)2 + h ◦A+ (g ◦A) · (u ◦A).

Using the preliminary statement of the proof of the last proposition,
the degree of ht ◦ A equals the degree of ht for all t ∈ {1, . . . , s}.
According to Proposition 2.1.8, we have h ◦ A ∈ I. Since A is an
orthogonal matrix, we have u ◦A = u, which implies h ◦A+(g ◦A) ·
(u ◦A) ∈ J. Thus, l ◦A is also an affine functional and k -sos-mod J.
Statement 2: We have Tk(J) = A(Tk(J)).
Proof : If x ∈ Tk(J), then we have l(A(x)) = (l ◦ A)(x) > 0 for each
polynomial l which is an affine functional and k -sos-mod J, that is,
A(x) ∈ Tk(J).
Statement 3: We have ext(C) = V .
Proof : Since C is the convex hull of V , we have ext(C) ⊆ V . On
the other hand, since the Euclidean unit ball is strictly convex, each
point in V is an extreme point of C.
Statement 4: If I is homogeneous, then we have SymRn(C) ∩ Un(R) ⊆
SymRn(Tk(J)).
Proof : For all v ∈ Rn, v 6= 0, we have v ∈ V0, if and only if 1/‖v‖ ·v ∈ V0.
Hence, we have SymRn(V0 ∩ (Rn)1) ∩ Un(R) = SymRn(V0) ∩ Un(R).
With statement 3, we have SymRn(V) ∩ Un(R) = SymRn(C) ∩ Un(R).
With statement 2, we have SymRn(V0) ∩ Un(R) ⊆ SymRn(Tk(J)). �
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2.5.8 Complex Theta Bodies

Basically, the concept of theta bodies relies on some special properties
of the real numbers, mainly, that each square is a positive number.
In Section 2.3, however, we outlined that convex sets are invariant
under decomplexification and in Section 2.2 we have shown that a
convex affine variety can be expressed as a real affine variety. These
observations can be used to apply the concept of theta bodies also to
complex affine spaces. Here, we propose one notion. However, at this
point, we have not excluded that there exist alternative notions.

Definition. Let I ⊆ R[x1,1, x1,2, . . . , xn,1, xn,2] be an ideal. The kth complex theta body
of I is the set

TC
k(I) := ı−1 (Tk(I))

= {x ∈ Cn : l(ı(x)) > 0 for all l ∈ Ck(I)} ⊆ Cn.

The number k denotes the degree of TC
k(I).





Chapter 3

THE PROJECTIVE TENSOR NORM

The aim of this chapter is to show that the concept of theta bodies can be applied
to the unit ball of the projective tensor norm in finite-dimensional tensor products.
In the following chapters, we investigate the theta bodies and the underlying
ideal.

In Section 3.1 we briefly introduce the basic terminology on tensor products and
the projective norm.

Section 3.3 deals with the geometry of the unit ball of the projective norm.

In Section 3.4 and in Section 3.5 we show that the extreme points of the projective
unit ball, the unit product vectors, can be expressed as a real algebraic variety.

In Section 3.6 we outline two applications of the projective norm in quantum
entanglement and in signal processing. In this context, we discuss the advantages
of an application of the theta body method to the unit ball of the projective
norm.



60 Chapter 3 – The Projective Tensor Norm

3.1 Tensor Products and Cross Norms

In this section we briefly introduce tensor products and some cross
norms on tensor products. Details can be found in [Ryan] or [Ta1].

3.1.1 Properties of the Tensor Product

Let X and Y be vector spaces over K. Let B(X, Y) denote the vector
space of all bilinear maps from X× Y to K.

Definition. For each x ∈ X and y ∈ Y, let

x⊗ y : B(X, Y)→ K,
b 7→ b(x,y),

which lies in B(X, Y)?. It is called a product vector or an elementary
tensor. The linear hull X⊗ Y of all elementary tensors in B(X, Y)? is
called the tensor product of X and Y. Elements of X ⊗ Y are called
tensors. The vector spaces X and Y are called tensor factors of X⊗ Y.

The tensor product has the following properties, see [Ryan]:

Proposition. Let x, x1, x2 ∈ X and y,y1,y2 ∈ Y with x1 6= 0 6= x2, y1 6= 0 6= y2.
(i) We have x⊗ y = 0, if and only if x = 0 or y = 0.

(ii) Let µ ∈ K. We have

(x1 + x2)⊗ y = x1 ⊗ y+ x2 ⊗ y,
x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2,

µ(x⊗ y) = (µx)⊗ y = x⊗ (µy).

(iii) We have x1 ⊗ y1 = x2 ⊗ y2, if and only if there exists λ 6= 0 such
that x2 = λx1 and y1 = λy2.

(iv) If {ek : k ∈ K} is a basis of X and {fl : l ∈ L} is a basis of Y, then

{ek ⊗ fl : k ∈ K, l ∈ L}

is a basis of X⊗ Y.
(v) Let W be a vector space over K with the following property:

There exists a bilinear function f : X × Y → W and for each
vector space Z over K and for each bilinear function h : X×Y →
Z, there exists a uniquely defined linear map g : W → Z with
h = g ◦ f. Then W is isomorphic to X⊗ Y.



Tensor Products and Cross Norms 61

The last property is called the universal property of the tensor product.
It is illustrated in Figure 3.1.

X× Y

W Z

h
f

g

Figure 3.1: The universal property of the tensor product.

Proof. See [Ryan, Propositions 1.1, 1.2 and 1.4]. �

The tensor product of two vector spaces is called a bipartite tensor
product. In an analogous manner, the tensor product of r vector
spaces, r > 2, can be defined. It is called a multipartite tensor product,
see [Sok, Definition 1.1.2]. The properties of the last proposition
hold in an analogous manner. In addition, the tensor product is
associative: Let Z be a vector space over K, then (X ⊗ Y) ⊗ Z is
isomorphic to X⊗ (Y ⊗ Z), see [Sok, Proposition 1.1.12].

If X = Km and Y = Kn, then Proposition 3.1.1 (iv) shows that a basis
of the tensor product X⊗ Y is given by the maps

ek ⊗ el : B(X, Y)→ K,
b 7→ b(ek, el) =: bk,l,

where k ∈ {1, . . . ,m}, l ∈ {1, . . . ,n}. From (ii), it follows that X⊗Y and
Mm,n(K) are isomorphic, by identifying the product vector x ⊗ y
with x · yt, for all x ∈ X and y ∈ Y. Thus, non-zero product vectors
relate to matrices of rank 1. We note that the definition of a tensor
product is not unique in the literature. For instance, if X and Y are
finite-dimensional, then X⊗ Y can also be defined as B(X, Y). This is
common in differential geometry (see [Lee]).

3.1.2 Product Vectors

From now on, we consider finite-dimensional tensor products of
Euclidean vector spaces. In this respect, let V := Kn1 ⊗ · · · ⊗Knr for
r,n1, . . . ,nr > 2.
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The set of all product vectors is denoted by

PV := {v1 ⊗ · · · ⊗ vr : vt ∈ Knt , t ∈ {1, . . . , r}}.

Elements of the set

EV := {v1 ⊗ · · · ⊗ vr : vt ∈ (Knt)1, t ∈ {1, . . . , r}}

are referred to as unit product vectors (we recall that the Euclidean
unit sphere in Kn is denoted by (Kn)1, see the index of notation).

Each tensor v ∈ V can be written as a linear combination of product
vectors. The rank of v is the smallest number k ∈ N0 such that v is a
linear combination of k product vectors (which is zero, if and only if
v = 0). In particular, PV equals the set of all tensors with rank zero
or rank one.

3.1.3 Cross Norms

Definition. A norm ‖ · ‖ : V → R+
0 is called a cross norm on V , if the norm of each

unit product vector equals 1.

If ‖·‖ is a cross norm on V , then we have ‖v1⊗· · ·⊗vr‖ = ‖v1‖·. . .·‖vr‖
for all vt ∈ Knt , 1 6 t 6 r. In particular, the norm of a product
vector is 1 if and only if it is a unit product vector. Thus, one may
immediately obtain that for all v ∈ Kn2 ⊗ · · · ⊗ Knr , the function
Kn1 → V , x 7→ x ⊗ v is continuous. This is an indication that cross
norms can be considered as "natural" norms on tensor products.

3.1.4 The Projective Norm

The projective (tensor) norm ‖ · ‖π on V is defined by

‖z‖π = inf
{ s∑
k=1

‖vk1 ‖ · . . . · ‖vkr‖ : z =

s∑
k=1

vk1 ⊗ · · · ⊗ vkr
}

for z ∈ V . It is called pi-norm or nuclear norm. The pair (V , ‖ · ‖π) is
called the projective tensor product.

The projective norm is a norm, see [Ryan, Proposition 2.1]. Indeed,
it is the largest cross norm on V , since for any cross norm ‖ · ‖ on V ,
we obtain immediately the inequality∥∥∥∥ s∑

k=1

vk1 ⊗ · · · ⊗ vkr
∥∥∥∥ 6 s∑

k=1

‖vk1 ‖ · . . . · ‖vkr‖,
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where vkt ∈ Knt , t ∈ {1, . . . , r}. Its unit ball B1,π, the projective unit
ball, is given by the convex hull of the unit product vectors, which
are its extreme points, that is, B1,π = co(EV). This follows from
[Ryan, Proposition 2.2]. In this respect, the projective norm can be
expressed geometrically, see Example 2.4: Let z ∈ V . Then

‖z‖π = inf
{ s∑
k=1

|λk| : z =

s∑
k=1

λk · zk, where zk ∈ EV

}

= inf
{
λ : z = λ ·

s∑
k=1

λk · zk, where

λ, λk > 0,
s∑
k=1

λk = 1, and zk ∈ EV

}
= inf

{
λ : z ∈ λ · co(C), where λ > 0,C ⊆ EV

}
.

The projective norm satisfies an associative rule: Letm,n,k ∈ N, then(
(Km ⊗Kn, ‖ · ‖π)⊗Kk, ‖ · ‖π

)
and

(
Km ⊗Kn ⊗Kk, ‖ · ‖π

)
coincide,

see [Sok, Proposition 1.2.27].

The norm maximisation problem for the projective norm is an im-
portant subject in this thesis. We refer to it as the projective norm
maximisation. In the literature, this problem is also known as the
nuclear norm minimization, see Subsection 3.6.3. We recall that max-
imal vectors for the projective unit ball solve the projective norm
maximisation, see Subsection 2.4.2.

Remark. Due to [Ryan], the projective tensor product derives its name from its
behaviour with respect to quotient space constructions. It is shown
there that the projective norm on bipartite tensor products is equal
to the so-called nuclear norm for nuclear operators, which justifies
the synonym "nuclear norm".

3.1.5 The Hilbert-Schmidt Norm

The Hilbert-Schmidt scalar product 〈 · , · 〉HS is defined as the scalar
product on V ⊗ V which is uniquely determined by

〈v,w〉HS := 〈v1,w1〉 · . . . · 〈vr,wr〉,

where v,w ∈ PV with v = v1 ⊗ · · · ⊗ vr and w = w1 ⊗ · · · ⊗wr.
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The norm ‖ ·‖HS on V which is induced by the Hilbert-Schmidt scalar
product is referred to as the Hilbert-Schmidt norm. Its unit ball is
called the Hilbert-Schmidt unit ball.

By identifying V with KN as a vector space over K using the or-
thonormal basis ea1 ⊗ · · · ⊗ ear , for all a = (a1, . . . ,ar) ∈ {1, . . . ,n1}×
· · · × {1, . . . ,nr}, the Hilbert-Schmidt scalar product equals the Eu-
clidean scalar product and the Hilbert-Schmidt norm equals the
Euclidean norm.

Since ext(B1,π) = EV , the Hilbert-Schmidt norm coincides with the
projective norm exactly at PV , and the symmetry group SymV(EV)
equals the symmetry group SymV(B1,π), which will be determined
in Subsection 3.3.5.

For all k ∈ {1, . . . , r}, let Uk ∈ Unk(K). The linear operator V → V ,
v1⊗· · ·⊗vr 7→ U1(v1)⊗· · ·⊗Ur(vr), denoted by U1⊗· · ·⊗Ur, is called
a local unitary operator (K = C) or local orthogonal operator (K = R). It
is unitary (or orthogonal) with respect to the Hilbert-Schmidt norm.
Let Uloc be the group of all local unitary (or orthogonal) operators. It
can be easily seen that Uloc is contained in SymV(B1,π).

3.1.6 The Injective Norm

The dual norm of the projective norm on V is called the injective
norm ‖ · ‖ε. It is also defined by

‖z‖ε = sup{|〈z,w〉HS| : w ∈ EV } = sup{|〈z,w〉HS| : ‖w‖π 6 1}

for z ∈ V . Its unit ball B1,ε is called the injective unit ball.

With Proposition 2.4.3 and the Bipolar Theorem 2.3.6, the dual norm
of the injective norm equals the projective norm. In particular, the
real and the absolute polar of the projective unit ball equals the
injective unit ball, and vice versa.

Theorem 2.4.6 can be applied to B1,π since EV is a subset of B1,π

which satisfies the conditions V0 - V3 in Subsection 2.4.6, so that
the norm maximisation problem for the projective norm is strongly
related to the injective norm. Hence, the injective norm may help to
determine bounds on the inner radius of B1,π. See also Subsection
2.4.2 and see [Sok] for examples.

The injective norm is the smallest cross norm on V such that the
dual norm is also a cross norm:



Group Actions 65

Proposition. Let ‖ · ‖c be an arbitrary cross norm on V . Then the following are
equivalent:

(a) ‖ · ‖?c is a cross norm.
(b) ‖ · ‖ε 6 ‖ · ‖c 6 ‖ · ‖π.
(c) ‖ · ‖ε 6 ‖ · ‖?c 6 ‖ · ‖π.

Proof. The assertion holds according to the preceding remarks and since
the projective norm is the largest cross norm on V . �

3.2 Group Actions

At this point, we recall some basic notions related to group actions
which can be found in standard textbooks such as [Bos] or [Cam].

3.2.1 Right and Le� Group Actions

Throughout this section, let G be a group with neutral element 1 ∈ G
and let X be a set.

Definition. A function G × X → X, (g, x) 7→ g.x (respectively, (g, x) 7→ x.g) is
called a left group action (respectively, a right group action), if for all
x ∈ X and for all g,h ∈ G, we have

(i) 1.x = x.
(ii) (gh).x = g.(h.x) (respectively, x.(gh) = (x.g).h).

We note that each right group action can be transformed in a left
group action via g.x := x.g−1. In this respect, the term "group action"
refers usually to left group actions.

Each g ∈ G gives rise to a bijection πg : X → X, x 7→ g.x. It can be
easily verified that g 7→ πg is a group homomorphism from G into
the symmetric group SX of X.

Example. (i) The group G acts on itself through multiplication. In this case,
πg equals the left translation.

(ii) The symmetric group SX defines a group action on X via
(σ, x) 7→ σ.x = σ(x), that is, πσ = σ.
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3.2.2 The Orbit-Stabiliser Theorem

For every x ∈ X, the orbit of x under G is the subset

[x] := {g.x : g ∈ G}

of X. Sometimes, we write G.x instead of [x] to outline the corre-
sponding group. The set of all orbits is denoted by

X/G := {[x] : x ∈ X}

and is a partition of X. The group action is called transitive, if there
is exactly one orbit, that is, for all x,y ∈ X, there exists g ∈ G with
y = g.x.

For every x ∈ X, the stabiliser of x under G is the subgroup

Gx := {g ∈ G : g.x = x}

of G. If Gx = G, then x is called a fixpoint of X under the action of
G.

The intersection KG of all stabilisers, the stabiliser of X in G, is equal
to the kernel of the homomorphism G→ SG, g 7→ (x 7→ g.x). If KG
is trivial, G is said to act faithful on X. If G is abelian, it can be easily
verified that the action of G/KG on X defined by (gKG).x := g.x is
well-defined and faithful.

By the Orbit-stabiliser Theorem, see [Cam, Theorem 7.2], the set of
all left cosets G/Gx = {gGx : g ∈ G} and the orbit [x] have the same
cardinality. A natural bijection is given by gGx 7→ g.x. If G is abelian,
Gx is a normal subgroup of G and hence, G/Gx carries also a group
structure.

Let G and H be two groups acting on X. We call G and H commuting,
if for all x ∈ X, we have g.(h.x) = h.(g.x). In this case, G is also a
well-defined action on the orbits of H. (Also, H is a well-defined
action on the orbits of G.)

3.2.3 A Group Action for Symmetrisations

Many settings involve the observation of "ground transformations"
on the domain of a space of functions. To express this, let G be a
group acting on a set X. Let A be a subset of the set A(X, Y) of all
functions from X to a set Y.
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Proposition. A group action of G on A is given by

g.a := a ◦ πg−1 = (x 7→ a(g−1.x))

for all g ∈ G and a ∈ A.

Proof. Let a ∈ A. It can be easily verified that 1.a = a. For all g,h ∈ G, we
obtain

(gh).a = a ◦ π(gh)−1 = a ◦ πh−1g−1

= a ◦ (πh−1 ◦ πg−1) = (a ◦ πh−1) ◦ πg−1

= (h.a) ◦ πg−1 = g.(h.a). �

Example. Let n ∈ N. With Example 3.2 (ii) and the last proposition, the
symmetric group Sn = S{1,...,n} acts on Xn, regarded as the set of all
functions from {1, . . . ,n} to X, from the left: For all π ∈ Sn and all
x = (x1, . . . , xn) ∈ Xn, we obtain

π.x = (xπ−1(1), . . . , xπ−1(r)) = x ◦ π−1.

The quotient set Xn/Sn can be regarded as a "symmetrisation" of Xn

by Sn. Likewise, we may define a right group action of Sn on Xn by
x.π := x ◦ π for π ∈ Sn and x ∈ Xn.

We conclude with the warning that a permutation π ∈ Sn can also be
written as (π1, . . . ,πn) ∈ {1, . . . ,n}n. Hence, in the special case where
X = {1, . . . ,n} and x has exactly the entries 1, . . . , n, we could read x
as a permutation k 7→ xk. But in this context, the group action of Sn
on X2 does not equal the left multiplication ◦ of permutations, since
π.x = x ◦ π−1 and π ◦ x are different in general.

3.3 Geometry of the Projective Unit Ball

To discuss some approaches to the computation of the projective
norm we focus on selected tensors as well as on general methods
such as the Schmidt decomposition, the generalised Schmidt decomposi-
tion, or the bounds on the projective norm due to Arveson.

Afterwards, we investigate the geometry of the projective unit ball.
In this respect, we compute its symmetry group and we focus on
exposed faces and their stabilisers. In the bipartite case, the maximal
faces can be completely determined.

As above, let V := Kn1 ⊗ · · · ⊗Knr for r,n1, . . . ,nr > 2.
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3.3.1 The Schmidt Decomposition

Here, we investigate the bipartite case.

As above, a tensor z ∈ Km ⊗ Kn can be identified with an m × n
matrix Z. The singular value decomposition states that there exists a
unitary (or orthogonal) matrix U ∈ Um(K), a diagonal m× n matrix
S with non-negative real entries σ1, . . . ,σmin(m,n) on the diagonal and
a unitary (or orthogonal) matrix W ∈ Un(K) such that Z = USW?.
Now, let u1, . . . ,um be the columns of U and w1, . . . ,wn be the rows
of W?. It follows that z =

∑min(m,n)
k=1 σk · uk ⊗ wk, which is called

the Schmidt decomposition of z, see [Aud, Section 8.2]. Using the
equation Z = USW?, we obtain immediately that the singular values
(or Schmidt coefficients) σ1, . . . ,σmin(m,n) of Z are the eigenvalues of
the positive semidefinite matrix

√
Z?Z.

The trace norm ‖ · ‖tr on a matrix space Mn(K) is defined by

‖A‖tr =: tr
√
A?A

for all A ∈Mn(K). We conclude:
(i) The projective norm of z equals equals the 1-norm of the singu-

lar values of Z, that is, ‖z‖π =
∑min(m,n)
k=1 σk = ‖Z‖tr = tr

√
Z?Z.

(ii) The Hilbert-Schmidt norm of z is given by the 2-norm of the sin-
gular values of Z, that is, ‖z‖HS = (

∑min(m,n)
k=1 σ2

k)
1/2 =

√
trZ?Z.

(iii) The injective norm of z is given by the max norm of the singular
values of Z, which is equal to the operator norm of Z, that is,
‖z‖ε = ‖Z‖op.

A summary can be found in the following table, where the definitions
are extended to r = 1.

r 1 2

‖ · ‖π 1-norm trace norm

‖ · ‖HS 2-norm 2-norm

‖ · ‖ε max norm operator norm
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3.3.2 The Generalised Schmidt Decomposition

So far, the projective norm of a bipartite tensor is given by the sin-
gular values of the corresponding operator. The question arises
whether there are generalisations to multipartite tensor products
which allow to compute the projective norm. We first have to over-
come the difficulty that an identification with operators cannot be
generalised in a canonical way. Nevertheless, there are some ap-
proaches, for example, by generalising the Schmidt decomposition
due to [AS] (there is another notion due to [Der]):

Definition. Let r = 3 and let z ∈ V . A representation of z of the form

z =

s∑
k=1

σk · v1
k ⊗ v2

k ⊗wk,

where (v1
k)
s
k=1 and (v2

k)
s
k=1 are orthonormal systems of Kn1 and Kn2 ,

respectively; and where w1, . . . ,ws ∈ (Kn3)1 and σ1, . . . ,σs > 0 is
called a generalised Schmidt decomposition (gsd-decomposition) of z. If z
possesses a decomposition of this form, then it is called generalised
Schmidt decomposable or a gsd-vector.

If z ∈ V has a gsd-decomposition as above, then ‖z‖π =
∑s
k=1 σk,

see [AS, Theorem 3].

Example. Let z := e1 ⊗ e1 ⊗ (ae1 + be2) + e2 ⊗ e2 ⊗ (ce1 + de2) ∈ K2 ⊗K2 ⊗K2

with a,b, c,d ∈ K, where 1 = |a|2 + |b|2 + |c|2 + |d|2, that is, z is a unit
vector. A short calculation shows that the projective norm of z equals√

|a|2 + |b|2 +
√

1 − |a|2 − |b|2, see [AS, Example 3]. Hence, if v ∈ V
is a unit gsd-vector, then ‖v‖π 6

√
2.

In what follows, we discuss whether (or not) gsd-vectors could be
candidates for maximal vectors for the projective unit ball.

3.3.3 The GHZ-Vector and the W-Vector

The unit vectors in V = K2⊗K2⊗K2 defining the so-called GHZ-state
and the so-called W-state are given by

ξGHZ :=
1√
2
(e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2) and
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ξW :=
1√
3
(e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1),

respectively. We refer to them as the GHZ-vector and the W-vector.
With Example 3.3.2, we obtain ‖ξGHZ‖π =

√
2. For K = C, we have

‖ξW‖π = 3
2 , which implies r(V) 6 2/3, see [FL, Lemma 6.2] (cf. [AS]).

For K = R, we will show below that ‖ξW‖π =
√

3, see Example
7.3.5.IV, which is larger than

√
2. Hence, for both K = R and K = C,

the W-vector is not generalised Schmidt decomposable, and gsd-
vectors such as the GHZ-vector cannot be maximal vectors for the
projective unit ball in V .

Now, we consider the vector

ξ4 :=
1
2
(e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1 − e2 ⊗ e2 ⊗ e2).

In the case where K = R, this vector is maximal due to [Wie, Ab-
schnitt 5.3], see also [FL, Lemma 6.1]. Hence, the inner radius of
R2⊗R2⊗R2 is equal to 1/2. In particular, the W-vector is not maximal
in the real case. These statements appear as special cases of our
results below, see Section 10.1. In general, a summary of the cases
where the inner radius can be determined in connection with this
thesis is given in Section 10.1.

The real case motivates to consider ξ4 as a candidate for maximality
also in the complex case. However, it is interesting that this case is
completely different. A reason is that there are strictly more local
unitary operators on C2 ⊗ C2 ⊗ C2 than local orthogonal operators
on R2 ⊗ R2 ⊗ R2. This leads to situations like the following:

Proposition. There exists a local unitary operator U = U1 ⊗ U2 ⊗ U3, where
U1,U2,U3 are unitary matrices on C2, such that U (ξGHZ) = ξ4.

Proof. Let U := T ⊗D ⊗D with the unitary matrices T := 1√
2 (

−i −i
1 −1 ) and

D := 1√
2 (

1 i
i 1 ). A simple computation shows that U (ξGHZ) = ξ4. �

The last statement shows that ‖ξ4‖π = ‖ξGHZ‖π =
√

2 in the case
where K = C, see also [FL, Lemma 6.1]. Hence, ξ4 is a gsd-vector,
but not maximal for B1,π in C2 ⊗ C2 ⊗ C2. Instead, we are motivated
due to [DVC] that the W-vector could be a candidate for maximality.
Some details on this "base field dependence" can also be found in
[FL, Section 6].
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3.3.4 The Arveson Bound

Approaches to the inner radius of the projective unit ball for general
multipartite tensor products can be found in [Arv]. The following
theorem, which is adopted from [Arv, Theorems 10.1 and 11.1],
gives a lower bound on the inner radius. It states also that in
the case where K = C, the lower bound will be attained if and
only if the dimension of the last tensor factor is large enough. Let
Nr−1 := {1, . . . ,n1}× · · · × {1, . . . ,nr−1}.

Theorem. The inner radius of the projective unit ball in V satisfies the inequality

r(B1,π) > Arv(V) :=
1

√
n1 · . . . · nr−1

,

where Arv(V) is called the Arveson bound. For K = C, the following
are equivalent:

(a) r(B1,π) = Arv(V).
(b) nr > n1 · . . . · nr−1.

In this case, maximal vectors are given by

1
√
n1 · . . . · nr−1

·
∑

a=(a1,...,ar−1)∈Nr−1

v1
a1
⊗ · · · ⊗ vr−1

ar−1
⊗wa,

where (vkt )
nk
t=1 is an orthonormal basis of Cnk for each k ∈ {1, . . . r− 1}

and (wa)a∈Nr−1 is an orthonormal system in Cnr .

Corollary. For C2 ⊗ C2 ⊗ C2, we have 1/2
√

2 < r(B1,π) 6 2/3.

Proof. This statement follows from ‖ξW‖π = 3
2 and the Arveson bound. �

Corollary. Let s := min(m,n). The maximal vectors in Km ⊗ Kn are given by
the unit vectors with s Schmidt coefficients 1/

√
s, that is, by vectors

of the form
1√
s
· (v1 ⊗w1 + · · ·+ vs ⊗ws),

where (vk)
s
k=1 and (wk)

s
k=1 are orthonormal systems in Km ⊗ Kn,

respectively. In this case, the inner radius of B1,π equals 1/
√
s.

Proof. This statement follows immediately from Theorem 3.3.4. �
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For K = C and nr > n1 · . . . · nr−1, the inner radius of the projective
unit ball in V equals the inner radius of the projective unit ball for the
bipartite tensor product (Cn1 ⊗ · · · ⊗Cnr−1)⊗Cnr . From the Schmidt
decomposition, it follows that the projective norms are equal, that
is, V can be considered as a bipartite tensor product in terms of the
projective norm. Hence, the tensor products whose dimensions are
balanced such as Cn ⊗ · · · ⊗ Cn are an interesting counterpart.

For real tensor products, the Arveson bound can be attained even if
nr > n1 · . . . ·nr−1 is not true. This can be verified with the values for
the inner radius which can be determined in connection with this
thesis, see Section 10.1. For further information, see [Sok].

Let U0
loc be the subgroup of all local unitary (or orthogonal) operators

which have the form 1n1 ⊗ · · · ⊗ 1nr−1 ⊗O, where O ∈ Unr(K). This
group induces a faithful group action on the maximal vectors (in
the case where r = 2, this can be easily verified with the Schmidt
decomposition, and all other cases can be traced back to the bipartite
case from above by considering the {1, . . . , r− 1}-{r}-unfolding of V).
In the case where nr > n1 · . . . · nr−1, the group action is not only
faithful, but also transitive, see [Arv, Theorem 12.1].

3.3.5 The Symmetry Group of the Projective Unit Ball

Here, we determine the symmetry group SymV(B1,π). We have seen
above that it contains the group Uloc of all local unitary (or orthogo-
nal) operators. Moreover, let F be the subgroup of the permutation
group Sr of r elements which consists of all σ ∈ Sr such that each
cycle κ of σ has the property that ns = nt for all s, t ∈ supp(κ). Each
σ ∈ F induces a flip operator

Fσ : V → V , v1 ⊗ · · · ⊗ vr 7→ vσ−1(1) ⊗ · · · ⊗ vσ−1(r).

The set FV of all flip operators is contained in SymV(B1,π).

Details on the symmetry group of B1,π can be found in [Maa], which
deals with the case where the tensor factors are equal.

Proposition. SymV(B1,π) = Uloc o FV .

Proof. Let U ∈ S := SymV(B1,π). For each k ∈ {1, . . . , r}, let Vk :=
⊗r

l=1
l 6=k

Knl .
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For each non-zero product vector v ∈ Vk, let

Uk,v : Knk → V , w 7→ U(v⊗w)

(as an abbreviation, "v⊗w" means that w is "inserted" in v in position
k, that is, v ⊗ w := v1 ⊗ · · · ⊗ vk−1 ⊗ w ⊗ vk+1 ⊗ · · · ⊗ vr for v =

v1 ⊗ · · · ⊗ vk−1 ⊗ vk+1 ⊗ · · · ⊗ vr). We recall that each factor of a
non-zero product vector is determined up to multiplication with a
number in K. We also recall that for all non-zero product vectors
v1, v2 ∈ V , the sum v1 + v2 is a product vector, if and only if in each
position up to at most one position, the factors of v1 and v2 are
linearly dependent.
Statement 1: There exists k̃ = k̃(v) ∈ {1, . . . , r} and an isometry on its
image U2

k,v : Knk → Knk̃ such that the k̃th factor of Uk,v(w) equals
U2
k,v(w) for all w ∈ Knk (up to multiplication with a number in K,

which depends on v).
Proof : The image of Uk,v consists of product vectors. In particular,
for all w1,w2 ∈ Knk , the sum Uk,v(w1) +Uk,v(w2) is a product vector.
If w1 and w2 are non-zero, then the factors of Uk,v(w1) and Uk,v(w2)

in each position, except at most one, have to be linearly dependent.
Let us assume that there exist non-zero w0,w1,w2 ∈ Knk such that
Uk,v(w0) and Uk,v(wl) are linearly independent in positions k̃l with
k̃1 6= k̃2. It follows that there are two positions in which Uk,v(w1) and
Uk,v(w2) are linearly independent. But this is impossible according
to the previous statement.
Hence, there exist k̃ = k̃(v) ∈ {1, . . . , r}, ṽ ∈ Vk̃ with ‖ṽ‖ = ‖v‖ and a
linear map U2

k,v : Knk → Knk̃ with

Uk,v(w) = ṽ⊗ U2
k,v(w)︸ ︷︷ ︸
↑ position k̃

for all w ∈ Knk . Since U preserves the length of product vectors,
‖w‖ = ‖U2

k,v(w)‖ for all w ∈ Knk . Hence, U2
k,v is injective and an

isometry on its image. In particular, it follows that nk̃ > nk. We note
that ṽ does not depend on w. Hence, for all l ∈ {1, . . . , r}, l 6= k, the
linear hull of "the" factor of U(v⊗w) in position l does not depend
on w.
Statement 2: k̃ does not depend on v.
Proof : Let v1, v2 ∈ Vk be non-zero product vectors such that also
v1 + v2 is a product vector. In this case, Uk,v1(w) +Uk,v2(w) is also a
product vector for all w ∈ Knk . Let us assume that k̃(v1) 6= k̃(v2). It
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follows that (ṽ1)k̃(v2)
and U2

k,v2
(w) are linearly dependent or (ṽ2)k̃(v1)

and U2
k,v1

(w) are linearly dependent. But this is impossible since w
was arbitrary and nl > 2 for all l ∈ {1, . . . , r}. Thus, k̃(v1) = k̃(v2).
The statement follows by induction, since the product vectors emerge
from each other by interchanging the factors one after another.
Statement 3: The function σ : {1, . . . , r}→ {1, . . . , r}, k 7→ k̃ is a permu-
tation.
Proof : We also have U−1(EV) = EV . For all l ∈ {1, . . . , r} and for
all v ∈ Vk, there exist l ′ ∈ {1, . . . , r} and v ′ ∈ Vnl ′ such that for all
w ∈ Knk , we have

U−1(v⊗w) = (U−1)l,v(w) = v
′ ⊗ (U−1)2

l,v(w)︸ ︷︷ ︸
↑ position l ′

.

Hence,

v⊗w = U(v ′ ⊗ (U−1)2
l,v(w)) = Ul ′,v ′

(
(U−1)2

l,v(w)
)
.

We have seen above that the function (U−1)2
l,v =: Vl,v : Knl → Knl ′ is

injective. Now, for any w ′ ∈ Vl,v(Knl) ⊆ Knl ′ , we obtain

Ul ′,v ′(w
′) = ˜(v ′)⊗U2

l ′,v ′(w
′)

= v⊗ ((Vl,v)
−1)(w ′).

Now, we show σ(l ′) = l with an argument similar to the first in
statement 1: Let w1,w2 ∈ Vl,v(Knl) be linearly independent (this is
possible since nl > 2). Then Ul ′,v ′(w1) and Ul ′,v ′(w2) are linearly
independent, and the factors in each position up to exactly one, σ(l ′),
are linearly dependent. The last equation shows that this position
also equals l, that is, σ(l ′) = l. Hence, σ is surjective.
Statement 4: The linear map U2

k,v is unitary (here, we use the notion
"unitary" also in the case K = R).
Proof : As we have seen, σ is a permutation, and nk 6 nσ(k) for all
k ∈ {1, . . . , r}. It follows that nk = nσ(k) for all k ∈ {1, . . . , r}, that is,
U2
k,v is unitary.

Statement 5: For all k ∈ {1, . . . , r}, there exists a unitary mapU2
k : Knk →

Knσ(k) and there exists a phase ξ ∈ K such that U = ξ · U ′ with
U ′ := Fσ(U

2
1 ⊗ · · · ⊗U2

r).
Proof : For any product vector v = v1 ⊗ · · · ⊗ vr ∈ V , we have

U ′(v) = U2
σ−1(1)(vσ−1(1))⊗ · · · ⊗U2

σ−1(r)(vσ−1(r)).



Geometry of the Projective Unit Ball 75

Let v be non-zero. For all l ∈ {1, . . . , r}, let vl := v1⊗· · ·⊗vl−1⊗vl+1⊗
· · · ⊗ vr. As we have seen, there exists a phase ϕ : V → (K)1 with

U(v) = ϕ(v) ·U2
σ−1(1),vσ−1(1)(vσ−1(1))⊗ · · · ⊗U2

σ−1(r),vσ−1(r)(vσ−1(r)).

From statement 1, we know that for all k 6= l, the linear hull of a
factor of U(v) in position σ(l) does not depend on vk. Hence, it
depends only on vl. Thus, there exists a phase ξl : Vk → (K)1 such
that the expression U2

l(vl) := ξl(v
l) · U2

l,vl(vl) depends only on vl.
Now, the function U2

l : Knl → Knσ(l) , w 7→ ξl(v
l) · U2

l,vl(w) is linear,
bijective and preserves the length, hence, it is unitary. We consider
the function ξ : V → (K)1, ξ(v) := ϕ(v) ·ξ1(v

1)−1 · . . . ·ξr(vr)−1, so that
U(v) has the form

U(v) = ξ(v) ·U2
σ−1(1)(vσ−1(1))⊗ · · · ⊗U2

σ−1(r)(vσ−1(r)).

Since U is linear, it follows that ξ is independent from v.
Statement 6: S = Uloc o FV .
Proof : Up to now, we have seen that S = Uloc · FV . In particular, S is
the semidirect product of Uloc and FV , since Uloc is a normal subgroup
of S and Uloc ∩ FV = {id}. �

3.3.6 Faces of the Projective Unit Ball

An exposed face F of B1,π has the form F = B1,π ∩ P, where P is a
real affine hyperplane. With Proposition 2.3.5.I, the extreme points
of F are given by EV ∩ P.

Obviously, the projective norm of each vector which lies in an ex-
posed face is equal to 1.

Proposition. Let V = K2 ⊗ K2 ⊗ K2 and let v0 := 1
2(e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2).

The exposed face F := B1,π ∩ Plv0
which is induced by v0 equals

F = co({e1 ⊗ e1 ⊗ e1, e2 ⊗ e2 ⊗ e2}).

Proof. Let x = (x1, x2)
t,y = (y1,y2)

t, z = (z1, z2)
t ∈ (K2)1 be unit vectors.

Now, we consider the unit product vector v ′ := x⊗ y⊗ z ∈ EV . We
have v ′ ∈ Plv0

, if and only if 1 = Re(x1y1z1 + x2y2z2) = Re(〈w, z〉),
where w := (x1y1, x2y2)

t. The norm of w equals ‖w‖ = |x1y1|
2 +

|x2y2|
2 = |x1|

2|y1|
2 + |x2|

2|y2|
2 6 1. It is equal to 1, if and only if either

x1 = y1 = 1 or x2 = y2 = 1. In this case, 1 = Re(〈w, z〉), if and only
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if z = w. On the other hand, if ‖w‖ < 1, then Re(〈w, z〉) < 1. In
summary, Re(〈w, z〉) = 1, if and only if x⊗y⊗z is equal to e1⊗e1⊗e1

or to e2 ⊗ e2 ⊗ e2. �

3.3.7 Maximal Vectors and Maximal Faces

It can be easily verified that the unit product vectors, as a subset
of the projective unit ball B1,π, satisfy the conditions V0 - V3 from
Subsection 2.4.6. According to Theorem 2.4.7, there is a one-to-one
correspondence between maximal vectors and maximal faces which
are induced by maximal vectors. In particular, each maximal vector y
induces a maximal faceMv := B1,π∩Plv of B1,π, where v := r(B1,π )·y
and where lv = 1 − r(B1,π)

−1 · 〈 · ,y〉 is the support functional to y.

The set of all maximal vectors is invariant under the symmetry group
SymV(B1,π), which equals Uloc o FV according to Proposition 3.3.5.

Definition. Two maximal faces F1, F2 of B1,π are called equivalent, if there exists
U ∈ SymV(B1,π) with U(F1) = F2. The distance of an equivalence class
to zero is defined as the distance to zero of any representative.

The question arises whether all maximal faces are induced by maxi-
mal vectors. Alternatively, one could ask about the distances of the
equivalence classes of maximal faces to zero (however, it is not clear
whether the distance characterises the equivalence classes).

3.3.8 Maximal Faces in the Bipartite Case

For any subset B ⊆ V , let

SymπV(B) := {U ∈ SymV(B1,π) : U(B) = B}

denote the stabiliser of B under SymV(B1,π).

In what follows, we investigate the maximal faces and their stabilisers
under SymV(B1,π) in the bipartite case V = Kn ⊗ Kn. The special
case R2 ⊗ R2 is outlined in [Lang, Satz 6.3.4].

Let U1
loc := {O⊗O : O ∈ Un(K)}. We have FV = {F(1 2), id}, so that we

may consider the group S0 := U1
loc o FV .
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Now, we consider the maximal vector

y :=
1√
n
· (e1 ⊗ e1 + · · ·+ en ⊗ en).

Let v := 1√
n
· y = 1

n
(e1 ⊗ e1 + · · ·+ en ⊗ en). The support functional

of v equals lv = 1 − 〈 · , e1 ⊗ e1 + · · ·+ en ⊗ en〉.

For the proof of the following theorem we use arguments from [Eis]
about mean ergodic projections. One can imagine that this theorem
is common knowledge, but we have not yet encountered it in the
literature.

Theorem. (Maximal Faces of the Projective Unit Ball)
The maximal face M :=Mv has the form

M =

{
U
( n∑
l=1

λl · el ⊗ el
)
: λl ∈ [0, 1],

n∑
l=1

λl = 1, U ∈ S0

}
.

In particular, we have
(i) ext(M) = {u⊗ u : ‖u‖ = 1} = S0(e1 ⊗ e1),

(ii) SymπV(v) = SymπV(ext(M)) = SymπV(M) = S0,
(iii) S0 has exactly one fixpoint in M, which equals v.

Proof. We first show (i). Let P := Plv . Let w ∈ V , then w ∈ ext(M) = EV ∩ P
if and only if there exist u1,u2 ∈ Kn, ‖u1‖ = ‖u2‖ = 1, such that
w = u1 ⊗ u2 and 1 = Re(〈u1,u2〉), which implies u2 = u1.
Now, we show (ii). Let SymV(B1,π) =: G. We use the notation from
Subsection 3.2.2, that is, SymπV(B) = GB for all B ⊆ V . A symmetry
argument implies Gext(M) = S0 and it can be easily verified that
GM = Gext(M). Finally, we show Gv = S0.
Step 1: Gv ⊆ S0.
Let U ∈ G with Uv = v. We obtain U(P) = P. Hence, U(ext(M)) =

U(EV∩P) = U(EV)∩U(P) = EV∩P = ext(M), that is, Gv ⊆ Gext(M) =

S0.
Step 2: S0 ⊆ Gv.
We assume that there exists U0 ∈ S0 with U0v 6= v. Let w :=
1/2(U0v + v). Since the Hilbert-Schmidt unit sphere in V is strictly
convex, we may conclude that ‖w‖ < ‖v‖ = ‖U0v‖, which is a con-
tradiction, since w ∈M. Hence, U0v = v, that is, v is a fixpoint of S0.
Now, we show that M has the form which is stated at the begin-
ning. Let w ∈ M. On the one hand, w corresponds to a positive
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semidefinite matrix, since ext(M) corresponds to the projections
of rank 1. On the other hand, ‖w‖π = 1, since M is a proper
face of B1,π. Hence, the Schmidt decomposition of w has the form
w =

∑n
l=1 λl ·ul⊗ul, where λl > 0 with λ1 + · · ·+λn = 1 and where

(ul)
n
l=1 is an orthonormal basis of Kn. Thus, there exists U ∈ S0 with

w = U(
∑n
l=1 λl · el ⊗ el). In addition, we obtain

w = v ⇔ w has minimal Hilbert-Schmidt norm

⇔ λ1 = · · · = λn =
1
n

⇔ w is a fixpoint of S0,

which proves (iii). �

With the Schmidt decomposition, each boundary vector of B1,π is
contained in a maximal face, which is induced by a maximal vector.
Hence, there is a one-to-one correspondence between maximal faces
and operators in U0

loc: For each pair M1, M2 of maximal faces, there
exists U ∈ U0

loc such that M2 = U(M1). In summary, the projective
unit ball in Kn ⊗Kn has exactly one equivalence class of maximal
faces.

Given a multipartite tensor product it is not clear whether U0
loc is

transitive on the maximal vectors. Also, it is not clear whether all
maximal faces of B1,π are given by maximal vectors.

Remark. Let y, v, M be as defined in Theorem 3.3.8. With [Eis, Theorem 8.32],
the orthogonal projection onto the maximal vector y is the so-called
mean ergodic projection corresponding to the so-called mean ergodic
group S0. In this respect, the vector v could also be regarded as a
"barycenter" of M. However, a definition of "barycenter" in the sense
of Choquet Theory, see, for example [Ta1, Lemma 6.3, Chapter IV],
needs an appropriate probability measure on the maximal face, on
which we do not concentrate here.

3.4 (Unit) Product Vectors as a Variety

In this section, we show that the product vectors in a real or complex
finite-dimensional tensor product are an affine variety, see the Deter-
minant Criterion Theorem 3.4.6. In the real case we show that also
the unit product vectors are an affine variety, see the Criterion for
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Unit Product Vectors Theorem 3.4.7. Both statements can be found
in [Sto] (or in [RS2]) and in [Lang]. Compare also with [GKM].

Just as defined in the previous section, let V := Kn1 ⊗ · · · ⊗ Knr ,
where r,n1, . . . ,nr > 2.

3.4.1 Tensor Products as A�ine Spaces

From now on, let N := {1, . . . ,n1} × · · · × {1, . . . ,nr}. As a finite-
dimensional vector space, V can be identified with KN via the fol-
lowing identification, depending on the choice of an orthonormal
basis for each tensor factor:

Kn1 ⊗ · · · ⊗Knr → KN

ea1 ⊗ · · · ⊗ ear 7→ e(a1,...,ar).

This identification is real linear for K = R and complex linear for K =

C. Hence, in the sense of algebraic geometry, a finite-dimensional
tensor product can be treated as a real or complex affine space.
Doing so, polynomials in K[ xa : a ∈ N] are functionals on KN as
follows: For all a,b ∈ N, we obtain

xa(eb) :=

{
1, a = b,
0, a 6= b.

3.4.2 The Indexing Tuples

Definition. The setN is called the indexing tuples for V . For any a := (a1, . . . ,ar) ∈
N, we write also a = a1 · · ·ar. For all k ∈ {1, . . . , r}, the number ak is
called the entry of a in position k.

In what follows, we collect some viewpoints on the indexing tuples
which could be helpful for the understanding of the product vectors
and of the projective norm.

Let n := max(n1, . . . ,nr). In general, the indexing tuples N can
be identified with a subset of the set A({1, . . . , r}, {1, . . . ,n}) of all
functions from {1, . . . , r} to {1, . . . ,n}. In this respect, a ∈ N is given
by the evaluations ak = a(k), for all k ∈ {1, . . . , r}.

Moreover, the indexing tuples can be considered as a finite dis-
tributive lattice. This viewpoint will be very useful in the chapters
below.
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In the case where n1 = · · · = nr =: n, the indexing tuples can be
identified with the words of length r with the letters 1, . . . , n. This
viewpoint "justifies" the notation a1 · · ·ar for any (a1, . . . ,ar) ∈ N.

The indexing tuples can be considered as the vertices of a graph,
where a,b ∈ N are adjacent vertices, if and only if the entries of a
and b are equal in all positions up to exactly one position, where
they are adjacent numbers. This graph can be identified with a
hypercube (in the case where n = 2) or a grid. For example, the
graph yields a three-dimensional cube for n = 2, r = 3 or a tesseract
for n = 2, r = 4.

Finally, the indexing tuples can be considered as a code space.

The different viewpoints are summarised in table 3.1.

Viewpoint Reference
Basis of a tensor product 3.4.1
Function space 3.4.2
Lattice 4.2.3
Set of words 8.4
Grid, hypercube 4.2.3, 6.3.4
Code space 6.5, 6.3.1

Table 3.1: Viewpoints on the indexing tuples.

3.4.3 Product Vectors as a Variety (Bipartite Case)

Proposition. For finite-dimensional bipartite tensor products, the rank of a tensor
equals the rank of the corresponding matrix.

Proof. The rank factorisation from linear algebra states that a real or complex
m× n matrix A of rank k ∈ N can be expressed as a product of an
m× k matrix B and a k× n matrix C. Hence, if B has the columns
b1, . . . ,bk and C has the rows c1, . . . , ck, then A =

∑k
t=1 bk · ck, which

corresponds to the tensor
∑k
t=1 bk ⊗ ck. �

Alternatively, this statement follows from the Schmidt decomposi-
tion or the from the singular value decomposition. The number
of singular values equals the rank. In particular, product vectors
correspond to matrices of rank one or of rank zero.
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Example. If we consider N = {1, 2}× {1, 2}, corresponding to K2⊗K2, a product
vector v = ( x1

x2 )⊗ ( y1
y2 ), where x1, x2,y1,y2 ∈ K, can be identified with

x1y1

x1y2

x2y1

x2y2

 ∈ K4 as well as with
(
x1y1 x1y2

x2y1 x2y2

)
∈M2(K).

The polynomial d := x11x22 − x12x21 ∈ K[ x22, x21, x12, x11] equals the
determinant on M2(K). We observe that d vanishes on v, since
d(v) = x1y1 · x2y2 − x1y2 · x2y1 = 0. Hence, v ∈ ZK(d). On the other
hand, any matrix vanishing on d has rank zero or rank one, which
corresponds to a product vector.

Generalising the last example, the following lemma shows that the
set of all product vectors in an arbitrary finite-dimensional bipartite
tensor product is a variety, which is known as the Segré variety.
This variety is a specific determinantal variety. For details, see [Har,
Example 9.1] or [Hat, Exercise 2.14].

Lemma. A tensor v ∈ Km ⊗ Kn is a product vector if and only if the deter-
minant of each 2× 2 submatrix vanishes, that is, v vanishes on each
polynomial

xab xcd − xad xcb ∈ K[ xa : a ∈ {1, . . . ,m}× {1, . . . ,n}],

where 1 6 a < c 6 m and 1 6 b < d 6 m.

Proof. This statement is an immediate consequence of a statement from
linear algebra, saying that the rank of a real or complex matrix equals
the side length of the largest quadratic submatrix with non-vanishing
determinant. �

3.4.4 Unfoldings

We have seen above that finite-dimensional bipartite tensor products
can be identified with matrix spaces. In the finite-dimensional multi-
partite case, the image of a tensor v ∈ V in KN can be interpreted as
a multi matrix. In particular, for all a ∈ N, let va be the coordinate
of v with respect to the basis vector ea. Then v is identified with
the multi matrix (va)a∈N ∈ KN. Now, let v be a product vector, that
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is, v = v1 ⊗ · · · ⊗ vr. Let vtk be the coordinate of vt with respect to
the basis vector ek of Knt , where t ∈ {1, . . . , r} and k ∈ {1, . . . ,nt}.
Consequently, v can be expanded to

v =
∑

a1 ···ar∈N

v1
a1
· . . . · vrar · ea1 ⊗ · · · ⊗ ear ,

that is, v can be identified with the multi matrix (v1
a1
·. . .·vrar)a1 ···ar∈N.

There are various ways to interpret a finite-dimensional multipartite
tensor product also as a finite-dimensional bipartite tensor product
by interpreting successively two factors as one. This observation
which we adopt from [RS2] (or [Sto]) will help to generalise the last
lemma, leading to a characterisation of product vectors by polyno-
mials.

For all a ∈ N and for all S = {s1, . . . , sn} ⊆ {1, . . . , r}, where s1 <

s2 < · · · < sn, let aS := (as1 , . . . ,asn). This is an indexing tuple in
NS :=

∏
s∈S{1, . . . ,ns}. Let nS :=

∏
s∈S ns = #NS.

Definition. Let R and C be a complementary partition of the set {1, . . . , r}. The
map

Kn1 ⊗ · · · ⊗Knr →
(⊗
s∈R

Kns
)
⊗
(⊗
t∈C

Knt
)

→ KNR ⊗KNC (→ MnR,nC(K))

ea1 ⊗ · · · ⊗ ear 7→ eaR ⊗ eaC

is called a R-C-unfolding of Kn1 ⊗ · · · ⊗ Knr . The image of a tensor
under an unfolding is called an unfolding of the tensor.

In what follows, we indicate unfoldings either by assigning R and C
explicitly or just by merging the corresponding factors by brackets.
Of course, the interpretation of R and C as "row indices" and "column
indices", respectively, can be interchanged.

A similar version of the following statement can be found in [Lang,
Lemma 5.1.5].

Theorem. A tensor v ∈ V is a product vector if and only if it is a product vector
under all R-C-unfoldings, where R and C are a complementary
partition of the set {1, . . . , r}, with s < t for all s ∈ R, t ∈ C.
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Proof. The proof has two parts. We first consider the case r = 3. Afterwards,
we use induction on r.
Part 1: Let v ∈ Kn1 ⊗Kn2 ⊗Kn3 with v 6= 0 be a product vector for all
unfoldings, that is, v is a product vector in (Kn1 ⊗Kn2) ⊗ Kn3 and
also in Kn1 ⊗ (Kn2 ⊗Kn3). Then there exist two representations

v =

n1∑
i=1

n2∑
j=1

n3∑
k=1

λi,jηk · (ei ⊗ ej)⊗ ek

=

n1∑
i=1

n2∑
j=1

n3∑
k=1

η̃iλ̃j,k · ei ⊗ (ej ⊗ ek)

with coefficients in K. Since v 6= 0, there exists i ∈ {1, . . . ,n1} such
that η̃i 6= 0. Hence, we obtain

λi,jηk = η̃iλ̃j,k ⇔ λ̃j,k =
λi,j

η̃i
ηk = µj · ηk,

since λi,j/η̃i =: µj does not depend on i. This leads to the representa-
tion

v =

n1∑
i=1

n2∑
j=1

n3∑
k=1

η̃iµjηk · ei ⊗ ej ⊗ ek

=

( n1∑
i=1

η̃iei

)
⊗
( n2∑
j=1

µjej

)
⊗
( n3∑
k=1

ηkek

)
.

Hence, v is a product vector.
Part 2: It can be easily verified that the assertion is true for r = 2.
Now, let us assume that it is true for r > 2 and let v ∈ Kn1 ⊗ · · · ⊗
Knr ⊗Knr+1 , where nr+1 ∈ N, fulfil the premise. Since v is a product
vector under the R-C-unfolding with R := {1, . . . , r} and C := {r+ 1},
there exists a representation

v = x1,r ⊗ xr+1

where x1,r ∈ Kn1 ⊗ · · · ⊗ Knr and xr+1 ∈ Knr+1 . Furthermore, it
can be easily verified that v is a product vector under all required
unfoldings of the tensor product Kn1 ⊗ · · · ⊗Knr−1 ⊗ (Knr ⊗Knr+1).
By assumption, the assertion is true for r tensor factors. Thus, this
leads to another representation

v = x1 ⊗ · · · ⊗ xr−1 ⊗ xr,r+1,
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where xt ∈ Knt for all t ∈ {1, . . . , r−1} and xr,r+1 ∈ Knr⊗Knr+1 . From
the first step, it follows that v is a product vector in (Kn1 ⊗ · · · ⊗
Knr−1)⊗Knr ⊗Knr+1 . In particular, there exists xr ∈ Knr such that

v = (x1 ⊗ · · · ⊗ xr−1)⊗ xr ⊗ xr+1.

It follows that v is a product vector. �

3.4.5 PV-Determinants and Determinantal Hibi Relations

According to Theorem 3.4.4, a tensor in V is a product vector if and
only if, under all unfoldings, the determinants of all 2×2 submatrices
vanish. To make this more explicit, let R, C be a complementary
partition of {1, . . . , r}. We may consider the R-C-unfolding of V as a
matrix space, where the rows are indexed byNR and the columns are
indexed byNC. Now, a 2×2 submatrixM of the image of v under the
R-C-unfolding is determined by two row indices r1, r2 ∈ NR and two
column indices c1, c2 ∈ NC, where r1 6= r2 and c1 6= c2. The row and
column indices of M are outlined by the following visualisation:

(r1, c1) (r1, c2)

(r2, c1) (r2, c2)

Now, let a,b, c,d ∈ N such that

r1 = aR = cR, r2 = dR = bR,
c1 = aC = dC, c2 = cC = bC.

That is, on R, the entries of both a and c, and d and b are equal; on
C, the entries of both a and d, and c and b are equal. Now, the rows
and columns, which determine the submatrix M, can be indexed by
a, b, c, and d:

(r1, c1) (r1, c2)

(r2, c1) (r2, c2)
=

a = (aR,aC) c = (aR,bC)

d = (bR,aC) b = (bR,bC)
,

where "a = (aR,aC)" (and so on) means that a equals (aR,aC) up to
a permutation on the entries which depends on the unfolding.

Now, for any v ∈ V , the determinant of M is given by the value (or
its negative) at v of the homogeneous polynomial

xa · xb − xc · xd
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in K[ xa : a ∈ N]. In this context, we consider the map

det : N4 → K[ xa : a ∈ N]

(a,b, c,d) 7→ deta,b,c,d := xa · xb − xc · xd.

Those polynomials in the range of det, which correspond to the
indices of a (possible trivial) submatrix of an unfolding, are covered
by the following definition:

Definition. Let a,b, c,d ∈ N. The polynomial deta,b,c,d is called a product vec-
tor determinant or PV-determinant, if there exists a complementary
partition R,C of the set {1, . . . , r} such that

aR = cR, dR = bR (row indices),
aC = dC, cC = bC (column indices).

The set of all non-zero PV-determinants is denoted by DN. The ideal
in K[ xa : a ∈ N] which is generated by DN is denoted by IN.

It can be easily verified that a PV-determinant deta,b,c,d is not equal
to the zero polynomial if and only if aR 6= bR and aC 6= bC. In this
case, it is homogeneous and has degree two. However, it can be
convenient to consider also the cases where it equals zero.

Now, we outline a smaller generating set for the ideal IN which will
play a major role in Chapter 5.

For all a,b ∈ N, let a∨b ∈ N and a∧b ∈ N be defined by

a∨b := (max(at,bt))t=1,...,r,
a∧b := (min(at,bt))t=1,...,r.

Definition. For all a,b ∈ N, we call

ha,b := deta,b,a∨b,a∧b

a determinantal Hibi relation. Let HN be the set of all non-zero deter-
minantal Hibi relations.

Proposition. We have IN = Id(DN) = Id(HN). In particular, HN ⊆ DN, and for all
a,b, c,d ∈ N such that f := deta,b,c,d is a PV-determinant, we have
f = ha,b − hc,d.
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Proof. We first show HN ⊆ DN. Let a,b ∈ N. Let R be the set of all
t ∈ {1, . . . , r} such that at < bt and let C be the set of all t ∈ {1, . . . , r}
such that at > bt. Then R, C is a complementary partition of {1, . . . , r}
with the required properies, that is, ha,b is a PV-determinant.
On the other hand, if f = deta,b,c,d is a PV-determinant, then a∨b =

c∨d and a∧b = c∧d by definition. Now, we obtain

f = xa xb − xc xd

= (xa xb − xa∨b xa∧b) − (xc xd − xa∨b xa∧b)

= (xa xb − xa∨b xa∧b) − (xc xl − xc∨d xc∧d)

= deta,b,a∨b,a∧b− detc,d,c∨d,c∧d

= ha,b − hc,d,

that is, DN ⊆ Id(HN). �

3.4.6 Product Vectors as a Variety (Multipartite Case)

Theorem. (Determinant Criterion)
The product vectors equal the set of zeros of the determinantal Hibi
relations, that is,

PV = ZK(DN) = ZK(HN) = ZK(IN).

Proof. According to Theorem 3.4.4, a tensor v ∈ V is a product vector
if and only if, under all unfoldings, the determinants of all 2 × 2
submatrices vanish (that is, they have rank zero or rank one). As
stated above, this is equivalent to the property that v vanishes on
the corresponding non-zero PV-determinants. Hence, v is a product
vector if and only if it is contained in the set of zeros of all non-zero
PV-determinants. �

Remark. On the one hand, it can be helpful if a generating set of an ideal
describing the product vectors such as HN is as small as possible. On
the other hand, it can also be helpful to consider the vanishing ideal
of the product vectors, which is the largest set. Hence, depending on
the situation, there are many candidates amongst all sets (or ideals)
G with ZK(G) = PV to choose from, such as HN, DN, IN. Further
candidates are the set of all PV-determinants which come from a
complementary partition R, C with s < t for all s ∈ R, t ∈ C, (see
Theorem 3.4.4) and, another candidate, the set which is proposed in
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[Lang, Satz 5.3.5]. Concerning the vanishing ideal of PV we refer to
Corollary 5.5.3.I.

3.4.7 Unit Product Vectors as a Variety

The Hilbert-Schmidt norm on V equals the Euclidean norm. In
the case where K = R, the Euclidean unit sphere is a real affine
variety, see Subsection 2.2.6. This variety is induced by the norming
polynomial which describes the squared norm of a tensor:

uN :=
∑
a∈N

x2
a − 1,

that is, ZR(uN) = (RN)1. Let NN := {uN} and let JN be the ideal
generated by DN (or HN) and NN.

Theorem. (Criterion for Unit Product Vectors)
If K = R, then the unit product vectors equal the set of zeros of the
determinantal Hibi relations and the norming polynomial, that is,

EV = ZR(HN ∪NN) = ZR(JN).

Consequently, we have B1,π = co(ZR(JN)).

Proof. The set EV of all unit product vectors equals the intersection of
the product vectors with the Hilbert-Schmidt unit sphere. From
Proposition 2.1.1 (iii) and the Determinant Criterion Theorem 3.4.6,
we obtain EV = ZR(HN) ∩ ZR(NN) = ZR(HN ∪NN) = ZR(JN). �

3.5 Complex Unit Product Vectors as a Variety

The aim of this section is to show that the unit product vectors of a
finite-dimensional complex tensor product can be considered as a
real variety, see Theorem 3.5.3.

Just as defined in the previous sections, let r,n1, . . . ,nr > 2 and let
N = {1, . . . ,n1}× · · · × {1, . . . ,nr}.

Let VK := Kn1 ⊗ · · · ⊗Knr and NC := N× {1, 2}.
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3.5.1 Complex Tensor Products as A�ine Spaces

As outlined in Subsection 3.4.1, VC can be identified with the complex
affine space CN. According to Subsection 2.2.1, CN can be identified
with the real affine space RNC :

ı : CN → RNC

ea 7→ ea,1,
i ea 7→ ea,2.

For each f ∈ C[ xa : a ∈ N], the real and the imaginary part, Re(f)
and Im(f), are elements of R[xa : a ∈ NC].

3.5.2 Product Vectors as a Real Variety

In the last section, we have shown that the set of all product vectors
can be expressed as a real or a complex affine variety, induced by HN.
In this respect, let NC := N × {1, 2} and HNC := Re(HN) ∪ Im(HN),
which are polynomials in R[ xa,1, xa,2 : a ∈ N]. The following theorem
is adapted from [Voi, Satz 3.1.4]. We will encounter it again in
Theorem 5.1.3.

Theorem. (Determinant Criterion)
In the case where K = C, the product vectors can be considered as a
real variety which is induced by the real and imaginary parts of the
determinantal Hibi relations:

ı(PVC) = ZR(HNC) = ZR(ı(IN)).

Proof. The Determinant Criterion Theorem 3.4.6 says that PVC = ZC(HN).
Theorem 2.2.5 implies that the decomplexification ı(PVC) is a real
variety which is induced by ı(IN). Using Proposition 2.2.4, the ideal
ı(IN) is generated by HNC . �

How do the real and the imaginary parts look like? Let a,b, c,d ∈ N
and f := deta,b,c,d = xa xb−xc xd, then a short calculation shows that
the real and the imaginary part of f are given by

Re(f) = (xa,1 xb,1 − xc,1 xd,1) − (xa,2 xb,2 − xc,2 xd,2),
Im(f) = (xa,1 xb,2 − xc,1 xd,2) + (xa,2 xb,1 − xc,2 xd,1).
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3.5.3 Unit Product Vectors as a Real Variety

We have seen in Subsection 2.2.6 that the decomplexification of the
complex Euclidean unit sphere is a real variety. This variety is
induced by the complex norming polynomial uNC :=

∑
a∈NC

x2
a − 1.

Let NNC := {uNC} and let JN,C be the ideal which is generated by
HNC∪NNC . The following theorem is adapted from [Voi, Proposition
3.1.a]. We will encounter it again in Theorem 5.1.4.

Theorem. (Criterion for Unit Product Vectors)
If K = C, then the unit product vectors can be considered as a real
variety which is induced by the real and imaginary parts of the
determinantal Hibi relations and the complex norming polynomial:

ı(EVC) = ZR(HNC ∪ NNC) = ZR(JN,C).

Consequently, we have ı(B1,π) = co(ZR(JN,C)).

Proof. Proposition 2.1.1 (iii) and the Determinant Criterion Theorem 3.5.2
yield

ı(EVC) = ı(PVC ∩ (VC)1) = ı(PVC) ∩ ı((VC)1)

= ZR(HNC) ∩ ZR(uNC) = ZR(HNC ∪NNC)

= ZR(JN,C).

Since ı preserves convexity, we obtain ı(B1,π) = co(ZR(JN,C)). �

3.5.4 Comparison Real and Complex

Here, we show with the aid of theta bodies that the inner radius of
the projective unit ball in a complex tensor product can be compared
with the inner radius of the projective unit ball in a real tensor
product.

Let VR,2 := Rn1 ⊗ · · · ⊗Rnr ⊗R2. According to Subsection 3.5.1, there
exists a real-linear embedding VR → VC which maps ea, a ∈ N, to
ea and a real-linear isomorphism ı : VC → VR,2:

VR VC VR,2

Rn1 ⊗ · · · ⊗ Rnr ↪→ Cn1 ⊗ · · · ⊗ Cnr ↔ Rn1 ⊗ · · · ⊗ Rnr ⊗ R2

ea 7→ ea ↔ ea,1

iea ↔ ea,2.
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The projective unit balls in VC and VR,2 are denoted by B1,π(VC) and
B1,π(VR,2), respectively. We obtain the following inequality for the
inner radii of those sets:

Proposition. We have r(B1,π(VR,2)) 6 r(B1,π(VC)).

Proof. It can be easily verified that JN,C ⊆ JN×{1,2}. Hence, for all k ∈ N,
it follows that the kth theta body of JN×{1,2} is contained in the kth

theta body of JN,C. Now, the statement follows since the theta bodies
converge against the unit ball of the corresponding projective norm,
see Theorem 2.5.5. �

The question arises whether it is possible to compare the projective
unit balls of VR and VC, but this seems to be more difficult at this
stage (however, we recall the discussions in Section 3.3).

3.5.5 Discussion

In summary, the approach of [Voi] is based on a real-linear identifi-
cation of the complex tensor product, regarded as a complex affine
space, with a real affine space. Theorem 2.2.5 says that a complex
variety (such as the product vectors according to the Determinant
Criterion Theorem 3.5.2) can always be identified uniquely with a
real variety. Also the decomplexification of the complex Euclidean
unit sphere is a real variety. Putting both together, the unit product
vectors are a real variety.

It is worth to mention that also other approaches could be conceiv-
able. For instance, one could think about transferring the algebraic
concept of theta bodies to complex settings (which is rather difficult,
since it is based on the fact that sums of squares are positive) or not
to consider the Euclidean unit vectors, which are no variety in a com-
plex setting (which is also difficult, since it is essential to reproduce
the projective unit ball). Main advantages of our approach are that
the decomplexification preserves convexity, that is, the terminology
based on convex geometry can be preserved one-to-one, and that the
Euclidean unit sphere is a real variety. See also the discussions in
[Voi]. The question whether there are alternative approaches arose
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since the treatment of the decomplexified ideal seems to be rather
difficult; indeed, many properties of the determinantal Hibi rela-
tions cannot be transferred. We will encounter some indications in
Chapter 5 (in connection with Gröbner bases and with vector space
bases) and in Chapter 6 (in connection with the first theta body).
Nevertheless, we have seen above that complex tensor products
behave different in comparison with real tensor products, see, for
example, Proposition 3.3.3. No matter which approach is used, it
has to encounter this difference. With our approach, the difference
is "condensed" in the structure of the decomplexified ideal.

By the way, to use the concept of theta bodies, it is an advantage
(or just "luck") that the algebraic description of the Euclidean unit
sphere is even easier in a real space than in a complex space.

3.6 Applications of the Projective Norm

In this section we first discuss some reasons why the computation
of the projective norm in multipartite tensor products is rather diffi-
cult.

Moreover, we outline the role of the projective norm in quantum
entanglement (which is our motivation) and in signal processing. We
also discuss the advantages that an approximation by theta bodies
could have. It is interesting to note that there are two applications of
the approximation in both areas of research: The starting point of all
applications is that the computation of the projective norm is rather
difficult. Thus, in the first place, theta bodies can help to improve
the understanding of the projective norm. Secondly, theta bodies can
also be used to replace the projective norm in the particular setting.
In the context of these applications, we formulate several questions
in relation to theta bodies. Most of these questions can be adressed
in this thesis.

3.6.1 The Computation of the Projective Norm

So far, we have seen that the Hilbert-Schmidt norm of a tensor can be
easily obtained and the projective norm on a bipartite tensor product
corresponds to the Schmidt decomposition.

In Section 3.3, we have encountered some approaches to compute
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the projective norm in multipartite tensor products. We have seen
that it can be possible to compute the projective norm of a given
tensor or of a family of tensors. It is also possible to obtain some
information about the geometry of the unit ball of the projective
norm. However, in the multipartite case, a general approach seems
to be difficult.

There are several hints in the literature sketching the problem. For
example, one could have the idea to obtain the projective norm of
a tensor from the projective norms of its unfoldings, but this does
not work in general. This shows an illustrative example from [RS2].
Indeed, the algorithmic computation of the tensor rank is in general
NP-hard, and thus, the same is true for a decomposition which gives
the projective norm, see [HL], [FL] or [Sto].

Further approaches to obtain the projective norm in special cases or
to provide bounds on it can be found amongst others in [AS], [Arv],
[Sok] (approximations in the complex case), [Der, Theorems 1.10 -
1.14] (complex case) or in [FL] (symmetric tensors).

In this thesis, we focus on the projective norm maximisation.

Remark. In general, the rank of a tensor cannot be led back uniquely to the
rank of its unfoldings. In this respect, there are other notions for
a "tensor rank" which base on the ranks of the unfoldings. For
example, the Tucker rank t of a tensor v ∈ Kn1 ⊗ · · · ⊗Knr is given by
t = (t1, . . . , tr), where tk is the rank of v under the unfolding for R =

{k} and C = {1, . . . , r}\{k}, for all k ∈ {1, . . . , r}. In contrast, the tensor
train rank, or TT rank, is given by s = (s1, . . . , sr−1), where sk is the
rank of v under the unfolding for R = {1, . . . ,k} and C = {k+1, . . . , r}.

3.6.2 The Projective Norm in �antum Entanglement

Let V be a finite-dimensional complex tensor product.

We will see below in Chapter 9 that a pure state (as a linear operator
on V) corresponds to a unit vector in V . It is also outlined there that
a pure state (that is, a unit vector) v ∈ V is separable, if and only if it
is a unit product vector.

The projective norm identifies (pure) separable states, that is, given
a unit vector v ∈ V , then v is separable if and only if v has projec-
tive norm 1. This is due to the fact that the extreme points of the
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projective unit ball are the unit product vectors. Moreover, those
unit vectors which maximise the projective norm maximise also the
Euclidean distance to the unit product vectors, see [Arv, Theorem
3.2].

In summary, the projective norm fulfils the following two properties,
which suggests to consider it as an entanglement measure on pure
states, see [Arv]:

(i) The projective norm solves the separability problem for pure
states.

(ii) The projective norm maximisation helps to identify maximally
entangled pure states.

In this respect, any cross norm on V between the projective norm
and the Hilbert-Schmidt norm could be considered as a candidate for
an entanglement measure, provided it satisfies the two properties.

At this stage, we first note that the separability problem can be solved
easily for pure states with the Determinant Criterion Theorem 3.4.6.
We also note that there are also other entanglement measures based
on the projective norm, see, for instance, [Rud].

In this thesis, we want to use the theta body method mainly as a tool
to determine the projective norm. Here, of course, it is important
that a theta body is close to the projective unit ball.

Another interesting point of view is to consider theta bodies as
new and independent entanglement measures in addition to the
projective norm and other measures. However, a theta body should
induce a cross norm which is able to solve the separability problem
for pure states.

Therefore, a discussion whether theta bodies are suitable for both
applications could include the following aspects:

(1) How close are the theta bodies to the projective unit ball?
(2) How accessible are the theta bodies?
(3) Does a theta body induce a cross norm?
(4) Does a theta body lie in the Hilbert-Schmidt unit ball?
(5) Does a theta body respect the symmetries of the unit product

vectors?
(6) Can a theta body identify pure separable states?

The following chapters address questions (1) and (2). We will also
discuss questions (3), (4) and (5). Question (6) still remains open.
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3.6.3 The Projective Norm in Signal Processing

Compressive sensing is a technique in signal processing for the re-
covery of sparse signals from few measurements in a compara-
tively large signal space. The signal space is assumed to be a finite-
dimensional real vector space and the measurements are affine-linear
equations. The idea is that the signal is assumed to be sparse, so
only a few measurements are necessary for a recovery.

Sparsity can appear in different contexts. For example, a large "spar-
sity" could mean that the weight of the vector, that is, the number
of non-zero entries, is as small as possible. In this respect, the affine
sparse minimization problem or the sparse vector recovery minimises the
weight over the solutions of a system of linear equations. Alterna-
tively, the 1-norm could be minimised. In some applications such
as machine learning, video compression, or seismology, the signal
space equals a finite-dimensional tensor product, and the term "spar-
sity" refers to a small rank of the tensor, leading to the subjects low
rank matrix recovery and low rank tensor recovery or tensor completion
to recover tensors of low rank from incomplete linear information,
see [RSS]. An illustrative example for low rank matrix recovery
is the Netflix problem for the prediction of user ratings for movies
from a small number of user-provided ratings, see [PS] and [PS1].
Assuming that the user ratings are linearly correlated in some sense,
it suggests to concentrate on solutions with low rank, for example,
with rank 1:

Movie
A B C

User
1 1 ? 2
2 ? 9 6
3 ? ? 8

 

Movie
A B C

User
1 1 3 2
2 3 9 6
3 4 12 8

The search for more tractable problems lead to the minimisation of
the nuclear norm, as a a generalisation of the 1-norm minimisation of
vectors and as an alternative to the rank minimisation. It is referred
to as the nuclear norm minimization for low-rank tensor recovery.

Since the rank and the nuclear norm of a tensor is not easy to
compute, the approach in [Sto] replaces the nuclear norm with a
so-called tensor theta norm which corresponds to a theta body. See
also [RS2] and [RS1].
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Convex relaxations with sums of squares are used widely in com-
pressive sensing, see [BS] or [PS]. Some authors such as [BM] or
[NW] use Lasserre’s relaxation which is very close to the theta body
method. It is interesting that there are also relations to quantum
entanglement, see [BK].





Chapter 4

DISTRIBUTIVE LATTICES

This chapter begins with a brief introduction to the terminology of lattice theory in
Section 4.1 and to distributive lattices in Section 4.2 based on standard textbooks
like [Bir] or [BD]. The notions are used in Chapter 5 and in Chapter 6 to generalise
the projective unit ball.

In Section 4.2 we introduce examples of distributive lattices which are useful for
the discussions in the following chapters. For instance, we will see that product
lattices can be regarded as a generalisation of indexing sets, the latticeD18 helps to
illustrate the notions in Section 5.2 and boolean lattices can be used in Section 6.1
to show that theta bodies induce norms. We also introduce the notion pentagonal
lattice for the discussion in Section 5.4. The section ends with a notion related to
boolean sublattices of distributive lattices which will be important for one of the
main results Theorem 6.3.6.
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4.1 La�ices

In this section, we introduce some aspects of lattice theory.

4.1.1 Posets

Definition. Let (P,6) be a partially ordered set, briefly poset, that is, it is reflexive,
antisymmetric and transitive. Let a,b ∈ P. If a 6 b or b 6 a, then
a and b are called comparable. If a < b and if a < c 6 b implies
b = c for all c ∈ P, then a is covered by b. A poset which is also a
total order, that is, all elements are comparable, is called a chain. The
length of a finite chain with n elements is n − 1. The length of P is
defined as the least upper bound of the lengths of the chains in P
(which is possibly infinite).

If P is finite, one can obtain a graphical representation, called Hasse
diagram, by drawing a representative for each element of P under the
following condition: Whenever a is covered by b for a,b ∈ P, ensure
that b is placed higher than a, and draw a straight line segment from
a to b. A Hasse diagram can be realised by a finite directed graph.

◦ ◦

◦
(a)

◦ ◦

◦

(b)

◦ ◦

◦

◦

(c)

◦

◦ ◦ ◦

◦
(d)

◦

◦
◦

◦

◦
(e)

◦

◦ ◦

◦ ◦

◦
(f)

◦

◦ ◦ ◦

◦ ◦ ◦

◦
(g)

Figure 4.1: Some examples for posets.



La�ices 99

Example. Figure 4.1 shows Hasse diagrams of some finite posets. Poset (d) is
called a diamond and poset (e) is called a pentagon, see [Gra]. We say
that poset (c) is a rhomb.

4.1.2 La�ices

Let (P,6) be a partially ordered set and let A ⊆ P.

An element l ∈ P is called a lower bound for A if l 6 a for all a ∈ A.
A lower bound l ∈ P is called the greatest lower bound for A if l ′ 6 l
for all lower bounds l ′ ∈ P for A.

An element u ∈ P is called an upper bound for A if a 6 u for all
a ∈ A. An upper bound u ∈ P is called the least upper bound for A if
u 6 u ′ for all upper bounds u ′ ∈ P for A.

Definition. A partially ordered set L is called a meet-semilattice if for any two
elements a,b ∈ L, there exists a greatest lower bound a∧b, called
meet. It is called a join-semilattice if for any two elements a,b ∈ L,
there exists a least upper bound a∨b, called join. It is called a lattice
if it is both a meet-semilattice and a join-semilattice.

The meet is also called infimum and the join is also called supremum.
A subset S of a lattice L is called a sublattice of L if for each two
elements in S their meet and join are also contained in S.

The greatest lower bound ⊥ of a lattice, if existent, is called bottom.
The least upper bound >, if existent, is called top.

A lattice is called complete if each subset possesses a greatest lower
bound and a least upper bound. In this case, it possesses a bottom
and a top. Any finite lattice is complete.

Example. (i) The posets (a) and (b) in Figure 4.1 are no lattices, since there
exists no upper bound (or no lower bound) of the two elements
which are on the same "level". Poset (f) is no lattice as well,
since each two elements which are on the same "level" either
have no meet or no join. The rhomb (poset (c)) is a lattice.
Posets (d), (e) and (g) are lattices.

(ii) Let S be a set. The power set P(S) is a lattice with the set
inclusion. The meet operation is ∩ and the join operation is ∪.

(iii) Let R be a ring. The set of all ideals of R, together with the set
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inclusion, is a lattice with meet I∩ J and join I+ J, for all ideals
I, J of R.

(iv) The partitions of a set, ordered by refinement, are a lattice.

Each sublattice of a lattice L of the form (c) from Figure 4.1 is called
a rhomb of L. Rhombs are the "smallest" sublattices which cannot be
ordered totally.

4.1.3 Algebraic Definition of a La�ice

Definition. A set L equipped with two binary operations ∧ and ∨ is called a
general lattice, written (L, ∧ , ∨), if for all a,b, c ∈ L, the following
identities hold:

L1: a∧a = a, a∨a = a, (Idempotence)
L2: a∧b = b∧a, a∨b = b∨a, (Commutativity)
L3: a∧(b∧c) = (a∧b)∧c, a∨(b∨c) = (a∨b)∨c (Associativity)
L4: a∧(a∨b) = a∨(a∧b) = a. (Law of Absorption)

Lattices can be characterised by their algebraic properties, namely,
by the identities L1 - L4, see [Bir, Theorem 8, Chapter I]:

Proposition. A lattice L with meet ∧ and join ∨ is a general lattice. On the other
hand, a general lattice (L, ∧ , ∨) with the relation a 6 b, if and only
if a = a∧b (or, equivalently, b = a∨b), is a lattice.

Proof. The first statement can be easily verified. The proof of the second
statement requires to show that the meet and join operations coming
from 6 equal ∧ and ∨ , respectively. �

4.1.4 Morphisms between La�ices

Definition. Let L and M be two lattices. A function L → M is called isotone
if it preserves the order. If it respects meet and join, it is called a
morphism.

It can be easily verified that a morphism is isotone. The converse
is not true in general. For example, there exists an isotone function
from the lattice (c) in Figure 4.1 to a chain with length 3.
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4.2 Distributive La�ices

In this section we concentrate on distributive lattices. They can
be regarded as a generalisation of the indexing tuples. Finally, we
introduce pentagonal lattices and we investigate boolean sublattices
of distributive lattices.

4.2.1 Distributive La�ices

Definition. A lattice L is called distributive if for all a,b, c ∈ L, it satisfies
L6: a∧(b∨c) = (a∧b)∨(a∧c), (Distributivity)
L7: a∨(b∧c) = (a∨b)∧(a∨c).

It can be shown that if L6 is true (for all a,b, c ∈ L), then also L7,
and vice versa, see [Bir, Theorem 9, Chapter I].

Proposition. In a distributive lattice L, for all a,b, c ∈ L with a 6 c, we have
M: a∨(b∧c) = (a∨b)∧c. (Modularity)

Proof. This statement follows immediately from L7. �

Theorem. A lattice L is distributive if and only if it satisfies one of the following
conditions:

(a) It fulfils the self-dual median law:

(a∧b)∨(b∧c)∨(c∧a) = (a∨b)∧(b∨c)∧(c∨a)

for all a,b, c ∈ L.
(b) Neither the diamond nor the pentagon is a sublattice of L.
(c) For all a,b, c ∈ L, the equations a∧c = b∧c and a∨c = b∨c

imply a = b.

Proof. See [Bir]: For (a) Theorem 8 in Chapter II, for (b) Theorem 12 in
Chapter I and Theorem 13 in Chapter II, and for (c) Theorem 13 in
Chapter II. �

Example. The lattices (c) and (g) in Figure 4.1 are distributive and the lattices
(d) and (e) are not distributive.
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4.2.2 Boolean La�ices

Let L be a lattice with bottom ⊥ and with top >. An element a ∈ L
has a complement if there exists b ∈ L with a∧b = ⊥ and a∨b = >.
In this case, a is called complemented. Depending on the context we
write b =: a ′. If all elements have complements, then L is called
complemented.

Definition. A complemented distributive lattice is called a boolean lattice.

Theorem 4.2.1 implies that complements are unique in a boolean
lattice.

Example. (i) Let S be an arbitrary set. The power set P(S) is a boolean
lattice with the set inclusion.

(ii) The lattices (c) and (g) in Figure 4.1 are boolean.
(iii) The open and closed subsets of a topological space (with the

set inclusion) are a boolean lattice.

One can show that there are no more boolean lattices of finite length
than those presented in the last example:

Theorem. Each Boolean lattice of finite length n is isomorphic to the lattice
(P({1, . . . ,n}),∩,∪). In particular, there is just one Boolean lattice of
length n.

Proof. See [Bir, Theorem 4, Chapter III]. �

Definition. A ring of sets is a family R of subsets of a set such that with any two
sets in R, also their intersection and their union is contained in R.

Theorem. Any finite distributive lattice is isomorphic to a ring of sets.

Proof. See [Bir, Theorem 3, Chapter III]. �

Hence, any finite distributive lattice is a sublattice of a boolean
lattice.
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4.2.3 Product La�ices

On the cartesian product L×M of two lattices (L,6L) and (M,6M),
a partial order 6 is defined by (l,m) 6 (l ′,m ′) if and only if l 6L l ′

and m 6M m ′, for all l, l ′ ∈ L and for all m,m ′ ∈ M. The poset
(L×M,6) is a lattice and is called the direct product of (L,6L) and
(M,6M).

For example, for any r ∈ N, the r-fold direct product of (N,6) is a
lattice. Also, the r-fold direct product of (R,6) is a lattice, which is
called a (real) vector lattice, see [EFHN].

Let n1, . . . ,nr ∈ N. Through our focus on finite-dimensional tensor
products, we consider the set

N := {1, . . . ,n1}× · · · × {1, . . . ,nr}

which is equal to a set of indexing tuples, see Subsection 3.4.2. This
set can be regarded as the direct product of r finite chains, that is, as
a sublattice of Nr. The meet and join of a,b ∈ N are given by

a∧b := (min(ak,bk))rk=1,
a∨b := (max(ak,bk))rk=1.

It can be easily verified that N is distributive. In the case where r = 2,
it is called a uniquely relatively complemented lattice (or URC-lattice),
see [Qur, Proposition 1.7]. A URC-lattice is an example for a planar
distributive lattice.

Any boolean lattice of length r is isomorphic to {1, 2}r.

(2, 2, 2)

(2, 1, 1) (1, 2, 1) (1, 1, 2)

(2, 2, 1) (2, 1, 2) (1, 2, 2)

(1, 1, 1)

(3, 1)

(2, 1) (1, 2)

(1, 3)(2, 2)

(2, 3)(2, 3)

(3, 3)

(1, 1)

Figure 4.2: Two product lattices.

Example. Figure 4.2 shows the Hasse diagrams for the boolean lattice {1, 2}3
and for the planar lattice {1, 2, 3}2.
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4.2.4 Distributive La�ices Generated by Three Elements

Figure 4.3 shows the lattice D18. The top is given by l := a∨b∨c and
the bottom is given by s := a∧b∧c. The element

m := (a∧b)∨(b∧c)∨(c∧a) = (a∨b)∧(b∨c)∧(c∨a)

is called the median of a, b and c. Each of the three elements l, s, m
has the property that it is comparable with all elements of D18.

s

a∧b b∧c c∧a

b∧(a∨c) a∧(b∨c) c∧(a∨b)

b m a c

b∨(c∧a) a∨(b∧c) c∨(a∧b)

a∨b b∨c c∨a

l

Figure 4.3: The lattice D18.

Now, let L be a distributive lattice and let a0,b0, c0 ∈ L. One can
show that there exists a morphism f : D18 → L such that f(a) = a0,
f(b) = b0 and f(c) = c0, see [Bir, Chapter II, Theorem 9]. In this
respect, D18 can be regarded as the "largest" distributive lattice which
can be "generated" by three elements.
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4.2.5 Pentagonal La�ices

For some purposes D18 does not seem to be "simple" enough to serve
as an example, so we developed the following notion as a source for
examples which will be used mainly in Proposition 5.4.3.

Definition. A lattice L is called pentagonal, if there exist three distinct elements
a0,b0, c0 ∈ L such that a0 < b0, a0 and c0 are not comparable, and b0

and c0 are not comparable.

The pentagon is a pentagonal lattice. Hoewever, a pentagonal dis-
tributive lattice cannot contain the pentagon as a sublattice according
to Theorem 4.2.1. The rhomb {1, 2}2 is not pentagonal.

Example. In this example we consider the pentagonal distributive lattice in
Figure 4.4 (a) which we denote by D1. The labels of the elements in
the Hasse diagram of D1 are obtained by choosing an appropriate
morphism D18 → D1. From [Gra, page 23], it follows that D1 is
the "largest" distributive lattice which can be generated by three
elements a, b and c with a < b. It can be identified with a sublattice
of {1, 2, 3}2. This can be seen in Figure 4.4 (b).

s

a

m

b

b∧c

c

a∨c

l

(a)

a b∧c

cm

a∨cb

l

s

(b)

Figure 4.4: The lattice D1.

Further examples are the pentagonal lattices D2 and D3 in Figure 4.5
which are each the image of a morphism from D1.

Now, let L = {1, . . . ,n}r for n, r > 2. The last examples show that L is
pentagonal, if and only if n > 3 or r > 3.
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c a

ba∨c

l

s

(a) The lattice D2.

a b∧c

cb

l

s

(b) The lattice D3.

Figure 4.5: The lattices D2 and D3.

4.2.6 Boolean Subla�ices of Distributive La�ices

We now introduce a notion which seems to be useful for dealing
with the Hibi relations in Chapter 5.

Let L be a distributive lattice. For any a,b ∈ L, let

L(a,b) := {c ∈ L : there exists d ∈ L with
a∧b = c∧d and a∨b = c∨d} .

Proposition. L(a,b) is the largest boolean sublattice of L such that:
(i) a∧b equals the bottom and a∨b equals the top.

(ii) b is the complement of a.

Proof. Statement 1: L(a,b) is a sublattice of L.
Proof : Let g ∈ L. By definition, g ∈ L(a,b) if and only if there exists
g ′ ∈ L(a,b) such that g∧g ′ = a∧b and g∨g ′ = a∨b. Theorem
4.2.1 implies that g ′ is uniquely defined. Let c,d ∈ L(a,b). In the
following, we show that e := c∧d ∈ L(a,b) and f := c∨d ∈ L(a,b).
Statement 1.1: e ′ = c ′∨d ′, and, hence, e ∈ L(a,b).
Proof : We obtain

e∧(c ′∨d ′) = (c∧d)∧(c ′∨d ′)

= (c∧d∧c ′)∨(c∧d∧d ′)

= (a∧b)∨(a∧b) = a∧b,
e∨(c ′∨d ′) = (c∧d)∨(c ′∨d ′)

= (c∨c ′∨d ′)∧(d∨c ′∨d ′)

= (a∨b)∧(a∨b) = a∨b.
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Statement 1.2: f ′ = c ′∧d ′, and, hence, f ∈ L(a,b).
Proof : This follows from statement 1.
Statement 2: L(a,b) is the largest boolean sublattice of L such that (i)
is fulfilled.
Proof: By definition, L(a,b) is boolean with bottom a∧b and with
top a∨b. The definition guarantees that any boolean sublattice of L
with this property is contained in L(a,b).
Statement 3: The parts (i) and (ii) are equivalent.
Proof: This can be easily verified. �

As a boolean lattice, the number of elements in L(a,b), if finite, is a
power of two. Namely, if L(a,b) is a finite chain, then #L(a,b) ∈ {0, 2};
else, #L(a,b) is divisible by four. This observation will be helpful for
Lemma 6.3.5.

Remark. We note that L(a,b) is a sublattice of the lattice [a∧b,a∨b] := {c ∈
L : a∧b 6 c 6 a∨b}. Equality does not hold in general, since in D18,
we obtain #L(a,b) = 4 < 9 = #[a∧b,a∨b], see Figure 4.3.





Chapter 5

THE JOIN-MEET IDEAL

Throughout the chapter, let (L,6) be a non-empty finite distributive lattice. The
so-called Hibi relations, which go back to [Hibi], are polynomials in K[xa : a ∈ L].
The corresponding variety is called the Hibi variety. In Section 5.1 we define the
Hibi body as the convex hull of the elements in the Hibi variety with length 1. In a
finite-dimensional tensor product, the Hibi body is equal to the projective unit
ball. We will see that many statements that hold for the projective unit ball also
hold for the Hibi body.

Basically, a Hibi relation has the form xy − vw, where x,y, v,w are variables.
Vividly spoken, an algebraic division of the polynomial ring by xy− vw can be
interpreted as an identification of the term xy with the term vw. In this respect,
the polynomial xy − vw serves as a "relation" between the terms xy and vw,
which justifies the notion "Hibi relation". In Section 5.2 we express this "relation"
by a reduction relation on the terms. This approach is rather combinatorial than
algebraic.

The homogeneous binomial ideal which is generated by the Hibi relations is
called the join-meet ideal. In Section 5.2 we determine a vector space basis of this
ideal, which we call the median basis. Basically, this basis can be found in [Stu,
Lemma 4.1], but the independent approach here focuses on normal forms of the
reduction relation, the medians. With the median basis, the ideal membership
problem for the join-meet ideal can be solved in a simple and convenient way.

It is well known that the Hibi relations are a Gröbner basis of the join-meet ideal,
see [HHO, Theorem 6.17]. In Section 5.3 we give an alternative approach by using
the reduction relation. Based on [Sto], we also determine a Gröbner basis of this
ideal together with the norming polynomial. Gröbner bases will be important for
determining vanishing ideals in Section 5.5. This is useful for discussions on
symmetries of theta bodies.

Moreover, in this section, the dimension and the degree of the Hibi variety are
determined (at least for the special case which will be essential in the following
chapters).
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In Section 5.1 we introduce complex Hibi relations, which are the real and the
imaginary parts of the Hibi relations. We call the generated ideal the complex-join-
meet ideal. In Section 5.4 we discuss the difficulty of finding a Gröbner basis of
the complex-join-meet ideal.

Let VK := Kn1 ⊗ · · · ⊗ Knr denote a real or complex finite-dimensional tensor
product, where r > 2 and n1, . . . ,nr > 2. The indexing tuples for VK are given by
the lattice L = N = {1, . . . ,n1}× · · · × {1, . . . ,nr} (as a product of finite chains). Let
LC := L× {1, 2}. Section 5.6 deals with the application to tensor products.
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5.1 Real and Complex Hibi Relations

In this section we introduce the Hibi body as a generalisation of the
projective unit ball.

In order to do so, we recall that the projective unit ball is the convex
hull of a real variety, see the Determinant Criterions Theorem 3.4.6
and Theorem 3.5.2 as well as the Criterions for Unit Product Vectors
Theorem 3.4.7 and Theorem 3.5.3. Here, we have a closer look on the
polynomials which define this variety such that the theorems can be
generalised.

The terms and the symbols which will be introduced here are sum-
marised at the end of this section in Table 5.1 and Table 5.2.

5.1.1 Hibi Relations, the Join-Meet Ideal and the Hibi Body

Definition. A polynomial in K[xa : a ∈ L] of the form

xa xb − xa∧b xa∨b

for a,b ∈ L is called a Hibi relation. It equals zero if and only if a and
b are comparable. Let HL be the set of all non-zero Hibi relations in
K[xa : a ∈ L]. The ideal IL = Id(HL) which is generated by the Hibi
relations is called the join-meet ideal. The real affine variety ZK(IL) is
called the Hibi variety.

Remark. The term "Hibi relation" goes back to [Hibi], see [EHM]. Since
the term "Hibi ideal" is reserved for a special monomial ideal, see
[EHM], we use the term "join-meet ideal" from [HHO]. The term
"Hibi variety" is used in [LM].

The join-meet ideal provides information about the lattice L: If L
is a chain, then there exists no Hibi relation, which is non-zero.
On the other hand, for each rhomb in L (that is, a sublattice of the
form (c) in Figure 4.1), there exists a unique non-zero Hibi relation.
Thus, the join-meet ideal "encodes" the appearance of rhombs in L.
Alternatively, it could be regarded as a "measure" for the "closeness"
of a lattice to a boolean lattice.

In the case where L = N, the Hibi relations equal the determinantal
Hibi relations and the Hibi variety equals the product vectors in VK,
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see the Determinant Criterion Theorem 3.4.6.

Definition. The convex hull of the set ZK(IL) ∩ (KL)1 is called the Hibi body.

The Hibi body is a convex body. In the case where L = N, it equals
the projective unit ball, see the Criterion for Unit Product Vectors
Theorem 3.4.7.

Definition. A polynomial f ∈ K[x1, . . . , xn] is called a binomial, if there exist
α,β ∈ Nn0 such that f = xα − xβ. An ideal I ⊆ K[x1, . . . , xn] is called
a prime ideal, if x · y ∈ I implies x ∈ I or y ∈ I. It is called a toric
ideal, if it is a prime ideal which is generated by binomials. The
corresponding variety is called a toric variety.

It can be easily verified that an ideal is prime, if and only if the
coordinate ring is an integral domain (that is, the coordinate ring
is free from zero divisors). See [CLSc], [Pla] or [Stu] for detailed
information about toric ideals.

Proposition. For K = C, the join-meet ideal IL is a prime toric ideal.

Proof. See [Hibi, page 100]. �

Now, the main idea is to understand the projective unit ball by
investigating the join-meet ideal and the corresponding variety.

5.1.2 The Normed Hibi Variety

Definition. The polynomial

uL :=
∑
a∈L

x2
a − 1

is referred to as the norming polynomial. The Hibi relations, together
with uL, generate the ideal JL = Id(HL,uL), which we refer to as the
norm-join-meet ideal. We refer to the variety which is induced by the
norm-join-meet ideal as the normed Hibi variety.

In the case where K = R, the normed Hibi variety is given by
ZR(JL) = ZR(IL) ∩ (RL)1, that is, the Hibi body equals the convex



Real and Complex Hibi Relations 113

hull of a real affine variety.

5.1.3 Complex Hibi Relations

Now, we concentrate on the case where K = C. We note that the unit
sphere (CL)1 is no variety in general, see Subsection 2.2.6. However,
its decomplexification is a variety.

Definition. The real and imaginary parts of the Hibi relations are called the
complex Hibi relations. The ideal which is generated by the complex
Hibi relations is referred to as the complex-join-meet ideal. Its variety
is referred to as the complex Hibi variety.

The set of all non-zero complex Hibi relations is denoted by HLC :=

Re(HL) ∪ Im(HL). The complex-join-meet ideal equals the decom-
plexification ı(IL) of the join-meet ideal IL, see Proposition 2.2.4.

Theorem. The complex Hibi variety equals ZR(ı(IL)) = ZR(HLC) = ı(ZC(IL)).
In the case where L = N, it equals ı(PVC).

Proof. With Theorem 2.2.5, the complex Hibi variety equals ı(ZC(IL)). In
the special case where L = N, the Determinant Criterion Theorem
3.4.6 states that PVC = ZC(IL). �

Let h := xa xb − xa∧b xa∨b, where a,b ∈ L, be a Hibi relation
in C[xc : c ∈ L]. Its real and imaginary parts are polynomials in
R[xc,1, xc,2 : c ∈ L]. A short calculation shows that they are given
by

Re(h) = xa,1 xb,1 − xa,2 xb,2 − xa∧b,1 xa∨b,1 + xa∧b,2 xa∨b,2,
Im(h) = xa,1 xb,2 + xa,2 xb,1 − xa∧b,1 xa∨b,2 − xa∧b,2 xa∨b,1.

Both Re(h) and Im(h) are non-zero, if and only if h is non-zero.

5.1.4 The Complex Normed Hibi Variety

Definition. The polynomial

uLC :=
∑
a∈LC

x2
a − 1 =

∑
a∈L

(x2
a,1 + x

2
a,2) − 1
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in R[xa,1, xa,2 : a ∈ L] is referred to as the complex norming polynomial.
The complex Hibi relations, together with uLC , generate the ideal
JL,C, which we refer to as the complex-norm-join-meet ideal. We refer
to the variety ZR(JL,C) as the complex normed Hibi variety. The convex
hull of the complex normed Hibi variety is called the (complex) Hibi
body.

Theorem. The complex normed Hibi variety equals ZR(JL,C) = ı(ZC(IL)∩(CL)1).
In the case where L = N, the complex normed Hibi variety equals
ı(EVC), and the complex Hibi body equals ı(B1,π) = co(ZR(ı(JN))).

Proof. According to Subsection 2.2.6, we have ‖v‖ = 1 if and only if
uLC(ı(v)) = 0. Hence,

ı(ZC(IL)1) = ı(ZC(IL) ∩ (VC)1) = ı(ZC(IL)) ∩ ı((VC)1)

= ZR(HLC) ∩ ZR(uLC) = ZR(HLC ∪ {uLC}) = ZR(JL,C).

In the special case where L = N, we obtain ı(EVC) = ZR(JN,C) accord-
ing to the Criterion for Unit Product Vectors Theorem 3.5.3. �

Hence, the complex Hibi body equals the decomplexification of the
Hibi body.

5.1.5 Summary

The terms and the symbols which are introduced in this section are
summarised in Table 5.1 and in Table 5.2.

Table 5.1 summarises the notions related to Hibi relations. In the
case where L = N, the Hibi relations describe the product vectors in
VK as a real or complex affine variety. The last column of this table
refers to the complex Hibi relations.

Table 5.2 is based on the fact that the Euclidean unit sphere is a
real affine variety. In particular, in the case where L = N, the unit
product vectors in VK can be written as a real affine variety. We note
that in general, it is not possible to write the unit product vectors
in VC as a complex variety (in Table 5.2, the symbol E refers to this
situation).
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Field K R

Lattice L LC

Polynomial ring K[xa : a ∈ L] R[xa,1, xa,2 : a ∈ L]

Polynomials xaxb − xa∧bxa∨b xa,1xb,1 − xa,2xb,2 . . .
−xa∧b,1xa∨b,1 + xa∧b,2xa∨b,2 (Re)
xa,1xb,2 + xa,2xb,1 . . .
−xa∧b,1xa∨b,2 − xa∧b,2xa∨b,1 (Im)

HL HLC

Hibi relations Complex Hibi relations

Gröbner basis? yes no (in general)

Ideal IL ı(IL)
Join-meet ideal Complex-join-meet ideal

Variety ZK(IL) ZR(ı(IL)) = ı(ZC(IL))

Hibi variety Complex Hibi variety

for L = N PVK ı(PVC)

Product vectors Decomplexification of PVC

Table 5.1: Hibi Relations
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Field R C R

Lattice L LC

Polynomial ring K[xa : a ∈ L] R[xa,1, xa,2 : a ∈ L]

Polynomials HL and HLC and
uL =

∑
a∈L x

2
a − 1 E uLC =

∑
a∈L(x

2
a,1 + x

2
a,2) − 1

Norming polynomial Complex

norming polynomial

Gröbner basis? yes − no (in general)

Ideal JL −
JL,C

Norm-join-meet ideal Complex-norm-join-meet

ideal

Variety ZR(JL) −
ZR(JL,C)

Normed Hibi variety Complex

normed Hibi variety

for L = N EVR ı(EVC)

Unit product vectors Decomplexification of EVC

Convex body co(ZK(IL) ∩ (KL)1) co(ZR(ı(IL)) ∩ (RLC)1)

Hibi body Complex Hibi body

for L = N B1,π ı(B1,π)

Projective unit ball Decomplexification of B1,π

Table 5.2: Hibi Relations and Norming
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5.2 The Median Basis of the Join-Meet Ideal

In this section we introduce the median basis as a vector space basis
of the join-meet ideal. With the help of this basis it is very easy
to solve the ideal membership problem. Indeed, it seems to be a
"natural" basis for this ideal: The Hibi relations are homogeneous
polynomials of degree 2. What is the meaning of the number "2"?
Even though determinantal Hibi relations are related to determi-
nants of 2 × 2 matrices (which is a rather obvious "relation" to the
number "2"), their set of zeros equals the product vectors of a finite-
dimensional tensor product, see Section 3.4. It seems to be quite
difficult to relate product vectors to the number "2". This discrepancy
vanishes with the median basis, since the number 2 will have no
more meaning than the degree of the first non-trivial homogeneous
part of the join-meet ideal.

The median basis is based on a reduction relation on the term
monoid. In particular, it is not necessary to include the rich structure
of the polynomial ring. However, if one wants to find a basis for an
ideal with generators that have more than two terms, for example
a generator like x2 + y2 − 1 ∈ K[x,y], then the proposed approach
might not work anymore.

5.2.1 The Join-Meet Ideal is Homogeneous

The join-meet ideal is homogeneous, so it can be regarded as a
vector space over K (actually, in general, the underlying field is
arbitrary). According to Proposition 1.3, it equals the direct sum of
its homogeneous parts (IL)m for the degrees m ∈ N0. According to
Corollary 1.3, for m > 2, the homogeneous part (IL)m is generated
by the polynomials g · h, where g is a term of degree m− 2 and h is
a Hibi relation.

5.2.2 The Terms

In what follows, a term xa1 · . . . · xam ∈ (K[xa : a ∈ L])m is identi-
fied with the tuple (a1, . . . ,am) ∈ Lm. Since the polynomial ring is
commutative, there is a one-to-one correspondence between terms
in (K[xa : a ∈ L])m and elements in Lm/Sm, where the symmetric



118 Chapter 5 – The Join-Meet Ideal

group Sm acts via permutations of the entries on Lm. In what follows,
we use the notation a ∈ Lm/Sm and we write xa for xa1 · . . . ·xam . Let
L0/S0 := {∅} and x∅ := 1.

Hence, the elements of the sets Lm/Sm, m ∈ N0, serve as a basis of
the polynomial ring.

We say that a ∈ Lm/Sm is a chain, if there exist a1, . . . ,am ∈ L such
that a1 > a2 > · · · > am and a = (a1, . . . ,am). We note that in
contrast to a chain of length m− 1 in L, defined in Subsection 4.1.1,
which requires m different elements in L, an entry of a chain in
Lm/Sm can appear several times.

5.2.3 A Reduction Relation

On Lm/Sm, we define the following reduction relation −→: For all
a1, . . . ,am ∈ L and for all p,q ∈ {1, . . . ,m} such that ap and aq are
not comparable in L we have

(a1, . . . ,ap−1, ap ,ap+1, . . . ,aq−1, aq ,aq+1, . . . ,am)

−→ (a1, . . . ,ap−1, ap∧aq ,ap+1, . . . ,aq−1, ap∨aq ,aq+1, . . . ,am).

In what follows, the notation "−→" relates to this specific relation.

Proposition. The relation −→ is a noetherian reduction relation.

Proof. Let κa be the number of comparable pairs in a = (a1 . . . ,am) ∈
Lm/Sm, that is,

κa := {(r, s) : 1 6 r < s 6 m, ar 6 as or ar > as}.

Now, let b −→ c. In the following, we show κb < κc. Let b =

(b1 . . . ,bm) and c = (c1, . . . , cm). Without loss of generality, let c1 =

b1 ∧b2, c2 = b1 ∨b2, and cs = bs for s ∈ {3, . . . ,m}. We obtain c1 < c2.
For all s ∈ {3, . . . ,m}, we have

1. b1 6 bs or b2 6 bs ⇒ c1 6 cs,
b1 6 bs and b2 6 bs ⇒ c2 6 cs.

2. b1 > bs or b2 > bs ⇒ c2 > cs,
b1 > bs and b2 > bs ⇒ c1 > cs.

It follows that κb < κc. Hence, the relation is strictly antisymmetric.
Since κa 6 1/2 ·m(m− 1) for all a ∈ Lm/Sm, it is also noetherian. �



The Median Basis of the Join-Meet Ideal 119

Let Rm denote the set of all equivalence classes with respect to ?←→.
The equivalence class of a ∈ Lm/Sm is denoted by [a]. It consists of
all elements which share its normal form with a.

Proposition. Let a ∈ Lm/Sm. Then the following are equivalent:
(a) a is a normal form.
(b) a is a chain.

Proof. This statement follows by definition of the reduction relation. �

Hence, there is exactly one chain in [a], and this chain equals the
normal form of a.

Proposition. Let a,b ∈ Lm/Sm.
(i) If a −→ b, then m > 2 and there exists c ∈ Lm−2/Sm−2 and a

non-zero Hibi relation h ∈ HL such that

xa − xb = xc · h.

(ii) If a ?−→ b, then

xa − xb ∈ (IL)m.

In particular, (IL)m is generated by those polynomials as a
vector space over K.

Proof. Let m > 2 (for all other cases, −→ is empty). Let a = (a1, . . . ,am).
We first consider the special case where a −→ b. In this case, b has
the form

b = (a1, . . . ,ap−1,ap∧aq,ap+1, . . . ,aq−1,ap∨aq,aq+1, . . . ,am)

for suitable p,q ∈ {1, . . . ,m}, such that ap and aq are not comparable
in L. Hence,

xa − xb =

( m∏
k=1

k/∈{p,q}

xak

)
· (xapxaq − xap∧aqxap∨aq︸ ︷︷ ︸

=:h

) .

This expression is a product of a term of degree m−2 and a non-zero
Hibi relation h, so that it belongs to (IL)m.

Now, we consider the more general case where a ?−→ b. With the
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preceding result, xa − xb can be written as a "telescoping sum" of
expressions which belong to (IL)m.

Now, the statement follows with Subsection 5.2.1. �

5.2.4 Visualisation of the Reduction Relation

Let a,b, c ∈ L. As mentioned in Subsection 4.2.4, a, b and c generate
a sublattice of L. In this sublattice, l := l(a,b, c) := a∨b∨c is the
"largest" (top) element, s := s(a,b, c) := a∧b∧c is the "smallest"
(bottom) element, and

m := m(a,b, c)
:= (a∧b)∨(b∧c)∨(c∧a) = (a∨b)∧(b∨c)∧(c∨a)

is the "median"; see also Figure 4.3 on page 104. We note that (s,m, l)
is a chain. Also, they do not depend on the order of a, b and c.
Vividly spoken, in Figure 4.3, they lie on a "vertical axis", where a, b
and c lie on a "horizontal axis".

Example. If we consider the special case where L = N, the entry lt, mt, st
(where lt denotes the tth entry of l, and so on) equals the largest,
middlemost and the smallest (respectively) of the numbers at, bt, ct,
for all t ∈ {1, . . . , r}.

Proposition. In L3/S3, the normal form of (a,b, c) is given by (s,m, l).

Proof. The following reduction is possible:

(a,b, c) ?−→ (a∧b,a∨b, c)
?−→ (a∧b, (a∨b)∧c,a∨b∨c︸ ︷︷ ︸

=l

)

?−→ (a∧b∧((a∨b)∧c)︸ ︷︷ ︸
=s

, (a∧b)∨((a∨b)∧c)︸ ︷︷ ︸
=m

, l) .

Since s 6 m 6 l in L, the last element is the normal form. �

5.2.5 Normal Forms are Unique

Proposition. Normal forms with respect to −→ are unique.
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Proof. Due to Newman’s Lemma, see [BW, Theorem 4.75], a noetherian
reduction relation −→ ′ on a set G has unique normal forms if and
only if it is locally confluent, that is, if g −→ ′ h1 and g −→ ′ h2, then
there exists g0 ∈ G with h1

?−→
′
g0 and h2

?−→
′
g0.

Now, let a = (a1, . . . ,am),b1,b2 ∈ L3/S3 such that a −→ b1 and a −→
b2. Without loss of generality, let b1 = (a1 ∧a2,a1 ∨a2,a3, . . . ,am).
Case 1: There exist p,q ∈ {3, . . . ,m}, p < q, such that

b2 = (a1, . . . ,ap−1,ap∧aq,ap+1, . . . ,aq−1,ap∨aq,aq+1, . . . ,am) .

Let

c := (a1 ∧a2,a1 ∨a2, . . . ,ap∧aq, . . . ,ap∨aq, . . . ,am) .

Then b1
?−→ c and b2

?−→ c.

Case 2: There exists p ∈ {3, . . . ,m} such that

b2 = (a1 ∧ap,a2, . . . ,ap−1,a1 ∨ap,ap+1, . . . ,am) .

In this case, according to Proposition 5.2.4, both b1 and b2 reduce to

c := (s(a1,a2,ap),m(a1,a2,ap), l(a1,a2,ap),
a3, . . . ,ap−1, . . . ,ap+1, . . . ,am) .

�

5.2.6 The Median

Given a ∈ Lm/Sm, the following definition helps us to determine
the normal form of a without applying an algorithm based on the
reduction relation.

Definition. Let a1, . . . ,am ∈ L and k ∈ {1, . . . ,m}. The k-median of a1, . . . ,am is
defined by

Mk(a1, . . . ,am) :=
∨

A⊆{1,...,m}
#A=k

∧
l∈A

al.

Since this definition is independent of the order of a1, . . . ,am, it is
also well-defined on Lm/Sm.
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Example. We have

M1(a1, . . . ,am) = a1 ∨ · · · ∨am,
Mm(a1, . . . ,am) = a1 ∧ · · · ∧am,
M2(a1,a2,a3) = m(a1,a2,a3).

Proposition. Let a ∈ Lm/Sm. For all k ∈ {1, . . . ,m−1}, we haveMk(a) >Mk+1(a).

Proof. We have

Mk(a)∨Mk+1(a) =

 ∨
A⊆{1,...,m}

#A=k

∧
l∈A

al

 ∨

 ∨
B⊆{1,...,m}

#B=k+1

∧
l∈B

al


=Mk(a),

since for each B ⊆ {1, . . . ,m} with #B = k + 1, there exists A ⊆
{1, . . . ,m} with #A = k such that

∧
l∈B al 6

∧
l∈A al. �

Proposition. The normal form of a ∈ Lm/Sm is given by

M(a) := (M1(a),M2(a), . . . ,Mm(a)),

which we call the median of a.

Proof. We use induction on m. For m = 0 or m = 1 the assertion is true.
Now let the assertion be true for m ∈ N. Let a = (a1, . . . ,am) ∈
Lm/Sm and let am+1 ∈ L. We write µl :=Ml(a) for all l ∈ {1, . . . ,m}.
The assumptions yield

(a1, . . . ,am,am+1)

?−→ (µm, . . . ,µ1,am+1)

?−→ (µm, . . . ,µ2,µ1 ∧am+1, µ1 ∨am+1︸ ︷︷ ︸
=M1(a1,...,am+1)

)

?−→ ((Mk(µm, . . . ,µ2,µ1 ∧am+1))
m
k=1,M1(a1, . . . ,am+1)).

Now we show that for all k ∈ {1, . . . ,m}, we have

Mk(µm, . . . ,µ2,µ1 ∧am+1) =Mk+1(a1, . . . ,am+1),

which finishes the proof. For all k ∈ {1, . . . ,m− 1}, this equality holds
since

Mk(µm, . . . ,µ2,µ1 ∧am+1)
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=

( ∨
A⊆{2,...,m}

#A=k

∧
l∈A

µl

)
∨

( ∨
A⊆{2,...,m}

#A=k−1

( ∧
l∈A

µl

)
∧µ1 ∧am+1

)

= µk+1 ∨

(( ∨
A⊆{1,...,m}

#A=k

∧
l∈A

µl∧µ1︸ ︷︷ ︸
=µl

)
∧am+1

)
= µk+1 ∨(µk∧am+1),

and also

Mk+1(a1, . . . ,am+1)

=

( ∨
A⊆{1,...,m}

#A=k+1

∧
l∈A

al

)
∨

( ∨
A⊆{1,...,m}

#A=k

( ∧
l∈A

al

)
∧am+1

)

= µk+1 ∨

(( ∨
A⊆{1,...,m}

#A=k

∧
l∈A

al

)
∧am+1

)
= µk+1 ∨(µk∧am+1).

For k = m we obtain

Mm(µm, . . . ,µ2,µ1 ∧am+1) = µm∧am+1 =Mm+1(a1, . . . ,am+1).�

Example. If we consider determinantal Hibi relations, that is, if we consider
L = N, we may identify a = (a1, . . . ,am) ∈ Nm/Sm by an m × r
matrix

a1,1 a1,2 . . . a1,r

a2,1 a2,2 . . . a2,r
...

...
...

am,1 am,2 . . . am,r

 ,

where al = (al,1, . . . ,al,r) ∈ N for all l ∈ {1, . . . ,m}. The k-median
of a is determined by applying the median to each column, which
gives the k-largest element in that column. Hence, if we sort the
entries of each column in descending order, we obtain a new matrix,
whose kth row gives Mk(a) for all k ∈ {1, . . . ,m}. Hence, this matrix
represents M(a).
In the case where n1 = n2 = · · · = nr =: n, the quotient Nm/Sm
can be identified with Mm,r({1, . . . ,n}) modulo permutations of the
rows.

Example. Let (a,b), (c,d) ∈ L2/S2. Then the following are equivalent:
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(a) (a,b) ?←→ (c,d).
(b) The polynomial xa xb − xc xd lies in IL.
(c) The medians of (a,b) and (c,d) coincide.
(d) a∧b = c∧d and a∨b = c∨d.
(e) L(a,b) = L(c,d).

We recall that L(a,b) is the largest boolean sublattice of L such that
a and b are complements, see Proposition 4.2.6.

5.2.7 The Median Basis

For all m ∈ N0 and for all a ∈ Lm/Sm, let

ha := xa − xM(a).

Let BL denote the set of all polynomials ha such that a is not a
chain. Let V[a] denote the linear hull of all polynomials hb, where
a ?←→ b.

Theorem. A vector space basis of the join-meet-ideal IL is given by BL. In
particular, for all m ∈ N0, (IL)m equals the direct sum of the vector
spaces V[c], for all chains c ∈ Lm/Sm with #[c] > 2.

Proof. With Proposition 5.2.6.II, the normal form of a is given by c := M(a).
From Proposition 5.2.3.III, it follows that V[c] ⊆ (IL)m. On the other
hand, (IL)m is generated by polynomials of the form f := gh, where
g is a term of degree m− 2 and h is a non-zero Hibi relation, which
is the difference of two terms a,b ∈ L2/S2 with a −→ b. Hence, a
and b have the same normal form c and

xa − xb = (xa − xc) − (xb − xc),

which lies in V[c].

It can be easily seen that the polynomials in BL are linearly indepen-
dent. �

Definition. We refer to the basis BL of the join-meet ideal IL as the median basis.
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5.2.8 The Median of a Polynomial

Corollary. The ideal membership problem for the join-meet ideal IL the can be
solved as follows: Let

M : K[xa : a ∈ L]→ K[xa : a ∈ L],
xa 7→ xM(a).

Given f ∈ K[xa : a ∈ L], then f − M(f) ∈ IL and the following are
equivalent:

(a) f ∈ IL.
(b) M(f) = 0.

Proof. See Theorem 5.2.7. �

We call M(f) the median of f or the normal form of f with respect to IL.
The second notion refers to the statement that if f is a term, then
M(f) is its normal form. Furthermore, for arbitrary f, we will see
that M(f) equals a normal form of f modulo IL in a setting according
to Subsection 1.2.2.

We call f−M(f) the projection of f onto IL, although we note that for
each homogeneous part fm of f, m > 0, the polynomial fm −M(fm)

does not equal the orthogonal projection of f onto (IL)m.

5.3 A Gröbner Basis of the (Norm-)Join-Meet Ideal

We have seen in Chapter 1 that a Gröbner basis of a given ideal helps
to solve the ideal membership problem. Also, it helps to determine
a basis of the coordinate ring. With respect to the join-meet ideal,
both problems are already solved with the median basis, see Section
5.2 and Section 5.5. However, to solve them for the norm-join-meet
ideal, it may have advantages to know a Gröbner basis.

The non-zero Hibi relations are a Gröbner basis of the join-meet ideal.
This result is formulated in [HHO, Theorem 6.17]. Other related
works are [Hibi] or [Qur]. Moreover, the non-zero Hibi relations,
together with the norming polynomial, are a Gröbner basis of the
norm-join-meet ideal. This result is formulated in [Sto, Theorem
4.8] for the special case where K = R and L = N. Even though
this case is the most relevant for our applications, it turns out that
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the statement can be formulated in a more general context. Both
statements have the advantage that for all practical purposes, it is
not necessary to compute a Gröbner basis with the aid of a computer
algebra system.

Although we are mainly interested in the case where K = R (such
that the normed Hibi variety corresponds to the unit product vectors),
the computation of the Gröbner bases does not depend on the choice
of the field K.

In this section we formulate both statements in our general context.
The approach in this thesis uses the reduction relation −→ from
Section 5.2 which seems to be rather new. It allows a geometric
viewpoint of the Gröbner basis according to Subsection 5.2.4 and it
respects the lattice structure. Concerning the second result, we also
do not require case distinctions (in comparison to [Sto]).

5.3.1 Linear Extensions

To specify a term order on K[xa : a ∈ L] it is convenient to begin with
a total order on the variables xa, a ∈ L, which can also be regarded
as an order on L (by identifying xa with a). In what follows, it turns
out that this order should be compatible with the partial order on L
corresponding to the lattice structure; formally (see [HHO, Example
6.16]):

Definition. A total order (chain) 6 ′ on the set L is called a linear extension of the
lattice L if the map

(L,6)→ (L,6 ′),
a 7→ a

is isotone (that is: whenever a 6 b for a,b ∈ L, then a 6 ′ b).

Example. In this example we consider the case where L = N. The set N can
be regarded as a subset of Nn0 . On the lattice N, a linear extension
6 ′ is given by the lexicographical order, that is, a > ′ b if and only
if a 6= b and the leftmost non-zero entry in a − b is positive. We
refer to Definition 1.1.4 (for the purpose to define an order on the
variables, not on the terms in K[xa : a ∈ L]).
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By way of example, for N = {1, 2}2, on K[ x22, x21, x12, x11], we have

x22 >
′ x21 >

′ x12 >
′ x11,

and for N = {1, 2}3, we have

x222 >
′ x221 >

′ x212 >
′ x211 >

′ x122 >
′ x121 >

′ x112 >
′ x111.

Proposition. On any finite distributive lattice, there exists a linear extension.

Proof. According to the Theorem 4.2.2.II, any finite distributive lattice L can
be considered as a ring of sets, that is, as a family of subsets of a
finite set X. Hence, there exists an injective function L→ (P(X),⊆),
a 7→ a, which is isotone. Since (P(X),⊆) is a boolean lattice, there
exists r ∈ N such that it can be identified with {1, 2}r (as a r-fold
direct product of the chain {1, 2}). With the last example, in this
special case, there exists a total order which is a linear extension of
(P(X),⊆); hence, also of the subset L. �

Proposition. Let 6 ′ be a linear extension of L. For all a,b, c ∈ L with a < ′ b, we
have

a∧c 6 ′ a < ′ b 6 ′ b∨c.

Proof. This statement follows from a∧c 6 a and from b 6 b∨c. �

5.3.2 The Graded Reverse Lexicographical Order

We recall that a Gröbner basis depends on the underlying term order.
So far, specifying a term order on the polynomial ring K[xa : a ∈ L]
was not necessary. Thus, we are free to choose a term order which
has a "good" reduced Gröbner basis.

Based on a linear extension of L, it appears that the graded reverse
lexicographical order on K[xa : a ∈ L] due to [Sto] is suitable in the
sense that the non-zero Hibi relations (and the norming polynomial,
respectively) are a reduced Gröbner basis.

The non-zero Hibi relations are not a universal Gröbner basis, see
[Lang, Lemma 5.3.8].

Let 6 ′ be a linear extension of L (which induces a total order on the
variables in K[xa : a ∈ L]).
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The set NL0 represents the terms in K[xa : a ∈ L] by assuming that
the variables are aligned from left to right in descending order with
respect to 6 ′. (To be precise: For all t ∈ {1, . . . , #L}, let c be the tth

largest element in L with respect to 6 ′. The variable xc is identified
with (0, . . . , 0, 1, 0, . . . , 0) ∈ NL0 , where the entry 1 appears in position
t. For example, the top > is identified with (1, 0, . . . , 0).)

In what follows, we consider the graded reverse lexicographical
order 6grevlex on NL0 : For α,β ∈ NL0 , we have α >grevlex β if and only
if |α| > |β| or, if |α| = |β|, the rightmost non-zero entry in α − β is
negative (see also Definition 1.1.4 and Proposition 1.1.4).

Proposition. The leading term of a non-zero Hibi relation

xa xb − xa∧b xa∨b

for a,b ∈ L is given by xa xb. The leading term of the norming
polynomial

∑
a∈L x

2
a − 1 is given by (x>)

2, where > denotes the top
in L.

Proof. Since the Hibi relation does not vanish, a 6= b in L. Assuming a < ′ b
(without loss of generality), we obtain a∧b < ′ a < ′ b < ′ a∨b.
Let L0 := {a,b,a∧b,a∨b} be the smallest sublattice of L which
contains a and b. The terms xa xb and xa∧b xa∨b are identified
with elements in NL0 as outlined above. If we consider only those
positions which belong to an element in L0 (since the entries on
all other positions vanish), then the first term is identified with
α := (0, 1, 1, 0) and the second term is identified with β := (1, 0, 0, 1).
Since α − β = (−1, 1, 1, −1) (or from Proposition 1.1.4), it follows
that α >grevlex β, and thus, xa xb >grevlex xa∧b xa∨b.

With respect to the graded reverse lexicographical order, the term
x2
> is the largest amongst the terms x2

c, c ∈ L. �

Indeed, this term order is an example for a so-called compatible
term order, see [HHO, Chapter 6].

Example. In the special case where L := {1, 2}2 and with the linear extension
from Example 5.3.1, the leading term of the determinantal Hibi
relation x2 1 x1 2 − x2 2 x1 1 is x2 1x1 2.
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5.3.3 Two Reduction Relations

The multivariate polynomial division by the non-zero Hibi relations
HL with respect to the graded reverse lexicographical order defines
a reduction relation −→HL

on the polynomial ring K[xa : a ∈ L], see
Subsection 1.2.2. It is closely related to the reduction relation −→
on the terms in K[xa : a ∈ L] (the terms of degree m ∈ N0 can be
identified with Lm/Sm), which is introduced in Section 5.2:

Proposition. Let m ∈ N0 and a,b ∈ Lm/Sm. The restriction of −→HL
to Lm/Sm is

equal to −→, that is, the following are equivalent:

(a) a ?−→ b.
(b) xa

?−→HL
xb.

In particular, in this case, we have

xa >grevlex xb.

Proof. Let m > 2. According to Proposition 5.3.2, the leading term of a
non-zero Hibi relation xc xd−xc∧d xc∨d, where c,d ∈ L, with respect
to the graded reverse lexicographical order is given by xc xd. Now,
with a similar argument, for all terms s, we obtain

s · xa · xb >grevlex s · xc∧d · xc∨d.

If a −→ b, then from Proposition 5.2.3.III (i), it follows that there
exists c ∈ Lm−2/Sm−2 and a non-zero Hibi relation h ∈ HL such that

xa = xc · h+ xb,

where xa = s · LT(h) for the term s := xc. By definition of −→HL
, it

follows that xa −→HL
xb.

On the other hand, if xa reduces to xb modulo {h}, where h ∈ HL,
then xa = s · h + xb, where s is a term such that s · LT(h) = xa. By
definition of −→, it follows that a −→ b.
The general statements for a ?−→ b and xa

?−→ HL
xb follow by

induction. �

Lemma. Let f ∈ K[xa : a ∈ L]. The normal form of f modulo HL is given by
M(f).



130 Chapter 5 – The Join-Meet Ideal

Proof. In general, the multivariate polynomial division has no additive
property according to Example 1.2.2 (iii). However, the last propo-
sition states that the reduction relations −→HL

and −→ are closely
related, which will be essential for the proof.
Step 1: On the one hand, by any single reduction step modulo −→HL

,
a term xa is replaced by a term xb, where a −→ b. Hence, the me-
dian M(f) is a normal form modulo −→HL

.
Step 2: On the other hand, any term xa with a 6= M(a) can be re-
duced modulo −→HL

to a term xb with a −→ b by a single reduction
step. Hence, if r is a normal form modulo −→HL

, then all terms of r
are normal forms with respect to −→. Thus, combined with step 1,
the normal forms modulo −→HL

are exactly the medians.
Step 3: We have seen above that a single reduction step does not
affect more than a single term. Also, a ?−→ b and a ?−→ c implies
that a,b and c have a common normal form with respect to −→. It
follows that amongst all polynomials g with f ?−→HL

g, there exists
only one normal form, which equals the median M(f) of f. �

5.3.4 A Gröbner Basis of the (Norm-)Join-Meet Ideal

The first part of the following theorem is an adaption of [HHO,
Theorem 6.17]. For the proof, we use the reduction relation −→
of Section 5.2, which seems to be a new approach. The second
part generalises [Sto, Theorem 4.8] by replacing determinantal Hibi
relations with arbitrary distributive lattices. Also here, the reduction
relation is used for the proof.

Theorem. With respect to the graded reverse lexicographical order 6grevlex

based on a lattice-preserving order on L, the non-zero Hibi relations
HL are a reduced Gröbner basis of the join-meet ideal IL.
Moreover, the non-zero Hibi relations HL together with the norming
polynomial uL are a reduced Gröbner basis of the norm-join-meet
ideal JL.

Proof. Let NL := {uL}.
Statement 1: HL is a Gröbner basis of IL.
By definition, HL generates IL. The statement follows from Theorem
1.2.3 (a) and Lemma 5.3.3.
Statement 2: HL is reduced.
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Condition (i) from Definition 1.2.5 is fulfilled since the leading co-
efficients are always equal to 1. Let g be a non-zero Hibi relation.
To show condition (ii), we show with Lemma 1.1.2 that no term of
g lies in the monomial ideal generated by the leading terms of the
other non-zero Hibi relations. A non-zero Hibi relation h is uniquely
defined by the term xa xb, where a,b ∈ L are not comparable, and
h = xa xb − xa∧b xa∨b. According to Proposition 5.3.2, the first term
is the leading term of h. The second term is a chain. Hence, none of
the two terms can be the leading term of any other Hibi relation.

Statement 3: HL ∪NL is a Gröbner basis of JL.
By definition, HL ∪ NL generates JL. Using the Buchberger Crite-
rion Theorem 1.2.4 and the previous results, it suffices to show that
S(h,uL) reduces to zero for all h ∈ HL. According to Proposition
5.3.2, there exist a,b ∈ L such that the leading term of h is given
by xa xb, where a and b are not comparable, and the leading term
of uL is given by x2

>, where > is the top element in L. Since x> is
comparable with any element in L, it follows that xa 6= x> 6= xb.
Hence, x2

> is coprime with xa xb, that is, h and uL are relatively
prime. According to Proposition 1.2.4, S(h,uL) reduces to zero.

Statement 4: HL ∪NL is reduced.
The Gröbner basis is reduced since the leading coefficient of uL
is equal to 1 and no term of uL is equal to any term of any Hibi
relation. �

Remark. Theorem 1.2.3 and the Buchberger Criterion Theorem 1.2.4 allow
different viewpoints on Gröbner bases. From each viewpoint, it
could be possible to show that HL is a Gröbner basis of IL. Here, we
give a sketch of an alternative proof using the Buchberger Criterion,
since it is common in the literature (see [HHO] and [RS2]).

Statement: HL is a Gröbner basis of IL with respect to the graded
reverse lexicographical order.

Proof : Using the Buchberger Criterion, it is sufficient to verify that
the S-polynomial of two non-zero Hibi relations f,h with f 6= h

reduces to zero modulo HL. The leading terms of f and h are given
by LT(f) = xa xb and LT(h) = xc xd, where a,b, c,d ∈ L. They
are relatively prime, if and only if xa xb and xc xd are coprime,
that is, if and only if a,b, c,d are pairwise distinct. In this case,
the S-polynomial S(f,h) reduces to zero modulo IL according to
Proposition 1.2.4. It remains to consider the case that f and h are
not relatively prime. We may assume that a = d. The least common
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multiple of the leading terms is given by xa xb xc. Hence, the S-
polynomial of f and h is given by

S(f,h) = xc · f− xb · h
= xc · (xa xb − xa∧b xa∨b) − xb · (xa xc − xa∧c xa∨c)

= xb xa∧c xa∨c − xc xa∧b xa∨b.

By Lemma 5.3.3, the normal form of S(f,h) modulo HL is given by

M(S(f,h)) = xM(b,a∧c,a∨c) − xM(c,a∧b,a∨b) = 0,

since (a,b, c) ?−→ (b,a∧c,a∨c) and (a,b, c) ?−→ (c,a∧b,a∨b), that
is, both terms have the same median (which equals M(a,b, c) =

(s,m, l) from Subsection 5.2.4).
Hence, the S-polynomial of f and h reduces to zero.

5.4 Complex Hibi Relations and Gröbner Bases

In this section, we investigate the following question:

Does there exist a term order such that the non-zero complex Hibi relations,
also together with the complex norming polynomial, are a Gröbner basis?

We will see that the answer is positive in the special case where
L = {1, 2}2, which corresponds to the tensor product C2 ⊗ C2. In the
general case, we focus on term orders which, in appropriate senses,
could be regarded as promising candidates for a positive answer.
But it seems not to be easy to obtain a positive answer. So an answer
to the question remains open, even though computations with a
computer algebra system suggest that it is negative.

Nevertheless, the complex Hibi relations provide a basis of the
second homogeneous part of the complex-join-meet ideal.

We use the notation from Table 5.1 on page 115 and from Table 5.2.
Elements in LC are written in the form a,1 and a,2, where a ∈ L. If it
seems to be convenient, the letter "x" in the notation for variables in
R[xa,1, xa,2 : a ∈ L] is omitted.

5.4.1 A Gröbner Basis in a Special Case

The following example outlines that the answer is positive in a
special case.
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Example. Let L = {1, 2}2. The complex-norm-join-meet ideal is generated by

f1 := 2 1,2 · 1 2,2 − 2 2,2 · 1 1,2 − 2 1,1 · 1 2,1 + 2 2,1 · 1 1,1,
f2 := 1 1,2 · 2 2,1 − 1 2,2 · 2 1,1 − 2 1,2 · 1 2,1 + 2 2,2 · 1 1,1,
u = 2 2,22 + 2 1,22 + 1 2,22 + 1 1,22

+ 2 2,12 + 2 1,12 + 1 2,12 + 1 1,12 − 1 .

Based on the total order on LC which is given by

1 1,1 < 1 2,1 < 2 1,1 < 2 2,1 < 1 1,2 < 1 2,2 < 2 1,2 < 2 2,2

and with respect to the graded reverse lexicographical term order,
the leading terms of the three polynomials are

LT(f1) = 2 1,2 · 1 2,2, LT(f2) = 1 1,2 · 2 2,1, LT(u) = 2 2,22.

Since each two of the three leading terms are relatively prime, the
three S-polynomials S(f1, f2), S(f1,u), S(f2,u) reduce to zero modulo
f1, f2 and u. Hence, with respect to this term order, {f1, f2,u} is a
Gröbner basis.

5.4.2 Criteria on the Total Order

Example 5.4.1 shows that the answer of the introductory question is
positive in a special case. Now, we investigate whether it is positive
also for arbitrary lattices L.

To do so, we focus on different term orders which could be regarded
as promising candidates.

The non-zero Hibi relations HL, together with the norming poly-
nomial uL, are a Gröbner basis according to Theorem 5.3.4. An
appropriate term order on K[xa : a ∈ L] is the graded reverse lexi-
cographical order which is based on a linear extension of L. Such
a term order is closely related to the reduction relation −→ from
Section 5.2, see Proposition 5.3.3 and Lemma 5.3.3.

We should therefore have in mind that a term order on the polyno-
mial ring R[xa,1, xa,2 : a ∈ L] induces a reduction relation which is
induced by the multivariate polynomial division by the non-zero
complex Hibi relations HLC (and the complex norming polynomial
uLC). It could be promising to consider term orders which are (in
an appropriate sense) related to the reduction relation −→ or to the
graded reverse lexicographical order.
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A term order on R[xa,1, xa,2 : a ∈ L] induces a total order 6 on the
variables, that is, on the elements in LC. The orders which are
involved are shown in the following diagram:

(L,6 ′) −→ (LC,6)
↓ ↓

(NL0 ,6grevlex) −→ (NLC0 ,6)
K[xa : a ∈ L] R[xa,1, xa,2 : a ∈ L]

Now, we collect some possible criteria on 6. The term orders which
we suggest in the following fulfil some of the criteria (not all together,
since they can be contradictory):

C1: If a < b in L, then a,1 < b,1 and a,2 < b,2.
C2: For all a,b ∈ L, we have a,1 < b,2.
C3: For all a ∈ L, we have a,1 < a,2.

With respect to a linear extension < ′ of L, the following criteria are
also possible:

C4: If a < ′ b in L, then a,1 < b,1 and a,2 < b,2.
C5: If a < ′ b in L, then for all t1, t2 ∈ {1, 2}, we have a,t1 < b,t2.

Criterion C5 is stronger than criterion C4, which is stronger than
criterion C1. Criterion C2 is stronger than criterion C3.

5.4.3 Stacking Orders

We begin with a notion which could be regarded as a generalisation
of the term order from the last example. We note that C2 and C4
together define 6 completely (and imply C1): For all a < ′ b in L, we
have

· · · < a,1 < · · · < b,1 < · · · < a,2 < · · · < b,2 < . . .

Definition. Let 6 ′ be a linear extension of L. Based on the total order 6 on
LC with C2 and C4, the graded reverse lexicographical order on
R[xa,1, xa,2 : a ∈ L] is called the stacking order with respect to 6 ′.

Indeed, Example 5.4.1 shows that a stacking order can give a positive
answer for {1, 2}2. However, in general, a stacking order does not
seem to give a positive answer. To see this, we consider the lattice
D2 from Example 4.2.5.



Complex Hibi Relations and Gröbner Bases 135

Proposition. If L = D2, then the non-zero complex Hibi relations are no Gröbner
basis with respect to a stacking term order on R[xa,1, xa,2 : a ∈ L].

Proof. Let L be an arbitrary finite distributive lattice and let e, f ∈ L such
that e and f are not comparable. Let d := d(e, f) := e · f− e∧f · e∨f

be a non-zero Hibi relation. Let 6 be the stacking term order with
respect to a linear extension 6 ′ of L. Since we have

Red = e,1 · f,1 − e,2 · f,2 − e∧f,1 · e∨f,1 + e∧f,2 · e∨f,2,
Imd = e,1 · f,2 + e,2 · f,1 − e∧f,1 · e∨f,2 − e∧f,2 · e∨f,1,

the leading term of Red equals e,2 · f,2 and the leading term of Imd
equals e∧f,2 · e∨f,1.
Now, we assume that L is equal to D2. To prove the assumption, it
suffices to show that there are two complex Hibi relations whose
S-polynomial does not reduce to zero. To do this, we consider the
complex Hibi relations g1 := Im(d(a, c)) and g2 := Im(d(b, c)), that
is,

g1 = a,1 · c,2 + a,2 · c,1 − s,1 · a∨c,2 − s,2 · a∨c,1,
g2 = b,1 · c,2 + b,2 · c,1 − s,1 · l,2 − s,2 · l,1.

The leading terms of g1 and g2 are underlined, respectively. They are
not relatively prime, since s,2 is a common factor. The S-polynomial
of g1 and g2 is given by

S(g1,g2) = l,1 · g1 − a∨c,1 · g2

= a,1 · c,2 · l,1 + a,2 · c,1 · l,1
− s,1 · a∨c,2 · l,1 − b,1 · c,2 · a∨c,1
− b,2 · c,1 · a∨c,1 + s,1 · l,2 · a∨c,1.

Now, using the introductory comments, we show that the leading
term t of S(g1,g2) cannot be divisible by the leading term of any
complex Hibi relation. By exclusion, we can identify four terms
which could be the leading term of S(g1,g2). The terms in question
are underlined.
Case 1: t = a,1 · c,2 · l,1.
It is clear that a,1 · l,1 cannot be a leading term. Also a,1 · c,2 since a
and c are not comparable and c,2 · l,1 since c and l are not top and
bottom of a rhomb.
Case 2: t = b,1 · c,2 · a∨c,1.
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It is clear that b,1 ·a∨c,1 cannot be a leading term. Also b,1 · c,2 since
b and c are not comparable and c,2 · a∨c,1 since c and a∨c,1 are not
top and bottom of a rhomb.
Case 3: t = a,2 · c,1 · l,1.
This case requires that a,1 < ′ b,1 < ′ c,1. As above, c,1 · l,1 cannot be
a leading term; also a,2 · c,1 since a and c are not comparable. The
term a,2 · l,1 is the leading term of g3 := Im(d(b,a∨c)), that is,

g3 = b,1 · a∨c,2 + b,2 · a∨c,1 − a,1 · l,2 − a,2 · l,1.

Reducing S(g1,g2) modulo g3 leads to

S(g1,g2) + c,1 · g3 = a,1 · c,2 · l,1 − s,1 · a∨c,2 · l,1
− b,1 · c,2 · a∨c,1 + s,1 · l,2 · a∨c,1
+ c,1 · b,1 · a∨c,2 − c,1 · a,1 · l,2.

The leading term is underlined. But this term cannot be a leading
term of a complex Hibi relation, see the preceding case.
Case 4: t = b,2 · c,1 · a∨c,1.
It is clear that c,1 ·a∨c,1 cannot be a leading term. Also b,2 · c,1 since
b and c are not comparable and b,2 · a∨c,1 since b and a∨c are not
comparable.
It follows that S(g1,g2) does not reduce to zero. �

5.4.4 Expanding Orders

Also the next notion does not provide a positive answer.

Definition. Let 6 ′ be a linear extension of L. A term order 6 on R[xa,1, xa,2 : a ∈
L] is called an expanding order with respect to 6 ′, if

(i) The term order 6 fulfils C5 with respect to 6 ′.
(ii) For all m ∈ N, for all a1, . . . ,am ∈ L, b1, . . . ,bm ∈ L, where

a1 · a2 · . . . · am < b1 · b2 · . . . · bm,

and for all t1, . . . , tm ∈ {1, 2}, we have

a1,t1 · a2,t2 · . . . · am,tm < b1,t1 · b2,t2 · . . . · bm,tm.

Proposition. If L contains a rhomb, then the non-zero complex Hibi relations
are no Gröbner basis with respect to an expanding term order on
R[xa,1, xa,2 : a ∈ L].
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Proof. Let d = a ·b−a∧b ·a∨b be a non-zero Hibi relation (where a,b ∈ L
such that a and b are not comparable). Let 6 be an expanding term
order. Since we have

Red = a,1 · b,1 − a,2 · b,2 − a∧b,1 · a∨b,1 + a∧b,2 · a∨b,2,
Imd = a,1 · b,2 + a,2 · b,1 − a∧b,1 · a∨b,2 − a∧b,2 · a∨b,1,

the leading term of Red equals a,1 · b,1 or a,2 · b,2, and the leading
term of Imd equals a,1 · b,2 or a,2 · b,1. Without loss of generality, we
may assume that LT(Red) = a,1 · b,1 and LT(Imd) = a,1 · b,2. The
terms are not relatively prime, since a, 1 is a common factor. The
S-polynomial of Red and Imd is given by

S(Red, Imd) = b,2 · Red − b,1 · Imd
= − b,2 · a,2 · b,2 − b,1 · a,2 · b,1

− b,2 · a∧b,1 · a∨b,1 + b,1 · a∧b,1 · a∨b,2
+ b,2 · a∧b,2 · a∨b,2 + b,1 · a∧b,2 · a∨b,1.

With the introductory comments on the leading term of a complex
Hibi relation with respect to an expanding order, we may show
whether any of the six terms can be divisible by the leading term of
Reh or Imh for any non-zero complex Hibi relation h. We first state
that both b,22 · a,2 and b,12 · a,2 cannot be divisible by any leading
term (we note that this also holds for h = d). Also the four remaining
terms cannot be divisible, since a∧b < b < a∨b in L. It follows that
S(Red, Imd) is reduced, but not zero. �

Example. Based on a lattice-preserving order 6 ′ on L, conditions C3 and C5
define a total order 6 on LC: It is given by

· · · < a,1 < a,2 < · · · < b,1 < b,2 < . . .

whenever a < ′ b in L.
The set LC = L × {1, 2} can be regarded as lattice: It is the direct
product of L with the chain {1, 2}, where 2 is the top and 1 is the
bottom. In this respect, 6 is lattice-preserving for LC.
The graded reverse lexicographical order based on 6 is expanding.
The leading terms of the real and imaginary part of a non-zero Hibi
relation d := a · b− a∧b · a∨b, where a,b ∈ L are not comparable,
are given by

LT(Red) = a,2 · b,2,
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LT(Imd) =

{
a,1 · b,2, a > ′ b,
a,2 · b,1, a < ′ b.

Example. Let L = {1, 2}2. The graded reverse lexicographical order based on
the total order on LC which is given by

1 1,1 < 1 1,2 < 1 2,1 < 1 2,2 < 2 1,1 < 2 1,2 < 2 2,1 < 2 2,2

is expanding, see the last example. The leading terms of the polyno-
mials f1, f2 and u from Example 5.4.1 are

LT(f1) = 1 2,2 · 2 1,2, LT(f2) = 1 2,2 · 2 1,1, LT(u) = 2 2,22.

In contrast to Example 5.4.1, the first two leading terms are not
relatively prime. According to Proposition 5.4.4, with respect to this
term order, {f1, f2,u} is not a Gröbner basis.

5.4.5 Numerical Examples

With the help of the computer algebra program SageMath, see [Sage],
we computed the reduced Gröbner basis (GB) of the ideal for the
complex normed Hibi variety with respect to different term orders.
There are #HLC = 2 · #HL complex Hibi relations and 1 complex
norming polynomial. If the length of the reduced GB is larger than
#HLC +1, then they are not a GB with respect to the underlying order.
Nevertheless, a comparison of lengths could give rise to ideas for
promising term orders. With the program, we only consider graded
reverse lexicographical orders which base on the lexicographical
order on L and which fulfil condition C3.

Example. Let L = {1, 2}3. There are 18 complex Hibi relations. For example, we
consider the following term order, which we refer to as the mixed
order:

2 2 2,2 < 2 2 1,2 < 2 1 2,2 . . .
< 2 2 2,1 < 2 2 1,1 < 2 1 2,1 . . .
< 2 1 1,2 < 1 2 2,2 < 1 2 1,2 < 1 1 2,2 < 1 1 1,2 . . .
< 2 1 1,1 < 1 2 2,1 < 1 2 1,1 < 1 1 2,1 < 1 1 1,1 .
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The following table lists three different term orders together with
the length of the reduced GB of the ideal for the complex normed
Hibi variety.

Term order Length GB
Stacking order 42
Expanding order with C3 and grevlex 42
Mixed order 36

Since min(42, 36) > 19, an answer to the introductory question for the
lattice {1, 2}3, which corresponds to the tensor product C2 ⊗ C2 ⊗ C2,
is still open. The mixed order provides the shortest GB, which
suggests that the stacking and expanding orders may not be the
most promising candidates for a positive answer. Nevertheless,
36 was the smallest length which could be reached by a test with
randomly generated term orders with the required properties.

5.4.6 A Basis of the Second Homogeneous Part

Using the median basis, we obtain the following statement:

Proposition. A basis of the second homogeneous part of the complex-join-meet
ideal ı(IL) is given by the real and the imaginary parts of the non-
zero Hibi relations in R[xa : a ∈ L].

Proof. This statement follows from Corollary 1.3, Proposition 2.2.7 and
Theorem 5.2.7. �

The second homogeneous part of R[xa,1, xa,2 : a ∈ L] equals the direct
sum of the vector spaces

VRe,Re := LH(a,1 · b,1 : a,b ∈ L),
VIm,Im := LH(a,2 · b,2 : a,b ∈ L), and
VRe,Im := LH(a,1 · b,2 : a,b ∈ L).

Let a,b ∈ L be not comparable. The real and the imaginary part of
the Hibi relation d := a · b− a∧b · a∨b are given by

Re(d) = (a,1 · b,1 − a∧b,1 · a∨b,1) − (a,2 · b,2 − a∧b,2 · a∨b,2),
Im(d) = a,1 · b,2 + a,2 · b,1 − a∧b,1 · a∨b,2 − a∧b,2 · a∨b,1.

Now, it is obvious that Re(d) ∈ VRe,Re + VIm,Im and Im(d) ∈ VRe,Im.
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5.5 A�ributes of the Hibi Variety

So far, we have considered the Hibi variety as an affine variety. In
this section, we consider it as a projective variety to determine its
dimension and its degree according to [HHO, Theorem 6.38].

With the aid of Gröbner bases, we show that the vanishing ideal
of the Hibi variety is not larger than the join-meet ideal. Hence,
a polynomial which vanishes on the Hibi variety is completely
determined by the Hibi relations.

5.5.1 The Coordinate Ring

For each a ∈ Lm/Sm, let U[a] be the linear subspace of (IL)m which
is spanned by all terms xb with a ?←→ b. It can be identified
with the Euclidean vector space K#[a] as follows: Since the median
M(a) is a canonical representative of the equivalence class [a], it
can be identified with the last coordinate. The other coordinates are
identified with the other elements of [a].

Now, V[a] equals the linear hull of the vectors
1
0
...
0

−1

 ,


0
1
...
0

−1

 , . . . ,


0
0
...
1

−1

 .

It is a subspace of U[a] of codimension 1 and equals the orthogonal
complement of the vector

u[a] :=


1
1
...
1
1

 .

Hence, a basis of the coordinate ring is given by the vectors u[a] + IL
(or, alternatively, by the vectors a+ IL) for all chains a ∈ Lm/Sm.

Let K[xa : a ∈ L])m/(IL)m be the mth homogeneous part of the co-
ordinate ring K[xa : a ∈ L]/IL. It is a direct sum of the quotients
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UR/VR of dimension 1, where R ∈ Rm. The coordinate ring can be
decomposed into its homogeneous parts:

K[xa : a ∈ L]/IL =
⊕
m∈N0

( ⊕
R∈Rm

UR/VR

)
.

Hence, for all m ∈ N0, we have

dim((K[xa : a ∈ L])m/(IL)m) = #Rm ,

which equals the number of all chains in Lm/Sm.

5.5.2 Dimension and Degree of the Product Vectors

Since the Hibi relations are homogeneous, the Hibi variety can also
be regarded as a projective variety, the projective Hibi variety, see
Subsection 2.1.5.

The projective Hibi variety equals set of zeros of the join-meet ideal
IL ⊆ C[xa : a ∈ L] in the projective space P#L−1. Its Hilbert function
is given by N0 → N0,m 7→ #Rm. The Hilbert polynomial gives
the dimension and the degree of the projective Hibi variety, see
[HHO].

Hence, the product vectors in the tensor product CN can be charac-
terised as a projective variety. Here, we determine the dimension
and the degree of the projective Hibi variety in this special case.

In the special case where r = 2, the projective Hibi variety equals the
Segré variety which is discussed widely in [Har] (see also Subsection
3.4.3). To be consistent with the notation there, we use the lattice
N0 := {0, . . . ,n1} × · · · × {0, . . . ,nr} instead of N, and consider the
join-meet ideal IN0 in C[xa : a ∈ N0] and the projective Hibi variety
in P

∏r
l=1(nl+1)−1. The product vectors ZC(IN) can be identified with

those points of P
∏r
l=1(nl+1)−1 in ZC(IN0) which have the form 1 : 1 :

· · · : 1 : v, where v ∈ CN (the other positions belong to the elements
in N0 with at least one entry which equals 0).

Lemma. The dimension of the mth homogeneous part of the coordinate ring
K[xa : a ∈ N]/IN is given by

#Rm =

r∏
l=1

(
nl +m− 1

m

)
.
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The function N0 → N0,m 7→ #Rm is a polynomial in m, whose
leading term equals( r∏

l=1

(nl − 1)!
)−1

·m
∑r
l=1(nl−1).

Proof. According to Example 5.2.6.II, a chain in Lm/Sm can be identified
with am×rmatrix (ak,l)k∈{1,...,m},l∈{1,...,r}, where 1 6 ak,l 6 ak+1,l 6 nl
for all k ∈ {1, . . . ,m}, l ∈ {1, . . . , r}. The number of possibilities to fill
the lth column with respect to this requirement is given by(

nl +m− 1
m

)
= ((nl − 1)!)−1 · (m+ 1) · . . . · (m+ nl − 1) ,

which is a polynomial in m with leading coefficient ((nl− 1)!)−1 and
degree nl − 1. This can be seen as follows: Each ascending sequence
of m numbers in the range 1 to nl can be uniquely identified with
an ascending sequence of m different numbers in the range 1 to
nl + (m − 1). This can be done by adding the number k − 1 to the
number in position k, for all k ∈ {1, . . . ,m}.
The product of those numbers equals #Rm. �

Corollary. The number of non-zero Hibi relations, #HN, equals

n1 · . . . · nr
2

(
n1 · . . . · nr + 1 −

1
2r−1 (n1 + 1) · . . . · (nr + 1)

)
.

Proof. Let d := n1 · . . . · nr. The number of non-zero Hibi relations equals

d(d+ 1)
2

− #R2 =
d(d+ 1)

2
−

r∏
l=1

nl(nl + 1)
2

=
d

2

(
d+ 1 −

1
2r−1 (n1 + 1) · . . . · (nr + 1)

)
.
�

A general formulation of the next statement can be found in [HHO,
Theorem 6.38].

Theorem. The dimension of the projective Hibi variety equals
∑r
l=1 nl. The

degree equals the multinomial coefficient( ∑r
l=1 nl

n1 n2 · · · nr

)
.
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Proof. According to Subsection 2.1.7, the Hilbert function is given by

N0 → N0, m 7→
r∏
l=1

(
nl +m

m

)
.

The leading term of the Hilbert polynomial equals

( r∏
l=1

nl!
)−1
·m

∑r
l=1nl .

�

Remark. In the case of arbitrary finite distributive lattices L, we can use the fol-
lowing "trick" to identify the affine Hibi variety in the corresponding
projective space: From L, we may obtain another finite distributive
lattice L0 by adding a point 0 to L, which, with respect to the partial
order on L, is covered by the bottom element ⊥ of L:

. . . . . .

⊥

0

>

Figure 5.1: The lattice L, extended by an element 0.

Adding the point 0 has no effect on the Hibi relations (the variables
involved in a non-zero Hibi relation form the "corners" of a rhomb,
but 0 is not contained in a rhomb). Hence, one could consider the
join-meet ideal IL0 in the projective space P#L0−1. The affine Hibi
variety, defined by IL, equals those points of P#L0−1 which have the
form 1 : v, where v ∈ CL (the first position belongs to 0 ∈ L0).

5.5.3 The Vanishing Ideal

Here, we show that the vanishing ideal of the Hibi variety is not
larger than the join-meet ideal. To do so, we generalise [Lang, Satz
5.3.9]. These observations are useful to determine symmetries of
theta bodies in Section 6.1.
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Theorem. Let I ⊆ K[x1, . . . , xn] be an ideal with Gröbner basis G such that each
leading term LT(g), g ∈ G, is square-free. Then the vanishing ideal
of ZK(I) equals I, that is,

I = IK(ZK(I)).

Proof. Let t, r ∈ K[x1, . . . , xn] and m ∈ N. If t is a square-free term and rm

is divisible by t, then also r is divisible by t.
Case 1: K = R.
We show that I is a real ideal, so that the statement follows from the
Real Nullstellensatz Theorem 2.1.3.
Step 1: To show that I is real, we show that

∑s
t=1 g

2
t ∈ I with s ∈ N

and g1, . . . ,gs ∈ R[xa : a ∈ L] implies gt ∈ I for all t ∈ {1, . . . , s}.
Let us assume that this statement is not true by assuming g1 /∈ I.
Furthermore, we assume that there exists l ∈ {1, . . . , s} such that
g1, . . . ,gl /∈ I and gt ∈ I for all t ∈ {1, . . . , s} with t > l. We have
−g2

t ∈ I for all t ∈ {1, . . . , s} with t > l, which leads to
∑l
t=1 g

2
t ∈ I.

Step 2: For all t ∈ {1, . . . , l}, let 0 6= rt denote the normal form of gt
modulo G. Since gt − rt =: ht ∈ I for all t ∈ {1, . . . , l}, we obtain

l∑
t=1

g2
t =

l∑
t=1

(ht + rt)
2 =

l∑
t=1

(h2
t + 2htrt︸ ︷︷ ︸
∈I

) +

l∑
t=1

r2
t ∈ I.

Hence, 0 6=
∑l
t=1 r

2
t ∈ I.

Step 3: From Proposition 1.1.5 (ii), it follows that LT(r2
t) = LT(rt)2 for

all t ∈ {1, . . . , l}. Hence, we may assume that LT(
∑l
t=1 r

2
t) = LT(r1)

2.
Since G is a Gröbner basis, Theorem 1.2.3 (g) gives a polynomial
f ∈ G such that LT(

∑l
t=1 r

2
t) = LT(r1)

2 is divisible by LT(f). The
leading term of f is square-free. This implies that LT(r1) is divisible
by LT(f). This contradicts the premise that r1 is reduced modulo G.
Case 2: K = C.
We show that I is a radical ideal, so that the statement follows from
Hilbert’s Nullstellensatz Theorem 2.1.2.
Step 1: To show that I is a radical ideal, we show that gm ∈ I with
g ∈ C[xa : a ∈ L] and m ∈ N implies g ∈ I. We suppose that this
statement is not true by assuming g /∈ I.
Step 2: Let 0 6= r denote the normal form of g modulo G. Since
g− r =: h ∈ I, we obtain

gm = (h+ r)m =

m∑
s=0

(
m

s

)
hsrm−s =

m∑
s=1

(
m

s

)
hsrm−s

︸ ︷︷ ︸
∈I

+ rm ∈ I.
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Hence, 0 6= rm ∈ I.

Step 3: Proposition 1.1.5 (ii) implies LT(rm) = LT(r)m. Since G is a
Gröbner basis, Theorem 1.2.3 (g) gives a polynomial f ∈ G such that
LT(r)m is divisible by LT(f). The leading term of f is square-free.
This implies that also LT(r) is divisible by LT(f). This contradicts the
premise that r is reduced modulo G. �

Corollary. We have IL = IK(ZK(IL)), that is, the vanishing ideal of the Hibi
variety equals the join-meet ideal.

Proof. Let I := IL and let G be the set of all non-zero Hibi relations, which
is a Gröbner basis of I according to Theorem 5.3.4. Let f ∈ G. There
exist a,b ∈ L with a 6= b such that the leading term of f is given by
LT(f) = xa xb, which is a square-free term. �

Corollary. Let f ∈ K[xa : a ∈ L] be a non-zero Hibi relation and let I be the
principal ideal which is generated by f. Then we have I = IK(ZK(I)).

Proof. Let I := Id(f) and let G := {f}, which is a Gröbner basis of I. �

Corollary. In the case where L = {1, 2}2, we have ı(IL) = IR(ZR(ı(IL))), that is,
the vanishing ideal of the complex Hibi variety equals the complex-
join-meet ideal.

Proof. Let I := ı(IL) and let G be the set of all non-zero complex Hibi
relations, which is a Gröbner basis of I according to Example 5.4.1.
Let f ∈ G. Then there exist a,b ∈ L with a 6= b and t1, t2 ∈ {1, 2} such
that LT(f) = xa,t1 xb,t2 , which is a square-free term. �

It is open whether the last corollary holds for arbitrary lattices L, see
also Section 5.4.

5.6 Application to Tensor Products

According to Section 3.4, the product vectors in VK are characterised
by the join-meet ideal IN in K[xa : a ∈ N]. The idea is that everything
we know about IN or, alternatively, about a generating set of IN can
help to understand the structure of the product vectors.
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So far, the generating set we mostly focused on are the Hibi relations
HN. In this section, we want to focus on the PV-determinants DN.

First of all, we introduce some notions which will be helpful in the
following.

Afterwards, we show Theorem 5.6.5 which provides a formula
for the total number D(n1, . . . ,nr) := #DN of the non-zero PV-
determinants.

The idea of looking at the total number comes from an earlier phase
of this thesis. Indeed, in [Lang, Satz 5.3.5] a generating set of IN
is proposed whose total number turned out to be closely related
to the formula given in [Par] for the dimension of a so-called com-
pletely entangled subspace in VC. This relation will not be repeated
here, but it is a motivation to look closer at the total number of
other generating sets like the Hibi relations (see Corollary 5.5.2) or
the PV-determinants. Later, the approach of this chapter to under-
stand IN using the median basis has turned out to be more fruitful.
Nevertheless, the formula is provided here for further research.

5.6.1 A Notation for PV-Determinants

A PV-determinant in K[xa : a ∈ N] has the form

d := xa − xb = xa1 xa2 − xb1 xb2 ,

where a = (a1,a2),b = (b1,b2) ∈ N2/S2 with a ?←→ b.

If we look at d just with respect to its set of zeros, it makes no
difference whether we look at d or at −d. In this respect, we use the
following notation for d from Subsection 3.4.5:

a1,1 · · · a1,r b1,1 · · · b1,r

b2,1 · · · b2,r a2,1 · · · a2,r

where ak = (ak,1, . . . ,ak,r) and bk = (bk,1, . . . ,bk,r) for k ∈ {1, 2}. This
is a 2× 2 matrix in M2(N). It can be easily verified that d (together
with −d) belongs exactly to those 2 × 2 matrices with the entries
{a1,a2,b1,b2} where a1 and a2 (if different) are in different rows
and in different columns. The 2 × 2 matrices can be obtained by
interchanges of rows or columns, by transpositions of two entries on
opposite sides, or by rotations clockwise or counter clockwise.
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This notation points out that a PV-determinant can be interpreted as
the determinant of a 2× 2 submatrix of an unfolding of the tensor
product VK.

Some examples for PV-determinants can be found at the end of this
section.

5.6.2 A Group Action on the �adratic Terms

In the following, we define a group action of the abelian group
Z := ((Z2)

r,+) on N2/S2.

Let z ∈ Z. We can identify z with the set Az := {k ∈ {1, . . . , r} : zk = 1}.
Using the notions from Subsection 3.4.4, we write az := aAz for all
a ∈ N.

Now, for all (a1,a2) ∈ N2/S2, let

z.(a1,a2) := (b1,b2) ∈ N2/S2

with

(b1)z = (a1)z, (b2)z = (a2)z,
(b1)1−z = (a2)1−z, (b2)1−z = (a1)1−z,

that is, (b1,b2) emerges from (a1,a2) by interchanging the entries of
a1 and a2 in the positions which are determined by z. Indeed, this
is a group action, since it can be easily verified that 0 ∈ Z (and also
1 ∈ Z) define the identity on N2/S2 and for all a ∈ N2/S2 and for all
z1, z2 ∈ Z, we obtain

z1.(z2.a) = (z1 + z2).a.

We note also that z.a = (1 − z).a.

Hence, the group Z can be identified with the power set P({1, . . . , r}),
equipped with the symmetric difference 4 (which is, as usual, de-
fined by A4B := (A ∪ B) \ (A ∩ B) for subsets A,B ⊆ {1, . . . , r}). In
this respect, we write Az.(a1,a2) := z.(a1,a2).

5.6.3 The Support and the Stabiliser

Let a = (a1,a2) ∈ N2/S2, where ak = (ak,1, . . . ,ak,r) for k ∈ {1, 2}.

The following definition will be helpful to investigate the equivalence
class [a].
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Definition. The set Ca := {l ∈ {1, . . . , r} : a1,l = a2,l} ⊆ {1, . . . , r} of all positions in
which the entries of a1 and a2 are equal is called the coincidence set
of a and the set Sa := {1, . . . , r} \ Ca ⊆ {1, . . . , r} is called the support
of a. The number #Sa is called the length of the support.

The stabiliser Za of a ∈ L2/S2 under Z is given by

Za = {z ∈ Z : z.a = a},

see Subsection 3.2.2. Hence, Za is given by the subsets of the coin-
cidence set Ca and its complements. If the support is empty, then
Za = Z. Otherwise, Za is isomorphic to (Z2)

#Ca+1.

The group action of Z on N2/S2 is not faithful, since 0 and 1 are
contained in all stabilisers. On the other hand, since n1, . . . ,nr > 2,
for each z ∈ Z with 0 6= z 6= 1, there exist a ∈ N2/S2 such that
z.a 6= a. Thus, the intersection of the stabilisers equals K := {0, 1}.
The quotient group Z/K acts faithful on N2/S2, see Subsection 3.2.2.
The stabiliser (Z/K)a can be identified with the subsets of Ca. If the
support is not empty, (Z/K)a is isomorphic to (Z2)

#Ca . Otherwise, it
equals Z/K and is isomorphic to (Z2)

r−1.

The notions can be extended to PV-determinants:

Definition. Let b ∈ N2/S2 with a ?←→ b. Since a and b have the same coin-
cidence set C and the same support S := C

c , we refer to C as the
coincidence set of the PV-determinant d := xa − xb and we refer to S
as the support of d with length #S.

5.6.4 The Orbits

Let a = (a1,a2) ∈ N2/S2. The orbit Z.a of a under Z can be deter-
mined easily:

Proposition. We have Z.a = [a], that is, for any b = (b1,b2) ∈ N2/S2, the following
are equivalent:

(a) There exists z ∈ Z with z.a = b.
(b) a ?←→ b.
(c) M(a) = M(b).
(d) xa − xb is a PV-determinant.
(e) N(a1,a2) = N(b1,b2) (see Proposition 4.2.6).
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Proof. See Example 5.2.6.II and Example 5.2.6.III. �

Proposition. There is a one-to-one correspondence between Z.a and complemen-
tary partitions of Sa. Hence, with t := #Sa, we have

#Z.a = #[a] =

{
2t−1, t 6= 0,
1, t = 0.

Proof. If the support Sa of a is empty, then #[a] = 1. In all other cases, let
s0 ∈ Sa be arbitrary. Each element in Z.a can be identified with a
set A ∈ P({1, . . . , r}) with the following property: A ⊆ Sa and s0 /∈ A.
Now, let A ′ ⊆ {1, . . . , r} such that A and A ′ are a complementary
partition of the support, that is, A ∪ A ′ = Sa. Hence, Z.a can be
identified with (Z2)

t−1, if t > 1, and with (Z2)
0, if t = 0. �

5.6.5 The Total Number of the PV-Determinants

Now, we want to determine D(n1, . . . ,nr).

For all t ∈ {0, . . . , r}, let Dt,p denote the set of all non-zero PV-
determinants whose support has length t.

Lemma. If t = 0, then we have #Dt,p = 0. Otherwise, we have

#Dt,p =
dim(VK)

2
· (2t−1 − 1) ·

( ∑
M⊆{1,...,r}

#M=t

∏
k∈M

(nk − 1)
)

.

Proof. Step 1: For all a ∈ N2/S2, let Da,p denote the set of all non-zero
PV-determinants xa − xb, where b ∈ [a].
Step 2: Now, let a = (a1,a2) ∈ N2/S2 with support length t. If t = 0,
then we obtain #[a] = 1 and #Da,p = 0. If t > 0, then we recall that
#[a] = 2t−1. Hence, we have

#Da,p =

{
2t−1 − 1, t 6= 0,
0, t = 0.

Step 3: Let (N2/S2)t denote the set of all elements in N2/S2 whose
support has length t.
Step 4: According to Proposition 5.6.4.II, both #[a] and #Da,p depend
only on t. Thus, the preliminary statements give

#Dt,p = #(N2/S2)t · #Da,p.
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Step 5: The formula is true in the case t = 1 so that we can assume
that t > 2. The entries of a1 and a2 coincide on the coincidence set
Ca and differ on the support Sa. There are

∏
k∈Ca nk possibilities to

coincide on Ca and 1
2 ·
∏
k∈Sa nk(nk − 1) possibilities to differ on Sa.

Hence, we obtain

#(N2/S2)t =
∑

M⊆{1,...,r}
#M=t

1
2
·
(∏
k∈M

nk(nk − 1)
)
·
∏

k∈{1,...,r}\M

nk

=
1
2
·
r∏
k=1

nk ·
( ∑
M⊆{1,...,r}

#M=t

∏
k∈M

nk(nk − 1)
)

.

Step 6: We recall that dim(VK) =
∏r
k=1 nk. From Proposition 5.6.4.II,

it follows that

#Dt,p = #(N2/S2)t · #Da,p

=
2t−1 − 1

2
· dim(VK) ·

( ∑
M⊆{1,...,r}

#M=t

∏
k∈M

(nk − 1)
)

.

�

Now, we can determine the total number of the non-zero PV-deter-
minants:

Theorem. We have

D(n1, . . . ,nr) =
dim(VK)

4
·
(

1 − 2 dim(VK) +

r∏
k=1

(2nk − 1)
)

.

In the case where n1 = · · · = nr =: n, we obtain

D(n, . . . ,n) =
nr

4
· (1 − 2nr + (2n− 1)r) .

Proof. Let D := D(n1, . . . ,nr). We first note that D =
∑r
t=2 #Dt,p. Using

Lemma 5.6.5, it follows that

D =
dim(VK)

2
·
r∑
t=2

( ∑
M⊆{1,...,r}

#M=t

∏
k∈M

(nk − 1)
)
· (2t−1 − 1)

︸ ︷︷ ︸
=:A

.
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In the following, we show A = B for

B :=
1
2

( r∏
k=1

(2nk − 1)
)
− dim(VK) +

1
2

by comparison of coefficients. For each subset M ⊆ {1, . . . , r}, we
denote the coefficient of

∏
k∈M nk in A and B by nM,A and nM,B,

respectively.
Constant term: An elementary computation (?) gives

n∅,A =

r∑
t=2

(
r

t

)
(−1)t(2t−1 − 1) (?)

=
1
2
(−1)r +

1
2
= n∅,B.

Leading term: We obtain immediately n{1,...,r},A = 2r−1 − 1 = n{1,...,r},B.
Variables: Let s ∈ {1, . . . ,n}. The coefficient of n{s},A is equal to the
coefficient of ns in

r−1∑
t=1

( ∑
M⊆{1,...,r}\{s}

#M=t

(∏
k∈M

(nk − 1)
)
· (ns − 1)

)
· (2(t+1)−1 − 1).

An elementary computation (?) gives

n{s},A =

r−1∑
t=1

(
r− 1
t

)
(−1)t(2t − 1) (?)

= (−1)r−1 = n{s},B.

The remaining terms: Let 2 6 s < r and M0 ⊆ {1, . . . , r} with #M0 = s.
The coefficient nM0,A is equal to the coefficient of

∏
k∈M0

nk in the
polynomial

r∑
t=s

( ∑
M⊆{1,...,r}

#M=t
M0⊆M

∏
k∈M

(nk − 1)
)
· (2t−1 − 1).

An elementary computation (?) gives

nM0,A =

r∑
t=s

( ∑
M⊆{1,...,r}

#M=t
M0⊆M

(−1)t−s
)
· (2t−1 − 1)

=

r−s∑
t=0

∑
M⊆{1,...,r}\M0

#M=t

(−1)t(2t+s−1 − 1)
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=

r−s∑
t=0

(
r− s

t

)
(−1)t(2t+s−1 − 1)

(?)
=

1
2
· 2s · (−1)r−s = nM0,B.

The coefficients of all terms coincide, so we obtain A = B. This
finishes the proof. �

5.6.6 Some Examples

Example. In this example, we consider the bipartite tensor product Km ⊗Kn.
The non-zero PV-determinants are given by

a1,1 a1,2 a1,1 a2,2

a2,1 a1,2 a2,1 a2,2

where a1,1,a2,1 ∈ Km, a1,2,a2,2 ∈ Kn with a1,1 6= a2,1 and a1,2 6= a2,2,
and we have

D(m,n) =
mn

2
· (m− 1)(n− 1).

Example. In this example, we determine the non-zero PV-determinants for the
tensor product K2⊗K2⊗K2. We first determine all PV-determinants
whose support has length 3. Let a := (1 1 1, 2 2 2). According to
Proposition 5.6.4.I, we obtain

[a] = {(1 1 1, 2 2 2), (2 2 1, 1 1 2),
(2 1 2, 1 2 1), (1 2 2, 2 1 1)} .

According to Lemma 5.6.5, the number of all non-zero PV-determinants
whose support has length 3 is #D3,p = 12.

Secondly, we consider the PV-determinants whose support has
length 2, that is, the set D2,p. There are 3 possibilities to choose
the coincidence set and 2 possibilities to choose the entry on the
coincidence set. This gives #D2,p = 3 · 2 · 2 = 12.

The following diagrams show the D(2, 2, 2) = 24 non-zero PV-deter-
minants. In each diagram, the colours show the coincidence set S
and the partition R, C of the support:

S yellow,
R green and red,
C orange and blue.
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The set D3,p has 12 = 2 · 6 elements:

1 1 1

1 1 2

2 2 1

2 2 2

1 2 2

1 2 1

2 1 2

2 1 1

1 1 1

1 2 1

2 1 2

2 2 2

2 2 1

2 1 1

1 2 2

1 1 2

1 1 1

2 1 1

1 2 2

2 2 2

2 1 2

1 1 2

2 2 1

1 2 1

The set D2,p has 12 = 2 · 6 elements as well:

1 1 1

1 2 1

1 1 2

1 2 2

2 2 2

2 1 2

2 2 1

2 1 1

1 1 1

1 1 2

2 1 1

2 1 2

2 2 2

2 2 1

1 2 2

1 2 1

1 1 1

2 1 1

1 2 1

2 2 1

2 2 2

1 2 2

2 1 2

1 1 2

Thus, the Hibi relations for the lattice N = {1, 2}3 are

x2 2 1 x1 1 2 − x1 1 1 x2 2 2,
x1 2 1 x2 1 2 − x1 1 1 x2 2 2,
x2 1 1 x1 2 2 − x1 1 1 x2 2 2

and

x1 1 2 x1 2 1 − x1 1 1 x1 2 2,
x2 1 1 x1 1 2 − x1 1 1 x2 1 2,
x1 2 1 x2 1 1 − x1 1 1 x2 2 1,
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x2 2 1 x2 1 2 − x2 1 1 x2 2 2,
x2 2 1 x1 2 2 − x1 2 1 x2 2 2,
x2 1 2 x1 2 2 − x1 1 2 x2 2 2.

The 9 polynomials are a reduced Gröbner basis of the join-meet
ideal IN with respect to the graded reverse lexicographical term
order, see Theorem 5.3.4. Together with the norming polynomial
1 − x2

1 1 1 + x
2
2 1 1 + x

2
1 2 1 + x

2
2 2 1 + x

2
1 1 2 + x

2
2 1 2 + x

2
1 2 2 + x

2
2 2 2, they are a

reduced Gröbner basis of the norm-join-meet ideal JN.

Example. In this example, we consider the tensor product K5 ⊗K5 ⊗K5 ⊗K5.
Let a := (1 2 3 4, 3 3 4 5) ∈ N2/S2 and z := (1, 1, 0, 0) ∈ Z. We have
z.a = (3 3 3 4, 1 2 4 5), so that

xa − xz.a = x1 2 3 4 · x3 3 4 5 − x1 2 4 5 · x3 3 3 4

is a non-zero PV-determinant (the colours are explained above):

1 2 3 4

1 2 4 5

3 3 3 4

3 3 4 5



Chapter 6

THE HIBI BODY AND ITS THETA

BODIES

This chapter deals with the approximation of the Hibi body by theta bodies. Our
aim is to obtain witnesses for the first theta body in order to outline the geometry
of the Hibi body. In Chapter 7 and in Chapter 8 we apply the main results of this
chapter to the projective unit ball in real tensor products.

Section 6.1 deals with the geometry of the theta bodies. For instance, we show
that the Hibi body induces a norm, which we call the Hibi norm. In the real
case also the corresponding theta bodies induce norms, which we call the Hibi
theta norms. They generalise the tensor theta norms from [Sto] or from [RS2]. This
statement appears also independently in [Lang].

In general, each theta body is a so-called projected spectrahedron, see [BPT,
Theorem 5.60]. This approach to theta bodies uses so-called moment matrices.
We have investigated it before in [Lang, Satz 4.3.3]. It can also be used for a
numerical approach to theta bodies using so-called semidefinite programming,
see [Lang, Kapitel 7] and [Sto]. In Section 6.2, we focus on a direct approach
which fits our particular purpose rather than the approach with moment matrices.
In particular, we show that the 1-sums of squares modulo the (complex)-norm-
join-meet ideal are a projected spectrahedron, see Theorem 6.2.2.

In Section 6.3 we obtain witnesses for the first theta body in the real case. The
main results are Theorem 6.3.6 and Corollary 6.3.6, which are essential for Chapter
7 and for Chapter 8. For this purpose, we introduce the notions join-meet partition
and splitting function.

In Section 6.4, we determine the inner radius of the first complex theta body. The
main result is Theorem 6.4.2. It shows that in general, the first complex theta
body is relatively "far" from the Hibi body.

Section 6.5 provides a brief introduction to error-correcting codes and their
relation to join-meet partitions.



156 Chapter 6 – The Hibi Body and its Theta Bodies

Now, we refer to the notions of the previous chapters, especially from Table 5.2.

Let L be a non-empty finite distributive lattice. Let LR := L and let LC := L× {1, 2}.
Let n := #LK.

Case K = R:
The join-meet ideal I := IL is generated by the non-zero Hibi relations HL. The
norm-join-meet ideal J := JL is generated by HL and the norming polynomial uL.
Let V := ZR(JL) = ZR(HL) ∩ (RL)1. The Hibi body is given by H := co(V) ⊆ RL.
Let k ∈ N. The kth theta body Tk := Tk(J) of J is a superset of the Hibi body H.

Case K = C:
The complex-join-meet ideal I := ILC is generated by the non-zero complex
Hibi relations HLC . The complex-norm-join-meet ideal J := JL,C is generated
by HLC and the complex norming polynomial uLC . Let V := ı−1(ZR(JL,C)) =

ZC(HL) ∩ (CL)1. The Hibi body is given by H := co(V) ⊆ CL.
Let k ∈ N. The kth complex theta body Tk := TC

k(J) = ı−1(Tk(J)) of J is a superset
of the Hibi body H.
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6.1 The Hibi Norm and Hibi Theta Norms

This section deals with the geometry of the Hibi body and its theta
bodies. We outline some cases where they can be regarded as the
unit balls of a norm, we determine the outer radius of a theta body,
and we focus on the symmetry group of both the Hibi body and its
theta bodies.

6.1.1 The Hibi Norm

Theorem. The Hibi body H is the unit ball of a norm. Moreover, the set V
fulfils the criteria V0 - V3 from Subsection 2.4.6 with respect to the
convex body H.

Proof. To show that H induces a norm, it is sufficient to show that it is
balanced and absorbing (see Section 2.4).

Statement 1: For each phase ϕ ∈ K1 and for each z ∈ V , we have
ϕ · z ∈ V , that is, V is balanced (and thus, H is balanced). In particu-
lar, 0 ∈ H.

Proof : We first note that V = ZK(IL) ∩ (KL)1. Since (Kn)1 is invariant
under multiplication with ϕ, it is left to show that the Hibi variety
ZK(IL) is invariant under multiplication with ϕ: A Hibi relation f
is homogeneous, so for each z ∈ KL, we have f(z) = 0, if and only
if f(ϕ · z) = 0. In particular, the Hibi variety is invariant under
multiplication with −1, so 0 ∈ H.

Statement 2: H is absorbing.

Proof : The proof has two parts.

Part 1: From Theorem 4.2.2.II, we know that L is isomorphic to a
ring of sets, that is, a sublattice of a boolean lattice. Hence, we may
assume that there exists r ∈ N such that L is a sublattice of the direct
product L ′ := {1, 2}r. Let L ′R := L ′ and L ′C := L ′ × {1, 2}. Let J ′ be the
ideal in R[xa : a ∈ L ′K] which is generated by HL ′K and uL ′K .

Part 2: Let B := co(ZR(J)) and let B ′ := co(ZR(J
′)). We already know

that B ′ (or ı−1(B ′) in the case where K = C) is equal to the projective
unit ball in K2⊗· · ·⊗K2 (with r tensor factors). Hence, 0 is an interior
point of B ′. Let P be the orthogonal projection from RL ′K onto RLK .
We show that P(B ′) ⊆ B. In this case, 0 is also an interior point of B.
To show this, we state at first that B ′ = co(A ′), where A ′ :=



158 Chapter 6 – The Hibi Body and its Theta Bodies

ZR(HL ′K) ∩ (RL ′K)1, and B = co(A), where A := ZR(HLK) ∩ (RLK)1.
Now, it suffices to show P(A ′) ⊆ B. Let Q be the projection from
R[xa : a ∈ L ′K] onto R[xa : a ∈ LK] defined as follows: Q is linear
and any term in R[xa : a ∈ L ′K] is mapped onto itself, if it is also
in R[xa : a ∈ LK], and on zero, if not. It can be easily verified that
Q is multiplicative. Since L is a sublattice of L ′, it follows that
HLK ⊆ Q(HL ′K). Hence, if z ′ ∈ ZR(HL ′K), then P(z ′) ∈ ZR(HLK). From
statement 1 and since P is a contraction, we obtain P(A ′) ⊆ B.

Statement 3: V fulfils the criteria V0 - V3.

Proof : With the previous statements, V is normed, balanced and
generates H. Also, V separates points, since each basis vector ea,
where a ∈ L, is contained in V . �

Definition. The norm which is induced by the Hibi body is called the Hibi norm.
It is denoted by ‖ · ‖H.

The outer radius of H equals 1, see Definition 2.4.6. Hence, the Hibi
norm is stronger than the Euclidean norm. In the case where L = N,
it equals the projective norm on the tensor product Kn1⊗· · ·⊗Knr .

The inner radius of H depends on the lattice L. The following
chapters deal with the inner radius of the projective unit ball.

6.1.2 Theta Bodies for the Hibi Body

The (complex) theta bodies Tk converge against the Hibi body H, see
Theorem 2.5.5:

∞⋂
k=1

Tk = H.

The following statement is an adaption of [Lang, Satz 6.1.2].

Proposition. The kth (complex) theta body Tk is a convex body with interior point
0 and outer radius 1.

Proof. Theorem 6.1.1 implies that Tk is absorbing. Now, we show that the
outer radius of Tk is 1. Let z = (za)a∈LK ∈ Rn be a unit vector, that is,∑
a∈LK z

2
a = 1. We show that the polynomial lz = 1−

∑
a∈LK za ·xa is
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a 1-sum of squares modulo uLK , and, hence, modulo J: We consider
the sum of squares s := 1

2 ·
∑
a∈LK(xa − za)

2 and obtain

s− lz =
1
2
·
∑
a∈LK

x2
a +

1
2
·
∑
a∈LK

z2
a −
∑
a∈LK

za · xa − lz

=
1
2
·
∑
a∈LK

x2
a −

1
2
=

1
2
·
(∑
a∈LK

x2
a − 1

)
=

1
2
· uLK ∈ J.

Now, the statement follows from lz(z) = 0. �

Hence, we have V ⊆ T1 ∩ (CL)1. For arbitrary lattices L, it is an open
question whether equality holds.

6.1.3 The Symmetry Group of a Theta Body

Proposition. We have ext(H) = V , that is, SymKL(H) = SymKL(V).

Proof. Since H is the convex hull of V , we have ext(H) ⊆ V . On the other
hand, since the Euclidean unit ball is strictly convex, each point in V
is an extreme point of H. �

Proposition. In the case where K = R, we have

SymRL(H) ∩ U#L(R) ⊆ SymRL(Tk)

for all k ∈ N.

Proof. With Corollary 5.5.3.I, the homogeneous join-meet ideal I is a vanish-
ing ideal. Hence, Proposition 2.5.7.II can be applied with J := J, V0 :=

ZR(I) and C := H, which gives SymRL(H) ∩ U#L(R) ⊆ SymRL(Tk). �

The complex case will be discussed in Subsection 6.4.3.

In the tensor product case, the symmetry group of B1,π can be
determined explicitly, see Proposition 3.3.5.

6.1.4 Hibi Theta Norms

The following statement is an adaption of [Sto] and [Lang].

Theorem. In the case where K = R, the kth theta body Tk induces a norm.
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Proof. It is left to show that the kth theta body Tk is balanced. From
Proposition 6.1.3.II and since H is balanced, it follows that z ∈ Tk
implies −z ∈ Tk. �

This leads to the following definition:

Definition. The norm which is induced by Tk in the case where K = R is called
the kth Hibi theta norm. It is denoted by ‖ · ‖Tk .

Each Hibi theta norm is stronger than the Euclidean norm and
weaker than the Hibi norm. In the tensor product case, it says that
the projective norm can be approximated by a chain of cross norms,
reaching from the Hilbert-Schmidt unit ball up to the projective unit
ball.

Up to now, we cannot guarantee that Tk is balanced in the case where
K = C. In fact, the proof of the last theorem is based on an explicit
Gröbner basis of the underlying ideal, see Theorem 5.5.3, and the
difficulty of finding a Gröbner basis of the complex-join-meet ideal
is outlined in Section 5.4.

6.2 The First Theta Body and Spectrahedra

We know from the last section that 0 is an interior point of the first
(complex) theta body T1. Thus, according to Proposition 2.5.4, D1 is
a real prepolar of T1(J), that is, we have D

◦
1 = T1(J), with

D1 = D1(J) = {b ∈ Rn : lb is 1 -sos-mod J}.

The aim of this section is to characterise D1 as a projected spectrahe-
dron.

6.2.1 A Direct Approach to the First Theta Body

Lemma. We have

D1 =

{
(〈wa,w〉)a∈LK :

∃ t ∈ N, ∃w,wα ∈ (Rt)1 :
∑
a,b∈LK
a6=b

〈wa,wb〉 xaxb ∈ I

}
.
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Proof. We recall that the set C1 := C1(J) of all affine functionals in the
polynomial ring R[xa : a ∈ LK] which are 1 -sos-mod J is given by
C1 = {λ · lb : b ∈ D1, λ > 0}. Hence, for all b ∈ RLK , we have b ∈ D1 if
and only if lb ∈ C1.
The proof is divided into several parts. We first give a necessary and
a sufficient condition on a 1-sum of squares to be an affine functional
modulo J. To do this, a polynomial s ∈ R[xa : a ∈ LK] which is a
1-sum of squares has the form

s =

t∑
q=1

h2
q

where h1, . . . ,ht ∈ R[xa : a ∈ LK] are affine functionals. Let hq =

wq +
∑
a∈LK wq,a · xa with wq,wq,a ∈ R. Let w := (wq)

t
q=1 and

wa := (wq,a)
t
q=1. Then

s =

t∑
q=1

w2
q + 2

t∑
q=1

∑
a∈LK

wq,awq · xa +
t∑
q=1

∑
a,b∈LK
a6=b

wq,awq,b · xaxb

+

t∑
q=1

∑
a∈LK

w2
q,a · x2

a

= 〈w,w〉+ 2
∑
a∈LK

〈wa,w〉 · xa︸ ︷︷ ︸
affine-linear part

+
∑
a,b∈LK
a6=b

〈wa,wb〉 · xaxb

︸ ︷︷ ︸
mixed part

+
∑
a∈LK

〈wa,wa〉 · x2
a︸ ︷︷ ︸

quadratic part

.

Statement 1: s is an affine functional modulo J, if and only if the
following statements hold:

(i) There exists c > 0 such that 〈wa,wa〉 = c for all a ∈ LK, and
(ii)
∑

a,b∈LK
a6=b
〈wa,wb〉 · xaxb ∈ I.

In this case, the affine functional is given by

l ′ := c+ 〈w,w〉+ 2
∑
a∈LK

〈wa,w〉 · xa .

Proof : In J are no affine functionals except 0. On the one hand,
each polynomial in the second homogeneous part of the (complex)
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join-meet ideal does not contain any "quadratic" term x2
a, a ∈ L. On

the other hand, each polynomial in the ideal which is generated by
the (complex) norming polynomial uLK does not contain any "mixed"
term xaxb with a,b ∈ L, a 6= b, and each "quadratic" term has the
same coefficient. Hence, s is an affine functional modulo J if and
only if h :=

∑
a,b∈LK
a6=b
〈wa,wb〉 · xaxb lies in the (complex) join-meet

ideal and c := 〈wa,wa〉 is constant for all a ∈ LK. In this case, we
have

s =
(
c+ 〈w,w〉+ 2

∑
a∈LK

〈wa,w〉 · xa
)
+ h+ c · uLK

and l ′ = s+ (−h− c · uLK) is an affine functional and 1 -sos-mod J.

Statement 2: The set C1∩{lb : b ∈ RLK} is given by all affine functionals
of the form

1 +
∑
a∈LK

〈wa,w〉 · xa,

where t ∈ N, w,wa ∈ (Rt)1 and
∑

a,b∈LK
a6=b
〈wa,wb〉 · xaxb ∈ J.

Proof : A polynomial l ′ ∈ C1 has the form from statement 1. It is
constant, if and only if 〈wa,w〉 = 0 for all a ∈ LK. Now, let l ′ be not
constant, that is, c > 0 and m := 〈w,w〉 > 0. Let d := 1/(c+m) and

l := d · l ′ = 1 +
∑
a∈LK

2 〈wa,w〉
c+m

· xa

= 1 +
∑
a∈LK

2
√
c

c+m
〈w ′a,w〉 · xa,

where w ′a :=
√

1/c ·wa are unit vectors. Let L denote the set of all
affine functionals of this form. It follows that C1 ∩ {lb : b ∈ RLK} = L.

Now, we develop an easier expression. Let

b := −

(
2
√
c

c+ 〈w,w〉
〈w ′a,w〉

)
a∈LK

.

Then l = lb, and the distance of l to zero equals 1/‖b‖. With w ′ :=√
1/m ·w, which is a unit vector, we obtain

b = −

(
2
√
cm

c+m
· 〈w ′a,w ′〉

)
a∈LK

=
2
√
cm

c+m
· b ′,
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where b ′ = −(〈w ′a,w ′〉)a∈LK . Fixing b ′, we may consider b = b(m)

for m > 0.

For different values of m, the hyperplanes with respect to b(m) are
parallel, and the distance to zero is given by

1
‖b‖

=
c+m

2
√
cm
· 1
‖b ′‖

.

The function f : R+ → R+, m 7→ c+m
2
√
cm

is minimal for m = c, and
f(c) = 1. It follows that the hyperplane for b(c) = b ′ is closest to
zero, which belongs to the polynomial

1 +
∑
a∈LK

〈w ′a,w ′〉 · xa,

where w ′a and w are unit vectors, and where∑
a,b∈LK
a6=b

〈w ′a,w ′b〉 · xaxb ∈ J.

Hence, we have shown that the polynomial lb ′ has the desired
form. It is left to show that any polynomial lλb ′ , where λ ∈ [0, 1] (in
particular, this includes all polynomials lb(m) for different values
of m), has the desired form. This can be realised by choosing t
sufficiently large:

lλb
′
= 1 + λ

∑
a∈LK

〈w ′a,w ′〉 · xa = 1 +
∑
a∈LK

〈w̃ ′a, w̃ ′〉 · xa,

where w̃ ′a := (w ′a, 0)t ∈ (Rt+1)1, w̃ ′ := (λw ′, (1 − λ2)
1
2 )t ∈ (Rt+1)1,

which satisfies
∑

a,b∈LK
a6=b
〈w̃ ′a, w̃ ′b〉 · xaxb ∈ J.

Statement 3: With the preceding statements, for any b ∈ RLK , we
have lb ∈ C1 if and only if l−b ∈ C1. Hence, using statement 2, the
assertion is true. �

6.2.2 Theta Bodies and Spectrahedra

Definition. Let m ∈ N. A subset of Sm(R) is called a spectrahedron if it equals
the intersection of the cone of the positive semidefinite matrices
with finitely many affine subspaces (that is, with finitely many affine
hyperplanes). The image of a spectrahedron under an orthogonal
projection is called a projected spectrahedron.
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A (projected) spectrahedron is a convex set.

The optimisation of the values of a linear functional over a spec-
trahedron is called a semidefinite program. It is part of the field of
non-linear optimisation. There exist several algorithms and imple-
mentations to solve semidefinite programs. Omitting the objective
function, the problem of finding an optimal value turns into a fea-
sibility problem, that is, the question whether the spectrahedron
is empty or, alternatively, whether a given symmetric matrix lies
in the spectrahedron. More information about spectrahedra and
semidefinite programming can be found in [BPT].

The following theorem states that the set D1 is a projected spectra-
hedron. It implies also that it is sufficient to consider n + 1 sum
of squares to describe an affine functional which is 1 -sos-mod J (we
recall that n = #LK).

Theorem. There exists a spectrahedron S̃ ⊆ Sn+1(R) such that

D1 =

{
b ∈ RLK : ∃ B̃ ∈ S̃ with B̃ =

(
? b

bt 1

)}
.

Proof. Step 1: Let m ∈ N. The linear subspace R[x1, . . . , xm]2 of all polyno-
mials with degree two is (linearly) isomorphic to the set Sm(R) of
all symmetric matrices by identifying xkxl with 1

2(∆k,l + ∆l,k) for all
k, l ∈ {1, . . . ,n}, where ∆k,l ∈Mm(R) is a matrix unit (all entries are
zero except the entry in position (k, l), which equals 1).

Step 2: Let I be a homogeneous ideal in R[x1, . . . , xm]. Then the
homogeneous part of R[x1, . . . , xm] of degree two, R[x1, . . . , xm]2, is
the direct sum of I2, the homogeneous part of I of degree two, and
its orthogonal complement. In particular, I2 can be characterised
in R[x1, . . . , xm]2 by finitely many hyperplanes. Hence, I2 equals a
linear subspace LI of Sm(R).
Step 3: Positive semidefinite matrices are exactly the Gram matrices:
For all t ∈ N and A ∈Mt,m(R), the matrix AtA ∈ Sm(R) is positive
semidefinite. On the other hand, each positive semidefinite matrix
in Sm(R) can be written as AtA, where A ∈ Mm(R) is a quadratic
matrix.

Step 4: Let LJ denote the affine subspace in Sn(R) of all symmetric
matrices whose diagonal elements are equal to 1.
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Step 5: Now, let

S̃ :=

{
B̃ =

(
B b

bt 1

)
∈ Sn+1(R) : B̃ > 0,B ∈ LI ∩ LJ

}
.

Then S̃ is a spectrahedron.
Step 6: Let b ∈ D1. According to Lemma 6.2.1, there exists t ∈ N and
w,wα ∈ (Rt)1 with b = (〈wa,w〉)a∈LK and∑

a,b∈LK
a6=b

〈wa,wb〉 xaxb ∈ I2. (6.1)

Now, we consider the matrix A := (· · · |wa| · · · )a∈LK ∈Mt,n(R). Then
the matrix B := AtA = (〈wa,wb〉)a,b∈LK is positive semidefinite.
With Ã := (A |w) ∈Mt,n+1(R), also the matrix

B̃ := ÃtÃ =

(
B b

bt 1

)
is positive semidefinite. Since wα is an unit vector, B ∈ LI. Because
of (6.1), B ∈ LJ. Hence, B̃ ∈ S̃.
On the other hand, let B̃ =

(
B b
bt 1

)
∈ S̃. Since B̃ > 0, there exists

Ã ∈ Mn+1(R) with ÃtÃ = B̃. With Ã = (A |w) and A = (wa)a∈LK ,
wherew,wα ∈ (Rn+1)1, we have b = (〈wa,w〉)a∈LK . From B ∈ LI∩LJ,
we obtain 〈wa,wa〉 = 1 and

∑
a,b∈LK
a6=b
〈wa,wb〉 xaxb ∈ I2. Also, we

have 〈w,w〉 = 1. Hence, b ∈ D1. �

Corollary. There exists a projected spectrahedron S ⊆ Sn(R) such that

D1 =
{
b ∈ RLK :
b = Atw : A ∈Mn+1,n(R),AtA ∈ S,w ∈ (Rn+1)1

}
.

Proof. Step 1: Let S be the projection of S̃ onto Sn(R), that is,

S :=

{
B : ∃b ∈ Rn with

(
B b

bt 1

)
∈ S̃
}

.

Then S is a projected spectrahedron.
Step 2: Let b ∈ D1. Then there exists B̃ ∈ S̃ with B̃ =

(
B b
bt 1

)
. Let

A ∈ Mn+1,n(R) and w ∈ (Rn+1)1 such that B = AtA and b = Atw.
Then B ∈ S.
On the other hand, let A ∈Mn+1,n(R) such that B := AtA ∈ S. Then
there exists b ′ ∈ Rn with

(
B b ′

b ′t 1

)
∈ S̃. But for any w ∈ (Rn+1)1, also(

B b
bt 1

)
∈ S̃, where b := Atw, that is, b ∈ D1. �
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Example. Let L = {1, 2}2. In the case where K = R, the spectrahedron S̃ consists
of all positive semidefinite matrices of the form

1 1 1 2 2 1 2 2
1 1 1 0 0 α b1

1 2 0 1 −α 0 b2

2 1 0 −α 1 0 b3

2 2 α 0 0 1 b4

b1 b2 b3 b4 1

where α ∈ R and bk ∈ R for all k ∈ {1, 2, 3, 4}. With α := 1, the matrix

1 0 0 1 1
0 1 −1 0 0
0 −1 1 0 0
1 0 0 1 1
1 0 0 1 1

lies in S̃. It corresponds to the support functional 1 − x1 1 − x2 2 to the
vector 1

2(e1 1 + e2 2).

In the case where K = C, the spectrahedron S̃ consists of all positive
semidefinite matrices of the form

1 1 1 1 2 1 2 1 1 2 2 1 1 1 2 1 2 2 2 1 2 2 2 2
1 1 1 1 0 0 α 0 0 0 β b1

1 2 1 0 1 −α 0 0 0 −β 0 b2

2 1 1 0 −α 1 0 0 −β 0 0 b3

2 2 1 α 0 0 1 β 0 0 0 b4

1 1 2 0 0 0 β 1 0 0 −α b5

1 2 2 0 0 −β 0 0 1 α 0 b6

2 1 2 0 −β 0 0 0 α 1 0 b7

2 2 2 β 0 0 0 −α 0 0 1 b8

b1 b2 b3 b4 b5 b6 b7 b8 1

,

where α,β ∈ R and bk ∈ R for all k ∈ {1, . . . , 8}. A concrete example
follows in Section 6.4.
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6.2.3 Optimising the Inner Radius

Let ρ(B) denote the spectral radius of a real matrix B. The inner
radius of the first theta body can be determined by optimising the
spectral radius over S:

Proposition. The inner radius of T1 equals

r(T1) = (sup{‖b‖ :
(

? b
bt 1

)
∈ S̃})−1

= (sup{ρ(B) : B ∈ S})− 1
2

Proof. The operator norm of a linear map A : Rn → Rm with respect to the
Euclidean norm is given by

‖A‖op = sup{‖Av‖ : v ∈ (Rn)1}

= sup{〈Av,w〉 : v ∈ (Rn)1,w ∈ (Rm)1} = ‖At‖op.

The operator norm of B = AtA equals the spectral radius ρ(B) of B.
In particular, we obtain ‖B‖op = sup{〈Bv, v〉 : v ∈ (Rn)1} = ‖A‖2

op.
Now, let 0 6= A ∈Mn+1,n(R) and B = AtA. For all w ∈ (Rn+1)1 with
0 6= b = Atw, we obtain

‖b‖ = ‖Atw‖ 6 ‖A‖op.

The distance of lb to zero equals 1/‖b‖ > 1/‖A‖op. Furthermore, we
obtain ‖Atw0‖ = ‖A‖op =

√
ρ(B), where w0 is a unit eigenvector of

B with respect to the eigenvalue ρ(B). Hence, we obtain

‖B‖op = sup
{
‖b‖2 :

(
B b
bt 1

)
> 0
}

.

Now, let B ∈ S. From Corollary 6.2.2, it follows that the set

PB :=
{
Atw : A ∈Mn+1,n(R),AtA = B,w ∈ (Rn+1)1

}
lies in D1. Now, the second equality follows from

sup {‖b‖ : b ∈ PB} =
√
ρ(B).

�

In general, the 2-norm cannot be optimised over a given set with
a linear objective function. Hence, unfortunately, it seems that
the optimisation of a linear functional over S or over S̃ cannot be
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expressed as a semidefinite program (the operator norm would be
less problematic, see [Sto, Example C.3]).

The identity matrix 1n is always in the spectrahedron S, so that each
polynomial lb, where b ∈ (Rn)1, is 1 -sos-mod J.

Remark. Let B ∈ Mn(R) be positive semidefinite. For practical purposes, it
can be useful to attain ρ(B) as follows: Let A :=

√
DS, where D is a

diagonal matrix and S is an orthogonal matrix such that B = StDS.
Let k ∈ {1, . . . ,n} such that the entry (k,k) of D equals ρ(B). Let
w := (0, . . . , 0, 1, 0, . . . , 0)t, where the entry 1 is in position k, and let
b := Atw. Then ‖A‖op =

√
ρ(B) = ‖b‖. In particular, b equals the

largest row of A with respect to the Euclidean norm.

6.2.4 A Special Case

Here, we focus on a special class of polynomials, which will be
important in the next section where we deal with the case K = R.

Proposition. Let P be a proper partition of the set LK and let s : LK → {1,−1} be
an arbitrary function. If the polynomial∑

T∈P

∑
a,b∈T
a6=b

s(a) s(b) · xa xb

lies in I, then for all T0 ∈ P, the support functional 1−
∑
a∈T0

s(a) ·xa
to the vector y := 1

#T0

∑
a∈T0

s(a) · ea is 1 -sos-mod J. Hence, in this
case, the inner radius of T1 is smaller or equal than r−1/2, where r is
the relative size of P.

Proof. Let m ∈ N be the width of P and let p : P→ {1, . . . ,m} be a bijective
function. Let T0 ∈ P, let

w0 := (0, . . . , 0, 1
↑ position p(T0)

, 0, . . . , 0)t ∈ Rm

and for all a ∈ LK, let

wa := (0, . . . , 0, s(a)
↑ position p(Ta)

, 0, . . . , 0)t ∈ Rm,

where Ta is the part of P with a ∈ T . Now, we consider the matrices
A := (wa)a∈L and Ã := (A|w0). Since ÃtÃ ∈ S̃, Theorem 6.2.2
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implies that the polynomial lb with b := Atw0 is 1 -sos-mod J. This
polynomial equals the support functional of y := 1

#T0

∑
a∈T0

s(a) · ea,
since ly = 1 −

∑
a∈T0

s(a) · xa = lb. The inner radius of T1(J) is
smaller or equal than ‖y‖ = (#T0)

−1/2. �

6.2.5 Algorithmic Approach with SageMath

We have implemented the tensor product case with the computer
algebra system SageMath, see [Sage], which is based on the program-
ming language Python, to describe the first theta body as a projected
spectrahedron. (The location of the code can be found on page xxi. To
run the code without installing Python, you can use the SageMathCell,
which is accessible at https://sagecell.sagemath.org/).
The title of the program is:

A Convex Relaxation of the Projective Unit Ball, Real or Complex: The
First Theta Body as a Projected Spectrahedron.

The first part of the program deals with the computation of the
following sets for L = N = {1, . . . ,n1}× · · · × {1, . . . ,nr}, where r > 2
and nt ∈ {2, . . . , 9}:

- (Complex) non-zero Hibi relations HNK

- (Complex) norming polynomial uNK

- Gröbner basis of J

The second part of the program is based on Theorem 6.2.2. The key
features are:

1.a Given a tensor y, we can check whether the support functional
ly is 1 -sos-mod J with the aid of semidefinite programming
(see Theorem 6.2.2). If the answer is positive, then ly is a
witness functional for the projective unit ball, and ‖y‖ is an
upper bound on the inner radius of the first theta body T1(J),
and, hence, of the projective unit ball B1,π.

1.b In a second step, if the answer is positive, then we can check
according to Proposition 6.2.3 whether the solution can be
improved with respect to the length of y.

2. Alternatively, we can search for vectors y whose length is as
small as possible such that ly is 1 -sos-mod J with the aid of
random test vectors.

https://sagecell.sagemath.org/
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6.3 The First Theta Body in the Real Case

In general, it is not clear how to choose the partition P and the
function s such that Proposition 6.2.4 gives an upper bound on the
inner radius of the Hibi body. In this section, we outline a sufficient
condition on P and s in the case where K = R. It will be essential
for Chapter 7 and for Chapter 8 where we obtain explicit bounds on
the inner radius of the projective unit ball.

6.3.1 Join-Meet Partitions

Definition. A proper partition P of L is called a join-meet partition of L if for all
T ∈ P and for all a,b ∈ T , we have

(i) For all (c,d) ∈ L2/S2 with (c,d) ?←→ (a,b), there exists T ′ ∈ P

with c,d ∈ T ′.
(ii) If a 6= b, then L(a,b) is no chain.

Examples for join-meet partitions follow soon.

Let T denote the set of all join-meet partitions of L. It is partially
ordered by refinement. There exists a common lower bound, the
partitions whose parts are the atoms {a} with a ∈ L. In particular, T
is a meet-semilattice. In general, it is not a join-semilattice (we will
see this below in Example 6.3.4.IV).

Proposition. Let P be a join-meet partition of L. Then we have:
(i) Let X := ∪T∈P T 2. The set X/S2 is the disjoint union of all

equivalence classes [(a,b)], where T ∈ P and a,b ∈ T .
(ii) If T ∈ P and a,b ∈ T with a 6= b, then #L(a,b) is divisible by

four and #[(a,b)] is divisible by two.

Proof. We first show (i): Let (c,d) ∈ [(a,b)]. Since P is a join-meet partition,
there exists T ′ ∈ P with c,d ∈ T ′, that is, (c,d) ∈ X/S2.

Now, we show (ii): In this case, #L(a,b) is divisible by four (see
Subsection 4.2.6). Hence, the cardinality of

[(a,b)] = {(c,d) : a∧b = c∧d,a∨b = c∨d}

is divisible by two. �
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6.3.2 Optimisation Problems

Since the join-meet partitions do not form a join-semilattice in gen-
eral, a partition which is maximal for the relative size does not have
to be minimal with respect to the width, and vice versa. Now, we
discuss those optimisation problems for boolean lattices:

Proposition. Let n ∈ N and Bn := P({1, . . . ,n}).
(i) There exists a join-meet partition Pn of Bn with two parts of

the same length. In particular, Pn is maximal with respect to
the relative size and minimal with respect to the width. If n
is even, then ⊥ and > have the same colour; otherwise, they
have different colours.

(ii) If n > 3 is odd, then there exists a join-meet partition P ′n of Bn
with four parts of the same length such that ⊥ and > have the
same colour.

Proof. We first look at the lattice N := {1, 2, 3}n. For all a = (a1, . . . ,an) ∈ N
and for all t ∈ {1, 2, 3}, let p(a, t) denote the parity of t in a, that is,

p(a, t) = #{s ∈ {1, . . . ,n} : as = t} mod 2.

Now, let

ρ : N → F3
2

a 7→ (p(a, 1), p(a, 2), p(a, 3)).

This function will play a major role in Chapter 8.

Statement 1: The pre-images under ρ are a join-meet partition of N.
Proof : Let a,b ∈ N with ρ(a) = ρ(b). Let c,d ∈ L(a,b) with c∧d =

a∧b and c∨d = a∨b. Since c and d emerge from a and b by
an interchange of the entries of a and b in specified positions, we
conclude that ρ(c) = ρ(d).

Step 2: Bn can be considered as the boolean sublattice N(a,b) of N
with a := (1, . . . , 1) and b := (2, . . . , 2). It can be easily proved that the
restriction Pn of the partition from statement 1 to Bn is a join-meet
partition, since Bn = N((1, . . . , 1), (2, . . . , 2)). We obtain

ρ(1, . . . , 1) =

{
(0, 0, 0),n even,
(1, 0, 0),n odd, and
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ρ(2, . . . , 2) =

{
(0, 0, 0),n even,
(0, 1, 0),n odd,

which proves (i).
Step 3: To show (ii) in the case where n > 3 and n is odd, we
consider the boolean sublattice N(c,d) of N for c := (2, 1, 1, . . . , 1)
and d := (3, 3, 2, . . . , 2). Let P ′n denote the restriction of the partition
from statement 1 to N(c,d). It can be easily verified that P ′n is a
join-meet partition. We obtain ρ(c) = ρ(d) = (0, 1, 0), that is, c and
d have the same colour. The boolean sublattice {1, 2}n−3 of N(c,d)
(we consider the last n− 3 coordinates) can be partitioned with the
parts G := ρ−1(0, 0, 0) and U := ρ−1(1, 1, 0). For each a ∈ G and for
each b ∈ U, we obtain

(2, 1, 1,b), (3, 3, 2,b), (2, 1, 2,a), (3, 3, 1,a) ∈ ρ−1(1, 0, 0),
(2, 1, 1,a), (3, 3, 2,a), (2, 1, 2,b), (3, 3, 1,b) ∈ ρ−1(0, 1, 0),
(2, 3, 2,a), (3, 1, 1,a), (2, 3, 1,b), (3, 1, 2,b) ∈ ρ−1(0, 0, 1),
(2, 3, 2,b), (3, 1, 1,b), (2, 3, 1,a), (3, 1, 2,a) ∈ ρ−1(1, 1, 1).

Hence,

#ρ−1(1, 0, 0) = #ρ−1(0, 1, 0) = #ρ−1(0, 0, 1) = #ρ−1(1, 1, 1) = 2n−2.
�

6.3.3 Spli�ing Functions

Let B be a finite boolean lattice. As above, the complement of a ∈ B
is denoted by a ′.

Definition. A function s : B → {−1, 1} is called a splitting function for B if there
exists a bijection β : B→ B such that β(b) ′ = β(b ′) and s(b)s(b ′) =
−s(β(b))s(β(b ′)) for all b ∈ B.

Proposition. Let s : B→ {−1, 1} be a function. The following are equivalent:
(a) s is a splitting function for B.
(b) The parts

S+B := {b ∈ B : s(b) = s(b ′)} and
S−B := {b ∈ B : s(b) 6= s(b ′)}

have the same length.
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Proof. If s is non-constant, then the sets S+B and S−B are a complementary
partition of B. For all b ∈ B, the complement b ′ lies in the same part
of this partition.
We first show (a) ⇒ (b). If s is a splitting function for B, then
β(S+B) ⊆ S−B and β(S−B) ⊆ S+B , that is, #S+B = #S−B .
Now, we show (b) ⇒ (a). The bijection β can be constructed as
follows: There exist complementary partitions S+,1

B , S+,2
B of S+B and

S−,1
B , S−,2

B of S−B in parts of the same length such that b and b ′ lie in
different sets, for all b ∈ B. Now, we choose an arbitrary bijection
β1
B : S

+,1
B → S−,1

B . The function β2
B : S

+,2
B → S−,2

B , b 7→ β1
B(b

′) ′, is also a
bijection. Hence, the following diagram commutes:

S+,1
B

′
−→ S+,2

B

↓ β1
B ↓ β2

B

S−,1
B

′
−→ S−,2

B

Let β be piece-wise defined by β1
B, β2

B, (β1
B)

−1 and (β2
B)

−1. �

Definition. Let P be a join-meet partition of L. A function s : L→ {−1, 1} is called
a splitting function for P, if for all T ∈ P and for all a,b ∈ T with
a 6= b, the restriction of s to L(a,b) is a splitting function for L(a,b).
In this case, the join-meet partition P is called splitting.

6.3.4 Some Examples

A partition of L can be indicated by a "numbering" or "colouring"
of the Hasse diagram of L, whereas two elements are assigned to
the same number (or colour, respectively) if and only if they belong
to the same part. In the case of a join-meet partition, neighbouring
elements have different colours (or numbers). A splitting function
could be indicated by a colouring or by an additional minus sign,
whenever an element is assigned to −1.

The following three examples show different join-meet partitions
which have a splitting function.

Example. Figure 6.1 on page 174 shows three different join-meet partitions of
the lattice D18, each with a splitting function. In each case, the parts
are indicated by numbers, and a splitting function is indicated by a
red colouring, whenever an element is assigned to −1, and a black
colouring, whenever an element is assigned to 1.
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(b)

1
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3 1 3

6 2 2 5

5 1 6

7 3 8

9

(c)

Figure 6.1: Three different join-meet partitions of D18.
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Figure 6.2: A splitting join-meet partition of {1, 2, 3}2.
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Figure 6.3: A splitting join-meet partition of {1, 2, 3}3.
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Figure 6.4: A splitting join-meet partition of {1, 2, 3, 4}2.
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Figure 6.5: A splitting join-meet partition of the tesseract {1, 2}4.
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4
� � �

4 4 4
� � � �

4 4 4
� � �

4

Figure 6.6: A least upper bound, but no join-meet partition.

Example. Figure 6.2 shows a Hasse diagram of the lattice {1, 2, 3}2. Figure 6.3
shows a Hasse diagram of the lattice {1, 2, 3}3, which looks like a three-
dimensional grid. Here, the partial order is indicated by arrows.
In each example, the parts of a join-meet partition are indicated by
colours, and a splitting function is indicated by a minus sign and by
bold text whenever an element is assigned to −1. The background
for these examples can be found in Chapter 8.

Example. Figure 6.4 shows a Hasse diagram of the lattice {1, 2, 3, 4}2. Figure
6.5 shows a diagram (not a Hasse diagram) of the lattice {1, 2}4,
reminding of a tesseract, which is a four-dimensional cube. The join-
meet partitions and the splitting functions are indicated according
to the last example. The motivation for these examples can be found
in Chapter 7.

Example. This example shows that the join-meet partitions of a given lattice
are, in general, no join-semilattice. Figure 6.6 on page 176 shows the
least upper bound of the partitions (a) and (b) in Figure 6.1. The
two parts of this partition are indicated by the shapes 4 and �. It is
no join-meet partition and there is no coarser partition which is a
join-meet partition. Hence, the join-meet partitions (a) and (b) have
no least upper bound.

Up to now, it is an open question whether there is always a splitting
function for a given join-meet partition.
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6.3.5 Spli�ing Join-Meet Partitions and the Join-Meet Ideal

Lemma. Let s : L → {−1, 1} be an arbitrary function. Let P be a join-meet
partition of L. Then the following are equivalent:

(a) For all T ∈ P and for all a,b ∈ P, a 6= b, the polynomial

fsa,b :=
∑

(c,d)∈[(a,b)]

s(c) s(d) · xc xd

lies in the join-meet ideal I.
(b) For all T ∈ P and for all a,b ∈ P, a 6= b, we have∑

(c,d)∈[(a,b)]

s(c) s(d) = 0.

(c) s is a splitting function for P.

Proof. The equivalence of (a) and (b) follows from Subsection 5.5.1.
Now, we show the equivalence of (b) and (c). Let T ∈ P and let
a,b ∈ P, a 6= b. Let L ′ := L(a,b) and let

S+L ′ := {c ∈ L ′ : s(c) = s(c ′)} and
S−L ′ := {c ∈ L ′ : s(c) 6= s(c ′)}

(also here, c ′ denotes the complement of c in L ′). In what follows,
for all c ∈ L ′, we write c ′ for the complement of c in L ′ (that is, c ′ is
the uniquely defined element with a∧b = c∧c ′ and a∨b = c∨c ′).
In particular, we have

[(a,b)] = {(c, c ′) : c ∈ S+L ′} ∪ {(d,d ′) : d ∈ S−L ′}.

By definition, for all c ∈ S+L ′ , we have s(c) s(c ′) = 1, and for all
d ∈ S−L ′ , we have s(d) s(d ′) = −1. Hence, it follows that∑

(c,d)∈[(a,b)]

s(c) s(d) (6.2)

=
1
2

∑
c∈S+

L ′

s(c) s(c ′)︸ ︷︷ ︸
=1

+
1
2

∑
d∈S−

L ′

s(d) s(d ′)︸ ︷︷ ︸
=−1

=
1
2

( ∑
c∈S+

L ′

1 −
∑
d∈S−

L ′

1
)

=
1
2

(
#S+L ′ − #S−L ′

)
.
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Now, we see the following: If s is a splitting function for P, then
the parts S+L ′ and S−L ′ have the same length (see Proposition 6.3.3).
Hence, expression (6.2) equals zero. This proves (c). On the other
hand, if expression (6.2) equals zero for all T ∈ P and for all a,b ∈ P,
a 6= b, then s is a splitting function for P according to Proposition
6.3.3. This proves (b). �

6.3.6 Sos Polynomials and Spli�ing Join-Meet-Partitions

Here, we come to the most important result of this section, saying
that a splitting join-meet partition leads to explicit witnesses for T1

in the real case.

Theorem. Let P be a join-meet partition and let s : L → {−1, 1} be a splitting
function for P. Let T0 ∈ P and let

y :=
1

#T0

∑
a∈T0

s(a) · ea ∈ RL.

Then the support functional

ly = 1 −
∑
a∈T0

s(a) · xa

is a 1 -sos-mod J-polynomial.

Proof. We show that the polynomial

d :=
∑
T∈P

∑
a,b∈T
a6=b

s(a)s(b) · xaxb

lies in I. Then the statement follows from Proposition 6.2.4.
Let Q be the set of all equivalence classes [(a,b)], where there exists
T ∈ P with a,b ∈ T and a 6= b. Since P is a join-meet partition and
according to Proposition 6.3.1, the disjoint union of the elements
of Q equals the set P := {(a,b) ∈ (∪T∈PT 2)/S2 : a 6= b}. Hence, we
obtain

d = 2
∑

(a,b)∈P

s(a)s(b) · xaxb

= 2
∑

[(a,b)]∈Q

( ∑
(c,d)∈[(a,b)]

s(c)s(d) · xcxd
)



The First Theta Body in the Real Case 179

= 2
∑

[(a,b)]∈Q

fsa,b.

According to Lemma 6.3.5, the polynomial fsa,b lies in the ideal I.
Hence, also d lies in I. �

The witness hyperplanes of the last theorem can be used to obtain
upper bounds on the inner radius of the Hibi body:

Corollary. Let r ∈ N be the relative size of P. Then the inner radius r(H) of the
Hibi body H satisfies the inequality

r(H) 6 r(T1) 6 1/
√
r.

Proof. For any T ∈ P, the distance of ly to zero equals ‖y‖ = 1/
√

#T and is
an upper bound on the inner radius. �

Remark. An explicit decomposition of ly as a sum of squares modulo J is
given as follows: At first, a short computation shows that there exists
a polynomial d ∈ I such that∑

T∈P

(∑
a∈T

s(a) · xa
)2

=
∑
T∈P

(∑
a∈T

s(a)2 · x2
a +
∑
a,b∈T
a6=b

s(a)s(b) · xaxb
)

=
∑
a∈L

x2
a + d.

Let py := 1 − ly =
∑
a∈T0

s(a) · xa. A sum of squares is given by

q := l2y +
∑
T∈P
T 6=T0

(∑
a∈T

s(a) · xa
)2

= 1 − 2py +
∑
T∈P

(∑
a∈T

s(a) · xa
)2

= 2 − 2py +
∑
a∈L

x2
a − 1︸ ︷︷ ︸

=uL

+d

= 2ly + uL + d.

The polynomial h := −uL − d lies in J. Hence, ly = 1/2 · (q+ h) is a
sum of squares modulo J.
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6.3.7 Application to the Projective Unit Ball

The following statement is essential for Chapter 7 and Chapter 8. It
shows how theta bodies can be used to calculate the projective norm
of a tensor.

Proposition. Let y be a tensor in a real finite-dimensional tensor product with
0 < ‖y‖π 6 1 and let k ∈ N such that the support functional ly to y
is k -sos-mod J (for instance, this is the case if y has the form from
Theorem 6.3.6). Then ‖y‖π = 1.

Proof. Let us assume that d := ‖y‖π < 1. Now, on the one hand, we have
1/d · y ∈ B1,π ⊆ Tk. On the other hand, we have

ly

( 1
d
· y
)
= 1 −

〈
1
d
· y,

y

‖y‖2

〉
= 1 −

1
d
< 0,

which implies 1/d · y /∈ Tk. This is a contradiction. �

The following statement can be found in [Lang] and in [RS2]:

Proposition. Let m,n ∈ N with n 6 m. The projective unit ball B1,π in the tensor
product Rm ⊗ Rn equals its first theta body T1.

Proof. We consider the tensor y := 1
n
(e1 ⊗ e1 + . . . + en ⊗ en).

Step 1: A join-meet partition P of the indexing tuples L = {1, . . . ,m}×
{1, . . . ,n} is given by the parts

{1 1, . . . , nn},
{ab, ba} for all a,b ∈ {1, . . . ,n} with a 6= b,
{ab} for all a ∈ {n+ 1, . . . ,m}, b ∈ {1, . . . ,n}.

A splitting function s for P is given by

s(ab) =

{
1, a > b,
−1, a < b,

where a ∈ {1, . . . ,m}, b ∈ {1, . . . ,n}. Now, with Theorem 6.3.6, the
support functional ly = 1 − (x1 1 + . . . + xnn) to y is a sum of squares
modulo J. (In the case m = n, this partition is a special case of the
parity partition which will be defined in Chapter 8.)
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Step 2: Let z ∈ Rm ⊗ Rn with ‖z‖π = 1. With the Schmidt decompo-
sition, see Subsection 3.3.1, there exist orthogonal maps U ∈ Um(R),
V ∈ Un(R) and σ1, . . . ,σn ∈ [0, 1] with

∑n
k=1 σk = 1 such that

z = (U⊗ V)
( n∑
k=1

σk · ek ⊗ ek
)

.

The tensor z0 :=
∑n
k=1 σk · ek ⊗ ek (whose projective norm equals 1)

is a zero of ly. Hence, z0 lies in the boundary of T1. With Proposition
6.1.3.II, also z lies in the boundary of T1. Hence, B1,π and T1 coincide.
(In the case m = n, we refer also to Theorem 3.3.8.) �

6.4 The First Complex Theta Body

In this section, we consider the case where K = C. Using Theorem
6.2.2, it is possible to determine the inner radius of the first complex
theta body.

6.4.1 An Upper Bound on the Inner Radius

Proposition. Let a,b ∈ L such that L(a,b) is no chain. Then the support functional

ly = 1 − xa,1 − xb,1

to y := 1
2(ea,1 + eb,1) is 1 -sos-mod J. Hence, 1/

√
2 is an upper bound

on the inner radius of the first complex theta body T1.

Proof. Step 1: The boolean lattice L(a,b) is no chain. Case 1.1: a and b are
comparable. Then there exist c,d ∈ L(a,b) which are not comparable
such that L(a,b) = L(c,d). Case 1.2: a and b are not comparable. In
this case, let c := a∧b and d := a∨b.
Step 2: Since either (a,b) or (c,d) is a chain in L2/S2, the polynomial

d := 2 ((xa,1xb,1 − xc,1xd,1) − (xa,2xb,2 − xc,2xd,2))

is a multiple of a complex Hibi relation, that is, it lies in J.
Step 3: Now, we show that ly is a sum of squares modulo J. A simple
computation shows that ly = 1/2 · (s+ h), where

s :=
(

1 − xa,1 − xb,1

)2
+
(
xa,2 − xb,2

)2
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+ (xc,1 − xd,1)
2 + (xc,2 + xd,2)

2 +
∑

e∈L\{a,b,c,d}

(x2
e,1 + x

2
e,2)

is a sum of squares and

h := 1 −
∑
e∈L

(x2
e,1 + x

2
e,2) − d

lies in J. The distance of ly to zero equals ‖y‖ = 1/
√

2, and the inner
radius of T1 is smaller or equal than ‖y‖. �

Example. The projective norm of the GHZ-vector ξGHZ = 1/
√

2 · (e1 1 1 + e2 2 2) in
C2⊗C2⊗C2 equals

√
2, see Subsection 3.3.3. With a := 1 1 1 and b :=

2 2 2, Proposition 6.4.1 implies that the boundary of the first complex
theta body touches the projective unit sphere at 1

2(e1 1 1 + e2 2 2).

6.4.2 The Inner Radius of the First Complex Theta Body

To determine the inner radius of the first complex theta body, we
deal with the spectral radius of a specific block matrix.

Lemma. Let m ∈ N and let Q,R ∈Mm(R) with R = Rt or R = −Rt. Let r > 0.
Let B ∈M2m(R) such that the spectrum of B lies in [0,∞) and such
that B has the form

B =

(
Q R

Rt −Q+ r1m

)
.

Then ρ(B) 6 r.

Proof. We first note that it suffices to show the statement in the case where
r = 1.
Statement 1: Let r = 1 and λ ∈ R. Then λ is an eigenvalue of B if and
only if 1 − λ is an eigenvalue of B.
Proof : If v = ( v1

v2 ) is an eigenvector of Bwith respect to the eigenvalue
λ, then

Bv =

(
Qv1 + Rv2

Rtv1 −Qv2 + v2

)
= λ

(
v1

v2

)
.

If R is symmetric, then it follows that

B

(
v2

−v1

)
=

(
Qv2 − Rv1

Rv2 +Qv1 − v1

)
= (1 − λ)

(
v2

−v1

)
,
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and if R is antisymmetric, then it follows that

B

(
v2

v1

)
=

(
Qv2 + Rv1

−Rv2 −Qv1 + v1

)
= (1 − λ)

(
v2

v1

)
,

that is, 1 − λ is also an eigenvalue of B.
Step 2: If B > 0, then statement 1 implies that 0 6 λ 6 1 for each
eigenvalue λ of B. �

The most important case for us occurs when B is positive semidefinite
(that is, Q is symmetric).

Theorem. The inner radius of the first complex theta body TC
1 (J) equals 1/

√
2.

Proof. According to Proposition 6.4.1, the inner radius of TC
1 (J) is smaller

or equal than 1/
√

2. We show with Proposition 6.2.3 and Corollary
6.2.2 that it cannot be smaller. To do this, we show that the spectral
radius of any B ∈ S is smaller or equal than 2.
The polynomials in C[xa : a ∈ L] can be identified with symmetric
2n× 2n matrices via

· · · b, 1 · · · · · · b, 2 · · ·
...

...
...

a, 1 · · · xa,1xb,1 · · · · · · xa,1xb,2 · · ·
...

...
...

...
...

...
a, 2 · · · xa,2xb,1 · · · · · · xa,2xb,2 · · ·

...
...

...

,

where L is ordered arbitrary and LC is ordered by c, 1 > d, 1 > c, 2 >
d, 2 (whenever c > d, where c,d ∈ L). According to Proposition 5.4.6,
a basis of the second homogeneous part (ı(I))2 of ı(I) is given by
the real and the imaginary parts of the non-zero Hibi relations in
R[xa : a ∈ L]. We recall that

VRe,Re + VIm,Im = LH(xa,1xb,1, xa,2xb,2 : a,b ∈ L) and
VRe,Im = LH(xa,1xb,2 : a,b ∈ L)

(see Subsection 5.4.6). The projection of (ı(IL))2 onto VRe,Re + VIm,Im

lies in the linear hull of

{xa,1xb,1 − xa,2xb,2 : a,b ∈ L,a 6= b},
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and the projection of (ı(IL))2 onto VRe,Im lies in the linear hull of

{xa,1xb,2 + xa,2xb,1 : a,b ∈ L,a 6= b}.

Hence, an element of (ı(IL))2 has the form(
Q0 R0

R0 −Q0

)
, (6.3)

where Q0,R0 ∈Mn(R) are symmetric matrices and the diagonal of
Q0 is zero. Now, let B ∈ S. The main diagonal elements of B are
equal to 1, and the other elements of B have the form (6.3). Hence, B
has the form

B =

(
Q ′0 R0

R0 −Q ′0 + 21n

)
,

where Q ′0 := Q0 + 1n. From the previous lemma, it follows that the
spectral radius of B is not larger than 2. �

Example. A matrix B in the spectrahedron S which corresponds to the polyno-
mial 1 − xa,1 − xb,1 from Proposition 6.4.1 is given by

B :=

(
Q 0
0 −Q+ 21n

)
with

Q :=

a b a∧b a∨b · · ·
a 1 1
b 1 1
a∧b 1 −1
a∨b −1 1

... 1

(up to the order of the rows and columns), see also Example 6.2.2.
Letting A := 1/

√
2B, w := 1/

√
2 (1, 1, 0, . . . , 0)t and b := Atw, we obtain

B = AtA and lb = 1 − xa,1 − xb,1.

6.4.3 The First Complex Theta Body in a Special Case

Now, we can show that the projective unit ball in C2 ⊗ C2 equals the
first complex theta body.
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Theorem. In the case where K = C and L = {1, 2}2, the first complex theta body
is exact, that is, T1 = H.

Proof. Statement 1: We have ı(SymCL(H)) ⊆ SymRLC (Tk(J)) for all k ∈ N.
Proof : With Corollary 2.2.10, we have ı(SymCL(H)) ⊆ SymRLC (ı(H)).
From Corollary 5.5.3.III, it follows that the homogeneous complex-
join-meet ideal I is a vanishing ideal. Hence, Proposition 2.5.7.II can
be applied with J := J, V0 := ZR(I) and C := ı(H), which gives

SymRLC (ı(H)) ∩ U#LC(R) ⊆ SymRLC (Tk(J)).

Finally, let V := V0 ∩ (CL)1 and let A ∈ SymCL(V) (according to
Proposition 6.1.3.I, we have SymCL(V) = SymCL(H)). Since V contains
the vectors e1,1, e1,2, e2,1, e2,2, which form an orthonormal basis of CL,
we conclude that A is unitary, and ı(A) is orthogonal (see Corollary
2.2.10).
Statement 2: Each boundary point of H is also a boundary point of
T1, which yields H = T1.
Proof : (The following arguments can also be found in the proof of
Proposition 6.3.7.II.) We have H = B1,π. The vector 1

2(e1⊗e1 +e2⊗e2)

is contained in a maximal face F0 of B1,π. According to Proposition
6.4.1, F0 is contained in a face W0 of T1. Let F be a maximal face of
B1,π, see Theorem 3.3.8. With the < (see also Theorem 3.3.4), there
exists a symmetry U ∈ SymCL(H) with U(F0) = F ⊆ U(W0). Now,
statement 1 says that U(W0) is a subset of the boundary of T1. Hence,
the maximal faces of B1,π are contained in the boundary of T1. �

Up to now, it is not clear whether Theorem 6.4.3 can be generalised.
Indeed, it is based on Example 5.4.1 and on the Schmidt decomposi-
tion. Previous discussions suggest that a generalisation might not be
straightforward.

6.5 Join-Meet Partitions and Codes

In this section we discuss the relation of join-meet partitions to
error-correcting codes. To do this, we first introduce basic notions
related to (linear) codes according to the standard literature such as
[Bet], [Ebe] or [MS] (non-linear codes). See also textbooks on sphere
packings such as [CS]. We then show in Theorem 6.5.2 that each part
of a join-meet partition of indexing tuples can be considered as a
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(in general non-linear) code. Secondly, we deal with linear codes to
provide the basic notions for Theorem 8.4.6.

Let F be a finite field.

6.5.1 Codes

Definition. A code C of length n ∈ N is a non-empty subset of Fn. In the case
where F = F2, it is called a binary code. If C is a linear subspace of
the vector space Fn, it is called a linear code. The elements of C are
called codewords.

Let v ∈ Fn. The weight wt(v) of v is the number of non-zero entries
in v. For all v,w ∈ Fn, the Hamming distance d(v,w) of v and w is
defined by d(v,w) := wt(v −w). The minimum distance d(C) of the
code C is defined as the minimum of d(v,w), ranging over v,w ∈ C
with v 6= w (in the case where C has just one codeword, the minimum
distance is defined as 0). Thus, d(C) is the largest number d ∈ N0

with the property that any two different vectors differ in at least d
positions. The minimum distance d(w,C) of w ∈ Fn to C is defined as
the minimum of d(v,w), ranging over v ∈ C.

A linear code in Fn with dimension k ∈ N0 and minimum distance
d ∈ N0 is called a (n,k,d)-code or a (n,k)-code.

Since the Hamming distance is a sum of copies of the discrete metric,
it follows that Fn, equipped with the Hamming distance, is a metric
space.

Given a codeword v ∈ C and an arbitrary element b ∈ Fn, which
is called noise, then each position where b has a non-zero entry is
called an error of w := v+ b with respect to v. Hence, the number of
errors of w with respect to v equals wt(b). Now, one can ask for a
codeword ṽ ∈ C, such that d(w,C) = d(w, ṽ) =: m. If ṽ is uniquely
determined and equals v, we say that w can be corrected by C with
respect to v. If v + b can be corrected for all codewords v ∈ C and
for all noises b ∈ Fn with wt(b) 6 m with respect to v, we say that
C can correct m errors.

Now, it can be easily seen that a code C with #C > 2 and minimum
distance d := d(C) can correct m (and at most m) errors, where m
is defined by d = 2m+ 1 for d odd and by d = 2(m+ 1) for d even,
see [Bet, page 6].
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Example. The binary repetition code C := {(0, 0, 0), (1, 1, 1)} ⊆ F3
2 has minimum

distance d(C) = 3 and can correct 1 error. For instance, C can
correct (0, 1, 0) with respect to (0, 0, 0) since d((0, 1, 0), (0, 0, 0)) = 1
and d((0, 1, 0), (1, 1, 1)) = 2. Figure 6.7 shows this code (orange) as a
subset of F3

2 (grid). Those elements in F3
2\C which can be corrected

with respect to (0, 0, 0) are coloured in blue and those which can be
corrected with respect to (1, 1, 1) are coloured in green.

111

000

010

001

100

101

110

011

Figure 6.7: A binary repetition code.

6.5.2 Join-Meet Partitions and Codes

We now outline that join-meet partitions can be related to codes.

Let ñ, r > 2 and let N := {1, . . . , ñ}r be the indexing tuples for the
tensor product Rñ ⊗ · · · ⊗ Rñ. We can embed the set {1, . . . , ñ} in a
finite field. This gives the following relationship to codes:

Theorem. Each part of a join-meet partition P of N is a (in general non-linear)
code C of length r with d(C) > 2.

Proof. Let T ∈ P. If a,b ∈ T with a 6= b, then a and b are not comparable
according to the definition of a join-meet partition, so their entries
differ in at least two positions. �

Example. Each part of the join-meet partitions in Example 6.3.4.II and Ex-
ample 6.3.4.III is a code with minimum distance 2, but it cannot
correct errors. A join-meet partition of N = F4

2 is given by the parts
{a,a + (1, 1, 1, 1)} for all a ∈ F4

2. Each part (for instance, the part
{(0, 0, 0, 0), (1, 1, 1, 1)}) is a code with minimum distance 4, which can
correct 1 error.
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6.5.3 Optimising the Dimension of a Linear Code

There is another relation of join-meet partitions to codes which is
completely different from the one just mentioned.

In Subsection 8.4.6, we will be interested in binary linear codes
in Fn whose minimum distance does not fall below 3 and whose
dimension is as large as possible. These codes help us to find join-
meet partitions whose relative size is as large as possible.

A related problem is the following: Given n and k, one can ask for
linear (n,k)-codes whose minimum distance is as large as possible.
The following tables Table 6.1, Table 6.2 and Table 6.3 on pages
189 and 190 base on the tables on pages 742 and 743 in [Bet]. For
some given lengths n and dimensions k, they show the maximal
possible d ∈ N0 such that there exists a (n,k,d)-code. Values which
are unknown are omitted. An implementation of the underlying
algorithm from Anton Betten is available under
https://github.com/abetten/orbiter.

For instance, following the tables, there exists a (13, 9, 3)-code. On the
other hand, they do not show whether there exists a (13,k ′,d ′)-code
with k ′ > 10 and d ′ > 3.

In what follows, we will briefly discuss linear codes to characterise
those codes that solve the optimisation problem.

https://github.com/abetten/orbiter
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n \ k 1 2 3 4 5 6 7 8 9 10
4 4
5 5 3
6 6 4 3
7 7 4 4 3
8 8 5 4 4
9 9 6 4 4 3
10 10 6 5 4 4 3
11 11 7 6 5 4 4 3
12 12 8 6 6 4 4 4 3
13 13 8 7 6 5 4 4 4 3
14 14 9 8 7 6 5 4 4 4 3
15 15 10 8 8 7 6 5 4 4 4
16 16 10 8 8 8 6 6 5 4 4
17 17 11 9 8 8 7 6 6 5 4
18 18 12 10 8 8 8 7 6 6
19 12 10 9 8 8 8 7 6 5
20 11 10 9 8 8 8 7 6
21 10 10 8 8 7
22 10 9 8 8
23 10 9 8
24 10

Table 6.1: Optimal binary linear codes.
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n \ k 11 12 13 14 15 16 17 18 19
15 3
16 4
17 4 3
18 4 4 3
19 4 4 3
20 5 4 3
21 6 5 4 3
22 7 6 5 4 3
23 8 7 6 5 4 3
24 8 8 6 4 3
25 8 4

Table 6.2: Optimal binary linear codes (cont.).

n \ k 20 21 22 23 24 25 26
25 3
26 4 3
27 4 3
28 4 3
29 4 3
30 4 3
31 4 3
32 4

Table 6.3: Optimal binary linear codes (cont.).
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6.5.4 Generator Matrices of Linear Codes

Let C be a linear (n,k)-code. We first show that it is not necessary to
compare each codeword pair to find d(C).

Proposition. Let C 6= {0}. The minimum distance of C is the minimum weight:

d(C) = min(wt(c) : c ∈ C \ {0}).

Proof. See [Bet, Corollary 1.2.8]: In the case where C has only one codeword
(that is, C = {0}), d(C) is defined by 0 = wt(0). Now, let #C > 2 and
v,w ∈ C. According to linearity, v − v = 0 ∈ C and w − v =: z ∈ C,
that is, d(v,w) = d(v− v,w− v) = d(0, z) = wt(z). �

A k×n matrix Γ ∈Mk,n(F) whose rows contain a basis of C is called
a generator matrix of C. Therefore, if we consider the vectors in Fn
and in Fk as row vectors, we have C = {v · Γ : v ∈ Fk}.

Example. The minimum weight of the rows of a generator matrix of C give an
upper bound on d(C). This example from [Bet, E.1.3.8] shows that
d(C) can be smaller: An elementary computation shows that

Γ :=

 1 1 1 1 1 1 1 1 0 0
1 1 1 1 0 0 0 0 1 0
1 1 1 0 1 0 0 0 0 1


is a generator matrix of the binary (10, 3)-code

C :=

1 1 1 1 1 1 1 1 0 0
1 1 1 1 0 0 0 0 1 0
1 1 1 0 1 0 0 0 0 1
0 0 0 0 1 1 1 1 1 0
0 0 0 1 0 1 1 1 0 1
0 0 0 1 1 0 0 0 1 1
1 1 1 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0

(each row corresponds to a codeword). The minimum distance of C
is 4. Obviously, it does not equal the minimum weight of the rows
of Γ (which is 5).
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6.5.5 Decomposition of Linear Codes

Definition. Two linear codes C,C ′ ⊆ Fn are called linearly isometric, if there exists
a linear isometry of Fn, equipped with the Hamming metric, that
maps C onto C ′.

Definition. Let C1 be a (n1,k1)-code and let C2 be a (n2,k2)-code. The (outer)
direct sum of C1 and C2 is defined as the (n1 +n2,k1 + k2)-code given
by C1 ⊕ C2 := {(c1, c2) : c1 ∈ C1, c2 ∈ C2}. A linear code is called
indecomposable if it cannot be decomposed into a proper outer direct
sum.

A generator matrix of C1 ⊕ C2 is given by
(
Γ1 0
0 Γ2

)
∈Mk1+k2,n1+n2(F),

where Γ1 and Γ2 are generator matrices of C1 and C2, respectively.
Now, it can be easily seen that the minimum distance of C1 ⊕ C2 is
given by d(C1 ⊕ C2) = min(d(C1), d(C2)).

Theorem. (Decomposition Theorem of Linear Codes)
A linear code C is linearly isometric to an outer direct sum of inde-
composable codes C1, . . . ,Cs. The decomposition is unique in the
following sense: If C is the direct sum of indecomposable codes
C ′1, . . . , C ′s ′ , then s = s ′ and there exists a permutation σ in the
symmetric group Ss such that Ct and C ′σ(t) are linearly isometric,
for all t ∈ {1, . . . , s}.

Proof. See [Bet, Theorem 6.2.7]. �

Theorem. Let C be an (n,k)-code with k < n and with minimum distance d.
There exists an indecomposable (n,k)-code C ′ such that d(C ′) > d.

Proof. See [Bet, Theorem 6.2.16]. �

Thus, given n and k, there exists an indecomposable code amongst
all (n,k)-codes which maximise the minimum distance, so that the
optimisation problem from Subsection 6.5.3 reduces to its solution
for indecomposable codes.

Example. Here we give an example of an indecomposable linear code. The
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minimum distance of the binary (4, 3)-code

C :=

1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
0 0 0 0

is 2. With [Bet, Test on Indecomposability 6.2.13] and the generator
matrix

Γ :=

 1 0 0 1
0 1 0 1
0 0 1 1


of C, one can verify that C is indecomposable.





Chapter 7

DESIGN HYPERPLANES

In this chapter, we introduce a class of affine hyperplanes in the real tensor
product V := Rn ⊗ · · · ⊗ Rn for n ∈ {2, 4, 8} which we call design hyperplanes. The
main result of this chapter is Theorem 7.3.4. It says that a design hyperplane is a
witness for the projective unit ball which touches the projective unit sphere at a
scaled maximal vector. This gives an explicit formula for the inner radius of the
projective unit ball in V and solves the projective norm maximisation. It gives
also a class of maximal vectors.

Each design hyperplane is a sum of squares modulo the norm-join-meet ideal.
In the sense of Theorem 6.3.6, it is based on a join-meet partition, called design
partition, with a splitting function, the design function.

Both the design partition and the design function can be visualised by a cube
which helps to determine them easily by hand for small dimensions of V .

The main areas which are involved in this chapter are latin squares, orthogonal
designs and orthogonal arrays, see Section 7.1 and Section 7.2. In Section 7.3 we
define the design partition as a join-meet partition which is based on a latin square
of order n. The design function is based on an orthogonal design which comes
from a latin square. For instance, this orthogonal design could be a multiplication
table related to the complex numbers, the quaternions or the octonions.

Finally, the design hyperplanes give rise to a new class of affine hyperplanes in
the tensor product V ′ := Rn ′ ⊗ · · · ⊗ Rn ′ for n ′ ∈ {3, 5, 6, 7}, the skip hyperplanes,
which are introduced in Section 7.4. The main result is Theorem 7.4.2. It says
that the skip hyperplanes are witnesses for the projective unit ball. This gives
an upper bound on the inner radius which we call the skip bound, and a class of
vectors in V ′ with projective norm 1.

In contrast to the number of tensor factors of V or V ′, which is arbitrary, the
dimension of a tensor factor does not exceed 8. In Chapter 8 we introduce another
class of witness hyperplanes for arbitrary values of n. However, in general, they
are farer from zero than the design hyperplanes.
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7.1 Latin Squares

This section begins with a brief introduction to latin squares and
its relation to finite quasigroups due to [KD]. It focuses also on the
concepts of isotopy, parastrophy and paratopy from [KD], which
define different equivalence relations on the set of all latin squares.

Afterwards, we proceed with our Rectangle Rule for latin squares and
with a word problem.

7.1.1 �asigroups

Definition. A non-empty set S with a binary operation · is called a quasigroup,
if for all a,b ∈ S, the equations a · x = b and y · a = b each have
exactly one solution x ∈ S, y ∈ S. A quasigroup has an identity (or
neutral) element, if there exists 1 ∈ S with 1 · s = s · 1 = s.

If a quasigroup has an identity element, then the left and right
inverses exist. However, a quasigroup has to be neither associative
nor commutative. It is elementary to show that every associative
quasigroup is a group, compare [KD, Problem 1.1].

A non-empty set S with a binary operation · is a quasigroup if and
only if for all a ∈ S, the left-multiplication S→ S, x 7→ a · x and the
right-multiplication S→ S, x 7→ x · a by a are bijective.

A finite quasigroup can be described by a so-called multiplication
table, as it is common for groups. Formally, a multiplication table
(B1,B2,M) of a finite quasigroup (S, ·) consists of two lists B1,B2 of
length n := #S, where the entries of each list cover the elements in S,
called boundaries, and an n × n matrix M with entries in S, where
for all i, j ∈ {1, . . . ,n}, we have M(i, j) := B1(i) · B2(j). We refer to M
as a multiplication table of (S, ·) without boundaries. The multiplication
table can be written in the following form:

· B2

B1 M
=

· · · · B2(j) · · ·
...

...
B1(i) · · · B1(i) · B2(j) · · ·

...
...
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7.1.2 Latin Squares

Definition. A latin square of order n ∈ N is an n×n matrix with entries in a finite
set S with n elements, in which the entries of each row and each
column cover all symbols, that is, the elements in S. A latin subsquare
of a latin square L is a quadratic submatrix of L which is again a
latin square.

The following statement is adopted from [KD, Theorem 1.1.1].

Theorem. There is a one-to-one correspondence between multiplication tables
without boundaries and latin squares.

Proof. Let (B1,B2,M) be a multiplication table of a finite quasigroup (S, ·),
where n := #S. Let i, j ∈ {1, . . . ,n}. The entries of the ith row of M
cover the image of the left-multiplication by B1(i) (which is bijective).
Also, the entries of the jth column of M cover the image of the
right-multiplication by B2(j) (which is bijective). Hence, M is a latin
square.

On the other hand, a latin square can be complemented with two
arbitrary boundaries to a multiplication table of a finite quasigroup,
since the structure of a latin square guarantees that for all a ∈ S, the
left- and the right-multiplication by a are bijective. �

Definition. A latin square L with the symbols 1, . . . , n is said to be in standard
form if the first row and the first column of L equals (1, . . . ,n).

Example. Let n ∈ N. The set Zn, equipped with a binary operation ?, defined
by a ? b := ha+ kb+ l for all a,b ∈ Zn, where each h and k have no
common prime factor with n and where l ∈ Z, is a finite quasigroup.
In this example, we discuss some special cases.

(i) If h = k = 1 and l = 0, then (Zn, ?) equals (Zn,+).
(ii) A multiplication table for the case where n = 3, h = 2, and

k = l = 1 is given by:

? 0 1 2
0 1 2 0
1 0 1 2
2 2 0 1
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(iii) A simple way to construct latin squares of order n is to write
the numbers 1, . . . ,n in the first row and to construct the next
row by shifting the entries from the preceding row one position
to the right (the entry which sticks out is placed on the left).
This can be reached by setting h = n− 1, k = 1, and l = 0. For
instance, we obtain the latin square

0 1 2
2 0 1
1 2 0

Shifting to the left gives the multiplication table of (Zn,+) with
boundaries (1, . . . ,n), see also (i).

7.1.3 Isotopy

Definition. Two quasigroups (G, ·) and (H, ?) are called isotopic, if there exist
bijective functions θ,φ,ψ from G onto H such that for all x,y ∈ G,
we have

ψ(x · y) = θ(x) ? φ(y).

In this case, the triple (θ,φ,ψ) is called an isotopism from (G, ·) onto
(H, ?). If G = H and ψ = id, (H, ?) is said to be a principal isotope of
(G, ·). If θ = φ = ψ, (H, ?) is said to be isomorphic to (G, ·).

Let (G, ·) be a finite quasigroup with multiplication table (B1,B2,L)
and let (θ,φ,ψ) be an isotopism from (G, ·) onto (H, ?). Naturally,
ψ gives rise to a latin square ψ(L), emerging from L by applying ψ
entry-wise, with symbols H. Applying θ (and φ) entry-wise to the
boundaries B1 and B2, respectively, leads to boundaries θ(B1), φ(B2)

of a multiplication table of (H, ?):

? φ(B2)

θ(B1) ψ(L)

Hence, if G = H, then θ and φ permute the boundaries B1 and B2,
respectively, and ψ permutes the symbols of L.

Clearly, the multiplication tables without boundary of a finite quasi-
group are pairwise isotopic. Hence, modulo isotopy, a quasigroup
can be represented by a single latin square.

The following statement is adopted from [KD, Theorem 1.3.3].
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Proposition. Among the principal isotopes of a quasigroup, there always exists a
quasigroup with identity element.

Proof. Let (S, ·) be a quasigroup and let a,b ∈ S. Let θ and φ be the
right-multiplication by b and the left-multiplication by a, that is,
θ(x) = x · b and φ(x) = a · x for all x ∈ S. A principal isotope (S, ?)
of (S, ·) is defined by the multiplication x ? y := θ−1(x) · φ−1(y) for
all x,y ∈ S. Letting e := a · b, for all y ∈ S, we obtain

y ? e = θ−1(y) · φ−1(e) = x · b = y,
e ? y = θ−1(e) · φ−1(y) = a · x ′ = y,

where x := θ−1(y) and x ′ := φ−1(y) are the unique solutions of the
equations x · b = y and a · x ′ = y. It follows that e is an identity
element for (S, ?). �

Definition. Two latin squares are called isotopic, if they can be obtained from the
multiplication tables of two quasigroups which are isotopic. If the
two quasigroups are also isomorphic, then also the latin squares are
called isomorphic.

Hence, two latin squares are isotopic, if and only if they can be
obtained from each other by permutations of the rows and of the
columns and by a replacement of the symbols.

Let L be the set of all latin squares which are a multiplication table
without boundaries of a given finite quasigroup. Let L ∈ L. The set
L consists exactly of the latin squares which can be obtained from L

by permutations of the rows and of the columns. In this respect, the
concept of isotopy clusters latin squares which can be regarded as
"representatives" of the "same" algebraic structure.

Example. Each latin square is isotopic to a latin square in standard form.

7.1.4 Parastrophy and Paratopy

The usual representation of a latin square as a matrix disguises the
symmetry of the rows, columns and the symbols. For this reason,
it can be advantageous to consider another representation of a latin
square L, given by

Tri(L) := {(i, j,L(i, j)) : i, j ∈ {1, . . . ,n}}.
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Let A be an arbitrary non-empty set. Each permutation σ in the
symmetric group S3 gives rise to a function

σ : A3 → A3, (c1, c2, c3) 7→ (cσ−1(1), cσ−1(2), cσ−1(3)).

If L has the symbols 1, . . . , n (which can also be regarded as repre-
sentatives of the elements in Zn), then Tri(L) is a subset of {1, . . . ,n}3.
The image of Tri(L) under σ gives another latin square Lσ. See also
[KD, page 15].

Now, we come to a notion which will be useful in the next section.

Definition. Let L be a latin square with symbols S and let ψ be a bijective
function from S to {1, . . . , #S}. The latin square Lσ,ψ := ψ−1(ψ(L)σ) is
called the (σ, ψ) parastrophe of L.

Clearly, if S = {1, . . . ,n} and ψ = id, then we obtain Lσ,ψ = Lσ.

Definition. Two latin squares are called paratopic, if they can be obtained from
each other by isotopy and parastrophy. The equivalence classes
according to paratopy are called main classes.

Example. (i) The following two isotopic latin squares L

L :=

2 3 1
1 2 3
3 1 2

and L ′ :=

3 1 2
1 2 3
2 3 1

are also parastrophes of each other, since

Tri(L) = { (1, 1, 2), (1, 2, 3), (1, 3, 1),
(2, 1, 1), (2, 2, 2), (2, 3, 3),
(3, 1, 3), (3, 2, 1), (3, 3, 2) }

and L ′ = L(23).
(ii) Let L be defined according to (i). For all σ ∈ S3, the upper left

entry of the (σ, id) parastrophe of L is different from 1. Hence,
it is not in standard form. However, choosing ψ : 1 7→ 2, 2 7→
3, 3 7→ 1 and σ := (2 3), the (σ,ψ) parastrophe L ′ of L, given by

L ′ =

1 2 3
2 3 1
3 1 2

,

is in standard form.
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(iii) Representatives of the two main classes of latin squares of
order 4 are given by

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

,

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

.

There are 283657 main classes of latin squares of order 8. For
details, see [KD, Section 4.2].

(iv) The smallest order such that there exist latin squares which
are paratopic, but not isotopic, is 6, see [KD, page 134]. For
example, no two of the parastrophes of the following latin
square are isotopic:

1 2 3 4 5 6
2 1 4 3 6 5
3 5 1 6 4 2
4 6 5 2 3 1
5 3 6 1 2 4
6 4 2 5 1 3

Definition. Two finite quasigroups are called paratopic, if each two of their
multiplication tables without boundary are paratopic.

Example. Let (G, ·) be a finite quasigroup and let (G, ?) be defined by a ? b :=

b · a for all a,b ∈ G. Then (G, ·) and (G, ?) are paratopic.

7.1.5 A Rectangle Rule for Latin Squares

So far we have introduced some standard terms on latin squares.
Until the end of the section, we follow up with some observations
which we have not found yet in the literature, but which fit our
particular situation.

The following theorem illustrates the structure of the multiplication
tables of a direct sum of copies of Z2.

Theorem. Let L be a latin square with the symbols 1, . . . , n. The following are
equivalent:

(a) There exists t ∈ N0 such that n = 2t and L is a multiplication
table without boundaries for a group isomorphic to (Z2)

t.
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(b) (Rectangle Rule, for columns)
For all i, j,k ∈ {1, . . . ,n}, i 6= j, there exists l ∈ {1, . . . ,n} with

L(i,k) = L(j, l) and L(j,k) = L(i, l).

(c) (Rectangle Rule, for rows)
For all i,k, l ∈ {1, . . . ,n}, k 6= l, there exists j ∈ {1, . . . ,n} with

L(i,k) = L(j, l) and L(j,k) = L(i, l).

(d) Each two entries of L that are in the same row (or in the same
column) can be expanded to a latin subsquare of L of order 1
or 2.

(e) Let σk be the permutation in Sn which maps the first column of
L to the kth column, for all k ∈ {1, . . . ,n}. Then P := {σ1, . . . ,σn}
is a permutation group and each element (except the identity)
is self-inverse.

Proof. At first, we show (a)⇒ (b): Let G := {1, . . . , 2t} and let · be a binary
relation on G such that (G, ·) is a group which is isomorphic to
(Z2)

t. Let L be the latin square which comes from the multiplication
table of G with the boundaries (1, . . . ,n). Let i, j,k ∈ G. Since G is
commutative and each element is self-inverse, letting l := k · i · j, we
obtain

L(i,k) = i · k = j · l = L(j, l) and
L(j,k) = j · k = i · l = L(i, l).

This proves the assertion.

Now, we show (b) ⇒ (a): We first note that (d) also holds for each
latin square which can be obtained from L by a permutation of the
rows and by a permutation of the columns. Hence, we can rearrange
the rows and the columns of L to obtain a latin square L ′ which is
in standard form, that is, the first row and the first column equals
B := (1, . . . ,n). Thus, the quasigroup (G, ·) with multiplication table
(B,B,L ′) admits the identity element 1. We note that (b) holds if and
only if for all i, j,k ∈ G, there exists a unique l ∈ G with i · k = j · l
and j · k = i · l, since the equation i · k = j · l has exactly one solution
l ∈ G. With other words, for all i, j,k ∈ G, i ·k = j ·l implies j ·k = i ·l.
Statement 1: G is commutative and each element is self-inverse.
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Let i, j ∈ G. From 1 · i = i · 1, we obtain i · i = 1 · 1 = 1, that is, i is
self-inverse:

· 1 i

1 1 i

i i 1

Moreover, 1 = i · i = j · j yields j · i = i · j, that is, G is commutative:

· i j

i 1 i · j
j j · i 1

Statement 2: G is associative.
There exists l ∈ G with i = i · 1 = j · l and j = j · 1 = i · l:

· 1 l j

1 1 l j

i i j i · j
j j i 1

From the latter equation 1 · j = i · l, it follows that i · j = 1 · l = l.
This leads to j = i · (i · j) (that is, Sade’s left "keys" law holds. See [KD,
Chapter 2] for details. Sade’s right "keys" law also holds since G is
commutative).
For all k ∈ G, we have j = i · (i · j) = k · (k · j). From (b), it follows
that k · (i · j) = i · (k · j). Since G is commutative, we conclude that
k · (j · i) = (k · j) · i, that is, G is associative.
Statement 3: G is a group.
This statement follows from the associativity.
Statement 4: G is isomorphic to a direct sum of copies of Z2.
It is well-known that a group, in which each element (except the
identity) has order 2, is isomorphic to a direct sum of copies of Z2.
Now, we show (e)⇒ (a): Without loss of generality, we may assume
that L belongs to a multiplication table without boundaries for a
quasigroup (G, ·) with identity element 1. Theorem 1.2.2 in [KD]
states that L is group-based if and only if P is group-based. Hence,
G is a group. We have σk(i) = L(i,k) = i · k.
Statement 1: Each element in G is self-inverse.
Let i ∈ G and let k ∈ G such that i · k = 1. Since σk is self-inverse,
we obtain 1 · k = i. It follows that k = i and hence, i · i = 1. Thus,
each element is self-inverse.
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Statement 2: Statement (a) holds.
A group, in which each element (except the identity) has order 2, is
isomorphic to a direct sum of copies of Z2.
Now, we show (a)⇒ (e): This implication follows immediately from
Theorem 1.2.2 in [KD], which states that P is isomorphic to a direct
sum of copies of Z2.
Finally, we easily see that (a) is also equivalent to (c) and (d). �

7.1.6 The Word Problem

Let (S, ·) be a finite quasigroup and let r ∈ N. We recall that Sr can
be considered as the set of all words of length r with the alphabet S.
Let

prod(S,·) : Sr → S

(a1, . . . ,ar) 7→ (· · · ((a1 · a2) · a3) · · · ) · ar .

We refer to prod(S,·)(a) as the product of a = (a1, . . . ,ar).

Let r > 2. For given s ∈ S, we may ask for those words of length r
whose product equals s, that is, we may ask for the pre-image of s
under prod(S,·). Alternatively, we may ask for the product of a ∈ Sr.
We refer to the first question as the word problem for s, and to the
second question as the word problem for a.

Clearly, the word problem can be solved easily in some cases: For
example, if (S, ·) is a group, then the solutions of the word problem
for s have the form (a, prod(S,·)(a)

−1 · s), where a ∈ Sr−1.

For each s ∈ S, let

Ts,r := {a ∈ Sr : prod(S,·)(a) = s} ⊆ Sr

denote the set of all solutions of the word problem for s.

Proposition. The sets Ts,r, s ∈ S, have the same length #Sr−1. They are the parts
of a partition Pr of Sr. The partition is symmetric, if S is an abelian
group.

Proof. We use induction on r. Clearly, the statement holds for r = 1. Now,
let r > 2. Let a1, . . . ,ar−1 ∈ S. For all s ∈ S, a solution x ∈ S of the
equation a1 · . . . · ar−1 · x = s exists and is uniquely defined, that is,
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the elements (a1, . . . ,ar−1, x), x ∈ S, lie in #S different sets.

Let a ∈ Sr and let π ∈ Sr. If S is associative and commutative,
then the products of a and π.a coincide. This implies that Pr is
symmetric. �

Proposition. If r > 2, s ∈ S and a,b ∈ Ts,r with a 6= b, then the letters of the
words a and b differ in at least two positions.

Proof. According to the proof of the previous proposition, this statement
holds since the left- and the right-multiplication by elements of S is
bijective. �

7.1.7 Orthogonal Arrays

Let r > 2. The set Ts,r can be represented by a matrix by writing its
elements in rows (or in columns). This matrix has #Sr−1 rows and r
columns. Its rows cover all solutions of the word problem for s.

Example. Let S = Z3. The set T0,3 (which covers all words whose letters sum
up to 0) can be represented by the following matrix:

0 0 0
0 1 2
0 2 1
1 0 2
1 1 1
1 2 0
2 0 1
2 1 0
2 2 2

We will see shortly that the matrix above is an example for a so-called
orthogonal array. For details on orthogonal arrays, see [HSS].

Definition. Let m,k, s,d, λ ∈ N. An m × k matrix A with entries in {1, . . . , s} is
called an orthogonal array with m runs, k factors, s levels, strength d
and index λ, denoted OA(m,k, s,d), if for each m×d submatrix of A,
the rows cover all words in {1, . . . , s}d, and each word appears exactly
λ times.
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Now, we encounter an easy method to obtain examples for orthogo-
nal arrays (which we have not found in the literature yet).

Proposition. Let (S, ·) be a finite abelian group and let s ∈ S. Let A be a matrix
which represents Ts,r (that is, the rows of A cover the words in Sr

with product s). Then A is an OA(m, r, #S, r− 1) with index 1.

Proof. Step 1: Let A0 be the submatrix of A which comes from omitting the
last column. By construction of Ts,r, the rows of A0 cover all words
in Sr−1, and each word appears exactly once.
Step 2: Now, let σ ∈ Sr be a permutation and let B be the matrix
which comes from permuting the columns of A by σ. Since (S, ·) is
associative and commutative, the image of each row is again a word
in Sr which multiplies up to s. It follows that the rows of A equal
the rows of B. Now, let B0 be the submatrix of B which comes from
omitting the last column. By step 1, the rows of B0 cover all words
in Sr−1, and each word appears exactly once. Hence, for each r− 1
columns of A, the rows of the corresponding submatrix cover all
words in Sr−1. �

Example. The last example gives an OA(9, 3, 3, 2).

7.1.8 Visualisation of the Word Problem

Now, we present a visualisation of the word problem for a quasi-
group (G, ·) which is isomorphic to ((Z2)

t,+) for t ∈ N. Let n := 2t.
Without loss of generality, let 1, . . . , n be the symbols of (G, ·) and let
1 be the identity element. Let L be the latin square which comes from
the multiplication table of (G, ·) with the boundaries (1, . . . ,n).

Proposition. For any a,b ∈ G, the product a ·b can be obtained from L as follows:

L =

1 2 · · · a · · · 2t
2

↓...
ab ← b
...

2t
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Proof. We first state that the multiplication table has the following form:

· 1 2 · · · b · · · 2t

1 1 2 · · · b · · · 2t

2 2
......

...

a a · · · a · b
...

...

2t 2t

If we look at this table, we see that the first column and the first
row of L are copies of the boundaries (actually, this is because the
boundary starts with the identity element). Hence, to obtain the
product a · b for any a,b ∈ G, it suffices to look at L, since the
boundaries do not provide any new information.

In a second step, we state that it is also possible to find the product
a · b in the first column. To see this, let L0 be the latin square coming
from a multiplication table of (G, ·) and let L̂0 be the parastrophe
of L0 which comes from rotating the third to the first position, that
is, Tri(L̂0) = Tri((L0)(123)) = {(ab,a,b) : a,b ∈ G}. Since (G, ·) is
commutative and each element in G is self-inverse, we obtain L̂0 = L0.
It follows that any multiplication table of (G, ·) (on the left of the
equality sign) equals the scheme on the right:

· b

a ab
=

· a

ab b
.

�

With this identification of the product of a and b, the elements in
the first column of L have a "double role", since they can serve as
both factor and product.

Now, we write three copies of L in the following triple scheme:

L

L

L

The scheme consists of 3 · n2 cells with entries in {1, . . . ,n}.
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Doing this, the product of, say, 5 elements a,b, c,d, e ∈ G can be
obtained in the following way:

abc

1↑

c
←

ab

1

a

↓

ab
←

b

ab
cd

↓

e

←

ab
cd
e

ab
c

1

→

d
↓
ab
cd

Let r > 2 and let a1, . . . ,ar ∈ G. In general, a spiral with r − 1 turns
through a1, . . . , ar can be constructed with the following algorithm:

0. The spiral begins in the first row of the right cube in the cell
with the entry a1.
Now, let k := 2. The current cube is the right cube.

1. Connect a1 · . . . · ak−1 in the first row of the current cube with
ak in the same column. The cell containing ak is called a corner
of the spiral.

2. Connect this corner with the cell with the entry (a1·. . .·ak−1)·ak
in the same row. This cell can be found in the very left column.

3. If k < r, connect this cell with the neighbouring cell in the first
row of the next cube (counter clockwise). The entries of both
cells coincide. Let k k+ 1, and continue with 1.
If k = r, then the entry of the current cell equals the product
s := a1 · . . . · ar, that is, the spiral ends in s.

Hence, for given s ∈ S, the word problem can be visualised by those
spirals which have r − 1 turns and end in s. For given a ∈ Sr, the
word problem can be visualised by the spiral with r− 1 turns which
is given by a.

Example. A triple scheme for (Z2)
2, the Klein four-group, looks like the follow-

ing cube:
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By way of example, we have (1, 2, 1, 3, 1, 1, 2) ∈ T3,7, which can be
visualised by the corresponding spiral with 6 turns ending in 3:
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In the next section we extend this visualisation in a more general
context.

7.2 Orthogonal Designs

This section begins with a brief introduction to orthogonal designs
based on [Seb]. Orthogonal designs will play a major role in our
definition of the design function in the next section. The main idea
is to "amplify" each entry of a latin square by a positive or negative
sign.

We continue with our Rectangle Rule for orthogonal designs and with
a word problem.



210 Chapter 7 – Design Hyperplanes

7.2.1 Orthogonal Designs

Let n,m ∈ N. Let x1, . . . , xm be independent and commuting vari-
ables (that is, they generate the polynomial ring Z[x1, . . . , xm] which,
more generally, lies in the field of fractions of Z[x1, . . . , xm]). Let X
be an n× n matrix whose entries Xα,β, where α,β ∈ {1, . . . ,n}, lie in
the set {0,±x1, . . . ,±xm}.

The rows of X are called an orthogonal system if and only if for all
α,β ∈ {1, . . . ,n}, α 6= β, we have

∑n
γ=1 Xα,γ · Xβ,γ = 0. The columns

of X are called an orthogonal system if and only if the rows of Xt are
an orthogonal system.

Proposition. The following are equivalent:
(a) There exists s1, . . . , sm ∈ N such that

X · Xt =
( m∑
k=1

sk x
2
k

)
1n.

(b) There exists s1, . . . , sm ∈ N such that each row and each column
of X has sk entries ±xk, k ∈ {1, . . . ,m}, and both rows and
columns are an orthogonal system.

Proof. Clearly, we have

X · Xt =
( n∑
γ=1

Xα,γ · Xβ,γ

)n
α,β=1

.

We first show (a)⇒ (b). The rows of X are an orthogonal system. If
X does not equal zero, then X is an invertible matrix (with respect to
the field of fractions of Z[x1, . . . , xm]), and we obtain X · Xt = Xt · X,
that is, also the columns of X are an orthogonal system. The second
implication (b)⇒ (a) follows immediately. �

Definition. In the case of the last proposition, X is called an orthogonal design
of order n and type (s1, . . . , sm) with the symbols x1, . . . , xm, denoted
OD(n; s1, . . . , sm). An orthogonal design with no zero entry is called
a full orthogonal design.

If X is an orthogonal design, then one can obtain a multiple of
an orthogonal n × n matrix from X by evaluating each variable
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xk at a given point yk ∈ R, for all k ∈ {1, . . . ,n}. If X is a full
orthogonal design, then the matrix which can be obtained with
y1 = · · · = ym = 1 is called a Hadamard matrix.

7.2.2 The Existence of Orthogonal Designs

Let n ∈ N. There exist uniquely defined numbers a ∈ N0 and
b ∈ N odd such that n = 2ab. Furthermore, there exist uniquely
defined numbers c ∈ N0 and 0 6 d < 4 such that a = 4c + d. Let
ρ(n) := 8c+ 2d.

From [Seb, Theorem 1.3], we obtain the following useful restriction
to the number of variables in an orthogonal design:

Theorem. (i) Any orthogonal design of order n can involve at most ρ(n)
symbols.

(ii) There exists an orthogonal design of order n involving ρ(n)
symbols.

For our particular situation we are interested in full orthogonal
designs of type (1, . . . , 1), that is, each symbol appears exactly once
in a row.

Corollary. A full orthogonal design of type (1, . . . , 1) has order n ∈ {1, 2, 4, 8}.

Proof. Let X be a full orthogonal design of type (1, . . . , 1) and of order n ∈ N.
If X is full, then n = ρ(n). Moreover, we have

n = 2ab = 16c2db > 8c+ 2d = ρ(n).

Equality holds only for b = 1 and c = 0. Thus, we obtain n = 2d,
where d ∈ {0, 1, 2, 3}. �

Example. Here, we give examples for full orthogonal designs of type (1, . . . , 1)
and of order 2, 4 and 8. The symbols x1, . . . , x8 are replaced by the
symbols A,B, . . . ,H.

(i) From [Wal], we obtain the following orthogonal designs. They
are "skew symmetric" with respect to the upper right and the
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lower left triangle:

(
A B

−B A

)
,


A B C D

−B A −D C

−C D A −B

−D −C B A

 ,



A B C D E F G H

−B A D −C F −E −H G

−C −D A B G H −E −F

−D C −B A H −G F −E

−E −F −G −H A B C D

−F E −H G −B A −D C

−G H E −F −C D A −B

−H −G F E −D −C B A


.

(ii) Examples for full orthogonal designs of type (1, . . . , 1) can also
be obtained from the multiplication tables for the basis vectors
of a canonical expansion of the reals to the complex numbers,
quaternions and octonions:

(
A B

B −A

)
,


A B C D

B −A D −C

C −D −A B

D C −B −A

 ,



A B C D E F G H

B −A D −C F −E H −G

C −D −A B G −H −E F

D C −B −A −H −G F E

E −F −G H −A B C −D

F E H G −B −A −D −C

G −H E −F −C D −A B

H G −F −E D C −B −A


The tables can be constructed by means of the Cayley-Dickson
construction; see, for example, [Bal]. The next step of this
construction leads to a multiplication table for the sedenions,
which does not belong to an orthogonal design. Therefore, for
higher orders, it does not lead to orthogonal designs (in fact,
according to Corollary 7.2.2, this is impossible).

Remark. We will see below that it is a "disadvantage" for our applications
that full orthogonal designs of type (1, . . . , 1) exist only up to order 8.
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In the literature, attention was drawn to them to obtain Hadamard
matrices. In this respect, a common alternative are Baumert-Hall
arrays, which are full orthogonal designs of order 4t, t ∈ N, with four
variables and type (t, t, t, t); see, for instance, [Wal]. Unfortunately,
this and other related alternatives do not seem to fit our problem.

7.2.3 A Rectangle Rule for Full Orthogonal Designs

Let A = (Ak,l)
n
k,l=1,B = (Bk,l)

n
k,l=1 ∈Mn,n(K) be two n× n matrices.

As usual, the entry-wise product of A and B is defined by the n× n
matrix A ? B := (Ak,lBk,l)

n
k,l=1.

So far we have introduced some standard terms on orthogonal
designs. Until the end of this section, we follow up with some
observations which we have not found yet in the literature, but
which fit our particular situation.

Proposition. Every full orthogonal design X of type (1, . . . , 1) can be written
uniquely as the entry-wise product of a latin square |X| with the
same symbols, the absolute value of X, and a Hadamard matrix.

Proof. Let X be a full orthogonal design. Let H be the Hadamard matrix
which comes from evaluating the entries of X at 1. If X has type
(1, . . . , 1), then each symbol appears exactly once in a row and exactly
once in a column according to Proposition 7.2.1. It follows that the
matrix |X| := H ? X is a latin square of order n with the symbols x1,
. . . , xn, and we obtain H ? |X| = X. �

Given a latin square, we may ask whether it is equal to the absolute
value of a full orthogonal design of type (1, . . . , 1).

Lemma. Let X = (Xα,β)
n
α,β=1 be an n×n matrix with entries in {±x1, . . . ,±xn}

such that each variable appears exactly once in a row (up to its sign).
Then the following are equivalent:

(a) X is a full orthogonal design of type (1, . . . , 1).
(b) (Rectangle Rule, for columns)

For all α,β ∈ {1, . . . ,n}, α 6= β, and for all γ ∈ {1, . . . ,n}, there
exists a uniquely defined number δ ∈ {1, . . . ,n} such that

Xα,γ · Xβ,γ + Xα,δ · Xβ,δ = 0.
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(c) (Rectangle Rule, for rows)
For all γ, δ ∈ {1, . . . ,n}, γ 6= δ, and for all α ∈ {1, . . . ,n}, there
exists a uniquely defined number β ∈ {1, . . . ,n} such that

Xα,γ · Xβ,γ + Xα,δ · Xβ,δ = 0.

Proof. We first note that X is a full orthogonal design if and only if X ·
Xt =

∑m
k=1 x

2
k 1n, that is, if and only if each two different rows are

orthogonal. In this case, its type equals (1, . . . , 1).
Now, we prove (a)⇒ (b):
Let α,β,γ ∈ {1, . . . ,n} with α 6= β. The entry of X · Xt in position
(α,β) equals

(X · Xt)α,β =

n∑
k=1

Xα,kXβ,k = 0. (7.1)

Hence, since the entries of each row cover all variables, there exists
δ ∈ {1, . . . ,n}, uniquely defined, such that Xα,γ and Xβ,δ involve the
same variable. Thus, according to equation (7.1) and by comparison
of coefficients, we obtain

Xα,γ · Xβ,γ + Xα,δ · Xβ,δ = 0.

Now, we prove (b)⇒ (a):
Let α,β,γ ∈ {1, . . . ,n} with α 6= β. The requirement in (b) gives
rise to a bijective function π on {1, . . . ,n} with π(γ) = δ. Since also
π(δ) = γ, the sets {k,π(k)}, k ∈ {1, . . . ,n}, are a partition of the set
{1, . . . ,n} (by the way, in particular, this implies that n is even). Let R
be a system of representatives of this partition. Then

(X · Xt)α,β =

n∑
k=1

Xα,kXβ,k =
∑
r∈R

(Xα,rXβ,r + Xα,π(r)Xβ,π(r)) = 0.

Since also (X · Xt)α,α =
∑n
k=1 X

2
α,k =

∑n
k=1 x

2
k, the statement follows.

Finally, we show (a)⇔ (c):
According to Proposition 7.2.1, statement (a) holds if and only if Xt

is a full orthogonal design of type (1, . . . , 1), so the statement follows
from the equivalence of (a) and (b). �

Corollary. Let X be a full orthogonal design of type (1, . . . , 1). Then |X| is isotopic
to a multiplication table without boundaries for the groups {0}, Z2,
(Z2)

2 or (Z2)
3.
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Proof. With the previous lemma, each 2×2 submatrix which we obtain from
two rows α, β and from two columns γ, δ is again an orthogonal
design:

· · · γ · · · δ · · ·
...

...
...

α · · · Xα,γ · · · Xα,δ · · ·
...

...
...

β · · · Xβ,γ · · · Xβ,δ · · ·
...

...
...

Hence, from Theorem 7.1.5, it follows that |X| is a multiplication table
without boundaries for a group isomorphic to (Z2)

t, where t ∈ N0

with n = 2t. Now, the statement follows from Corollary 7.2.2. �

7.2.4 �asigroups Based on Full Orthogonal Designs

In what follows, let X be a full orthogonal design of type (1, . . . , 1)
and order n ∈ {1, 2, 4, 8}. Let H be the Hadamard matrix with X =

H ? |X|.

Now, both |X| and X give rise to a quasigroup. Let (S0, ?), where
S0 := {x1, . . . , xn}, be the quasigroup with the following multiplication
table:

? x1 · · · xn
x1
... |X|

xn

Let −X := (−H) ? |X|. Also this multiplication table

· x1 · · · xn −x1 · · · −xn
x1
... X −X

xn
−x1

... −X X

−xn

is based on a latin square, since each symbol appears once in each
row and once in each column. Hence, it corresponds to a quasigroup
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(S, ·), where S := {±xk : k ∈ {1, . . . ,n}}. This quasigroup is called the
canonical quasigroup of X. The multiplication table above is referred
to as the canonical multiplication table for S or for X. The following
example shows that in general, (S, ·) is not associative and hence,
not group-based.

Example. The canonical quasigroups of two orthogonal designs of the same or-
der and type can have different algebraic properties (even if they have
the same absolute value). For instance, using the border (A,B,C,D),
the canonical quasigroup of the 4× 4 orthogonal design in Example
7.2.2 (ii) is associative (since the quaternions are an associative alge-
bra), but the canonical quasigroup of the 4× 4 orthogonal design in
Example 7.2.2 (i) is not associative, since (BA)C = −(B(AC)).

7.2.5 The Sign

Let sign : S→ ({1,−1}, ·) be the function defined by

sign(xk) := 1,
sign(−xk) := −1

for all k ∈ {1, . . . ,n}. Let |− xk| := |xk| := xk. It can be easily seen that
for all y ∈ S, we have sign(−y) = − sign(y) and y = sign(y)|y|.

Let r ∈ N. On Sr, we consider the function

sign : Sr → ({1,−1}, ·),
a 7→ sign(prod(S,·)(a)).

We refer to sign(a) as the sign of a.

7.2.6 Visualisation of the Word Problem

Here, we extend the visualisation from Subsection 7.1.8 to solve also
the word problem for (S, ·). In particular, we obtain an extended
cube which can be used to calculate products in (S, ·). The main
idea is to divide the word problem into two problems, namely, the
word problem for (S0, ?), which can be visualised by a cube with
side length n, and the problem to obtain the corresponding sign.
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Now, we look at the following n× n matrix X̂ with entries in S: For
all α,β ∈ {1, . . . ,n}, let

X̂α,β := ±xγ

with γ ∈ {1, . . . ,n} such that xβ · (±xγ) = xα.

The following statement points out the analogy to the term of paras-
trophy of latin squares:

Proposition. Let

Y :=

(
X −X

−X X

)
.

Let σ := (1 2 3). Let ψ : S → {1, . . . , 2n}, xi 7→ i,−xi 7→ i + r. Let
Ŷ := ψ−1((ψ(Y))σ) be the (σ,ψ) parastrophe of Y. Then X̂ equals the
upper left submatrix of Ŷ.

Proof. For all α,β ∈ {1, . . . ,n}, we have

Ŷα,β = ±xγ
⇔ (ψ(Ŷ))α,β ∈ {γ,γ+ r}

⇔ ((ψ(Y))σ)α,β ∈ {γ,γ+ r}

⇔ Yβ,γ = ±xα
⇔ xβ · (±xγ) = xα
⇔ X̂α,β = ±xγ. �

Proposition. X̂ is a full orthogonal design of type (1, . . . , 1) and |X̂| = |X|.

Proof. Let a,b, c ∈ S0. Since the transpose of X is again an orthogonal
design, using the Rectangle Rule Lemma 7.2.3, there exists d ∈ S
with (ab)(ac) + (db)(dc) = 0. Since (db)(dc) = ((−d)b)((−d)c), we
may assume d ∈ S0 without loss of generality. Hence, we obtain
ab = ±dc and ac = ∓db. It follows that X̂ has the following form:

· · · a · · · d · · ·
...

...
...

ab · · · b · · · ±c · · ·
...

...
...

ac · · · c · · · ∓b · · ·
...

...
...



218 Chapter 7 – Design Hyperplanes

From Lemma 7.2.3, we conclude that X̂ is a full orthogonal design of
type (1, . . . , 1). We have |X̂| = |X| since (S0, ?) is isomorphic to (Z2)

t

for t ∈ N appropriate, see Proposition 7.1.8. �

In what follows, we assume that 1 is the neutral element in (S0, ?)
(without loss of generality). Now, for given b ∈ (S0)

r, the product
prod(S0,?)(b) can be obtained by visual means with the following
cube:

|X
| |X|

|X|

Now, we write three copies of X̂ in the following triple scheme:
X̂

X̂

ˆX

This triple scheme carries the whole information about the multipli-
cation in (S0, ?), since by ommitting the signs, we obtain the triple
scheme for |X|. In what follows, we show that it contains also the
information about the multiplication in (S, ·).

Let a := (a1, . . . ,ar) ∈ Sr. Let b := (|a1|, . . . , |ar|) ∈ (S0)
r and let

s := prod(S,·)(a). We have already found a visualisation for |s| =

prod(S0,?)(b) by a spiral with r− 1 turns in the triple scheme for |X|;
it is left to visualise the sign of s in the triple scheme for X̂. Initially,
we state that the sign of s can be lead back to the sign of b: From
−(xy) = (−x)y = x(−y) for each x,y ∈ S, it follows that

s = (sign(a1) · . . . · sign(ar)) · prod(S,·)(b).

The sign of b can be visualised as follows: We first copy the spiral
for b from the triple scheme for |X| into the triple scheme for X̂.
Now, each negative sign in a corner of this spiral corresponds to a
change in sign, since −((xy)z) = (−xy)z = (xy)(−z) for all x,y, z ∈ S.
Hence, the sign of b is given by sign(b) = (−1)m, where m is the
total number of negative signs which appear in the corners of the
spiral (of course, it may happen that one and the same cell has to be
considered a number of times).
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In summary, the solution of the word problem for s is given by those
spirals with r−1 turns which end in s. Each spiral represents exactly
one word b := (b1, . . . ,br) ∈ (S0)

r which multiplies up to |s| in (S0, ?).
Now, each word (g1b1, . . . ,grbr) ∈ Sr, where g1, . . . ,gr ∈ {1,−1} with
g1 · . . . · gr · sign(b) = sign(s), multiplies up to s.

The solution of the word problem for a = (a1, . . . ,ar) ∈ S is given by
the spiral with r− 1 turns for the word b := (|a1|, . . . , |ar|). The sign
of prod(S,·)(a) is given by sign(a1) · . . . · sign(ar) · sign(b).

Example. In this example, we consider the canonical quasigroup based on the
following orthogonal design:

x1 −x2 −x3 −x4

x2 x1 −x4 x3

x3 x4 x1 −x2

x4 −x3 x2 x1

The orthogonal design coming from the (1 2 3) parastrophe of this
quasigroup equals the 4× 4 orthogonal design in Example 7.2.2 (i).
Omitting the symbol "x", the corresponding cube looks like:
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By way of example, a := (1, 2, 1, 3, 1, 1, 2) ∈ T3,7 and prod(S,·)(a) = −3.
This can be visualised as follows:
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-4

-3

-2

1

-3

4

1

2

2

1

-4

3

1

-2

3

4

1

2

3

4

-2

1

-4

3

-3

4

1

-2

-4

-3

2

1

4

3

2

1

3

-4

1

-2

-2

1

4

-3

1

2

-3

-4

There are three corners of the spiral which belong to a negative sign
(each of them is highlighted by a circle).

7.3 Design Hyperplanes

In this section, we define the design partition, the design function
and, finally, the design hyperplanes.

Let n ∈ {2, 4, 8} and let V = Rn ⊗ · · · ⊗ Rn with r > 2 tensor factors.
The indexing tuples for V are given by N := {1, . . . ,n}r = (S0)

r.

Let X be a full orthogonal design of type (1, . . . , 1) and order n (see
Corollary 7.2.3). The symbols of X are denoted by 1, . . . , n, that is,
the entries of X lie in {±1, . . . ,±n}. We have described in the last
section that X gives rise to the canonical quasigroup (S, ·), and, using
the boundaries (1, . . . ,n), |X| gives rise to a group (S0, ?) which is
isomorphic to Z2, (Z2)

2 or (Z2)
3. Without loss of generality, let 1 be

the neutral element.

7.3.1 The Design Partition and the Design Function

Now, we recall the notions from Subsections 7.1.6 and Subsection
7.2.5. In particular, the partition PD := Pr of N = (S0)

r is given by
the parts Ts := Ts,r = {a ∈ (S0)

r : prod(S0,?)(a) = s}, for all s ∈ S0.

Definition. In this special context, we refer to PD as the design partition. Each
part of this partition is called a design part. Moreover, we refer to
sD := sign on N as the design function.
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The multiplication ? on S0 extends to a pointwise multiplication on
N so that N can be regarded as a group. In particular, for each h ∈ N,
we consider the translation by h:

β : N→ N, a 7→ h ? a.

This function is bijective with β2 = 1.

Let a = (a1, . . . ,ar),b = (b1, . . . ,br) ∈ N. We recall from Section 5.6
that [(a,b)] is equal to the orbit of (a,b) ∈ N2/S2 under Z = (Z2)

r

(which can also be identified with P({1, . . . , r})). Now, for all subsets
A ⊆ {1, . . . , r}, let hA := (h1, . . . ,ht) ∈ N with ht = at?bt for all t ∈ A
and ht = 1 for all t ∈ Ac. Then we have A.(a,b) = (hA ?a,hA ?b).

7.3.2 The Design Partition

Lemma. The design partition is a join-meet partition.

Proof. Let a,b ∈ N with prod(S0,?)(a) = prod(S0,?)(b) =: s, that is, a,b ∈ Ts.
If c,d ∈ N with (c,d) ?←→ (a,b), then there exists h ∈ N such that
(c,d) = (h ? a,h ? b). Hence, c,d ∈ Tt, where t := prod(S0,?)(h) ? s. If
a 6= b, then Proposition 7.1.6.II implies that the entries of a and b
differ in at least two positions, that is, N(a,b) is no chain. �

7.3.3 The Design Function

Let T ∈ PD and let a,b ∈ T with a 6= b. Let t ∈ {1, . . . , r} be the
last position in which the entries of a and b are different. From
Proposition 7.1.6.II, we know that t > 2. Let βa,b be the translation
by h := (1, . . . , 1,at ? bt, 1, . . . , 1), where the entry in position t equals
at ? bt.

In particular, βa,b swaps the entries of a and b in position t. This
can be seen as follows: Letting

a0 := (a1,a2, . . . ,at−1),
b0 := (b1,b2, . . . ,bt−1),

and c := (at+1, . . . ,ar) = (bt+1, . . . ,br) yields βa,b(a) = h ? a =

(a0,bt, c) = and βa,b(b) = h ? b = (b0,at, c).
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Lemma. Let a,b ∈ N with a 6= b such that a and b are in the same design
part. Then we have

sD(a) · sD(b) = − sD(βa,b(a)) · sD(βa,b(b)).

Proof. Preliminary statement:
We first note that for x,y, z ∈ S with y = x or y = −x, we have

sD(x) · sD(y) = sD(x · z) · sD(y · z).

Case t = r:
Let prod(S,·)(a0,at) =: p1 and prod(S,·)(b0,bt) =: p2. Since a and b
are in the same design part, we have |p1| = |p2|. From at 6= bt, we
obtain prod(S,·)(a0) =: r1 6= r2 := prod(S,·)(b0). Now, we have h ? a =

(a1, . . . ,at−1,bt) = (a0,bt) and h ? b = (b1, . . . ,bt−1,at) = (b0,at).
Let prod(S,·)(h ? a) =: q1 and prod(S,·)(h ? b) =: q2. It follows that
|q1| = |q2|. Now, the equation follows from the rectangle rule Lemma
7.2.3. This can be seen with a multiplication table of (S, ·):

· · · at · · · bt · · ·
...

...
...

r1 · · · p1 · · · q1 · · ·
...

...
...

r2 · · · q2 · · · p2 · · ·
...

...
...

Case t < r:
From the last case, we know that the assertion holds for a ′ :=
(a1, . . . ,at) and b ′ := (a1, . . . ,at). Let s := sD. Now, the preliminary
statement can be applied, since bt ′ = at ′ for all t ′ ∈ {t+ 1, . . . , r}:

s(a) · s(b) = s(a ′, c) · s(b ′, c)
= s((· · · (prod(S,·)(a0,at) · at+1) · . . . ) · ar)
· s((· · · (prod(S,·)(b0,bt) · at+1) · . . . ) · ar)

= − s((· · · (prod(S,·)(a0,bt) · at+1) · . . . ) · ar)
· s((· · · (prod(S,·)(b0,at) · at+1) · . . . ) · ar)

= − s(βa,b(a)) · s(βa,b(b)).
�

Corollary. The design function is a splitting function for the design partition.
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Proof. We consider the boolean lattice B := N(a,b) and the function β : B→
B, d 7→ βa,b(d). Then, using Lemma 7.3.3, for all d ∈ B, we have

sD(d) · sD(d
′) = − sD(β(d)) · sD(β(d

′)).

Hence, sD is a splitting function for the join-meet partition PD. �

In particular, the following polynomial is a Hibi relation:

sD(a) sD(b) · xa xb + sD(h ? a) sD(h ? b) · xh?a xh?b. (7.2)

This shows that deta,b,h?a,h?b is a non-zero PV-determinant (the
meaning of the colours is explained in Subsection 5.6.6):

a0 at c

b0 at c

a0 bt c

b0 bt c

7.3.4 Design Hyperplanes as Sos Polynomials

Here, we state the main results of this chapter. They say that each
design part gives rise to a witness hyperplane which touches the
projective unit ball B1,π in V at a scaled maximal vector.

Let T ∈ PD be a design part. Since the parts of the design partition
have the same length, we have #T = nr−1. Let

y :=
1
nr−1 ·

∑
a∈T

sD(a) · ea ∈ V .

Definition. The affine hyperplane in V which is defined by the support func-
tional ly = 1 −

∑
a∈T sD(a) · xa to y is called a design hyperplane.

Theorem. The support functional ly to y is a 1 -sos-mod JN-polynomial.

Proof. This follows from Theorem 6.3.6, since PD is a join-meet partition
and sD is a splitting function for PD, see Corollary 7.3.3. �

Corollary. We have ‖y‖π = 1. In particular, the inner radius of B1,π equals
r(B1,π) =

√
1/nr−1, such that the vector

√
1/nr−1 ·

∑
a∈T sD(a) · ea is

maximal for B1,π. In addition, for any vector z ∈ V which lies in a
design hyperplane, we have ‖z‖π > 1.
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Proof. The last theorem states that ly is a witness for B1,π, yielding ‖z‖π > 1.
It can be easily seen that ‖y‖π 6 1 according to the definition of the
projective norm, so that ‖y‖π = 1. With the Arveson bound Theorem
3.3.4, we obtain ‖y‖ =

√
1/nr−1 = Arv(V) 6 r(B1,π) 6 ‖y‖. �

On this basis we obtain a class of vectors with projective norm 1 in
Chapter 10. This leads to a generalisation of the Schmidt decomposi-
tion in the real case. There is also a summary of the results.

With the computer program described in Subsection 6.2.5 one can
check Theorem 7.3.4 for some small values of r.

7.3.5 Some Examples

In the following examples we consider design partitions and design
functions for different values of n and r. From now on, design parts
are also represented by matrices. The values of a design function
are shown in front of the corresponding row (negative values are
indicated by "−" and positive values are omitted).

Example. A design partition with a design function in the case n = 4 and r = 2
can be found in Example 6.3.4.III, see Figure 6.4 on page 175.

Example. With the OD(4; 1, 1, 1, 1) from Example 7.2.6 and r = 3, we obtain:

T1,3 T2,3 T3,3 T4,3

1 1 1 − 1 1 2 − 1 1 3 − 1 1 4
2 2 1 − 2 2 2 − 2 2 3 − 2 2 4
3 3 1 − 3 3 2 − 3 3 3 − 3 3 4
4 4 1 − 4 4 2 − 4 4 3 − 4 4 4

− 1 2 2 − 1 2 1 − 1 2 4 1 2 3
2 1 2 2 1 1 2 1 4 − 2 1 3

− 3 4 2 − 3 4 1 − 3 4 4 3 4 3
4 3 2 4 3 1 4 3 4 − 4 3 3

− 1 3 3 1 3 4 − 1 3 1 − 1 3 2
2 4 3 − 2 4 4 2 4 1 2 4 2
3 1 3 − 3 1 4 3 1 1 3 1 2

− 4 2 3 4 2 4 − 4 2 1 − 4 2 2
− 1 4 4 − 1 4 3 1 4 2 − 1 4 1
− 2 3 4 − 2 3 3 2 3 2 − 2 3 1

3 2 4 3 2 3 − 3 2 2 3 2 1
4 1 4 4 1 3 − 4 1 2 4 1 1
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Hence, for example, the following affine functional is 1 -sos-mod JN:

1 − (x1 1 1 + x2 2 1 + x3 3 1 + x4 4 1 − x2 3 4 + x2 4 3

− x1 2 2 − x1 3 3 − x1 4 4 + x3 2 4 − x3 4 2

+ x2 1 2 + x3 1 3 + x4 1 4 − x4 2 3 + x4 3 2).

We note that each matrix (without the signs) is an orthogonal array,
in particular, an OA(16, 3, 4, 2).

Example. Let n = 2. By way of example, the following tensor in R2 ⊗ R2 ⊗ R2

is the support vector of a design hyperplane:

y =
1
4
· (e111 + e221 + e122 − e212).

Hence, its projective norm equals 1. This can be seen by considering
the orthogonal design ( x1 x2

−x2 x1 ) from Example 7.2.2. The correspond-
ing cube looks like:

2

1

-1

2

1

2

2

-1

2

1

-1

2

The design parts and the design function for r ∈ {1, 2, 3} are given by

T1,1 T2,1 T1,2 T2,2 T1,3 T2,3

1 2 1 1 1 2 1 1 1 1 1 2
2 2 − 2 1 2 2 1 2 2 2

1 2 2 − 1 2 1
− 2 1 2 2 1 1

As an alternative to the cube, the partition and the signs can be
obtained recursively by a concatenation rule in dependence of r > 2.
In this respect, a change in sign corresponds to a minus sign in the
appropriate position:

T1,r+1 =

(
T1,r v1,r

T2,r v2,r

)
, T2,r+1 =

(
T1,r v2,r

−T2,r v1,r

)
,



226 Chapter 7 – Design Hyperplanes

where v1,r (v2,r) is a column vector of length r whose entries equal 1
(2, respectively). With this rule, the design partitions can be easily
obtained for the cases where r = 4 and r = 5:

T1,4 T2,4 T1,5 T2,5

1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2
2 2 1 1 2 2 1 2 2 2 1 1 1 2 2 1 1 2
1 2 2 1 1 2 2 2 1 2 2 1 1 1 2 2 1 2

− 2 1 2 1 − 2 1 2 2 − 2 1 2 1 1 − 2 1 2 1 2
1 1 2 2 − 1 1 2 1 1 1 2 2 1 1 1 2 2 2
2 2 2 2 − 2 2 2 1 2 2 2 2 1 2 2 2 2 2

− 1 2 1 2 1 2 1 1 − 1 2 1 2 1 − 1 2 1 2 2
2 1 1 2 − 2 1 1 1 2 1 1 2 1 2 1 1 2 2

1 1 1 2 2 − 1 1 1 2 1
2 2 1 2 2 − 2 2 1 2 1
1 2 2 2 2 − 1 2 2 2 1

− 2 1 2 2 2 2 1 2 2 1
− 1 1 2 1 2 1 1 2 1 1
− 2 2 2 1 2 2 2 2 1 1

1 2 1 1 2 − 1 2 1 1 1
− 2 1 1 1 2 2 1 1 1 1

We note that this example gives orthogonal arrays (in particular, an
OA(2, 2, 2, 1), two OA(4, 3, 2, 2), two OA(8, 4, 2, 3) and two OA(16, 5, 2, 4)).
The case where r = 4 (the "tesseract") can also be found in Example
6.3.4.III, see Figure 6.5 on page 175. In addition, T1,4 can be regarded
as a binary linear (4, 3)-code, see Example 6.5.5.

Example. The last example shows that the projective norm of the W-vector
ξW = 1√

3(e112+e121+e211) in R2⊗R2⊗R2 (see Subsection 3.3.3) is equal
to
√

3. This can be seen as follows: Let y := 1
3 · (e112 + e222 + e211), then

‖y‖π 6 1. Since y is a zero of the polynomial 1−(x112+x222−x121+x211),
which defines a design hyperplane, we also have ‖y‖π > 1, that is,
‖y‖π = 1. Now, we have ‖ξW‖π = ‖y‖π ·

√
3 =
√

3.

7.3.6 Discussion

One might ask whether it is possible to obtain witness hyperplanes
which are based on orthogonal designs and on Theorem 6.3.6 also
for values of n other than 2, 4 and 8.

The next section deals with the case where n ∈ {3, 5, 6, 7}.
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What about the case where n > 8? Let us first consider the case
where n = 2k for any k > 4. This case seems to be promising, since
each orthogonal design which was interesting for us based on a latin
square whose order is a power of 2. Indeed, Lemma 7.3.2 holds for
any quasigroup S0 which is isomorphic to (Z2)

k such that we are
able to find a join-meet partition of N = {1, . . . , 2k}r. The question
arises whether there also exists a splitting function for this join-meet
partition. However, this seems to be more difficult because there
exists no full orthogonal design of type (1, . . . , 1) in this case.

7.3.7 Symmetric Partitions and Symmetric Functions

The symmetric group Sr acts on N from the left, see Example 3.2.3:
For all π ∈ Sr and for all a = (a1, . . . ,ar) ∈ N, we have

π.a = (aπ−1(1), . . . ,aπ−1(r)) = a ◦ π−1.

Definition. A proper partition P of N is called symmetric, if for all T ∈ P, for all
a ∈ T and for all permutations π ∈ Sr, we have π.a ∈ T .

Definition. A function s : N→ {1,−1} is called symmetric, if for all π ∈ Sr and for
all a ∈ N, we have s(π.a) = s(a).

Since we assume that (S0, ?) is associative and commutative, it fol-
lows that the design partition is symmetric. The design function is
not symmetric in general, see Example 7.3.5.II.

Example. In this example, we consider the multiplication table for the complex
numbers 1 and i,

· 1 i
1 1 i
i i −1

,

see Example 7.2.2. The design partition and the design function
are symmetric. With S := {1, i}, the design parts are T1,r = {a ∈
{1, i}r : prod(S,·)(a) ∈ R} and T2,r = {a ∈ {1, i}r : prod(S,·)(a) ∈ iR}, and
for all a ∈ {1, i}r, the sign of prod(S,·)(a) equals sD(a).
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7.4 Skip Hyperplanes

Let n ′ ∈ {3, 5, 6, 7} and let V ′ = Rn ′ ⊗ · · · ⊗ Rn ′ with r > 2 tensor
factors.

In this section, we define the skip partition, the skip function and,
finally, the skip hyperplanes and the skip bound on the inner radius
of the projective unit ball in the tensor product V ′.

7.4.1 The Skip Partition and the Skip Function

The indexing tuples of V ′ are given by N ′ := {1, . . . ,n ′}r. In the case
where n ′ = 3, let n := 4 and in the case where n ′ ∈ {5, 6, 7}, let n := 8.
Let N := {1, . . . ,n}r.

Definition. Let PD be a design partition with corresponding design function
sD for the lattice N. The restriction P S of PD on N ′ is called a skip
partition. The restriction s S of sD on N ′ is called a skip function.

Proposition. The skip partition is a join-meet partition of N ′ and the skip function
is a splitting function for it.

Proof. This can be easily verified, since PD is an inf-sup-partition with
splitting function sD. �

7.4.2 Skip Hyperplanes as Sos Polynomials

Let T ∈ P S and let y := 1
(n ′)r−1 ·

∑
a∈T s S(a) · ea ∈ V ′.

Definition. The affine hyperplane in V which is defined by the support func-
tional ly = 1 −

∑
a∈T s S(a) · xa to y is called a skip hyperplane.

Theorem. The support functional ly to y is a 1 -sos-mod JN ′-polynomial.

Proof. This follows immediately from Theorem 6.3.6, since P S is a join-meet
partition and s S is a splitting function for P S. �



Skip Hyperplanes 229

7.4.3 The Skip Bound

Let mSkip denote the relative size of the skip partition and let

Skip(V ′) :=
√

1/mSkip.

Definition. We refer to Skip(V ′) as the skip bound.

Corollary. Let y be the support vector of a skip hyperplane. We have ‖y‖π = 1,
and for any vector z which lies in a skip hyperplane, we have
‖z‖π > 1. The inner radius of the projective unit ball B1,π in V ′

satisfies the inequality

r(B1,π) 6 Skip(V ′).

Proof. The last theorem states that the skip hyperplanes are witnesses
for the projective unit ball in V ′, which yields ‖z‖π > 1. It can
be easily seen that ‖y‖π 6 1 according to the definition of the
projective norm, so that ‖y‖π = 1. From Corollary 6.3.6, it follows
that r(B1,π) 6

√
1/mSkip = Skip(V ′). �

Example. We consider the design partition from Example 7.3.5.II. At first, we
mark each row which contains the entry 4 in orange:

T ′1 T ′2 T ′3 T ′4
1 1 1 − 1 1 2 − 1 1 3 − 1 1 4
2 2 1 − 2 2 2 − 2 2 3 − 2 2 4
3 3 1 − 3 3 2 − 3 3 3 − 3 3 4
4 4 1 − 4 4 2 − 4 4 3 − 4 4 4

− 1 2 2 − 1 2 1 − 1 2 4 1 2 3
2 1 2 2 1 1 2 1 4 − 2 1 3

− 3 4 2 − 3 4 1 − 3 4 4 3 4 3
4 3 2 4 3 1 4 3 4 − 4 3 3

− 1 3 3 1 3 4 − 1 3 1 − 1 3 2
2 4 3 − 2 4 4 2 4 1 2 4 2
3 1 3 − 3 1 4 3 1 1 3 1 2

− 4 2 3 4 2 4 − 4 2 1 − 4 2 2
− 1 4 4 − 1 4 3 1 4 2 − 1 4 1
− 2 3 4 − 2 3 3 2 3 2 − 2 3 1

3 2 4 3 2 3 − 3 2 2 3 2 1
4 1 4 4 1 3 − 4 1 2 4 1 1



230 Chapter 7 – Design Hyperplanes

Now, if we omit the marked rows, we obtain a skip partition (together
with a skip function) for n ′ = r = 3, whose parts are denoted by T ′s,
where s ∈ {1, 2, 3, 4}. This example illustrates that the parts of a skip
partition do not have the same length in general. The relative size
equals mSkip = 7 and an upper bound for the inner radius is given by
Skip(R3 ⊗ R3 ⊗ R3) =

√
1/7. However, numeric tests, see Subsection

6.2.5, suggest that even
√

7/9 is an upper bound, so that we expect
r(B1,π) <

√
1/7.

In Chapter 10 we obtain a class of vectors with projective norm 1
on the basis of Corollary 7.4.3. This leads to a generalisation of the
Schmidt decomposition in the real case. There one can find also a
summary of the results and more examples.

On the next page, we give an example how the relative size of
the skip partition can be determined with the aid of SageMath, see
[Sage]. (The code can also be found on the internet, see page xxi.
You can use https://sagecell.sagemath.org/ to run the
code without installing Python).

https://sagecell.sagemath.org/
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print("Design Partition and Skip Partition")

import numpy as np

# FUNCTIONS - - - - - - - - - - - - - - - -

def app(M, z):
"""
matrix = app(matrix, integer)
--> append a new column, each entry equals z
"""
return np.append(M,np.tile(z,(M.shape[0],1)),axis=1)

def con(M1, M2):
"""
matrix = con(matrix, matrix)
--> append M2 under M1:
M1
M2
"""
return np.append(M1,M2,axis=0)

def printarr(M):
"""
print = printarr(matrix)
--> pretty print M
"""
for i in M:

for j in i:
print(j, end=" ")

print()

def skipfrompart(M,C):
"""
integer = skipfrompart(matrix, list)
--> number of rows which do not contain the numbers in C
"""
yes = 0
for i in range(M.shape[0]):

a = M[i,:]
a = a.tolist()
no = 0
for c in C:

if c in a:
no = 1

if no == 0:
yes = yes + 1

return yes

# INITIAL VALUES - - - - - - - - - - - - -

n = 4
r = 3

# PRINT - - - - - - - - - - - - - - - - - -

if n == 4:
L = np.array([[1,2,3,4],[2,1,4,3],[3,4,1,2],[4,3,2,1]]);

if n == 8:
L = np.array([[1,2,3,4,5,6,7,8],[2,1,4,3,6,5,8,7],#
[3,4,1,2,7,8,5,6],[4,3,2,1,8,7,6,5],[5,6,7,8,1,2,3,4],#
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[6,5,8,7,2,1,4,3],[7,8,5,6,3,4,1,2],[8,7,6,5,4,3,2,1]]);
print("n = %.0f" % n)
print("r = %.0f" % r)
print("Relative size design partition = %d" % n^(r-1))
print("Number of parts = %d" % n)
print("Latin square =")
printarr(L)

# MAIN - - - - - - - - - - - - - - - - - -

T = [np.matrix([L[0,i]]) for i in range(n)] # initialise T

list = [] # empty list

for i in range(r-1):
Talt = np.array(T, copy=True) # copy values of T
for j in range(n): # j: row in L

Tjneu = np.array(list) # empty array
for k in range(n): # k: column in L

TT = app(Talt[k],L[j,k])
if k == 0:

Tjneu = TT
if k > 0:

Tjneu = con(Tjneu,TT)
T[j] = Tjneu

# DESIGN PARTITION - - - - - - - - - - - -

for i in range(n):
print("\nDesign part T_(%d,%d)\n" % (i+1,r))
printarr(T[i])

# SKIP PARTITION - - - - - - - - - - - - -

print("\nSkip partition")
print("\nNumbers which are skipped:")
skip = np.array([4])
print(skip)

print("\nLength of parts skip partition:")
without = [skipfrompart(T[i],skip) for i in range(n)]
for i in range(n):

print(’T_%d: %d ’ % (i+1,without[i]))

mskip = np.max(np.array(without))
print(’\nRelative size skip partition: m_Skip = %d’ % mskip)
print(’Skip bound: Skip(V) = %.6f’ % (1/mskip^0.5))
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PARITY HYPERPLANES

In this chapter, we introduce a class of affine hyperplanes in the real tensor
product V := Rn ⊗ · · · ⊗ Rn for n ∈ N, n > 2, which we call parity hyperplanes.
The main results of this chapter are Theorem 8.3.5 and Theorem 8.4.5. They say
that the parity hyperplanes are witnesses for the projective unit ball in V . This
gives an explicit upper bound on the inner radius which we call the parity bound.
The support vectors give a class of vectors with projective norm 1.

The parity hyperplanes are sos polynomials in the sense of Theorem 6.3.6, based
on a join-meet partition, called parity partition, together with a splitting function,
the parity function.

It can be easily verified that the parity partition is a join-meet partition, but it
is more challenging to show that the parity function is a splitting function, see
Section 8.3. Section 8.4 deals with the relative size of the parity partition.

Not only the design hyperplanes, but also the parity hyperplanes illustrate that
the computation of the projective norm can be related to combinatorics. In
addition, this chapter uses some aspects from homological algebra which can be
found in Section 8.2.

In contrast to the design hyperplanes, the parity hyperplanes are defined for
arbitrary values of n. As far as we know, for large values of n and r, it is an open
question whether there exist better upper bounds on the inner radius.

Let r > 2 be the number of tensor factors of V and let N := {1, . . . ,n}r be the
indexing tuples for V , which can be considered as the set of all words of length r
with the alphabet 1, . . . , n. In this respect, for any a = (a1, . . . ,ar) ∈ N, we write
a = a1 · · · ar.
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8.1 Sorting and Inversions

In this section we define the two notions inversion rest and inversion
symmetrisation in preparation for the following sections. For this
purpose, we begin with some aspects of sorting based on [Knu,
Chapter 5 - Sorting] and [CLRS].

8.1.1 Inversion Tables

Definition. Let a = a1 · · · ar ∈ N and let s1, s2 ∈ {1, . . . , r}. The ordered pair
(s1, s2) is called an inversion of a, if s1 < s2 and as1 > as2 . In this case,
we call s1 leftgreater to s2 and s2 rightsmaller to s1 (with respect to a).
The left inversion table LIT(a) := (p1, . . . ,pr) of a is obtained by letting
ps, s ∈ {1, . . . , r}, be the number of positions which are leftgreater to
s, that is, ps is the number of inversions whose second component is
s. Similarly, we define the right inversion table RIT(a) := (q1, . . . ,qr)
of a by letting qs, s ∈ {1, . . . , r}, be the number of positions which are
rightsmaller to s, that is, qs is the number of inversions whose first
component is s. Let inv(a) be the total number of inversions of a.

Obviously, elements of N with no inversions are sorted in ascending
order, that is, they have the form 1 · · · 1 2 · · · 2 · · · n · · · n, whereas
not all of the numbers 1, . . . , n have to occur.

Both the left and the right inversion table consider each inversion
exactly once, so that we obtain inv(a) =

∑r
s=1 ps =

∑r
s=1 qs.

Example. Let n = 3 and r = 5. Here are three examples:

a 2 2 1 2 2 2 1 3 2 2 1 2 1 3 1

LIT(a) 0 0 2 0 0 0 1 0 1 1 0 0 1 0 2

RIT(a) 1 1 0 0 0 1 0 2 0 0 0 2 0 1 0

inv(a) 2 3 3

Remark. In the special case where n = r, the symmetric group Sr can be
considered as a subset of N. In [Knu], the inversion table KIT(a) for
a permutation a ∈ Sr is defined as follows: The sth entry of KIT(a)
equals the total number of those entries of a which are left to and
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greater than the entry (not the position) s. Our definition, however,
can easily be traced back to the permutation case (for instance, if
we assign a := 1 1 2 3 2 1 to the "permutation" b := 1 2 4 6 5 3, then we
have inv(a) = inv(b)). Here we give an example which contrasts the
three definitions:

a 5 9 1 8 2 6 4 7 3

LIT(a) 0 0 2 1 3 2 4 2 6

RIT(a) 4 7 0 5 0 2 1 1 0

KIT(a) 2 3 6 4 0 2 2 1 0

8.1.2 Inversions and Sorting Algorithms

Let a = a1 · · · ar ∈ N. We have seen that inv(a) can be obtained with
the left or the right inversion table. Now we show an alternative to
obtain inv(a) by using sorting algorithms. To do this, we introduce
the bubble sort algorithm. The analogy to rising bubbles in a glass of
sparkling water gave the algorithm its name, see [Knu, Section 5.2.2].
See also [CLRS].

Bubble sort algorithm

IN: a = a1 a2 · · · ar
0. Let b := a, k := 1, l := 2, s := 1.
1. Let c := b.

If bk > bl, then we set ck := bl and cl := bk.
We set b := c.

2. Case 1: k < r− s. Let k k+ 1 and l l+ 1.
Proceed with 1.
Case 2: k = r− s.
Let s s+ 1. Proceed with Case 2.1 or Case 2.2.
Case 2.1: s < r.
Let k 1, l 2, and proceed with 1.
Case 2.2: s = r.
In this case, the entries of b are sorted in ascending order.
The algorithm stops.

OUT: b = b1 · · · br
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The algorithm proceeds position by position from left to right, in-
terchanging an entry with its neighbour if they are not sorted in
ascending order. In case 2, the last s positions contain the s largest
elements sorted in ascending order. At this stage, it is sufficient to
sort only the entries in the first r− s positions, starting with the first
two positions. The following proposition shows that the number of
interchanges under step 1 is equal to inv(a).

We recall from Example 3.2.3 that the symmetric group Sr acts on N
from the left. In particular, we have π.a = aπ−1(1) · · · aπ−1(r) for all
π ∈ Sr.

Proposition. There exists a permutation π ∈ Sr with π = πs · . . . · π1, where
π1, . . . ,πs ∈ Sr, s ∈ N0, are adjacent transpositions, such that the
entries of π.a are sorted in ascending order and inv(a) = s.

Proof. Let π = (k k + 1) be an adjacent transposition, where k ∈ {1, . . . , r}.
Now, if k is leftgreater to k + 1 with respect to a, then inv(a) =

inv(π.a) + 1. Hence, an interchange in bubble sort under step 1
corresponds to an adjacent transposition. Bubble sort shows that π
exists, that is, each entry has to pass the entries of its rightsmaller
positions. The statement inv(a) = s follows by induction. �

Example. Let n = 5 and r = 5. The following scheme shows the application of
the bubble sort algorithm to a := 4 3 5 1 2, yielding inv(a) = 7:

4 3 5 1 2 (1 2)−−→ 3 4 5 1 2 (3 4)−−→ 3 4 1 5 2 (4 5)−−→ 3 4 1 2 5 (s=1)

(2 3)−−→ 3 1 4 2 5 (3 4)−−→ 3 1 2 4 5 (s=2)

(1 2)−−→ 1 3 2 4 5 (2 3)−−→ 1 2 3 4 5 (s=3).

8.1.3 Geometric Views of Inversions

The next example shows nicely how inversions can be visualised. It
can be found in [Knu] and [Zie].

Example. The orbit of a := 1 2 3 4 ∈ {1, 2, 3, 4}4 under S4 can be identified with
the vertices of a graph, see Figure 8.1 on page 237. Two vertices are
connected by an edge, if the corresponding elements emerge from
each other by an adjacent transposition. This graph is called the
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Figure 8.1: The permutahedron of order 4.

permutahedron of order 4. It is equivalent to a truncated octahedron.
The signs indicate whether the corresponding permutation is even
(+ and blue) or odd (− and red).

Figure 8.3 on page 239 shows only those vertices which have a pos-
itive sign. Here, two vertices are are connected by an edge, if the
corresponding elements emerge from each other by two adjacent
transpositions. This graph is equivalent to an icosahedron.

Figure 8.2 on page 238 shows how the icosahedron emerges from
the truncated octahedron (visualised three-dimensionally).

The truncated octahedron can also be interpreted as the Hasse di-
agram of a lattice L corresponding to the so-called weak order of
permutations. It is shown on Figure 8.4 on page 240. This lattice is
not distributive, but there exists an isotone function from L to the
distributive lattice L ′ := {0, 1, 2, 3}3 (with top 333 and bottom 000).
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Figure 8.2: An icosahedron in the truncated octahedron.

8.1.4 The Inversion Rest

We now ask how the number of inversions behaves when a change
is made in exactly one position. In this respect we come to our first
definition.

Let a = a1 · · · ar ∈ N. Let s0 ∈ {1, . . . , r} and let c ∈ {1, . . . ,n}. Let
ã ∈ N emerge from a by replacing the sth

0 entry of a by c, that is,

ã := a(s0, c) := a1 · · · as0−1 c
↑s0
as0+1 · · · ar.

Definition. The inversion rest of a with respect to (s0, c) is defined by

R(a, s0, c) := (inv(ã) − inv(a))mod 2.

Let k0 := min(as0 , c) and l0 := max(as0 , c).
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Figure 8.3: The positive permutations.

Proposition. We have

R(a, s0, c) = ( #{s ∈ {1, . . . , s0 − 1} : k0 < as 6 l0}

+ #{s ∈ {s0 + 1, . . . , r} : k0 6 as < l0} )mod 2.

Proof. Let g = g1 · · · gr ∈ N. Let LIT(g) = (fg1 , . . . , fgr ) be the left inversion
table, that is, fgs is equal to the number of positions in g which are
leftgreater to s, that is, fgs = #{t ∈ {1, . . . , s−1} : gt > gs}. According to
Subsection 8.1.1, we have inv(g) =

∑r
s=1 f

g
s . Obviously, the assertion

holds in the case where as0 = c, so it is sufficient to consider the
cases where as0 < c and where as0 > c.
Case 1: as0 < c.
The entries of a and ã coincide in the first s0 − 1 positions. It follows
that fas = fãs for all s ∈ {1, . . . , s0 − 1}. Now, we consider position
s0. A position which is leftgreater to s0 in ã is also leftgreater to
s0 in a, since c is larger than as0 , but the converse does not hold
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Figure 8.4: The permutahedron as a lattice.

in general. In particular, the difference results from counting all
positions s ∈ {1, . . . , s0 − 1} which are leftgreater to s0 in a, but not in
ã. Hence, we obtain

fãs0
− fas0

= − #{s ∈ {1, . . . , s0 − 1} : as0 < as 6 c}.

Finally, let s ∈ {s0 + 1, . . . , r}. If position s0 is leftgreater to s in a, it
is also in ã, since c is larger than as0 . The converse does not hold
in general. In particular, a difference occurs if and only if as is less
than c, but not less than as0 , that is,

fãs − f
a
s =

{
1, as0 6 as < c

0, otherwise.

We conclude that

inv(ã) − inv(a) =
r∑
s=1

(fãs − f
a
s ) =

r∑
s=s0

(fãs − f
a
s )
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= (fãs0
− fas0

) +

r∑
s=s0+1

(fãs − f
a
s )

= − #{s ∈ {1, . . . , s0 − 1} : as0 < as 6 c}

+ #{s ∈ {s0 + 1, . . . , r} : as0 6 as < c}.

Since as0 = k0 and c = l0, we conclude that

R(a, s0, c) = ( #{s ∈ {1, . . . , s0 − 1} : k0 < as 6 l0}

+ #{s ∈ {s0 + 1, . . . , r} : k0 6 as < l0} )mod 2. (8.1)

Case 2: as0 > c.
It suffices to consider Case 1, since

R(a, s0, c) = (inv(ã) − inv(a))mod 2
= (inv(a) − inv(ã))mod 2
= R(ã, s0,as0)

and the right side of equation (8.1) is symmetric in c and in as0 . �

k0

k0 + 1

l0

l0 − 1

1 · · · · · · s0 − 1 s0 s0 + 1 · · · · · · r

Figure 8.5: Illustration of the inversion rest.

Example. This example shows how we can obtain the inversion rest graphically.
Let

a := 5 2 1 3 6 4 2 1 3 2 4 5

and let s0 := 7 and c := 5. Figure 8.5 shows a and ã by coloured dots.
The positions are shown on the horizontal axis and the entries are
shown on the vertical axis.
The positions which are leftgreater to position 7 with respect to a,
but not with respect to ã, correspond to the dots which lie within
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the two horizontal lines on the left, given by k0 := min(2, 5) = 2
and l0 := max(2, 5) = 5. The positions which have 7 as a leftgreater
position with respect to ã, but not with respect to a, correspond to
the dots which lie within the two right lines.
The dots that lie within (or outside) the two lines are coloured
in red (or in yellow, respectively), so that R(a, s0, c) = R(a, 7, 5) =

(3 + 3)mod 2 = 0 is equal to the total number of red dots modulo 2.

8.1.5 The Inversion Symmetrisation

The inversion rest depends on the entries of a in positions differ-
ent from s0. In what follows, we introduce another notion which
depends only on the entries in positions where a change is made.

Let s1, s2 ∈ {1, . . . , r} with s1 < s2 and let c1, c2 ∈ {1, . . . ,n}.

Let a0 := a, a1 := a(s1, c1), a2 := a(s2, c2) and a3 := a1(s2, c2):

a1 := (a1, . . . ,as1−1, c1 ,as1+1, . . . ,as2−1, as2 ,as2+1, . . . ,ar),

a2 := (a1, . . . ,as1−1, as1 ,as1+1, . . . ,as2−1, c2 ,as2+1, . . . ,ar),

a3 := (a1, . . . ,as1−1, c1 ,as1+1, . . . ,as2−1, c2 ,as2+1, . . . ,ar).

The boxes show the positions where changes can occur with respect
to a.

Definition. The inversion symmetrisation of a with respect to (s1, s2, c1, c2) is de-
fined by

S := S(a, s1, s2, c1, c2) :=

( 3∑
k=0

inv(ak)
)

mod 2.

Now, we show that the inversion symmetrisation depends only on
c1, c2 and the entries of a in positions s1 and s2. To do this, let

k1 := min(as1 , c1),
l1 := max(as1 , c1),
k2 := min(as2 , c2), and
l2 := max(as2 , c2).

Lemma. We have S = inv(k1, l1,k2, l2)mod 2.
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Proof. From Proposition 8.1.4, we obtain

R(a0, s2, c2) = (inv(a2) − inv(a0))mod 2
= ( #{s ∈ {1, . . . , s2 − 1} : k2 < as 6 l2}

+ #{s ∈ {s2 + 1, . . . , r} : k2 6 as < l2} )mod 2, and
R(a1, s2, c2) = (inv(a3) − inv(a1))mod 2

= ( #{s ∈ {1, . . . , s2 − 1} : k2 < (a1)s 6 l2}

+ #{s ∈ {s2 + 1, . . . , r} : k2 6 (a1)s < l2} )mod 2
= ( #{s ∈ {1, . . . , s1 − 1} : k2 < as 6 l2}

+ #{s ∈ {s1} : k2 < c1 6 l2}

+ #{s ∈ {s1 + 1, . . . , s2 − 1} : k2 < as 6 l2}

+ #{s ∈ {s2 + 1, . . . , r} : k2 6 as < l2} )mod 2.

For any boolean expression A, let δ(A) := 1 if A is true, otherwise
let δ(A) := 0. Now, it follows that( 3∑

k=0

inv(ak)
)

mod 2 = (R(a0, s2, c2) + R(a
1, s2, c2))mod 2

= ( #{s ∈ {s1} : k2 < as1 6 l2}

+ #{s ∈ {s1} : k2 < c1 6 l2} )mod 2
= (δ(k2 < k1 6 l2)

+ δ(k2 < l1 6 l2))mod 2. (8.2)

From k1 6 l1 and k2 6 l2, it follows by a short calculation that

δ(k2 < k1 6 l2)mod 2 = (δ(k2 < k1) + δ(l2 < k1))mod 2,
δ(k2 < l1 6 l2)mod 2 = (δ(k2 < l1) + δ(l2 < l1))mod 2.

Let j := (k1, l1,k2, l2) ∈ {1, . . . ,n}4. With equation (8.2), we obtain

inv(j)mod 2 = (δ(l1 < k1)︸ ︷︷ ︸
=0

+δ(k2 < k1) + δ(k2 < l1)

+ δ(l2 < k1) + δ(l2 < l1) + δ(l2 < k2)︸ ︷︷ ︸
=0

)mod 2

=

( 3∑
k=0

inv(ak)
)

mod 2.
�

Corollary. Let a,b ∈ N and let s1, s2 ∈ {1, . . . , r} with s1 < s2. Then we have

S(a, s1, s2,bs1 ,bs2) = S(b, s1, s2,as1 ,as2).
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Proof. With Lemma 8.1.5, we obtain

S(a, s1, s2,bs1 ,bs2) = inv(k1, l1,k2, l2) = S(b, s1, s2,as1 ,as2)

with

k1 := min(as1 ,bs1),
l1 := max(as1 ,bs1),
k2 := min(as2 ,bs2), and
l2 := max(as2 ,bs2). �

8.2 Some Homological Algebra

The main result of this section is Theorem 8.2.3 which will be im-
portant for the next section. For this purpose, we introduce some
standard notions related to homological algebra.

8.2.1 Cochain Complexes

Definition. A finite cochain complex of length 3 is a chain

C0 d0
−→ C1 d1

−→ C2,

where C0,C1,C2 are abelian groups and d0 and d1 are group homo-
morphisms with the property d1 ◦ d0 = 0.

The image B1 of d0 is called the 1−coboundary and the kernel Z1 of
d1 is called the 1−cocycle. The 1−coboundary is a subgroup of the
1−cocycle. The quotient Z1/B1 is called the 1th cohomology group of
this complex.

In what follows, we introduce a special cochain complex which is
common in the literature. For details, see [Ser] or [Bos, page 201],
who used it to formulate a cohomological version of the so-called
Hilbert’s Theorem 90.

8.2.2 A Special Cochain Complex

We first note that the set A(P,Q) of all functions from a non-empty
set P in an abelian group Q is an abelian group under pointwise
multiplication.
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From now on, let G be a group acting on a non-empty set X and let
H be an abelian group. We write A := A(X,H).

According to Proposition 3.2.3, a group action of G on A is given
by g.a := (x 7→ a(g−1.x)). Moreover, for each g ∈ G, we consider
the function πg : A → A, a 7→ g.a. It can be easily verified that πg
is an automorphism on A. The set A can also be considered as a
G-module (with the multiplication g · a =: g.a).

To specify our setting, let Ck := A(Gk,A) for k ∈ {0, 1, 2}, that is,
C0 = A, C1 = A(G,A) and C2 = A(G2,A).

We first define d0 by

d0 : A→ A(G,A)
a 7→ ϕa,

where

ϕa : G→ A

g 7→ ϕa(g) :=
g.a
a

,

that is,

ϕa(g) : X→ H

x 7→ a(g−1.x)
a(x)

.

From g.a = πg(a) and from the introductory comment that πg is
an automorphism, it can be seen that d0 is a group homomorphism
with image

B1 =
{
ϕ ∈ A(G,A) : There exists a ∈ A with ϕ =

( · ).a
a

}
.

Now, we define

d1 : A(G,A)→ A(G2,A),
ϕ 7→ dϕ,

where

dϕ : G2 → A

(g,h) 7→ dϕ(g,h) :=
g.(ϕ(h)) ·ϕ(g)

ϕ(gh)
.



246 Chapter 8 – Parity Hyperplanes

With the introductory comments, it follows that d1 is a group homo-
morphism with kernel

Z1 = {ϕ ∈ A(G,A) : For all g,h ∈ G : ϕ(gh) = g.(ϕ(h)) ·ϕ(g)}.

The latter equation is also called the cocycle property.

We note that if G acts trivially on A, then the cocycle Z1 consists of
all group homomorphisms G→ A.

To check d1 ◦ d0 = 0, we will make use of the following observation:

Proposition. For all a ∈ A and for all g,h ∈ G, we have

ϕa(gh) = g.(ϕa(h)) ·ϕa(g).

Proof. Since πg is an automorphism on A, we obtain

ϕa(gh) =
(gh).a
a

=
g.(h.a)
g.a

· g.a
a

= g.
(h.a
a

)
· g.a
a

= g.(ϕa(h)) ·ϕa(g). �

With the last proposition, we see that B1 ⊆ Z1. Thus, we have
d1 ◦ d0 = 0 and our setting specifies a finite cochain complex.

8.2.3 Cocycles and Homomorphisms

The following helpful statements will be specifically important for
Lemma 8.3.4.

Proposition. Let ϕ ∈ Z1. The preimage of a sub-G-module of A under ϕ is a
subgroup of G.

Proof. Let U be a sub-G-module of A and let W denote the preimage of
U under ϕ. We have ϕ(1) = ϕ(1 · 1) = 1.(ϕ(1)) · ϕ(1) = ϕ(1) · ϕ(1).
It follows that ϕ(1) = 1, which lies in U, that is, 1 ∈ W. Now, let
g,h ∈ W. We obtain ϕ(gh) = g.(ϕ(h)) · ϕ(g) ∈ U, so that gh ∈ W.
Hence, W is a subgroup of G. �
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Theorem. Let G be a generating set of G. Let ϕ ∈ Z1 such that for all g,h ∈ G,
we have

ϕ(gh) = ϕ(g) ·ϕ(h).

Then ϕ is a group homomorphism.

Proof. Let g,h ∈ G with ϕ(gh) = ϕ(g) ·ϕ(h). From the cocycle property of
ϕ, it follows that ϕ(gh) = ϕ(g) · g.ϕ(h). This yields ϕ(h) = g.ϕ(h),
that is, ϕ(h) is invariant under g. The set of all elements of A which
are invariant under G is a sub-G-module FixG(A) of A. Hence, ϕ is
a group homomorphism if and only if ϕ(G) ⊆ FixG(A).
For V ⊆ G, we write gen(V) to denote the generated subgroup of V
in G. For U ⊆ A, we write gen(U) to denote the generated sub-G-
module of U in A.
Statement 1: ϕ(G) ⊆ FixG(A).
Proof : Let h ∈ G. By assumption and according to the introductory
comment, for all g ∈ G, ϕ(h) is invariant under g. Hence, ϕ(h) is
also invariant under gen(ϕ(G)) = G, so that the statement follows.
Statement 2: ϕ(G) ⊆ FixG(A).
Proof : By definition, gen(ϕ(G)) is a sub-G-module of A. This im-
plies that its preimage V0 under ϕ is a subgroup of G according to
Proposition 8.2.3. From G ⊆ V0 we obtain V0 = G. Hence, we obtain

ϕ(G) = ϕ(V0) ⊆ gen(ϕ(G)). (8.3)

From statement 1, we obtain gen(ϕ(G)) ⊆ FixG(A). Statement 2
follows with the inclusion (8.3). �

8.2.4 Application to the Special Case

The evaluation functional on A at x ∈ X is denoted by δx : A → H,
f 7→ f(x). For all a ∈ A, let ϕa,x := δx ◦ ϕa denote the composition
of the coboundary ϕa with δx. In particular:

ϕa,x : G
ϕa−→ A

δx−→ H

g 7→ a(g−1.x)
a(x)

.

Corollary. Let G be a generating set of G. Let a ∈ A such that for all g,h ∈ G

and for all x ∈ X, we have

ϕa,x(gh) = ϕa,x(g) ·ϕa,x(h).
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Then ϕa,x is a group homomorphism for all x ∈ X. In addition, if
ϕa,x is a non-trivial (i.e. non-constant), then also ϕa,g.x is non-trivial
for all g ∈ G.

Proof. Step 1: Using the cocycle property, a short calculation shows that for
all g,h ∈ G, we have

ϕa,x(gh) = ϕa,g−1.x(h) ·ϕa,x(g). (8.4)

Step 2: We have ϕa ∈ B1 ⊆ Z1. The assumption yields ϕa(gh) =

ϕa(g) · ϕa(h) for all g,h ∈ G, so that we can apply Theorem 8.2.3.
Hence, ϕa is a group homomorphism, and so is ϕa,x for all x ∈ X.
The second statement follows from equation (8.4).
By the way, it can be noted that step 2 could also be shown without
Theorem 8.2.3 by using equation (8.4) and induction. �

Corollary. Let G be abelian and let H = ({1,−1}, · ). Let a ∈ A and let x ∈ X
such that ϕa,x is a non-trivial group homomorphism. Then the orbit
G.x of x under G can be partitioned into the parts {y ∈ G.x : a(y) = 1}
and {y ∈ G.x : a(y) = −1} which have the same length.

Proof. We show that the two parts have the same length. The stabiliser Gx
of x under G is a normal subgroup of the kernel of ϕa,x (since G is
abelian), so we can consider the homomorphism

ϕ̃a,x : G/Gx → {1,−1}

gGx 7→
a(g−1.x)
a(x)

,

which is non-trivial. Thus, there are two cosets of the kernel ϕ̃−1
a,x(1)

(that is, the index of ϕ̃−1
a,x(1) in G/Gx is 2). They have the same

length. The statement follows since a(x) is a constant factor of ϕa,x

and since G/Gx and the orbit G.x have the same cardinality, which
follows from the Orbit-Stabiliser Theorem in Subsection 3.2.2. �

8.3 Parity Hyperplanes

In this section, we define the parity partition, the parity function
and, finally, the parity hyperplanes.

With Corollary 6.3.6, the relative size of the parity partition gives
rise to an upper bound on the inner radius of the projective unit ball.
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In the next section, we determine an explicit formula for this upper
bound.

8.3.1 The Parity Partition

Definition. For all a = (a1, . . . ,ar) ∈ N and for all t ∈ {1, . . . ,n}, the parity of t in
a is defined by

ρ(a)t := #{s ∈ {1, . . . , r} : as = t} mod 2.

We say that the parity of t in a is even, if ρ(a)t = 0, and odd, if
ρ(a)t = 1. Now, let us consider the function

ρ : N → Fn2
a 7→ (ρ(a)1, . . . , ρ(a)n).

The image ρ(a) of a is called the parity of a in N.

The parity ρ(a)t indicates whether the total number of the entry t in
a is even or odd.

Elements in Fn2 can be regarded as codewords, see Section 6.5 (we
will return to this reference in Subsection 8.4.6). Now, we obtain v ∈
ρ(N) if and only if wt(v)mod 2 = rmod 2 and wt(v) 6 min(n, r).

Definition. For all v ∈ ρ(N), we refer to the set Tv := ρ−1(v) as a parity part.
The parity parts define a partition P P of N which we call the parity
partition.

It can be easily seen that the parity partition P P is symmetric.

The length of a parity part Tv depends only on n, r and k := wt(v).
In Section 8.4 we give an explicit formula for the length F(n, r,k).

Example. Let r = 3 and n > 2. In this example, we determine the parity parts
for N := {1, . . . ,n}3 and their lengths. The image ρ(N) of ρ is given
by all v ∈ F2 with wt(v) = 1 or, if n > 3, wt(v) = 3. If wt(v) = 1,
then we have v = (0, . . . , 0, 1, 0, . . . , 0), which is zero except in position
c ∈ {1, . . . ,n}, so that

Tv = {(c, c, c)} ∪
( n⋃

d=1
d6=c

{(c,d,d), (d, c,d), (d,d, c)}
)

,
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whose length equals F(n, 3, 1) = 1 + (n− 1) · 3 = 3n− 2. If wt(v) = 3,
then there exists c,d, e ∈ {1, . . . ,n} with c < d < e such that v is zero
except in positions c, d and e, so that

Tv = {(c,d, e), (c, e,d), (d, c, e), (d, e, c), (e, c,d), (e,d, c)},

whose length equals F(n, 3, 3) = 6. Hence, the parity partition of N
consists of n parity parts whose length equals 3n− 2 and, if n > 3,
of
(
n
3

)
= 1

6(n
3 − 3n2 + 2n) parity parts whose length equals 6.

8.3.2 The Parity Partition is a Join-Meet Partition

Proposition. The parity partition is a join-meet partition.

Proof. Let T ∈ P P and let a,b ∈ T . Let c,d ∈ N with (a,b) ?←→ (c,d),
that is, there exists z ∈ Z with z.a = b, where a = (a,b) and
b = (c,d), see Subsection 5.6.2. We recall that the group (Z,+)

can be identified with (P({1, . . . , r}),4). We show that there exists
T ′ ∈ P P with c,d ∈ T ′, that is, ρ(c) = ρ(d).
Step 1: Let us first assume that there exists s0 ∈ {1, . . . , r} such that
z = {s0}, that is, (c,d) emerges from (a,b) by interchanging the
entries of a and b in position s0. The entries are denoted by as0

and bs0 , respectively. Clearly, for all t ∈ {1, . . . ,n} \ {as0 ,bs0}, this
does neither change the total number of t’s in a nor in b. Thus,
from ρ(a) = ρ(b) we obtain ρ(c)t = ρ(a)t = ρ(b)t = ρ(d)t. Now, let
t ∈ {as0 ,bs0}. From ρ(a) = ρ(b) we obtain

ρ(c)t ± 1 = ρ(a)t = ρ(b)t = ρ(d)t ∓ 1 ∈ F2,

that is, ρ(c)t = ρ(d)t. It follows that ρ(c) = ρ(d).
Step 2: The statement follows by induction for arbitrary z ∈ Z. �

8.3.3 The Parity Function

The parity function is defined as follows:

s P : N→ {1,−1}
a 7→ (−1)inv(a).

For each (a,b) ∈ N2/S2 (see Subsection 5.2.2), let

sig(a,b) := s P(a) · s P(b).
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Example. Let n = 2 and let r ∈ {2, 3, 4, 5}. We will show below in Example
8.3.6 that the parity parts and the parity functions for those values
coincide with the design functions from Example 7.3.5.III.

8.3.4 The Parity Function is a Spli�ing Function

Here, we show that the parity function is a splitting function for the
parity partition.

For all a ∈ N2/S2, let

ϕa : Z→ ({1,−1}, ·)

z 7→ sig(z−1.a)
sig(a)

= sig(z.a) · sig(a).

Lemma. For all a ∈ N2/S2, the function ϕa is a group homomorphism.

Proof. Step 1: Here, we make use of the small introduction to homological
algebra, see Section 8.2. We identify G with Z = ((Z2)

r,+), see Sec-
tion 5.6, H with ({1,−1}, ·) and X with N2/S2. Alternatively, X could
be identified with the orbit of a under Z. The function a is chosen
as sig. Now, we have ϕa = ϕsig,a.
Step 2: According to Corollary 8.2.4.I, it suffices to show the "mul-
tiplicativity" of ϕa on a generating set of Z, which is given by the
singletons {s}, for all s ∈ {1, . . . , r}. Thus, the statement follows from
verifying that for all s1, s2 ∈ {1, . . . , r}, the following equation holds:

ϕa({s1}4{s2}) = ϕa({s1}) ·ϕa({s2}), that is,
1 = ϕa({s1}) ·ϕa({s2}) ·ϕa({s1}4{s2}). (8.5)

Step 3: In the following, we show equation (8.5). To do this, we
first note that it holds in the case where s1 = s2, so it is sufficient to
assume s1 < s2. With {s1}4{s2} = {s1, s2}, equation (8.5) is equivalent
to the equation

1 = sig(a) · sig({s1}.a) · sig({s2}.a) · sig({s1, s2}.a). (8.6)

The elements in N2/S2 which appear in equation (8.6) belong to the
same equivalence class. Let a = a1 · · · ar, b = b1 · · · br ∈ N such
that a = (a,b). Now, let a1 := {s1}.a, a2 := {s2}.a, and a3 := {s1, s2}.a,
which emerge from a and b by interchanging the entries in the
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positions s1, s2, and both s1 and s2, respectively. Thus, it follows that
a1 = (a1,b1), a2 = (a2,b2) and a3 = (a3,b3), where

a1 := (a1, . . . ,as1−1, bs1 ,as1+1, . . . ,as2−1, as2 ,as2+1, . . . ,ar),

b1 := (b1, . . . ,bs1−1, as1 ,bs1+1, . . . ,bs2−1, bs2 ,bs2+1, . . . ,br),

a2 := (a1, . . . ,as1−1, as1 ,as1+1, . . . ,as2−1, bs2 ,as2+1, . . . ,ar),

b2 := (b1, . . . ,bs1−1, bs1 ,bs1+1, . . . ,bs2−1, as2 ,bs2+1, . . . ,ar),

a3 := (a1, . . . ,as1−1, bs1 ,as1+1, . . . ,as2−1, bs2 ,as2+1, . . . ,ar),

b3 := (b1, . . . ,bs1−1, as1 ,bs1+1, . . . ,bs2−1, as2 ,bs2+1, . . . ,ar).

The boxes show the positions where changes can occur with respect
to a or b. Let a0 := a and b0 := b. With the definition of the parity
function, equation (8.6) simplifies to the equation

1 = sig(a) · sig(a1) · sig(a2) · sig(a3)

=

3∏
k=0

s P(a
k) s P(b

k)

=

3∏
k=0

(−1)inv(ak)(−1)inv(bk)

= (−1)
∑3
k=0(inv(ak)+inv(bk)). (8.7)

Equation (8.7) is equivalent to the equation

0 =

3∑
k=0

(inv(ak) + inv(bk))mod 2. (8.8)

Corollary 8.1.5 implies that S(a, s1, s2,bs1 ,bs2) = S(b, s1, s2,as1 ,as2).
This is equivalent to equation (8.8). �

Theorem. Let T ∈ P P and a,b ∈ T with a 6= b. Let a := (a,b). Then ϕa is a
proper group homomorphism.

Proof. Step 1: Let a,b ∈ N. Let s0 ∈ {1, . . . , r} be the first position from
the left where the entries of a and b are different, that is, as0 6= bs0

and at = bt for all t ∈ {1, . . . , s0 − 1}. Now, we set z0 := {s0} ∈ Z,
a1 := a(s0,bs0) and b1 := b(s0,as0), that is, z0.a = (a1,b1).
With Lemma 8.3.4, the statement follows from verifying that

ϕa(z0) = −1. (8.9)
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We have

ϕa(z0) = sig(z0.a) · sig(a)
= s P(a

1) s P(b
1) s P(a) s P(b)

= (−1)(inv(a1)−inv(a))+(inv(b1)−inv(b))

= (−1)R(a,s0,bs0)+R(b,s0,as0),

so with V := (R(a, s0,bs0)+R(b, s0,as0))mod 2, equation (8.9) is equiv-
alent to the equation

V = 1 mod 2. (8.10)

In what follows, we show equation (8.10).

Step 2: The definition of the parity partition P P yields ρ(a)t = ρ(b)t
for all t ∈ {1, . . . ,n}.
Step 3: According to Proposition 8.1.4, we have

R(a, s0,bs0) = ( #{s ∈ {1, . . . , s0 − 1} : k0 < as 6 l0}

+ #{s ∈ {s0 + 1, . . . , r} : k0 6 as < l0} )mod 2 and
R(b, s0,as0) = ( #{s ∈ {1, . . . , s0 − 1} : k0 < bs 6 l0}

+ #{s ∈ {s0 + 1, . . . , r} : k0 6 bs < l0} )mod 2,

where k0 := min(as0 ,bs0) and l0 := max(as0 ,bs0). A reformulation of
V using {as0 ,bs0} = {k0, l0} leads to

=V ( #{s ∈ {1, . . . , s0 − 1} : k0 < as 6 l0}

+ #{s ∈ {1, . . . , s0 − 1} : k0 < bs 6 l0}

+ #{s ∈ {s0 + 1, . . . , r} : k0 6 as < l0}

+ #{s ∈ {s0 + 1, . . . , r} : k0 6 bs < l0} )mod 2

= ( #{s ∈ {1, . . . , r} : k0 < as < l0}

+ #{s ∈ {1, . . . , r} : k0 < bs < l0}

}
= 0 mod 2 (8.11)

+ #{s ∈ {1, . . . , s0 − 1} : as = l0}
+ #{s ∈ {1, . . . , s0 − 1} : bs = l0}

}
= 0 mod 2 (8.12)

+ #{s ∈ {s0 + 1, . . . , r} : as = k0}

+ #{s ∈ {s0 + 1, . . . , r} : bs = k0} )

}
= 1 mod 2 (8.13)

mod 2
= 1 mod 2,
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where equation (8.11) follows from ρ(a)t = ρ(b)t for all t ∈ {k0 +

1, . . . , l0−1}, equation (8.12) follows from the fact that a and b coincide
in the first s0 − 1 positions, and since either as0 = k0 or bs0 = k0,
and ρ(a)k0 = ρ(b)k0 , it follows that the total number of k0’s in a in
positions greater than s0 differs from that in b in 1, so that equation
(8.13) holds. �

Corollary. The parity function is a splitting function for the parity partition.

Proof. Let T ∈ P P and a,b ∈ T with a 6= b. Let a := (a,b). From Theorem
8.3.4, it follows that ϕa is a proper group homomorphism. Hence,
from Corollary 8.2.4.II, it follows that the orbit of a under Z can be
separated in two parts with equal length with respect to the values
of the parity function, that is, the parts

{(c,d) ∈ a : sig(c,d) = 1},
{(c,d) ∈ a : sig(c,d) = −1}

have the same length. �

Example. Here we give an example for Theorem 8.3.4. Let a = 3 2 1 3 and
b = 2 1 2 2 (we recall the notation convention from page 233). For
all z ∈ Z, we have ϕa(z) = ϕa(1 − z) = sig(z.a) · sig(a). From
sig(a) = s P(a) · s P(b) = (−1) · (−1) = 1, we obtain

ϕa(∅) = 1,
ϕa({1}) = s P(2 2 1 3) · s P(3 1 2 2) = −1,
ϕa({2}) = s P(3 1 1 3) · s P(2 2 2 2) = 1,
ϕa({3}) = s P(3 2 2 3) · s P(2 1 1 2) = 1,
ϕa({4}) = s P(3 2 1 2) · s P(2 1 2 3) = −1,

ϕa({1, 2}) = s P(2 1 1 3) · s P(3 2 2 2) = −1,
ϕa({1, 3}) = s P(2 2 2 3) · s P(3 1 1 2) = −1,
ϕa({1, 4}) = s P(2 2 1 2) · s P(3 1 2 3) = 1.

Hence, ϕa is proper and #(ϕ−1
a (1)) = #(ϕ−1

a (−1)).

Example. The proof of Theorem 8.3.4 uses that the parities in a and b are equal.
The following example shows that we cannot reject this requirement.
Let a = 1 1 1 and b = 2 3 4. From sig(a) = s P(a) · s P(b) = 1 · 1 = 1, we
obtain

ϕa(∅) = 1,
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ϕa({1}) = s P(2 1 1) · s P(1 3 4) = 1 · 1 = 1,
ϕa({2}) = s P(1 3 1) · s P(2 1 4) = (−1) · (−1) = 1,
ϕa({3}) = s P(1 1 4) · s P(2 3 1) = 1 · 1 = 1,

that is, ϕa is not proper.

Remark. Alternatively, the corollary can be shown as follows: Let T ∈ P P

and let a,b ∈ T with a 6= b. Let a := (a,b). Let s0 be the first
position from the left where the entries of a and b are different and
let z = {s0} ∈ Z. The function

β : [a]→ [a], b 7→ z.b

is bijective with β2 = 1. It is left to show that sig(b) · sig(β(b)) = −1
for all b ∈ [a]. This approach does not use Lemma 8.3.4. A similar
approach was used in Chapter 7.

8.3.5 Parity Hyperplanes as Sos Polynomials

Let T ∈ P P be a parity part. Let

y :=
1

#T
·
∑
a∈T

s P(a) · ea,

which lies in V .

Definition. The affine hyperplane in V which is defined by the support func-
tional ly = 1 −

∑
a∈T s P(a) · xa to y is called a parity hyperplane.

Each parity hyperplane is a witness hyperplane for the projective
unit ball B1,π in V :

Theorem. The support functional ly to y is a 1 -sos-mod JN-polynomial.

Proof. This follows from Theorem 6.3.6, since P P is a join-meet partition
and s P is a splitting function for P P, see Corollary 8.3.4. �

Now, we obtain the projective norm of y:

Corollary. We have ‖y‖π = 1, and for any vector z ∈ V which lies in a parity
hyperplane, we have ‖z‖π > 1.
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Proof. The last theorem states that ly is a witness for B1,π, yielding ‖z‖π > 1.
It can be easily seen that ‖y‖π 6 1 according to the definition of the
projective norm, so that ‖y‖π = 1. �

In Chapter 10 we obtain a class of vectors with projective norm 1
on the basis of Corollary 8.3.5. This leads to a generalisation of the
Schmidt decomposition in the real case.

With Corollary 6.3.6, we obtain an upper bound on the inner radius
of B1,π. In the next section, we derive an explicit formula for it, see
Theorem 8.4.5. See also Chapter 10 for a summary of the results.

With the computer program described in Subsection 6.2.5, one can
check Theorem 8.3.5 for some small values of n and r.

8.3.6 Comparison with the Design Hyperplanes

In the case where n ∈ {2, 4, 8}, the question arises how to compare
the design and the parity hyperplanes. First we compare the width
and the relative size of the design and the parity partition. It can also
be interesting to compare the corresponding splitting functions.

Proposition. The design partition PD is coarser than the parity partition P P. In the
case where n ∈ {4, 8}, it is strictly coarser. In the case where n = 2,
the partitions can be equal.

Proof. Step 1: Let T be a parity part. We show that there exists a design
part T ′ with T ⊆ T ′. By definition, there exists v = (v1, . . . , vn) ∈ Fn2
with T = ρ−1(v). We recall that N = (S0)

r, where S0 = {1, . . . ,n}. Let
p be the product in (S0, ?) of all s ∈ {1, . . . ,n} with vs = 1. Now, we
consider the design part T ′ := Tp,r = {a ∈ N : prod(S0,?)(a) = p}. Let
a ∈ T . Since (S0, ?) is commutative and each element is self-inverse,
we obtain prod(S0,?)(a) = p, that is, a ∈ T ′.
Step 2: In the case where n > 4, Example 7.3.5.II shows that PD is
strictly coarser.
Step 3: In the case where n = 2, we consider the orthogonal design
( 1 2
−2 1 ) from Example 7.3.5.III. It can be easily verified that the design

parts are given by

T1,r = {a ∈ N : prod(S0,?)(a) = 1} = {a ∈ N : ρ(a)2 = 0} and

T2,r = {a ∈ N : prod(S0,?)(a) = 2} = {a ∈ N : ρ(a)2 = 1}.
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This shows that this design partition and the parity partition are
equal. �

The length of a design part is nr−1. In the next section, we compute
the length of a parity part.

Proposition. In the case where n = 2, the parity function is equal to the design
function from Example 7.3.5.III. In the case where n ∈ {4, 8} and
r = 2, the parity function is not equal to a design function.

Proof. Case n = 2: Again, we consider the orthogonal design ( 1 2
−2 1 ) from

Example 7.3.5.III. We show s P(a) = sD(a) for all a ∈ N by induction
on r. The example shows that the statement is true in the case
where r = 2. Let r > 2. Let b = (b1, . . . ,br,br+1) ∈ {1, 2}r+1 and
(b1, . . . ,br) =: a. We write also b = a,br+1 and s := sD(a). Let k
be the number of 2’s in a. In the following, we consider sD(b) in
dependence of k and br+1. If k is even, then prod(S0,?)(a) = 1 and

sD(a, 1) = s · sD(1 · 1) = s,
sD(a, 2) = s · sD(1 · 2) = s.

If k is odd, then prod(S0,?)(a) = 2 and

sD(a, 1) = s · sD(2 · 1) = −s,
sD(a, 2) = s · sD(2 · 2) = s.

In summary, the sign changes exactly in the case where k is odd and
br+1 = 1. On the other hand, we have inv(a)mod 2 6= inv(b)mod 2
if and only if k is odd and and br+1 = 1, since in this case, an odd
number of 2’s has to pass the additional 1 to bring the entries of b in
an ascending order.

Case n ∈ {4, 8}: Let X be an orthogonal design of order n and let r = 2.
We show that there exists a ∈ {1, . . . ,n}2 such that sD(a) 6= s P(a). We
first note that a n × n Hadamard matrix has at least one negative
entry in the upper right triangle (diagonal included). Since X can be
decomposed in a Hadamard matrix and a latin square, there exists
γ, δ ∈ {1, . . . ,n}, γ 6 δ, such that Xγ,δ is a negative entry of X. Now,
let a := γδ. We have sign(xγ · xδ) = sD(a) = −1. On the other hand,
we have s P(a) = 1, since a has no inversions. �
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8.4 The Relative Size of the Parity Partition

In this section we first obtain an explicit formula for the length of a
parity part. Then we obtain the relative size of the parity partition
which gives the parity bound on the inner radius of the projective
unit ball in V . We conclude with a discussion whether the parity
bound can be improved.

Sincere thanks to the contributors of the mathematical forum
https://math.stackexchange.com for their helpful hint to
consider the multinomial expansion as a generating function.

8.4.1 The Parity Property

We recall that N can be considered as the set of all words of length r
with the alphabet 1, . . . , n.

Let F(n, r,k) be the number of all words a ∈ N with the following
property, which we call the parity property: The parity of each letter 1
to k in a is odd and the parity of each letter k+ 1 to n in a is even.

The length of a parity part T ∈ P P equals F(n, r, wt(v)), where T = Tv
for an appropriate v ∈ ρ(N).

Clearly, we have F(n, r,k) > 0 if and only if kmod 2 = rmod 2 and
k 6 r. In all other cases, we obtain F(n, r,k) = 0. The case where
r 6 n and k = r simplifies to F(n, r,k) = k!.

By the way, the number of all words a ∈ N such that the parity of
exactly k letters in a is odd is given by

(
n
k

)
· F(n, r,k).

We say that p = (p1, . . . ,pn) ∈ Nn0 sums up to r, if
∑n
t=1 pt = r. It is

well-known that in this case, the multinomial coefficient(
r

p

)
:=

(
r

p1, p2, · · · , pn

)
=

p!
p1! · p2! · . . . · pn!

gives the number of words of length r such that the letter t appears
exactly pt number of times for all t ∈ {1, . . . ,n}. We note that a word
with this property has the parity property if and only if

pmod 2 = (1, . . . , 1︸ ︷︷ ︸
k times

, 0, . . . , 0).

Hence, either all words with this property have the parity property
or none of them do.

https://math.stackexchange.com
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8.4.2 Generating Functions

A sequence of numbers can also be regarded as the coefficients of
a formal power series in one or more commuting variables. In this
respect, the formal power series is also called a generating function
for the sequence or for its coefficients.

For example, the multinomial expansion

(z1 + . . . + zn)r =
∑

p=(p1,...,pn)∈Nn0
p sums up to r

(
r

p

)
· zp1

1 · . . . · zpnn ,

where z1, . . . , zn are independent and commuting variables over
Z, is a generating function for the multinomial coefficients. This
expression can be regarded as a polynomial in R[z1, . . . , zn], whose
value (regarded as a functional) at (1, . . . , 1) ∈ Zn equals nr, which is
the total number of words of length r.

Now, let f = (f1, . . . , fn) ∈ {0, 1}n. Also as a formal power series in
the variables z1, . . . , zn we consider the generating function

P(f) := ((−1)f1z1 + . . . + (−1)fnzn)r

=
∑

p=(p1,...,pn)∈Nn0
p sums up to r

(−1)f1p1+...+fnpn

(
r

p

)
· zp1

1 · . . . · zpnn .

Example. Here is an example which illustrates the usefulness of this generating
function for our purposes. The value of P(f) at (1, . . . , 1) is given by

A(f) := ((−1)f1 + . . . + (−1)fn)r

=
∑

p=(p1,...,pn)∈Nn0
p sums up to r

(−1)f1p1+...+fnpn

(
r

p

)
.

Now, the number of all words a ∈ N such that the parity of the letter
1 in a is even (or odd, respectively) is given by

1
2
(A(0, . . . , 0) + A(1, 0, . . . , 0)) =

1
2
(nr + (n− 2)r)

=
∑

p=(p1,...,pn)∈Nn0
p sums up to r

1 + (−1)p1

2

(
r

p

)
and

1
2
(A(0, . . . , 0) − A(1, 0, . . . , 0)) =

1
2
(nr − (n− 2)r)
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=
∑

p=(p1,...,pn)∈Nn0
p sums up to r

1 − (−1)p1

2

(
r

p

)
.

8.4.3 The Length of a Parity Part

In what follows, we consider the generating function

G(n, r,k) :=
1

2n
∑

f=(f1,...,fn)∈{0,1}n
(−1)f1+...+fk · P(f).

We will see shortly that this is a generating function for the multi-
nomial coefficients which belong to words with the parity property,
leading to an explicit formula for the length of a parity part:

Proposition. The value of G(n, r,k) at (1, . . . , 1) ∈ Zn equals F(n, r,k). In particular,
we have

F(n, r,k) =
1

2n

k∑
m=0

n−k∑
l=0

(−1)m
(
k

m

)(
n− k

l

)(
n− 2(m+ l)

)r.
Proof. Let F̃(n, r,k) be the value of G(n, r,k) at (1, . . . , 1), that is,

F̃(n, r,k)

=
1

2n
∑

(f1,...,fn)∈{0,1}n
(−1)f1+...+fk ·

(
(−1)f1 + . . . + (−1)fn

)r.
A short calculation leads to

F̃(n, r,k)

=
1

2n

k∑
m=0

n−k∑
l=0

(−1)m
(
k

m

)(
n− k

l

)(
(k−m) −m

+ (n− k− l) − l
)r

=
1

2n

k∑
m=0

n−k∑
l=0

(−1)m
(
k

m

)(
n− k

l

)(
n− 2(m+ l)

)r.
In what follows, we show F̃(n, r,k) = F(n, r,k), which proves the
assertion. To do this, let p = (p1, . . . ,pn) ∈ Nn0 sum up to r and let
c(p) be the coefficient of zp1

1 · . . . · zpnn in G(n, r,k).
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Statement 1: We have

c(p) =


(
r
p

)
, pmod 2 = (1, . . . , 1︸ ︷︷ ︸

k times

, 0, . . . , 0),

0, otherwise.

Proof : We have

c(p) =
1

2n
∑

(f1,...,fn)∈{0,1}n
(−1)f1(p1+1)+...+fk(pk+1)+fk+1pk+1+...+fnpn

(
r

p

)
.

Now, for all f = (f1, . . . , fk) ∈ {0, 1}k and for all g = (fk+1, . . . , fn) ∈
{0, 1}n−k, let

d1(f) := f1(p1 + 1) + . . . + fk(pk + 1),
d0(g) := fk+1pk+1 + . . . + fnpn.

We obtain

c(p) =
1

2n
∑
f∈{0,1}k

∑
g∈{0,1}n−k

(−1)d1(f)+d0(g)

(
r

p

)
.

In the case where pmod 2 = (1, . . . , 1, 0, . . . , 0), both d1(f) = 2 · (f1 +

. . . + fk) and d0(g) are even numbers, which yields

c(p) =
1

2n
∑
f∈{0,1}n

(
r

p

)
=

(
r

p

)
.

Otherwise, we may assume that p1 = 0 or pk+1 = 1. In the first case,
the parts

C0 := {f ∈ {0, 1}k : d1(f) is even} and
C1 := {f ∈ {0, 1}k : d1(f) is odd}

have the same length. Hence, we obtain

c(p) =
1

2n
(∑
f∈C0

1 +
∑
f∈C1

(−1)
) ∑
g∈{0,1}n−k

(−1)d0(g)

(
r

p

)
= 0.

In an analogous manner, the second case gives c(p) = 0.
Statement 2: F̃(n, r,k) = F(n, r,k).
Proof : Statement 1 says that the non-zero coefficients of the gen-
erating function G(n, r,k) equal the multinomial coefficients

(
r
p

)
,

where pmod 2 = (1, . . . , 1, 0, . . . , 0). Hence, it follows that the value of
G(n, r,k) at (1, . . . , 1) ∈ Zn equals the total sum of all words which
have the parity property. �
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Example. Let n = k = 2. With Proposition 8.4.3, a short calculation gives

F(2, r, 2) =
1
4
(
2r + (−2)r

)
.

This value is also equal to the value of

G(2, r, 2) =
1
4
(
(z1 + z2)

r − ((−z1) + z2)
r
)

−
1
4
(
(z1 + (−z2))

r − ((−z1) + (−z2))
r
)

at z1 = z2 = 1.

8.4.4 The Relative Size of the Parity Partition

Proposition. The formula for the length of the parity parts has the following
recursive property: For all k ∈ {0, . . . ,n − 2} with kmod 2 = rmod 2
and k 6 r, we have

F(n, r,k) =

{
F(n, r,k+ 2) + F(n− 2, r,k), k 6 r− 2,
k!, k = r.

Proof. The case where k = r was mentioned above, so it suffices to concen-
trate on the case where k 6 r− 2. Let

v1 := (1, . . . , 1︸ ︷︷ ︸
k times

, 0, 0, 0, . . . , 0) and

v2 := (1, . . . , 1︸ ︷︷ ︸
k times

, 1, 1, 0, . . . , 0).

Now, the length of the parity parts T := Tv1 and T ′ := Tv2 is equal to
#T = F(n, r,k) and #T ′ = F(n, r,k+ 2), respectively.
Step 1: We first construct an injection ı from T ′ to T with an "in-
terchanging method": Let a = a1 · · · ar ∈ T ′. According to the
assumption, the parity of each letter k + 1 and k + 2 in a is odd.
Hence, there exists m ∈ {1, . . . , r} such that am is the first entry in a
from the left which equals k+ 1 or k+ 2. Now, let b = b1 · · · br ∈ T
such that bm = {k+1,k+2}\am and in all other positions, the entries
of b coincide with the entries of a. Let b = ı(a). By construction, the
function ı : T ′ → ı(T ′) is bijective.
Step 2: The elements of T which are not in ı(T ′) are exactly those
words in which both k + 1 and k + 2 do not appear, that is, with
the letters 1, . . . ,k (each of them have an odd parity) and k+ 3, . . . ,n
(each of them have an even parity). �
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Now, we denote the maximal length of a parity part by

m(n, r) := max(F(n, r,k) : k ∈ {0, . . . ,n}).

Lemma. The maximal length of a parity part is given by

m(n, r) =

{
F(n, r, 0), r is even,
F(n, r, 1), r is odd.

In particular, we have

F(n, r, 0) =
1

2n

n∑
m=0

(
n

m

)(
n− 2m

)r,
F(n, r, 1) =

1
2n

n−1∑
m=0

(
n− 1
m

)((
n− 2m

)r
−
(
n− 2(m+ 1)

)r).
Proof. This statement follows from Proposition 8.4.3 and from Proposition

8.4.4, since F(n, r,k) > F(n, r,k+ 2) for all k ∈ {0, . . . , min(n− 2, r− 2)}
and since F(n, r, 0) 6= 0 if and only if r is even. �

Example. We consider the case where n = 3. If r is even, we have

F(3, r, 0) =
1
4
(3r + 3) and F(3, r, 2) =

1
4
(3r − 1).

If r is odd, we have

F(3, r, 1) =
1
4
(3r + 1) and F(3, r, 3) =

1
4
(3r − 3).

In each case, both values differ by one. This can be seen as follows:
1 · · · 1 is the only word which is not in the range of the function ı
which is used in the proof of Proposition 8.4.4. The special cases
where n = 3 and r ∈ {2, 3} are outlined in Example 6.3.4.II, see Figure
6.2 and Figure 6.3 on page 174:

F(3, 2, 0) = 3, F(3, 2, 2) = 2, F(3, 3, 1) = 7 and F(3, 3, 3) = 6.

Remark. The formula has another recursive property: For all s ∈ {2, . . . , r− 1},
we have

F(n, s+ 1,k) =


k · F(n, s,k− 1)

+(n− k) · F(n, s,k+ 1), 1 6 k 6 n− 1,
n · F(n, s,n− 1), k = n,
n · F(n, s, 1), k = 0.
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This can be seen as follows: If we choose a letter and concatenate it
with the end of a given word of length s, which gives a new word of
length s+ 1, then its parity changes compared to the original word.

8.4.5 The Parity Bound

Here, we state the second main result of this chapter.

Definition. Let

Par(V) :=
( 1

2n

n∑
m=0

(
n

m

)(
n− 2m

)r)−1/2

,

if r is even, and

Par(V) :=
( 1

2n

n−1∑
m=0

(
n− 1
m

)((
n− 2m

)r
−
(
n− 2(m+ 1)

)r))−1/2

,

if r is odd, which we refer to as the parity bound.

Theorem. The inner radius of the projective unit ball B1,π in V satisfies the
inequality

r(B1,π) 6 Par(V).

Proof. The relative size of the parity partition equals m := m(n, r), whose
explicit formula is given in Lemma 8.4.4. From Corollary 6.3.6, it
follows that r(B1,π) 6 1/

√
m = Par(V). �

Hence, the parity bound is an upper bound on the inner radius. We
recall that the Arveson bound Arv(V) is a lower bound, so that we
have

Arv(V) =
1√
nr−1

6 r(B1,π) 6 Par(V).

Example. Using the parity partition, one can easily show that the projective
unit ball B1,π in the bipartite tensor product Rn ⊗ Rn equals its first
theta body T1. This can be seen with Proposition 6.3.7.II, since the
join-meet partition in the proof is a parity partition. In particular,
{1 1, . . . ,nn} is a parity part and Par(V) = 1/

√
n.
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8.4.6 Discussion

One might ask whether it is possible to find witness hyperplanes for
which the parity bound can be improved.

If we want to use Theorem 6.3.6 for an improvement, we need a
join-meet partition of N = {1, . . . ,n}r together with an appropriate
splitting function. In what follows, we consider join-meet partitions
which are coarser than the parity partition (in terms of refinement),
so that the new partition has a larger relative size. The method which
we present here is based on error-correcting codes (this method has
nothing to do with the idea that a parity part is a (in general non-
linear) code, see Theorem 6.5.2). However, finding an appropriate
splitting function remains the biggest challenge.

Theorem. Let C be a binary linear code in Fn2 with d(C) > 3. Let C be the set
of all affine translates of C, that is, C := {v+ C : v ∈ Fn2 }. Let

P := {ρ−1(C ′) : C ′ ∈ C, ρ−1(C ′) 6= ∅}.

Then P is a join-meet partition of N which is coarser (or equal) than
the parity partition P P of N.

Proof. Since C is a linear code with d(v+C) > 3, each affine translate v+C,
where v ∈ Fn2 , is a (in general non-linear) code with d(v+ C) > 3.
The set C is a partition of Fn2 . This implies that P is a proper partition
of N which is coarser than (or equal to) the parity partition P P. Let
T ∈ P and let a,b ∈ T with a 6= b.

Case 1: ρ(a) = ρ(b).
The parity partition P P is a join-meet partition, so that N(a,b) is no
chain and for any (c,d) ∈ N2/S2 with (c,d) ∈ [(a,b)], there exists
T ′ ∈ P P with c,d ∈ T ′. But since P is coarser than (or equal to) P P,
there exists T ′′ ∈ P with T ′ ⊆ T ′′, and hence, c,d ∈ T ′′.
Case 2: ρ(a) 6= ρ(b).
Step 2.1: There exists v0 ∈ Fn2 with ρ(a), ρ(b) ∈ v0 + C. If we assume
that N(a,b) is a chain (which means that a and b differ in exactly
one position), then the parities of a and b are equal except of exactly
two numbers, but the distance of ρ(a) and ρ(b) is at least 3. This is
a contradiction, and hence, N(a,b) is no chain.
Step 2.2: With step 2.1, there exists (c,d) ∈ N2/S2 with (c,d) ∈
[(a,b)] and (c,d) 6= (a,b). Here, we consider the special case where
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(c,d) = {s0}.(a,b) for an appropriate s0 ∈ {1, . . . , r}. We may assume
that c = a(s0,bs0) and d = b(s0,as0). Then the parities of all t ∈
{1, . . . ,n} \ {as0 ,bs0} in a or in b, respectively, remain unchanged, that
is, we have ρ(c)t = ρ(a)t and ρ(d)t = ρ(b)t. Now, let t ∈ {as0 ,bs0}.
The interchange in position s0 changes the total number of t both in
a and in b. Thus, we obtain

ρ(c)t = ρ(a)t ∓ 1, and ρ(d)t = ρ(b)t ± 1 ∈ F2.

With v1 := (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) (which is zero in all positions
except in the positions as0 and bs0), we have ρ(c), ρ(d) ∈ (v0+v1)+C.
It follows that c,d ∈ ρ−1((v0 + v1) + C).
Step 2.3: The statement follows by induction for arbitrary z ∈ Z. �

If C = {(0, . . . , 0)}, then P equals the parity partition of N. Optimising
the dimension of the linear code C is strongly connected to an
optimisation of the width of the join-meet partition P. In Subsection
6.5.3, we have outlined ways to optimise the dimension of a linear
code with respect to its minimum distance.

One might ask whether the parity function is still a splitting function
for P. The next example, however, shows that this does not seem to
be the case in general. In this respect, the question is still open at
the moment whether there exists a splitting function for P, so that P
could remain a candidate for further investigations.

Example. In this example, we deal with the case where n = 4. Let us consider
the code C := {(0, 0, 0, 0), (1, 1, 1, 1)} in F4

2. Let P be the partition based
on C. The minimum distance of C is 4 and the elements of C other
than C are

C1 := {(1, 1, 0, 0), (0, 0, 1, 1)},
C2 := {(1, 0, 1, 0), (0, 1, 0, 1)},
C3 := {(1, 0, 0, 1), (0, 1, 1, 0)},
C4 := {(1, 0, 0, 0), (0, 1, 1, 1)},
C5 := {(0, 1, 0, 0), (1, 0, 1, 1)},
C6 := {(0, 0, 1, 0), (1, 1, 0, 1)} and
C7 := {(0, 0, 0, 1), (1, 1, 1, 0)}.

(i) We show that the parity function is no splitting function for
P in the case r = 2. To see this, let a := 1 4 and b := 2 3,
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which are in the same set, ρ−1(C3). The equivalence class
[(a,b)] equals {(a,b), (c,d)} with c := 1 3 and d := 2 4. We have
sig(a,b) = sig(c,d) = 1, that is, the parity function s P is no
splitting function for P.

(ii) We show that the parity function is no splitting function for P
in the case r = 3. To see this, let a := 3 1 3 and b := 4 3 2, which
are in the same set, ρ−1(C4). The equivalence class [(a,b)]
equals

{(3 1 3, 4 3 2), (3 3 2, 4 1 3), (3 3 3, 4 1 2), (3 1 2, 4 3 3)} .

The function sig is constant on [(a,b)], so that s P is no splitting
function for P. We note that there is an interesting relation to
the design partition from Example 7.3.5.II, since a and b are in
the same design part T1,3.





Chapter 9

THETA BODIES FOR SEPARABLE

STATES

In this chapter we show that the theta body method can be applied to the set
of all separable states. This offers the possibility of using sos polynomials as an
entanglement measure. To do this, we show that the set of all pure separable
states is a variety, see Theorem 9.2.2. A discussion will follow in Chapter 10.
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9.1 Entanglement

In this section, we briefly introduce the concept of entanglement
along the mathematical description in [Aud].

9.1.1 Pure States, Mixes States and Compound Systems

A pure state in a quantum system refers to a specific preparation
for the system. The mathematical description of the pure states are
the unit vectors in a complex Hilbert space. In what follows, we
assume that the Hilbert space is finite-dimensional. The dimension
equals the maximal number of states of the quantum system which
can be distinguished by a single measurement. A pure state can be
identified with an operator on the corresponding Hilbert space as
follows:

Formally, a quantum system is characterised by a complex Hilbert
space H of dimension n, that is, by Cn. A pure state is a unit vector
in H. The set of all linear operators H→ H is denoted by L(H). A
pure state v ∈ (H)1 can be identified with the orthogonal projection
Pv ∈ L(H) on the linear subspace spanned by v.

A mixed state is physically realised by the preparation of a quantum
system in dependence of several preparations which appear with a
fixed probability.

Formally, a convex combination of pure states, regarded as operators
in L(H), is called a mixed state or a state on H. In this respect, the set
S(H) of all states, the state space, is a convex set.

A compound system describes the composition of several particles
or partial systems. Formally, it can be characterised by their tensor
product. In this respect, each factor of the tensor product relates to a
partial system. Hence, the understanding of compound systems is
closely related to the understanding of tensor products.

Formally, the compound system of two quantum systems H1 and
H2 is characterised by the tensor product H1 ⊗H2 with the Hilbert-
Schmidt norm.
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9.1.2 The State Space

Fixing an orthonormal basis e1, . . . , en of H, the dual Hilbert space
H? is isomorphic to H, via 〈 · ,w〉 7→ w =

∑n
i=1wi · ei for all w =∑n

i=1wi · ei ∈ H, where wi ∈ C. (Likewise, H? is isomorphic to the
conjugated Hilbert space H, via 〈 · ,w〉 7→ w.)

Now, L(H) is isomorphic to H ⊗H and to the matrix space Mn(C)
via 〈 · ,w〉 · v 7→ v⊗w 7→ v ·wt for all v,w ∈ H. The image of a state
on H is called its density matrix.

As usual, the trace on L(H) is defined by

tr : L(H)→ C, 〈 · ,w〉 · v 7→ 〈v,w〉 .

Let v ∈ H be a unit vector. The pure state Pv is identified with the
tensor v⊗ v (and with the matrix v · vt), which has Hilbert-Schmidt
norm 1. With the Schmidt decomposition, the state space S(H)

equals the set of all positive operators (which correspond to the
positive semidefinite matrices) in L(H) with trace 1.

Hence, S(H) is contained in the Hilbert-Schmidt unit ball. This
implies that the extreme points of S(H) are given by the pure states,
that is, ext(S(H)) = {Pv : v ∈ (H)1}.

Finally, we would like to point out that states can also be defined as
linear functionals. This is often the case in the literature.

To do so, we identify the operator A ∈ L(H) with the linear func-
tional ϕA : L(H) → C, B 7→ tr(A? · B). Considering L(H) as the
Hilbert space (H ⊗H, 〈 · , · 〉HS), it follows from the Riesz representa-
tion theorem that L(H) can be identified with L(H)? via A 7→ ϕA.

Now, we have tr(A) = 1 if and only if ϕA(1n) = 1. A linear func-
tional on L(H) is called positive, if it maps positive operators on
non-negative real numbers. A short calculation shows that the func-
tional corresponding to a pure state induced by v ∈ (H)1 equals
ϕPv : B 7→ 〈B(v), v〉, which is positive. Also, we have ϕPv(1n) = 1.
Indeed, the states correspond to the positive linear functionals which
assign the identity 1n to 1, see [Mur, Example 5.1.1] for the converse
statement. For instance, the linear functional ϕ 1

n1n
corresponds to a

state.
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9.1.3 Separable States

From now on, let H := H1 ⊗ H2, where H1 and H2 are complex
Hilbert spaces of dimension m and n, respectively. In terms of tensor
products, L(H1⊗H2) is isomorphic to V := H1⊗H1⊗H2⊗H2, such
that the pure states on H correspond to the vectors v⊗ v, v ∈ (H)1,
under the R-C-unfolding of V with R := {1, 3} and C := {2, 4}.

A state A on H is called a product state, if it is a product vector under
the R-C-unfolding of V with R := {1, 2}, C := {3, 4} and each factor is
a state (that is, if A = A1 ⊗A2 where A1 and A2 are states on H1 and
H2, respectively). In this case, A can be identified with the functional
ϕA =: ϕA1 ⊗ϕA2 , where

ϕA : V → C, v1 ⊗ v2 ⊗w1 ⊗w2 7→ ϕA1(v1 ⊗ v2) ·ϕA2(w1 ⊗w2).

A state on H is called separable, if it lies in the convex hull of the
product states in the space L(H1 ⊗ H2). Otherwise, it is called
entangled. The states which are pure and separable are called the
pure separable states. We denote the set of all separable states by S,
the set of all entangled states by Sc and the set of all pure separable
states by Spure.

In our context, an entanglement witness is the real part of an affine
functional on L(H) which separates an entangled state from the set
S of all separable states. In this respect, an entanglement witness
provides a sufficient criterion for entanglement.

9.1.4 Partial Traces

The maps

tr1 : V → L(H2), v1 ⊗ v2 ⊗w1 ⊗w2 7→ 〈v1, v2〉 ·w1 ⊗w2,
tr2 : V → L(H1), v1 ⊗ v2 ⊗w1 ⊗w2 7→ 〈w1,w2〉 · v1 ⊗ v2

are called partial traces on V . Partial traces appear as so-called
tensor contractions in the literature on tensor networks or differential
geometry (see, for example, [Eis] or [Lee]). The trace on L(H) can
also be obtained with the partial trace, that is, tr = tr2 ◦ tr1 = tr1 ◦ tr2,
where tr1 and tr2 denote the traces on L(H1) or L(H2), respectively,
see also [Aud, 7.2.2]:

tr : V → C, v1 ⊗ v2 ⊗w1 ⊗w2 7→ 〈v1, v2〉 · 〈w1,w2〉 .
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9.1.5 Pure Separable States

The following statement can be found in [Aud, 8.1.3]. Compare also
with Theorem 3.4.4.

Proposition. The pure separable states on H are given by the states of the form
A1⊗A2, where A1 and A2 are pure states on H1 and H2, respectively.
That is, Spure = {v⊗ v⊗w⊗w : v ∈ (H1)1,w ∈ (H2)1}.

Proof. Let A be a state on H which is pure and separable. On the one hand,
it follows from the Schmidt decomposition and from the assumption
that A is a pure state that there exist λ1, . . . , λn1 > 0 with

∑n1
i=1 λ

2
i = 1

and orthonormal systems (vi)
n1
i=1 in H1, (wi)n1

i=1 in H2 such that

A =

n1∑
i=1

n1∑
j=1

λiλj · vi ⊗ vj ⊗wi ⊗wj. (9.1)

On the other hand, since A is separable (and pure!), there exist states
A1 ∈ L(H1), A2 ∈ L(H2) with A = A1 ⊗A2. Now, we have

tr1(A) =

n1∑
j=1

λ2
j wj ⊗wj = A2,

tr2(A) =

n1∑
i=1

λ2
i vi ⊗ vi = A1.

Hence, A has the form

A =

n1∑
i=1

n1∑
j=1

λ2
iλ

2
j · vi ⊗ vi ⊗wj ⊗wj.

A comparison with equation (9.1) leads to vj ⊗ wi = λiλj vi ⊗ wj
for all i, j ∈ {1, . . . ,n1}, which implies n1 = 1 and λ2

1 = 1. This yields
A = v1 ⊗ v1 ⊗w1 ⊗w1. �

A separable state on H1 ⊗H2 is a convex combination of pure sepa-
rable states, since every state on H1 (and on H2) is a convex combi-
nation of pure states. Since the pure separable states have Hilbert
Schmidt norm 1 and the separable states are contained in the Hilbert
Schmidt unit ball, it follows that the extreme points of the separable
states are given by the pure separable states.
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With the previous proposition, a pure state PA0 ∈ V is separable if
and only if the unit vector A0 ∈ H1 ⊗H2 is a product vector. This
observation gives rise to a definition of separability in H1 ⊗H2: A
unit vector in H1 ⊗ H2 is called separable, if it is a product vector.
Otherwise, it is called entangled. See also Subsection 3.6.2.

The trace on L(H) provides a simple test whether a unit product
vector is separable:

Proposition. A unit product vector v ∈ V is a pure separable state if and only if
tr(v) = 1.

Proof. Let v = v1 ⊗ v2 ⊗ w1 ⊗ w2 ∈ V be a unit product vector where
v1, v2 ∈ (H1)1 and w1,w2 ∈ (H2)1. Then tr(v) = 〈v1, v2〉 〈w1,w2〉.

At first, let v2 = v1 and w2 = w1, so that v is a pure separable state.
Then we have tr(v) = 1.

Now, let tr(v) = 1. Since |〈v1, v2〉| 6 1 and |〈w1,w2〉| 6 1, we have
1 = tr(v) = |〈v1, v2〉| = |〈w1,w2〉|, that is, there exist λ,µ ∈ C1 with
v2 = λv1 and w2 = µw1. Now, we have 1 = tr(v) = λµ so that
v = v1 ⊗ v1 ⊗w1 ⊗w1, which is a pure separable state. �

9.1.6 Summary

Table 9.1 on page 275 summarises the physical concepts together
with their mathematical description.

9.2 Pure Separable States as a Variety

In this section, we show that the pure separable states are a real
affine variety. Hence, the separable states are the convex hull of
a variety, which allows us to apply the theta body method on the
separable states.

As above, let H1 and H2 be Hilbert spaces of dimension m and n,
respectively, and let V := H1 ⊗H1 ⊗H2 ⊗H2.

According to Chapter 3, the tensor product V can be identified
with the real or complex affine space CN, where N = {1, . . . ,m}2 ×
{1, . . . ,n}2 are the indexing tuples of V . In particular, for all vs =

(vs,1, . . . , vs,m) ∈ H1 and for all ws = (ws,1, . . . ,ws,n) ∈ H2, s ∈ {1, 2},
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Quantum system Complex Hilbert space H

(here: finite-dimensional)

Pure states Unit vectors v ∈ H

Projections Pv ∈ L(H) of rank 1

Tensors v⊗ v

Extreme points of S(H)

State space S(H) Convex hull of pure states

Positive operators in L(H) with trace 1

Compound of two Tensor product H1 ⊗H2

quantum systems H1, H2

Product state State of the form A1 ⊗A2,

where A1, A2 are states on H1, H2

Separable states S Convex hull of the product states

Entangled states Sc States which are not separable

Pure separable states Spure States of the form A1 ⊗A2,

where A1, A2 are pure states

Tensors v⊗ v⊗w⊗w,

where v ∈ H1, w ∈ H2 are unit vectors

Extreme points of S

Unit product vectors with trace 1

Table 9.1: Physical concepts and mathematical analogy.
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the product vector v1 ⊗ v2 ⊗w1 ⊗w2 ∈ V is identified with the multi
matrix (v1,i v2,jw1,kw2,l)(i,j,k,l)∈N ∈ CN.

The polynomials in C[ xa : a ∈ N] can be regarded as functionals
on the complex affine space CN. We recall that CN can also be
regarded as the real affine space RNC , where NC = N × {1, 2}, see
Section 3.5. We also recall that HNC are the complex Hibi relations in
R[xa : a ∈ NC] and NNC = {uNC}, where uNC is the complex norming
polynomial.

9.2.1 The Trace Functional

Now, we consider the following polynomial in C[ xa : a ∈ N]:

tNC := 1 −
m∑
k=1

n∑
l=1

xkkl l.

We call it the trace functional. It defines an affine hyperplane Htr :=

ZC(tNC) in V .

Proposition. The trace functional equals 1 − tr.

Proof. Let k, i ∈ {1, . . . ,m} and l, j ∈ {1, . . . ,n}, and v := ek ⊗ ei ⊗ el ⊗ ej ∈ V .
Now, we obtain( m∑

k=1

n∑
l=1

xkkl l

)
(v) =

{
0, k 6= i or l 6= j,
1, k = i and l = j

= 〈ek, ei〉 〈el, ej〉 = tr(v),

that is, v ∈ Htr if and only if v has trace 1. �

The real and the imaginary part of the trace functional are polyno-
mials in R[xa : a ∈ NC], given by

Re(tNC) = 1 −
m∑
k=1

n∑
l=1

xkkl l, 1 ,

Im(tNC) =

m∑
k=1

n∑
l=1

xkkl l, 2 .

Let TNC := {Re(tNC), Im(tNC)}. Now, in the real picture, Theorem
2.2.5 yields ı(Htr) = ZR(TNC).
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9.2.2 Pure Separable States as a Variety

Let Jtr,NC be the ideal which is generated by HNC , NNC and TNC .

We may consider V as a tensor product with four factors and the
projective unit ball B1,π in V , whose extreme points are the unit prod-
uct vectors. Together with Proposition 9.1.5, we find the following
result:

Theorem. (Pure Separable States as a Variety)
In the real picture, the pure separable states equal the set of zeros
of the Hibi relations, the norming polynomial and the real and
imaginary part of the trace functional, that is,

Spure = ı−1(ZR(HNC ∪NNC ∪ TNC)) = ı−1(ZR(Jtr,NC)).

Consequently, we have S = co(ZR(Jtr,NC)), that is, the separable states
are the convex hull of a variety.

Proof. In the real picture, the unit product vectors are a variety, induced by
the complex Hibi relations HNC and the norming polynomial uNC ,
see the Criterion for Unit Product Vectors Theorem 3.5.3.
Now, let v ∈ V be a unit vector. Proposition 9.1.5 says that v ∈ Spure

if and only if v ∈ Htr and v is a product vector, which yields

ı(Spure) = ı(Htr ∩ PV)1 = ı(Htr) ∩ ı(EV)
= ZR(TNC) ∩ ZR(HNC ∪NNC)

= ZR(TNC ∪HNC ∪NNC) = ZR(Jtr,NC).

Since ı preserves convexity, we obtain ı(S) = co(ZR(Jtr,NC)). �

Corollary. The complex theta bodies of Jtr,NC converge against S.

Proof. This follows directly from Theorem 2.5.5, since Spure is compact, and
since TC

k(Jtr,NC) = ı−1(Tk(Jtr,NC)). �

Figure 9.1 represents the projective unit ball B1,π (yellow octahedron),
the separable states S (green triangle), the entangled states Sc (red
triangles) in V by solids in the three-dimensional real Euclidean
space with coordinates x, y and z. The extreme points of B1,π, of
the state space and of S are represented by coloured spots. The
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x y

z

S

Sc

B1,π S

Figure 9.1: The projective unit ball and separable states.

(two-dimensional) Euclidean unit sphere S is represented by a (one-
dimensional) blue circle. We see that the unit product vectors are
represented by the spots which are yellow or green, the pure states
by the spots which are red or green, and the pure separable states
by the spots which are green.

The picture shows the following aspects:
- The state space (the red and green hexagon) lies in the affine

hyperplane Htr, which is induced by the trace.
- A unit product vector is a pure separable state if and only if it

lies in Htr.
- The separable states are the convex hull of the pure separable

states.
- The projective unit sphere is absorbing.

The analogy with this picture is limited. Indeed, it is not easy to
understand the geometry of the state space, so a three-dimensional
picture can only consider a few aspects. For instance, the geometry
of the separable states is not considered here.

A summary and a discussion follow in Section 10.3.



Chapter 10

SUMMARY AND DISCUSSION

This chapter is a summary of the results of this thesis which are related to the
projective tensor norm and to the separable states. We also define some new
notions and make suggestions for further research.

Section 10.1 deals with real tensor products. The design hyperplanes, skip
hyperplanes and parity hyperplanes from Chapter 7 and Chapter 8 are explicit
witnesses for the projective unit ball. In some special cases, the projective norm
maximisation can be completely solved. We can therefore identify maximal
vectors and thus obtain the inner radius of the projective unit ball. In all other
cases we obtain a class of vectors with projective norm 1 and thus upper bounds
on the inner radius of the projective unit ball.

To determine the projective norm for several classes of vectors we have seen
some approaches to generalise the Schmidt decomposition such as the gsd-
decomposition. In the end of Section 10.1, we introduce new decompositions
based on the design hyperplanes, the skip hyperplanes and the parity hyper-
planes, the design decomposition, the skip decomposition and the parity decomposition.
Indeed, provided that a vector is decomposable, the projective norm can be
obtained from the decomposition.

Section 10.2 deals with the results for the projective unit ball in complex tensor
products which can be found in Chapter 6.

Section 10.3 deals with the results for separable states according to Chapter 9.

In this chapter we deal also with open questions and ideas for further investiga-
tions. For instance, the results are mainly based on the first theta body so that we
discuss approaches to address also higher theta bodies. The discussions of the
real case apply also to the complex case and to the results for separable states.

We point out that this summary deals only with the projective norm and the
separable states. Further results of this thesis can also be mentioned in this
context but are actually not the main subject of this summary.

Let n > 2 and VK := Kn ⊗ · · · ⊗Kn with r > 2 tensor factors.
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10.1 The Projective Unit Ball, Real

This section deals with the projective norm on real tensor products.
In particular, we find some classes of vectors with projective norm 1
and some bounds on or values for the inner radius of the projective
unit ball B1,π.

To do this, we summarise the results related to the design hyper-
planes, skip hyperplanes and parity hyperplanes, followed by the
definitions of the design decomposition, skip decomposition and
parity decomposition.

Afterwards, we address some open questions and discuss ideas for
further investigations.

10.1.1 Our Previous State of Knowledge

The inner radius of and maximal vectors for B1,π in real tensor
products were already known in the bipartite case (that is, r = 2)
and in the tripartite case R2 ⊗ R2 ⊗ R2 (that is, n = 2 and r = 3) due
to the Schmidt decomposition, Theorem 3.3.4 and [Wie]. In all other
cases, the inner radius does not seem to be known so far. However,
a lower bound is given by the Arveson bound Arv(VR) =

√
1/mArveson,

where mArveson := nr−1, see Theorem 3.3.4.

10.1.2 Design Hyperplanes

In the case where n ∈ {2, 4, 8} the theta body method can be used to
obtain explicit witnesses for the projective unit ball B1,π in VR based
on latin squares and orthogonal designs, the design hyperplanes.

Let mDesign := nr−1 denote the length of a design part. Since the
design parts have equal length, this is also the relative size of the
design partition. The support vector y with respect to a design part
TD and a corresponding design function sD has the form

y =
1
nr−1

∑
a∈TD

sD(a) · ea.

It is a scaled maximal vector for B1,π and satisfies ‖y‖π = 1, see
Theorem 7.3.4 and Corollary 7.3.4. The (Euclidean) length of y is
given by ‖y‖ =

√
1/mDesign.
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In summary, we obtain a class of maximal vectors and therefore the
inner radius of B1,π, given by r(B1,π) =

√
1/mDesign. This solves the

projective norm maximisation in VR, n ∈ {2, 4, 8}.

We have discussed in Subsection 7.3.6 whether latin squares and
orthogonal designs can be used to obtain witnesses for the projective
unit ball also in the case where n > 8.

Table 10.1 on page 283 gives some examples for design hyperplanes,
given by their support vectors.

10.1.3 Skip Hyperplanes

In the case where n ∈ {3, 5, 6, 7} the theta body method can be used
to obtain explicit witnesses for the projective unit ball B1,π in VR, the
skip hyperplanes.

On the basis of the design hyperplanes we obtain a class of vectors
with projective norm 1 and thus obtain an explicit upper bound on
the inner radius, the skip bound Skip(VR) =

√
1/mSkip, where mSkip

denotes the relative size of the skip partition, see Theorem 7.4.2 and
Corollary 7.4.3.

10.1.4 Parity Hyperplanes

In the case where n > 2 the theta body method can be used to obtain
explicit witnesses for the projective unit ball B1,π in VR, the parity
hyperplanes.

The support vector y with respect to a parity hyperplane TP and the
parity function s P has the form

y =
1

#TP

∑
a∈TP

s P(a) · ea.

It satisfies ‖y‖π = 1 due to Theorem 8.3.5 and Corollary 8.3.5.

The length of y equals ‖y‖ =
√

1/#TP. An explicit formula for #TP is
given by Proposition 8.4.3. We note that the length of y depends
on the parity part (in general, the parity parts do not all have the
same length). The maximal length is given by the parity bound
Par(VR) =

√
1/mParity, where mParity denotes the relative size of the

parity partition, see Lemma 8.4.4.
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The parity bound Par(VR) is therefore an upper bound on the inner
radius of B1,π. Theorem 8.4.5 gives an explicit formula for it.

In Subsection 8.4.6 we have discussed some ideas to improve the
parity bound.

Table 10.2 on page 283 summarises some values for the parity bound
and gives some examples for parity hyperplanes, given by their
support vectors.

10.1.5 Values for and Bounds on the Inner Radius

Table 10.3 on page 284 compares the values of mArveson, mDesign, mSkip

and mParity for some small values of n and r.

Table 10.4 on page 285 compares the values of the Arveson bound
Arv(VR), the inner radius r(B1,π), the skip bound Skip(VR) and the
parity bound Par(VR) for some small values of n and r. The best
new values for and the new bounds on the inner radius r(B1,π) are
marked in red. The values which are previously known are marked
in grey. In particular, this refers to the values for r = 2 since they can
be obtained using the Schmidt decomposition and also to the values
for Arv(VR).

We recall that Arv(VR) is a lower bound on r(B1,π) while Skip(VR)

and Par(VR) are upper bounds on r(B1,π).

The table demonstrates that for each approach (design hyperplanes,
skip hyperplanes or parity hyperplanes) there are cases where this
approach leads to new upper bounds or even to new values on
r(B1,π).
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Tensor product Support vector Inner radius
VR y r(B1,π)

R2 ⊗ R2 1
2(e11 + e22)

√
1/2

R2 ⊗ R2 ⊗ R2 1
4(e111 + e122 − e212 + e221) 1/2

R4 ⊗ R4 ⊗ R4 1
16 (e111 − e122 + e212 + e221 1/4

−e234 − e133 + e313 + e331

+e243 − e144 + e414 + e441

+e324 − e342 − e423 + e432)

Rn ⊗ Rn (n ∈ {2, 4, 8})
1
n

∑n
k=1 ekk

√
1/n⊗r

s=1 R2 1
2r−1

∑
a∈TD sD(a) · ea

√
1/2r−1⊗r

s=1 R4 1
4r−1

∑
a∈TD sD(a) · ea

√
1/4r−1⊗r

s=1 R8 1
8r−1

∑
a∈TD sD(a) · ea

√
1/8r−1

Table 10.1: Values for the inner radius.

Tensor product Support vector Parity bound
VR y Par(VR)

R2 ⊗ R2 1
2(e11 + e22)

√
1/2

R2 ⊗ R2 ⊗ R2 1
4(e111 + e122 − e212 + e221) 1/2

R4 ⊗ R4 ⊗ R4 1
10 (e111 + e122 − e212 + e221

√
1/10

e133 − e313 + e331

e144 − e414 + e441)

Rn ⊗ Rn 1
n

∑n
k=1 ekk

√
1/n

Rn ⊗ Rn ⊗ Rn 1
3n−2

(
e111 +

√
1/(3n−2)∑n

k=2(e1kk − ek1k + ekk1)
)

⊗r
s=1 Rn

1
#TP

∑
a∈TP s P(a) · ea

√
1/mParity

Table 10.2: The parity bound.
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n r dim(VR) mArveson mDesign mSkip mParity

2 2 4 2 2 − 2

2 4 16 8 8 − 8

2 6 64 32 32 − 32

3 2 9 3 − 3 3

3 4 81 27 − 21 21

3 6 729 243 − 183 183

4 2 16 4 4 − 4

4 4 256 64 64 − 40

4 6 4096 1024 1024 − 544

6 2 36 6 − 6 6

6 4 1296 216 − 168 96

6 6 46656 7776 − 5856 2256

8 2 64 8 8 − 8

8 4 4096 512 512 − 176

8 6 262144 32768 32768 − 5888

10 2 100 10 − − 10

10 4 10000 1000 − − 280

10 6 1000000 100000 − − 12160

Table 10.3: Relative sizes design, parity and skip partition.
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n r Arv(VR) r(B1,π) Skip(VR) Par(VR)

2 2 0.7071 0.7071 0.7071

2 4 0.3536 0.3536 0.3536

2 6 0.1768 0.1768 0.1768

3 2 0.5774 0.5774 0.5774 0.5774

3 4 0.1925 0.2182 0.2182

3 6 0.0642 0.0739 0.0739

4 2 0.5000 0.5000 0.5000

4 4 0.1250 0.1250 0.1581

4 6 0.0313 0.0313 0.0429

6 2 0.4082 0.4082 0.4082 0.4082

6 4 0.0680 0.0772 0.1021

6 6 0.0113 0.0131 0.0211

8 2 0.3536 0.3536 0.3536

8 4 0.0442 0.0442 0.0754

8 6 0.0055 0.0055 0.0130

10 2 0.3162 0.3162 0.3162

10 4 0.0316 0.0598

10 6 0.0032 0.0091

Table 10.4: Some new bounds on and values for the inner radius.
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10.1.6 The Design, Skip and Parity Decompositions

Let T be a design part, skip part or parity part and let s be the design
function, skip function or parity function, respectively. The support
vector y of the corresponding design hyperplane (or skip hyperplane
or parity hyperplane, respectively) induced by T has the form

y =
1

#T

∑
a∈T

s(a) · ea.

Now, y lies in an exposed face F of B1,π given by F = B1,π ∩ Ply . If
T is a design part, this face is also maximal, see Theorem 2.4.7. We
consider the subset F0 := F0(y) := co({s(a) · ea : a ∈ T }) of F.

Definition. A vector z ∈ V is called design decomposable (or skip decomposable or
parity decomposable), if there exists a design hyperplane (or a skip
hyperplane or a parity hyperplane, respectively) with support vector
y, a symmetry U ∈ SymV(B1,π) and µ ∈ R such that U(z) ∈ µ ·F0(y).

The projective norm of a vector which is design, skip or parity
decomposable can now be obtained as follows:

Corollary. If z is design, skip or parity decomposable, then ‖z‖π = |µ|.

Proof. See Corollary 7.3.4, Corollary 7.4.3 and Corollary 8.3.5. �

In this case, there exists λa ∈ [0, 1] with
∑
a∈T λa = 1 such that z has

the form

z =
∑
a∈T

(s(a) · µ · λa︸ ︷︷ ︸
=:δa

) ·U−1(ea).

The numbers |δa|, a ∈ T , are called the design coefficients (or skip
coefficients or parity coefficients, respectively) of z.

With regard to the symmetry group SymV(B1,π), we refer to Proposi-
tion 3.3.5.

Now, we discuss whether the design, skip and parity decompositions
can be regarded as a generalisation of the Schmidt decomposition.



The Projective Unit Ball, Real 287

Example. In this example, we consider the bipartite case where V = Rn ⊗ Rn.
One can easily verify that the Schmidt coefficients are equal to the
parity coefficients with respect to y := 1

n
(e11 + · · · + enn), since

T := {1 1, . . . , nn} is a parity part (it can be easily verified analogous
to Example 7.3.5.II and Example 7.3.5.III that T is also a design part
in the case where n ∈ {2, 4, 8}).

Remark. For a dicussion on the decompositions, it can be helpful to consider
the following questions. Let z0, z ∈ VR. Let z0 be design decompos-
able (or skip / parity decomposable, respectively).

(i) It is an open question whether the design coefficients (or skip
/ parity coefficients) of z0, in ascending order, are unique.

(ii) It is an open question how the design coefficients (or skip /
parity coefficients) of z0 depend on the choice of the design
hyperplane (or skip / parity hyperplane, respectively).

(iii) Of course, we have ‖z‖π = |µ| also in the case where there exists
U ∈ SymV(B1,π) and µ ∈ R such that U(z) ∈ µ · F. However, it
is an open question whether F ⊆ SymVR

(B1,π)(F0). It might be
interesting to see which aspects of Theorem 3.3.8 also hold in
the multipartite case.

10.1.7 Discussion on the Geometry of the Projective Unit Ball

Here we address some open questions about the geometry of the
projective unit ball B1,π in VR.

The main results of this thesis concerning real or complex tensor
products are based on our characterisation of the first theta body T1

of B1,π by a spectrahedron, Theorem 6.2.2. This theorem and also
the corresponding computer program (only for small dimensions)
can be used to identify witness hyperplanes for T1 and thus for B1,π,
in both the real and the complex case.

Indeed, we have seen that the design hyperplanes, skip hyperplanes
and parity hyperplanes induce exposed faces of B1,π. In this respect,
T1 can be very close to B1,π. In some cases we obtain even maximal
faces.

For further investigations we now ask some questions about T1. For
instance, one can ask which faces of T1 meet B1,π. In the bipartite
case it has already been known that T1 is sufficient to describe B1,π.
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Up to now, it is not clear whether this holds also in the multipartite
case.

One can also ask whether the first theta body meets the unit vectors
only at the unit product vectors. This refers to question (6) in
Subsection 3.6.2 and is important to consider the first theta body
as an "entanglement measure" (however, we are in the real case).
The question can also be formulated as follows: We ask whether
‖z‖T1 = ‖z‖ if and only if z is a product vector, for all z ∈ VR.
Another reformulation is: Given a unit vector z ∈ VR such that z
is no product vector, how to find a witness half-space for T1 which
does not contain z.

If the first theta body is not equal to B1,π, one can move on to higher
theta bodies, that is, to the k-th theta body Tk in the case where
k > 2. For instance, the following scenarios are possible:

(i) Scenario 1: There exists k ∈ N such that Tk is exact.
(ii) Scenario 2: For each face F of B1,π there exists k ∈ N such that

F lies in the boundary of Tk.
(iii) Scenario 3: There exists a boundary point y ∈ B1,π such that y

lies in the interior of Tk for all k ∈ N.

In the following, we discuss approaches to understand the higher
theta bodies.

10.1.8 Discussion on Higher Theta Bodies

Here we would like to discuss some approaches and open questions
to understand also the higher theta bodies Tk, k > 2.

In the case of complex tensor products we have seen in Chapter 6
that the first theta body is not sufficient to describe the projective
unit ball in VC. This suggests to consider also higher theta bodies.
However, the discussion here can be helpful in the real case as well,
so that it can be found in this section and not in the next which deals
with the complex case.

The main question is how T2 lies in T1, or, given k ∈ N, how Tk+1

lies in Tk. In the following, we also ask whether the methods which
were successful for the investigation of T1 can be modified to use it
also for Tk or whether they have to be replaced by other methods.

In the following, we discuss both analytic and numerical approaches.



The Projective Unit Ball, Real 289

We also refer to the introduction of Subsection 2.5.3.

Let I be the (complex-)join-meet ideal, J the (complex-)norm-join-
meet ideal and u the (complex) norming polynomial.

A first example — For all k > 2, Example 2.5.3 shows a (proba-
bly affine-linear) polynomial f which is a proper k-sum of squares
modulo J. However, this example requires that f has already been
written as a (k − 1)-sum of squares modulo J, that is, it already
defines Tk−1.

The median basis — The median basis in Section 5.2 contributes to
the understanding of I in the real case. With this basis we know the
homogeneous parts of I. Moreover, the ideal membership problem
for I can be solved easily, see Corollary 5.2.8. The ideal membership
problem for I can also be solved with a Gröbner basis for I, but
the median basis makes the reduction obsolete. In this respect, the
median basis can be used for the investigation of higher theta bodies.
The problem is the following: Given an affine-linear polynomial f,
how to choose a sum of squares s and a polynomial g such that

f− s− gu ∈ I. (10.1)

Once a choice is made, one can imagine that a verification of inclu-
sion (10.1) (that is, the ideal membership problem in this case) can be
done by hand. However, there are still many degrees of freedom in
the choice of f, s and g. One can also ask whether the median basis
can be generalised for complex tensor products. A first approach
can be found in Proposition 5.4.6.

The Hibi body — We have seen that many statements about the
projective unit ball and its theta bodies also hold for the Hibi body
and its theta bodies. Moreover, the general context was advantageous
to clarify the notation. This could also be helpful for the study of
higher theta bodies.

The Theorem of Schmüdgen — In the Master’s thesis, we have
investigated the derivation of the Theorem of Schmüdgen in order to
understand the theta body chain. The idea was to obtain properties
of an affine-linear polynomial which is a (k + 1)-sum of squares
modulo J in contrast to a k-sum of squares modulo J.
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Gröbner bases — With a Gröbner basis of the norm-join-meet ideal
J, see Theorem 5.3.4 and [HHO], one can solve the ideal membership
problem for J. The problem is the following: Given an affine-linear
polynomial f, how to choose a sum of squares s such that

f− s ∈ J. (10.2)

However, it is still not clear how to choose f and s in inclusion 10.2.
While doing the research for this thesis, we have tried to understand
the second theta body on occasion in order to find regularities
during the reduction and in order to show how the highest terms are
removed. For this purpose, we investigated the reduction algorithm.
The idea was that the reduction could follow fixed steps (for example,
alternating reductions by the norming polynomial and a single Hibi
relation). It was also interesting to compare the real and the complex
case. These observations suggest that the reduction requires many
steps and is very complex, therefore tedious by hand. Computer aid
can be helpful, but we recommend to understand the structure of
the underlying Gröbner basis first.

An optimisation problem — Let G be a Gröbner basis of J. Let s be
a k-sum of squares. The normal form r of s modulo G can be written
uniquely as a sum r = f− ε, where f is an affine-linear polynomial
and the degree of each term of ε lies in {2, 3, . . . , 2k − 1, 2k}. In this
case, there exists h ∈ J such that s = −h+ r, that is, we have

f = s+ h+ ε.

However, this is not very useful if ε 6= 0, so the question arises how
to modify s to obtain ε = 0. An idea to turn this in an optimisation
problem is the following: The direct sum of the homogeneous parts
of degree d ∈ {0, 1, . . . , 2k} of the underlying polynomial ring can
be identified with a real vector space Rt (where t appropriate),
by identifying factors with entries. Now, we ask how to find a
polynomial s such that ‖ε‖ is sufficiently small. In the course of this
thesis we have tried out this approach with the help of the computer
algebra program SageMath. However, the question arises how to find
the minimum of ‖ε‖. For example, one may ask whether ε depends
continuously on s. Moreover, one may ask whether the Euclidean
norm (that is, the l2 norm on the coefficients) is appropriate or
whether it can rather be formulated as an optimisation problem in
discrete geometry or as an algebraic problem.
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Numerical approach using moment matrices — An approach to
understand higher theta bodies is given in [BCR] and uses moment
matrices, going back to the original ideas of Lasserre with respect
to sos polynomials. The approach is based on a Gröbner basis of
the underlying ideal. The main theorem [BCR, Theorem 7.13] says
that the theta body can be written as the closure of a projected
spectrahedron. This can be implemented with the aid of a computer
algebra system in terms of a semidefinite program. On this basis,
one can check whether a given vector lies in the theta body or not.

To obtain the main results of this thesis, we used our characterisa-
tion of the first theta body Theorem 6.3.6. This can be seen as an
alternative to the moment matrix method in a special case. However,
a introduction to the moment matrix method, some examples and a
derivation can be found in the Master’s thesis [Lang]. In an earlier
stage of this thesis, we have implemented the method with a com-
puter algebra system for the real case. In this context, we would like
to note the following points of view:

(i) The moment matrix method is based on Gröbner bases. One
can use the Buchberger algorithm to find a Gröbner basis, but
it would be advantageous to find a term order for which the
Gröbner basis is as short or as simple as possible. Indeed, a
deeper understanding can help to identify possible sources of
errors, especially during the testing phase of an implementa-
tion of the method. Moreover, it can be helpful to take into
account that the computational complexity depends on the
length of the Gröbner basis and can be rather high, even for
small dimensions. In the real case there is a Gröbner basis
which is well understood due to Theorem 5.3.4. A discussion
for the complex case can be found in Section 5.4. It is also
an open question how to find a Gröbner basis in the case of
separable states.

(ii) The moment matrix method can be used to check whether
a vector is in the theta body or not. An open question is
how to determine concrete sos polynomials and also their sos
decomposition with this method.

(iii) The method can be used only in the case where the underlying
ideal does not contain any affine-linear polynomial. Eventually,
we want to apply the theta body method on the set S of all sep-
arable states. The underlying ideal Jtr,NC contains affine-linear
polynomials. The following "trick" can be an approach to avoid
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this problem: Given m,n ∈ N and an ideal I ⊆ R[x1, . . . , xn]
generated by polynomials f1, . . . , fm, one may regard the ideal
Ĩ := I · Id(x2

1, . . . , x2
n) instead of I. If I contains affine-linear

polynomials, then Ĩ does not, and we have ZR(̃I) = ZR(I) ∪ {0}.
However, this method needs a Gröbner basis for the ideal Ĩ.
Due to the definition of the ideal Ĩ, one could assume that a
Gröbner base for Ĩ will be longer than a Gröbner basis for I (al-
though we have not checked this yet). Now, if we set I = Jtr,NC ,
we have S = co(ZR(I)) and the theta bodies with respect to Ĩ
refer to the convex set C := co(S ∪ {0}). Since 0 /∈ S, we have
S 6= C, compare also with Figure 9.1. It is left to discuss which
witness hyperplanes for C can also be used as entanglement
witnesses.

In summary, the results of this thesis can also be useful for the study
of higher theta bodies, for example the discussions on Gröbner bases,
the study of the join-meet ideal, the results on symmetries and on
Hibi theta norms or the discussions on the differences between the
real and the complex case.

The subjects of this thesis related to tensor products and separable
states can be found within the range of subjects in Table 10.5. We
tried mostly to start with the cases whose structure seems to be most
simple so that the other cases can be developed on this basis. For
example, the theta body method is originally intended for real vector
spaces so that we decided to start with the first theta body in the
real case.

Tensor product real complex
Subject projective norm separable states
Theta body first second higher
Dimensions low high
Tensor factors bipartite multipartite
Approach analytic numerical
Statements local global

Table 10.5: Subjects of this thesis.
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10.2 The Projective Unit Ball, Complex

Here, we summarise the main results for the complex case with
respect to question (1) and to question (2) in Subsection 3.6.2: "How
close are the theta bodies to the projective unit ball?" and "How
accessible are the theta bodies?".

Theorem 2.5.5 guarantees that the theta bodies converge. With our
characterisation of the first theta body Theorem 6.3.6, one can check
whether a polynomial is 1-sos modulo the complex norm-join-meet
ideal and thus determine the first theta body. To do this, one can use
the corresponding computer program (the dimension of each tensor
factor should not exceed 9). In the case C2 ⊗ C2, we have shown that
the first theta body is exact, see Theorem 6.4.3. In all other cases,
we have obtained the inner radius of the first theta body which is
constant and equals 1/

√
2, see Theorem 6.4.2.

Therefore, if one wants to estimate the projective norm using theta
bodies, it is necessary to consider higher theta bodies. Some ap-
proaches to higher theta bodies and ideas for future investigations
can be found in Subsection 10.1.8.

On the other hand, the first theta body (and also each higher theta
body) can be considered as a new entanglement measure in addition
to the projective norm. To do this, it is important that it lies in the
Hilbert-Schmidt unit ball, see question (3) in Subsection 3.6.2, and
that it meets the unit vectors only at the unit product vectors, see
question (6). While the first requirement is fulfilled, see Chapter 6, it
is open whether this is also the case for the second.

We have not ruled out at this point that it might be possible to use the
design hyperplanes, skip hyperplanes or parity hyperplanes from
Chapter 7 and Chapter 8 (see also Section 10.1) also in the complex
case. However, it can be difficult to overcome the differences between
the real and the complex case. In particular, maximal vectors in the
real tensor product VR, regarded as elements in the complex tensor
product VC, lose their maximality in general, see Proposition 3.3.3.
In addition, in the complex case one has to include complex Hibi
relations and to consider higher theta bodies. So we may ask whether
there are alternative methods to address the complex case.

We refer also to the discussions in Section 10.1 and recommend the
following steps for further investigations:
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(1) Consider the second theta body of B1,π in the bipartite tensor
product Cn⊗Cn for small values of n. It can be helpful to begin
with the case n = 3. The aim is to find explicit sos polynomi-
als whose distance to zero is significantly close to the inner
radius 1/

√
n of B1,π. Since the complexity of the second theta

body seems to be significantly high, we recommend the use
of additional computer assistance. For instance, the moment
matrix method, see [BCR], can be helpful. This method needs
a Gröbner basis. We have seen in Subsection 10.1.8 that it is
advantageous to find a term order for which the Gröbner basis
is as short and as simple as possible. This has been discussed
in Section 5.4.

(2) If the first step is successful, one can move on to the multipartite
case C3 ⊗ C3 ⊗ C3. We recall that 2/3 is an upper bound on the
inner radius of B1,π, see Subsection 3.3.3, so the aim is to attain
or fall below this bound.

(3) If the first step is not successful, it could be helpful to consider
theta bodies of degree 3 or higher.
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10.3 Separable States

In Chapter 9 we have shown that the theta body method yields a
chain of convex relaxations of the set of the separable states. In
particular, each polynomial which is a sum of squares modulo the
ideal Jtr,NC is a candidate for an entanglement witness. This offers
the possibility of using sos polynomials to solve the separablity
problem for a given state. In this section, we discuss the possibilities
and the difficulties of this method.

The main question is how to find an explicit polynomial which is
sos modulo Jtr,NC . Once an sos polynomial is given, it is important
to check whether it is an entanglement witness.

Since the theta body method is initially intended for real vector
spaces, we started our investigations in this thesis with the projec-
tive norm on real tensor products, proceeded with complex tensor
products and developed the application on separable states on this
basis. Hence, it could be helpful to look at the tensor product case
to obtain entanglement witnesses. Since the ideal Jtr,NC contains
the complex Hibi relations, the real case seems to be further away
than the complex case, see also the discussions in Section 10.2. In
particular, the ideal Jtr,NC evolves from the complex-norm-join-meet
ideal J by adding the real and the imaginary part of the trace func-
tional so that an affine functional l which is sos modulo J is also sos
modulo Jtr,NC . Therefore, we could try to modify l using the trace
functional.

However, l is primarily a witness functional for B1,π, see also Figure
9.1, and we do not know the algebraic role of the trace functional in
our context yet. In particular, it is not clear how to ensure that the
affine half-space does not cover the entire state space.

Moreover, it can be important that the first complex theta body of
B1,π is not very close to B1,π due to Theorem 6.4.2, so that we cannot
expect a better situation for the separable states. To guarantee that a
sos polynomial is also an entanglement witness it could therefore
be necessary to consider higher theta bodies. Some approaches to
higher theta bodies and ideas for future investigations can be found
in Subsection 10.1.8.

In summary, we recommend the following steps for further investi-
gation:
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(1) First, we recommend working through the steps (1) - (3) in the
last section.

(2) Now, one can move on to theta bodies of B1,π in the complex
tensor product C2 ⊗ C2 ⊗ C2 ⊗ C2. It can be helpful to begin
with the second theta body. The aim is to find explicit sos
polynomials whose distance to zero is as small as possible.

(3) Afterwards, one can use the real and the imaginary part of
the trace functional to find explicit sos polynomials which are
entanglement witnesses.

(4) It would be interesting to see whether the separability problem
can be solved with theta bodies for certain states. Candidates
for those states could be the so-called Werner states, see [Maa].

The moment matrix method (see [BCR]) can be used for step (2). We
note that this approach cannot be used in the first instance for step (3),
since the underlying ideal has to be free from affine functionals, and
we note that this method needs a Gröbner basis (which is preferably
short and simple), see the discussions in Subsection 10.1.8.
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INDEX OF NOTATION

Standard Notation

Numbers — The natural numbers N begin with 1. If nothing else is specified, n
denotes a natural number.

The complex unit is denoted by i.

Sets — The power set of a set M is denoted by P(M).

The set of all functions from a set M in a set N is denoted by A(M,N). The
identity in A(M,M) is denoted by id.

The number of elements of a finite set M is denoted by #M.

Let M be a non-empty set and let A ⊆ M. In this context, Ac denotes the
complement of A in M, that is, Ac = S \A.

A partition P of a non-empty set M is a set of non-empty subsets of M, which are
called the parts of P, such that M is their disjoint union. The length of a part is its
cardinality. A partition P of M is called proper, if all parts are proper subsets of
M. It is called complementary, if it has exactly two parts. Its width is the number
of its parts. Its relative size is the length of its largest part.

Symmetric Groups — Let M be a set. The symmetric group, which is the set of
all bijections M→M, is denoted by SM (or by Sn, if M is finite and #M = n).

Let π ∈ SM. The support of π is given by supp(π) := {k ∈ M : π(k) 6= k}. Each
element of M which is not in the support of π is called a fixpoint of π.

A permutation π ∈ SM is called a cycle, if m1 7→ m2 7→ · · · 7→ mk 7→ m1 under π,
where {m1, . . . ,mk} is the support of π.

In the case where M = {1, . . . ,n}, a cycle π ∈ Sn is called an adjacent transposition,
if there exists k ∈ {1, . . . ,n − 1} such that supp(π) = {k,k + 1}, π(k) = k + 1, and
π(k+ 1) = k. In this case, we write π = (k k+ 1).
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Groups — Let G be a group with neutral element 1, let N be a normal subgroup
of G and let H be a subgroup of G, such that N ∩H = {1} and G = NH. Then G
is the semidirect product of N and H, denoted by NoH.

Rings — Let R be a commutative ring.

Let M ⊆ R. The ideal generated by M is denoted by Id(M), where Id(∅) := {0}.

An element s ∈ R is called a square, if s = r2 for some r ∈ R. It is called a sum of
squares, in short, sos, if it can be written as s = r2

1 + · · · + r2
t for some t ∈ N and

r1, . . . , rt ∈ R.

Vector Spaces — Let K = R or K = C. Let X be a vector space over K.

A function from X to K is called a functional on X. The linear hull of a set M ⊆ X
is denoted by LH(M). The algebraic dual of X is denoted by X?.

The symmetry group SymX(M) of a set M ⊆ X is defined as the set of all invertible
linear maps A on X with A(M) =M.

The unit ball of an arbitrary norm ‖·‖ on X is denoted by B1,‖·‖ := {x ∈ X : ‖x‖ 6 1}.
Its unit sphere is denoted by X1 := {x ∈ X : ‖x‖ = 1}.

Euclidean Vector Spaces — A canonical (orthonormal) basis of Kn is denoted by
e1, . . . , en. The closure of an arbitrary subset M ⊆ Kn is denoted by cl(M).

The Euclidean scalar product is denoted by 〈 · , · 〉 and the Euclidean norm by
‖ · ‖.

The set of all m × n matrices with entries in K is denoted by Mm,n(K), where
Mn,n(K) =: Mn(K). The transpose and the adjoint of a matrix A ∈Mm,n(K) are
denoted by At and A?, respectively. The identity matrix in Mn(K) is denoted by
1n. The set of unitary maps on Cn is denoted by Un(C), the set of orthogonal
maps on Rn is denoted by Un(R), and the set of self-adjoint or symmetric maps
on Kn is denoted by Sn(K). The trace of a matrix A ∈Mn(K) is denoted by tr(A).
If a matrix A ∈Mn(K) is positive semidefinite, we also write A > 0.

The operator norm of a linear map Kn → Km with respect to the Euclidean norm
is denoted by ‖ · ‖op.

Let x ∈ Kn and let M ⊆ Kn. The distance of x to the set M is denoted by
d(x,M) := inf{‖x− y‖ : y ∈M}.
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Special Notation

The following entries are listed in order of appearance.

1 Polynomial Ideals

1.1 Term Orders
K field 1
K[~x ] polynomial ring in n variables over K 1
xα term xα1

1 · . . . · xαnn , where α = (α1, . . . ,αn) ∈ Nn0 2
g | f g divides f 2
|α| degree of α ∈ Nn0 3
deg(f) degree of f ∈ K[~x ] 3
K[~x ]k polynomials of degree less or equal than k ∈ N 3
6 term order on Nn0 or on K[~x ] 3
6lex lexicographical order 3
6grlex graded lexicographical order 3
6grevlex graded reverse lexicographical order 3
supp(α) support of α ∈ Nn0 3
mdeg(f) multidegree of f ∈ K[~x ] 5
deg(f) degree of f 5
LT(f) leading term of f 5
LC(f) leading coefficient of f 5
1.2 Polynomial Reduction and Gröbner Bases
−→ reduction relation 6
?−→ reflexive-transitive closure of −→ 6
?←→ reflexive-transitive-symmetric closure of −→ 6
f −→P g f reduces to g modulo P 6
G Gröbner basis 8
S(g,h) S-polynomial of f and h 9
K[~x ]/I coordinate ring with respect to an ideal I ⊆ K[~x ] 10
B standardbasis of K[~x ]/I 10
1.3 Homogeneous Polynomials
Id homogeneous part of degree d ∈ N0 of I 11

2 Convex Algebraic Geometry and Theta Bodies

2.1 Real Algebraic Geometry
K[~x ] polynomial ring in n variables over K 13
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ZK(I) =: Z(I) real or complex affine variety, I ⊆ K[~x ] 15
IK(V) =: I(V) real or complex vanishing ideal of a variety V ⊆ Kn 15√
I radical of an ideal I ⊆ C[~x ] 16

R
√
I real radical of an ideal I ⊆ R[~x ] 16

Pn real or complex projective space 17
[v] point [v] = v0 : v1 : · · · : vn in Pn, v ∈ Kn+1 17
ZK(I) real or complex projective variety, I ⊆ K[x0, . . . , xn]

homogeneous ideal
17

α identification of Kn in Pn 18
dim(V) dimension of irred. projective variety V ⊆ Pn, K = C 19
deg(V) degree of V 19
H Hilbert function 20
p Hilbert polynomial 20
2.2 Complex Varieties as Real Varieties
ı decomplexification of a complex set 21
ek,1, ek,2 image under ı of ek and of i ek, respectively 21
Re0, Im0 real linear maps C[x1, . . . , xn]→ R[x1, . . . , xn] 22
 ring hom. C[x1, . . . , xn]→ C[x1,1, x1,2, . . . , xn,1, xn,2] 23
Re(f), Im(f) real and imaginary part of f ∈ C[x1, . . . , xn] 23
ı decomplexification of a complex ideal 25
ı decomplexification of a complex variety 25
ı decomplexification of a complex operator 30
2.3 Convex Geometry
co(S) convex hull of a subset S ⊆ Kn 32
Hl affine half-space, where l ∈ K[x1, . . . , xn]1 non-constant 32
Pl real affine hyperplane 32
ly representative of an affine half-space, y ∈ Kn, y 6= 0 34
ly support functional 34
ext(C) extreme points of a convex set C ⊆ Kn 37
dim(F) dimension of a face F of C 37
C• polar of a convex set C ⊆ Kn with 0 ∈ C 39
C◦ real polar of C 39
2.4 Convex Sets and Norms
‖ · ‖C norm with unit ball C ⊆ Kn 41
‖ · ‖C,∗ dual norm of ‖ · ‖C 42
F dual face of face F ⊆ C 43
r(C) inner radius of C 45
o(C) outer radius of C 45
2.5 Sums of Squares and Theta Bodies
k -sos k-sum of squares in R[~x ], k ∈ N 49
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k -sos-mod I k-sum of squares modulo an ideal I ⊆ R[~x ] 49
Σ set of all sums of squares 49
Σ2k set of all k-sum of squares 49
W(M) Positivstellenmenge of a set M ⊆ R[~x ] 50
Ck affine functionals which are k -sos-mod I w.r.t. ideal I 51
Tk theta body of degree k w.r.t. I 51
Dk a real prepolar of Tk 53
TC
k(I) complex theta body in Cn of degree k w.r.t. ideal

I ⊆ R[x1,1, x1,2, . . . , xn,1, xn,2]
57

3 The Projective Tensor Norm

3.1 Tensor Products and Cross Norms
B(X, Y) bilinear maps from X× Y to K; X, Y vector spaces 60
x⊗ y product vector, x ∈ X, y ∈ Y 60
X⊗ Y tensor product of X and Y 60
PV product vectors in V := Kn1 ⊗ · · · ⊗Knr , r > 2, nt > 2 61
EV unit product vectors in V 61
‖ · ‖π projective norm on V 62
B1,π projective unit ball 62
〈 · , · 〉HS Hilbert-Schmidt scalar product on V 63
‖ · ‖HS Hilbert-Schmidt norm on V 63
Uloc local unitary (or orthogonal) operators on V 63
‖ · ‖ε injective norm on V 64
3.2 Group Actions
g.x left group action of g ∈ G on x ∈ X 65
πg permutation in SX, induced by g 65
[x],G.x orbit of x under G 66
X/G set of all orbits 66
Gx stabiliser of x under G 66
KG stabiliser of X 66
g.a group action of g ∈ G on a ∈ A(X, Y) 66
3.3 Geometry of the Projective Unit Ball
‖ · ‖tr trace norm on a bipartite tensor product 68
ξGHZ GHZ-vector 69
ξW W-vector 69
Arv(V) Arveson bound 71
U0

loc operators of the form 1⊗ · · · ⊗ 1⊗O, O ∈ Unr(K) 71
Fσ flip operator, where σ ∈ Sr 72
FV flip operators 72
Mv max. face ind. by max. vector y ∈ V , v := r(B1,π)y 76
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SymπV(B) symmetry group of B ⊆ V under SymV(B1,π) 76
U1

loc operators of the form O⊗O, where O ∈ Un(K) 76
S0 semidirect product of U1

loc and FV 76
3.4 (Unit) Product Vectors as a Variety
N indexing tuples for V 79
a1 a2 · · · ar indexing tuple a := (a1, . . . ,ar) ∈ N 79
ea = ea1 a2 ···ar image of ea1 ⊗ · · · ⊗ ear ∈ V in KN 79
xa functional in K[ xa : a ∈ N] corresponding to ea 79
(va)a∈N multi matrix corresponding to v ∈ V 81
aS tuple (as1 , . . . ,asn) for S = {s1, . . . , sn}, s1 < · · · < sn 81
NS equal to

∏
s∈S{1, . . . ,ns} 81

ns equal to #NS 81
deta,b,c,d polynomial xa · xb − xc · xd, where a,b, c,d ∈ N 84
DN non-zero PV-determinants 84
IN ideal generated by PV-determinants 84
a∨b equal to (max(at,bt))t=1,...,r 84
a∧b equal to (min(at,bt))t=1,...,r 84
ha,b determinantal Hibi relation for a,b ∈ N 84
HN non-zero determinantal Hibi relations 84
uN norming polynomial (case K = R) 87
NN equal to {uN} 87
JN ideal generated by HN and NN 87
3.5 Complex Unit Product Vectors as a Variety
VK tensor product Kn1 ⊗ · · · ⊗Knr 87
NC equals N× {1, 2} 88
HNC real and imag. parts of non-zero det. Hibi relations 88
uNC complex norming polynomial (case K = C) 89
NNC equal to {uNC} 89
JN,C ideal generated by HNC ∪NNC 89
VR,2 tensor product Rn1 ⊗ · · · ⊗ Rnr ⊗ R2 89
3.6 Applications of the Projective Norm

4 Distributive Lattices

4.1 Lattices
(P,6) partial ordered set 98
a∧b meet of a and b in P 99
a∨b join of a and b 99
⊥ bottom of a lattice 99
> top of a lattice 99
(L, ∧ , ∨) general lattice 100
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4.2 Distributive Lattices
L×M product lattice of two lattices L and M 103
N direct product {1, . . . ,n1}× · · · × {1, . . . ,nr} 103
D18 (largest) lattice generated by three elements 104
s smallest element of D18 104
l largest element of D18 104
m median of D18 104
D1,D2,D3 three examples of pentagonal lattices 105
L(a,b) largest boolean sublattice of L spanned by a,b ∈ L 106

5 The Join-Meet Ideal

L non-empty finite distributive lattice 109
VK tensor product Kn1 ⊗ · · · ⊗Knr 109
LC equals L× {1, 2} 109
5.1 Real and Complex Hibi Relations
HL set of all non-zero Hibi relations 111
IL join-meet ideal 111
ZK(IL) Hibi variety 111
uL norming polynomial 112
JL norm-join-meet ideal 112
ZR(JL) normed Hibi variety 112
HLC set of all non-zero complex Hibi relations 113
ı(IL) complex-join-meet ideal 113
ZR(ı(IL)) complex Hibi variety 113
uLC complex norming polynomial 113
JL,C complex-norm-join-meet ideal 113
ZR(JL,C) complex normed Hibi variety 113
5.2 The Median Basis of the Join-Meet Ideal
Lm/Sm index set for terms in (K[xa : a ∈ L])m, m ∈ N0 117
a class of a = (a1, . . . ,am) ∈ Lm in Lm/Sm 117
xa corresponding term xa1 · . . . · xam 117
−→ reduction relation on Lm/Sm 118
Rm set of all equivalence classes w.r.t. ?←→ 118
[a] equivalence class of a 118
Mk(a1, . . . ,am) k-median of a1, . . . ,am ∈ L, k ∈ {1, . . . ,m} 121
M(a) median of a 121
ha equals xa − xM(a) 124
BL median basis of the join-meet ideal 124
V[a] linear hull of all polynomials hb, where a ?←→ b 124
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M(f) median of f ∈ K[xa : a ∈ L] 124
f−M(f) projection of f onto IL 124
5.3 A Gröbner Basis of the (Norm-)Join-Meet Ideal
6 ′ linear extension of L 126
5.4 Complex Hibi Relations and Gröbner Bases
a,1;a,2 elements in LC or variables in R[xa,1, xa,2 : a ∈ L], a ∈ L 132
VRe,Re LH(a,1 · b,1 : a,b ∈ L) 139
VIm,Im LH(a,2 · b,2 : a,b ∈ L) 139
VRe,Im LH(a,1 · b,2 : a,b ∈ L) 139
5.5 Attributes of the Hibi Variety
U[a] linear hull of {xb : b ∈ [a]} 140
N0 indexing tuples in the projective case 141
5.6 Application to Tensor Products
D(n1, . . . ,nr) total number of non-zero PV-determinants 145
Z group ((Z2)

r,+) (acts on N2/S2) 147
4 symmetric difference 147
Ca coincidence set of a ∈ N2/S2 147
Sa support of a 147
Dt,p set of all non-zero PV-det. with support length t 149

6 The Hibi Body and its Theta Bodies

LK LR := L, LC := L× {1, 2} 155
n #LK 155
I (complex-)join-meet-ideal 155
J (complex-)norm-join-meet ideal 155
V ZR(J) (or ı−1(ZR(J))) 155
H Hibi body 155
Tk kth (complex) theta body of J 155
6.1 The Hibi Norm and Hibi Theta Norms
‖ · ‖H Hibi norm 157
‖ · ‖Tk kth theta norm (case K = R) 159
6.2 The First Theta Body and Spectrahedra
S̃ a spectrahedron in Sn+1(R) 163
S a projected spectrahedron in Sn(R) 163
ρ(B) spectral radius of a positive semidefinite matrix B 167
6.3 The First Theta Body in the Real Case
P join-meet partition of L 170
B finite boolean lattice 173
a ′ complement of a in B 173
s splitting function for B or for P 173
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S+B ,S−B a complementary partition of B 173
fsa,b a polynomial 177
6.4 The First Complex Theta Body
6.5 Join-Meet Partitions and Codes
F finite field 185
C code in Fn 186
wt(v) weight of v ∈ Fn 186
d(v,w) Hamming distance of v and w ∈ Fn 186
d(C) minimum distance of C 186
d(w,C) minimum distance of w to C 186
Γ generator matrix of a linear code C 191
C1 ⊕ C2 (outer) direct sum of codes C1 and C2 192

7 Design Hyperplanes

V tensor product Rn ⊗ · · · ⊗ Rn, n ∈ {2, 4, 8} 195
7.1 Latin Squares
(S, ·) quasigroup 196
(B1,B2,M) a multiplication table of (S, ·) with . . . 196
B1,B2 boundaries 196
M a multiplication table of (S, ·) without boundaries 196
L latin square 197
(θ,φ,ψ) isotopism, where θ,φ,ψ bijections 198
ψ(L) entry-wise application of ψ on L 198
Tri(L) representation of L 199
Lσ entry-wise application of σ ∈ S3 on Tri(L) 199
Lσ,ψ (σ, ψ) parastrophe of L 199
prod(S,·)(a) product of a ∈ Sr, where r ∈ N 204
Pr a partition of Sr 204
Ts,r part of Pr, where s ∈ S 204
OA(m,k, s,d) orthogonal array: m runs, k factors, s levels, strength d 205
7.2 Orthogonal Designs
X orthogonal design OD(n; s1, . . . , sm) 210
n order of X 210
(s1, . . . , sm) type of X 210
A ? B entry-wise product of two matrices A, B 213
|X| absolute value of X 213
(S0, ?) quasigroup with mult. tab. ((x1, . . . , xn), (x1, . . . , xn), |X|) 215
(S, ·) canonical quasigroup of X 215
sign(a) sign of a ∈ Sr 216
X̂ an orthogonal design related to X 216
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7.3 Design Hyperplanes
n number in {2, 4, 8} 220
PD design partition of N = {1, . . . ,n}r 220
Ts design part, where s ∈ S0 220
sD design function on N 220
β translation by h ∈ N: β : N→ N, a 7→ h ? a 220
7.4 Skip Hyperplanes
V ′ tensor product Rn ′ ⊗ · · · ⊗ Rn ′ , n ′ ∈ {3, 5, 6, 7} 228
P S skip partition of N ′ = {1, . . . ,n ′}r 228
s S skip function on N ′ 228
mSkip relative size of the skip partition 229
Skip(V ′) skip bound 229

8 Parity Hyperplanes

V tensor product Rn ⊗ · · · ⊗ Rn 233
8.1 Sorting and Inversions
LIT(a) left inversion table for a ∈ N = {1, . . . ,n}r 234
RIT(a) right inversion table for a 234
inv(a) total number of inversions of a 234
a(s0, c) emerges from a by replacing the sth

0 entry by c 238
R(a, s0, c) inversion rest of a with respect to (s0, c) 238
S(a, s1, s2, c1, c2) inversion symmetrisation of a w.r.t. (s1, s2, c1, c2) 242
8.2 Some Homological Algebra

C0 d0
−→ C1 d1

−→ C2 cochain complex 244
B1 1−coboundary 244
Z1 1−cocycle 244
Z1/B1 1th cohomology group 244
G group acting on a set X 244
H abelian group 244
A equal to A(X,H) 244
ϕa function G→ A with g 7→ g.a/a, where a ∈ A 244
ϕa,x equal to δx ◦ϕa, where δx evaluation func. at x ∈ X 247
8.3 Parity Hyperplanes
ρ(a)t parity of t in a, where a ∈ N 249
ρ(a) parity of a 249
Tv parity part, where v ∈ ρ(N) 249
P P parity partition of N 249
s P parity function on N 250
sig(a,b) equal to s P(a) · s P(b) 250
ϕa equal to ϕsig,a for all a ∈ N2/S2 251



Index of Notation 315

8.4 The Relative Size of the Parity Partition
F(n, r,k) number of words with parity condition, k 6 n 258
P(f) a generating function for f ∈ {0, 1}n 259
G(n, r,k) a generating function 260
Par(V) parity bound 264

9 Theta Bodies for Separable States

9.1 Entanglement
H complex Hilbert space H of dimension n 270
L(H) linear operators on H 270
Pv orhogonal projection on v ∈ (H)1 270
S(H) state space 270
ϕA functional corresponding to A 271
H compound system H1 ⊗H2 272
V tensor product H1 ⊗H1 ⊗H2 ⊗H2 272
S set of all separable states 272
Sc set of all entangled states 272
Spure set of all pure separable states 272
tr1, tr2 partial traces on L(H1) (and on L(H2), respectively) 272
9.2 Pure Separable States as a Variety
tNC trace functional 276
Htr affine hyperplane, induced by the trace functional 276
TNC equal to {Re(tNC), Im(tNC)} 276
Jtr,NC ideal, generated by HNC , NNC and TNC 277

10 Summary and Discussion

V tensor product Kn ⊗ · · · ⊗Kn, n > 2 279
10.1 The Projective Unit Ball, Real
mArveson equal to nr−1 280
mDesign relative size design partition 280
mSkip relative size skip partition 280
mParity relative size parity partition 280
|δa| design (or skip or parity) coefficient 286
10.2 The Projective Unit Ball, Complex
10.3 Separable States
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Symbols

(n,k,d)-code, 186
R-C-unfolding, 82
S-polynomial, 9
k-median, 121
k-plane, 18
k-sum of squares, 49
kth theta body, 51

A

absolute value, 213
absorbing set, 41
adjacent transposition, 305
affine functional, 3
affine half-space, 33
affine hyperplane, 32
affine space, 15
affine sparse minimization prob., 94
affine variety, 15
algorithmic approach, 138, 169, 230,

290
approximation by theta bodies, 52
Arveson bound, 71

B

balanced set, 40
barycenter, 78
Baumert-Hall array, 213
binary code, 186
binary repetition code, 187
binomial, 112
bipartite tensor product, 61
Bipolar Theorem, 40

boolean lattice, 102
bottom, 99
boundary of a mult. table, 196
bubble sort algorithm, 235
Buchberger algorithm, 9
Buchberger Criterion, 10

C

canonical multiplication table, 216
canonical quasigroup, 216
Carathéodory’s Theorem, 32
Cayley-Dickson construction, 212
chain, 98, 118
Choquet Theory, 78
coboundary, 244
cochain complex, 244
cocycle, 244
cocycle property, 246
code, 80, 186
codeword, 186
cohomology group, 244
coincidence set, 148
commuting group actions, 66
comparable, 98
complemented lattice, 102
complements in a lattice, 102
complete, 99
complex Hibi body, 114, 116
complex Hibi relation, 110, 113, 115
complex Hibi variety, 113, 115
complex normed Hibi variety, 114, 116
complex norming polynomial, 89, 116
complex space
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affine, 15
projective, 17

complex theta body, 14, 57
degree, 57

complex vanishing ideal, 15
complex variety

affine, 15
projective, 18

complex-join-meet ideal, 110, 113, 115
complex-norm-join-meet ideal, 114,

116
compound system, 270
compressive sensing, 94
cone, 50
convergence of theta bodies, 54
convex body, 32

proper, 32
convex combination, 32

proper, 32
convex hull, 32
convex relaxation, 13, 34
convex set, 32
coordinate ring, 10
coprime, 2
cover, 98
Criterion for Unit Product Vectors, 87,

89
cross norm, 62

largest, 62
smallest, 64

cycle, 305

D

decomplexification
of a complex ideal, 25
of a variety, 26
of a complex operator, 30
of a complex set, 22

decomplexified
ideal, 25
variety, 26

Decomposition Theorem of Linear
Codes, 192

degree

of a polynomial, 3
of a projective variety, 19
of a term, 3
of a theta body, 51

density matrix, 271
design coefficients, 286
design decomposition, 279, 286
design function, 195, 220
design hyperplane, 195, 223
design part, 220
design partition, 195, 220
Determinant Criterion, 88
determinantal Hibi relation, 85
determinantal variety, 81
diamond, 99
Dickson’s Lemma, 3
dimension

of a face, 38
of a variety, 19

direct product of lattices, 103
direct sum of codes, 192
distance of maximal faces, 76
distance to a set, 306
distributive lattice, 101
division algorithm, 7
dual cone, 51
dual face, 43
dual norm, 42

E

elementary tensor, 60
entangled state, 272, 279
entanglement, 272
entanglement measure, 93
entanglement witness, 272
entry, 79
entry-wise product, 213
equivalence of maximal faces, 76
error-correcting codes, 186
even parity, 249
exact theta body, 54
expanding order, 136
exposed face, 38
extreme point, 31, 37
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F

face of a convex set, 31, 37
factor, 205
faithful, 66
fixpoint, 66
fixpoint of a permutation, 305
flip operator, 72
full orthogonal design, 210
functional, 306

positive, 271

G

general lattice, 100
generalised Schmidt decomp., 69
generating function, 259
generator matrix, 191
GHZ-state, 69
GHZ-vector, 70
graded lexicographical order, 4
graded reverse lexicogr. order, 4
greatest lower bound, 99
grid, 80
ground transformations, 66
group action, 65

faithful, 66
transitivity, 66

Gröbner basis, 1, 9, 29, 125
of the compl.-join-meet ideal, 132
of the join-meet ideal, 130
of the norm-join-meet ideal, 130
reduced, 10
universal, 9

gsd-decomposition, 69, 279
gsd-vector, 69

H

Hadamard matrix, 211
Hamming distance, 186
Hasse diagram, 98
Hibi body, 109, 112, 116
Hibi ideal, 111
Hibi norm, 155, 158
Hibi relation, 111, 115
Hibi theta norm, 155, 160

Hibi variety, 109, 111, 115
Hilbert Basis Theorem, 1, 15
Hilbert function, 20
Hilbert polynomial, 20
Hilbert’s 17th problem, 51
Hilbert’s Nullstellensatz, 16
Hilbert-Schmidt norm, 64
Hilbert-Schmidt scalar product, 63
Hilbert-Schmidt unit ball, 64
homogeneous ideal, 11
homogeneous part, 11

coordinate ring, 140
homogeneous polynomial, 11
hypercube, 80
hypersurface, 19

I

ideal
decomplexification, 25
prime, 112
radical, 16
real, 16
toric, 112

ideal equality problem, 1, 10
ideal membership problem, 1, 9
imaginary part of a polynomial, 21, 24
indecomposable code, 192
index, 205
indexing tuples, 79
infimum, 99
injective norm, 64
injective unit ball, 64
inner radius, 45
inversion, 234
inversion rest, 234, 238
inversion symmetrisation, 234, 242
irreducible variety, 19
isomorphic

latin squares, 199
quasigroups, 198

isotone function, 100
isotopy, 196

latin squares, 199
quasigroups, 198
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J

join, 99
join-meet ideal, 109, 111, 115

projection onto, 125
join-meet partition, 155, 170
join-semilattice, 99

K

Krein-Milman Theorem, 37

L

Lasserre’s relaxation, 95
latin square, 195, 197

main classes, 200
standard form, 197
symbols, 197

latin subsquare, 197
lattice, 79, 99

D18, 104
complemented, 102
direct product, 103
distributive, 101
isotone function, 100
Law of Absorption, 100
median, 104
modularity, 101
morphism, 100
pentagonal, 105
planar, 103

Law of Absorption, 100
leading coefficient, 5
leading term, 5
least common multiple, 9
least upper bound, 99
left group action, 65
left inversion table, 234
leftgreater, 234
length

of a chain, 98
of a code, 186
of a part, 305
of a poset, 98

level, 205
lexicographical order, 4

linear code, 186
linear extension, 126
linearly isometric codes, 192
local orthogonal operator, 64
local unitary operator, 64
locally confluent, 121
low rank matrix recovery, 94
low rank tensor recovery, 94
lower bound, 99

M

main classes of latin squares, 200
maximal face, 37

distance, 76
equivalence, 76

maximal vector, 46
mean ergodic group, 78
mean ergodic projection, 78
median, 109, 121

of a lattice, 104
of a polynomial, 125
of a term, 122

median basis, 109, 124
median law for lattices, 101
meet, 99
meet-semilattice, 99
minimum distance of a code, 186
Minkowski functional, 41
mixed order, 138
mixed state, 270
modularity, 101
moment matrix, 51, 155, 291
monomial, 2
monomial ideal, 2
morphism between lattices, 100
multi matrix, 81
multidegree, 5
multipartite tensor product, 61
multiplication table

for the complex numbers, 195
for the octinions, 195
for the quaternions, 195
of a finite quasigroup, 196

multivariate polynomial division, 7
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N

Netflix problem, 94
noetherian, 6
noise, 186
non-negative polynomial, 50
norm maximisation problem, 42, 64
norm-join-meet ideal, 112, 116
normal form, 6, 129
normed Hibi variety, 112, 116
norming polynomial, 87, 109, 112, 116
NP-hardness, 92
nuclear norm, 62
nuclear norm minimization, 63, 94

O

octahedron, truncated, 237
octonions, 195, 212
odd parity, 249
orbit, 66
orbit-stabiliser Theorem, 66
order of an orthogonal design, 210
orthogonal array, 195, 205, 225
orthogonal design, 195, 210

full, 210
order, 210
symbols, 210
type, 210

orthogonal system, 210
outer radius, 45

P

parastrophy, 196, 200
paratopy, 196

latin squares, 200
quasigroups, 201

parity, 171, 249
even, 249
odd, 249

parity bound, 233, 264
parity coefficients, 286
parity decomposition, 279, 286
parity function, 233, 250
parity hyperplane, 233, 255
parity part, 249

parity partition, 233, 249
parity property, 258
partial trace, 272
partition, 305

complementary, 305
symmetric, 227

pentagon, 99
pentagonal lattice, 97, 105
permutahedron of order 4, 237
pi-norm, 62
planar lattice, 103
polar

absolute, 40
real, 39

polynomial division, 7
polynomial reduction, 6
poset, 98
position, 79
positive linear functional, 271
Positivstellenmenge, 50
Positivstellensatz, 51
prime ideal, 112
principal isotope, 198
product lattice, 97
product of a word, 204
product state, 272
product vector, 60, 62, 115
product vector determinant, 85
projected spectrahedron, 155, 163
projective Hibi variety, 141
projective norm, 59, 62, 279
projective norm maximisation, 63, 92
projective space, 17

line, 18
plane, 18
point, 17

projective tensor product, 62
projective unit ball, 63, 116
projective variety, 18

degree, 19
dimension, 19
irreducible, 19

pure state, 270
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PV-determinant, 85, 146
Python, 169

Q

quantum system, 270
quasigroup, 196

identity element, 196
neutral element, 196

quaternions, 195, 212

R

radical ideal, 16
real, 17

rank factorisation, 80
rank of a tensor, 62
real affine hull, 33
real affine hyperplane, 33
real affine subspace, 33
real ideal, 16
Real Nullstellensatz, 17, 51
real part of a polynomial, 21, 24
real polar, 39
real prepolar, 39
real radical, 17, 52
real space

affine, 15
projective, 17

real vanishing ideal, 15
real variety

affine, 15
projective, 18

real vector lattice, 103
Rectangle Rule, 209

for latin squares, 196, 202
for orthogonal designs, 214

reduced Gröbner basis, 10
reduction relation, 6, 118
relative size of a partition, 305
relatively prime, 9
relaxation, 34
rhomb, 99
rhomb of a lattice, 100
right group action, 65
right inversion table, 234

rightsmaller, 234
ring of sets, 102
run, 205

S

Sade’s left keys law, 203
Sade’s right keys law, 203
SageMath, 138, 169, 230, 290
Schmidt coefficients, 68, 287
Schmidt decomposition, 68, 279
Segré variety, 81
self-dual median law, 101
semialgebraic set, 51
semidefinite program, 155, 164
semidirect product, 306
separable state, 272
Separation Th. for Convex Bodies, 34
sign, 216
singular value decomposition, 68
singular values, 68
skip bound, 195, 229
skip coefficients, 286
skip decomposition, 279, 286
skip function, 228
skip hyperplane, 195, 228
skip partition, 228
sos, 306
sparse vector recovery, 94
spectrahedron, 51, 155, 163
spiral, 208
splitting function

for a boolean lattice, 172
for a join-meet partition, 155, 173

square, 306
square-free, 2
stabiliser, 66
stacking order, 134
state, 270

entangled, 272
mixed, 270
pure, 270
separable, 272

state space, 270
strength, 205
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strictly convex, 32
sublattice, 99
sum of squares, 29, 49, 306
support, 148

of a permutation, 305
of a term, 4

support functional, 35
support vector, 35
supremum, 99
symbols of a latin square, 197
symbols of an orthogonal design, 210
symmetric function, 227
symmetric partition, 227
symmetry group, 306

T

tensor, 60
tensor completion, 94
tensor contraction, 272
tensor factors, 60
tensor network, 272
tensor product, 60

associativity, 61
bipartite, 61
multipartite, 61
universal property, 61

tensor theta norm, 155
tensor train rank, 92
term, 2
term order, 3

expanding, 136
mixed, 138
stacking, 134

term order based on a total order, 3
tesseract, 80, 226
Theorem of Schmüdgen, 54
theta body, 14, 51

complex, 57
convergence, 54
degree, 51
exactness, 54

top, 99
toric ideal, 112
toric variety, 112

trace, 271
trace norm, 68
transitivity, 66
TT rank, 92
Tucker rank, 92
type of an orthogonal design, 210

U

unfolding, 82
uniquely relativ. complemented, 103
unit ball, 306
unit product vectors, 59, 62, 116
unit sphere, 306
universal Gröbner basis, 9
universal property (tensor prod.), 61
upper bound, 99
URC-lattice, 103

V

vanishing ideal, 15
of the Hibi variety, 143

variety
affine, 15
decomplexification, 26
degree, 19
dimension, 19
irreducible, 19
projective, 18
toric, 112

vector lattice, 103

W

W-state, 69
W-vector, 70
weight, 186
Werner state, 296
width of a partition, 305
witness, 36
witness functional, 36
witness half-space, 36
witness hyperplane, 36
word problem, 204

Z

Zariski topology, 16, 27
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