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Abstract
Quantum chaos of many-body (MB) systems has been swiftly developing into
a vibrant research area at the interface between various disciplines, ranging
from statistical physics to condensed matter to quantum information and to
cosmology. In quantum systems with a classical limit, advanced semiclas-
sical methods provide the crucial link between classically chaotic dynamics
and corresponding universal features at the quantum level. Recently, single-
particle (SP) techniques dealing with ergodic wave interference in the usual
semiclassical limit ℏ→ 0 have begun to be transformed into the field the-
oretical domain of N-particle systems in the analogous semiclassical limit
ℏeff = 1/N→ 0, thereby accounting for genuine MB quantum interference.
This semiclassical MB theory provides a unified framework for understand-
ing random-matrix correlations of both SP and MB quantum chaotic systems.
Certain braided bundles of classical orbits, and of mean field modes, govern
interference, respectively, and provide the key to the foundation of universality.
Case studies presented include an MB version of Gutzwiller’s trace formula for
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the spectral density and out-of-time-order correlators along with brief remarks
on where further progress may be forthcoming.

Keywords: quantum chaos, semiclassical methods, trace formulas,
random matrix theory, out-of-time-order correlators
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1. Introduction

An integral part of Fritz Haake’s scientific life was dedicated to the study of quantum chaos or,
as he used to call it, quantum signatures of chaos [1]. Among his many contributions to vari-
ous aspects of quantum chaos, he and his co-workers’ achievements towards a semiclassical
understanding of random matrix universality for quantum-chaotic single-particle (SP) dynam-
ics are particularly striking. Based on a short review of such accomplishments and those of
many others, we summarize more recent work showing how these earlier semiclassical SP
methods engender a semiclassical theory of many-body (MB) quantum dynamics.

1.1. Facets of quantum chaos

One main branch of this field originated many years ago in the physics of strongly interacting
nuclear MB systems. There, Bohr’s compound nucleus model [2] may be viewed as the first
quantum chaotic system, although at that time there was no concrete association with clas-
sically chaotic dynamics. Instead, Wigner’s foundational work on random matrix ensembles
[3, 4] and subsequent contributions by several others [5] allowed for understanding nuclear
statistical spectral and scattering properties such as level repulsion [6, 7], the Porter-Thomas
distribution [8], and Ericson fluctuations [9, 10].Much later, randommatrix theory (RMT)with
a broadened focus, evolved into one of themethodological pillars of quantum chaos [1, 11–16].

Given that the notion of classically chaotic dynamics is absent from RMT, in a seminal
series of papers [17] starting from Feynman’s path integral, Gutzwiller derived a semiclassical
trace formula expressing an SP quantum spectrum as a sum over unstable classical periodic
orbits. Fifty years ago, he thereby set the cornerstones of the bridge connecting the classical
and quantum mechanics of non-integrable systems. Subsequently, the semiclassical mechan-
ics of chaotic dynamical systems became a second central pillar of quantum chaos studies
[1, 15, 18, 19].

Finally, in a parallel development universal features in spectral and quantum transport prop-
erties of disordered conductors had been predicted [20, 21] and observed [22]. Afterwards,
this research line, comprising localization phenomena, criticality, and universality in predom-
inantly non-interacting disordered systems, has evolved into its own field [23–26] and can be
considered as representing a third methodological foundation of quantum chaos studies.

These three pillars, RMT, semiclassical theory, and the theory of disordered systems, ini-
tially developed rather independently, and only much later were their deep mutual links recog-
nized and revealed. Of particular interest is the fundamental relation between the complement-
ary approaches underlying semiclassical and random matrix theories. The assumptions for
using RMT had originally been justified by invoking complexity of interacting MB dynam-
ics, but the famous conjecture of Bohigas, Gianonni, and Schmit (BGS) [27] represented
a paradigm shift, namely that the deeper rationale for the justification and applicability of
RMT was fully and exponentially unstable dynamics. It was a profound unifying concept that
strongly interactingMB systems and conceptually simple quantum-chaotic SP systems exhibit
to a large extent common statistical spectral properties, i.e. a prime example of universality
in quantum physics. Based on earlier works by Hannay and de Almeida [28], Berry [29], and
Sieber and one of the authors [30], the group of Fritz Haake and Petr Braun, to whom this
review is dedicated, contributed significantly towards a proof of the BGS conjecture [31] with
regard to SP dynamics. Classical correlations between periodic orbits (for an example see
figure 1) turned out to be the key to understanding random matrix-type spectral universality.
Extending these approaches to many interacting particles involves further challenges as shown
ahead.
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Figure 1. Correlated periodic orbits—phase-space sketch of classical periodic single-
particle orbits that are nearly identical up to encounter regions, located at self-crossings
in a two-dimensional configuration space (yellow xy-plane). Vertical components indic-
ate the respective momenta in y-direction. [32] JohnWiley & Sons. © 2011Wiley-VCH
Verlag GmbH & Co. KGaA, Weinheim.

Although quantumMB physics has a long tradition and the foundations of statistical mech-
anics were laid together with those of quantum mechanics, these subjects have witnessed a
recent rebirth due to advances in atomic, molecular, optical and condensed matter physics that
allow for building, controlling and monitoring synthetic MB systems with strongly interacting
quantum degrees of freedom. Studying their dynamics [33–35] has allowed for identifying
particular classes of states that fail to quantum thermalize [36–39]. Studying their evolution
towards equilibrium is especially important because equilibration is associated with chaos,
which underlies scrambling of quantum correlations across MB systems’ many degrees of
freedom. In particular, after the proposals on out-of-time-order correlators (OTOCs) [40] and
a universal limit of their growth rates, i.e. quantum ‘bounds on chaos’ [41], such aspects related
to MB chaos, ergodicity, and ergodicity breaking have recently received a great deal of atten-
tion. During the last decade corresponding activities, ranging fromMB quantum dynamics via
statistical physics to quantum gravity, have merged into a swiftly expanding field in theoretical
physics that may be subsumed under the topicMB quantum chaos. Corresponding research is
dramatically redirecting towards quantumMB dynamics, harking back to its origins in nuclear
MB physics.

1.2. Semiclassical regimes of quantum MB dynamics

Referring to chaos, an inherently classical concept, requires properly defined notions of clas-
sical and semiclassical limits inMB physics. Although there generally exists a variety of mean-
ings for the term ‘semiclassical’, depending on the respective field [42], here this term is being
used in the original sense, just as in quantum chaos, referring to physics in the crossover regime
between the classical and quantum worlds. Semiclassical theory may then be formally based
on asympototic (effective) ℏ expansions of quantum mechanical (MB) Feynman propagators.
The resulting semiclassical expressions, although based on classical quantities for input, nev-
ertheless fully account for quantum (or wave) interference as an integral part of the theory.
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Large classes of MB quantum chaotic systems possess a classical limit and reside at such a
semiclassical interface between non-integrable MB quantum and classical dynamics. In fact,
this occurs in a two-fold way. First, far out-of-equilibrium quantum dynamics are associated
with high-energy excitations and thereby with the usual short-wavelength limit, i.e. small ℏ.
Alternatively, the limit of large particle numbers N can also be regarded as semiclassical, gov-
erned by an effective Planck constant ℏeff = 1/N. Whereas this analogy can be made rigorous
in the case of non-dilute systems where N/L≫ 1, with L the number of possible SP micro-
states, in which case it simply corresponds with the notion of a thermodynamic limit with large
enough densities, there is some evidence of its validity for dilute regimes characteristic of fer-
mionic systems. We therefore consider MB chaotic quantum systems in the limits where either
ℏ or ℏeff is small but nonzero. Both types of quantum–classical transitions are singular imply-
ing disruptive changes and complexity for the broad class of quantum systems residing at the
edge of classical MB chaos. Typically, these systems require exceedingly difficult numerical
quantum simulations due to vastly growing Hilbert space dimensions. Thus, there has been
a quest for MB methods specifically devised for these complementary crossover regimes. In
the following, the underlying concepts and challenges of a corresponding semiclassical MB
theory are indicated.

1.2.1. The usual limit of high excitations. Consider the familiar case of a SP quantum sys-
tem with an existing classical limit that is approached in the limit ℏ→ 0. More precisely, the
semiclassical limit is one in which the dimensionless ratio ℏ/S≪ 1 with S=

´
pdq, a typical

classical action of the particle with momentum p. This is the standard limit of short wave
lengths λ in view of the relation λ= h/p. In the schematic figure 2 with horizontal scale S/ℏ
and vertical scale denoting the particle number N, this semiclassical limit corresponds to the
horizontal crossover (for N= 1) from the deep quantum regime at S/ℏ∼ 1 into the semiclas-
sical range where SP wave mechanics approaches classical mechanics, i.e. classical particles
most frequently possessing nonlinear, possibly chaotic dynamics.

Since Gutzwiller’s and Berry’s early works [17, 43], semiclassical approaches in quantum
chaos have nearly exclusively been focused on the case N= 1, i.e. in the lower right region of
the S-N-landscape of figure 2. This region is the subject of several textbooks [1, 15, 18, 19, 44].
However, the limit ℏ/S→ 0 also formally applies to systems with more than one particle in D
dimensions by considering semiclassical methods applied in a respective 2D·N-dimensional
phase space. In figure 2 this corresponds tomoving vertically upwards in the right semiclassical
regime and considering the limit ℏ→ 0 for given N. In this case, the MB density of states of
N interacting confined particles with MB energies E(N)

n is conveniently decomposed into a
smooth and an oscillatory part,

ρ(E,N) =
∑
n

δ(E−E(N)
n ) = ρ̄(E,N)+ ρosc(E,N) . (1)

However, extending such semiclassical approaches from one to N particles is accompanied
by a variety of notable challenges. First of all, in practice the calculation, classification, and
visualization of classical dynamics in high-dimensional phase spaces quickly reaches its lim-
its. For instance, the implementation of Gutzwiller’s trace formula for ρosc(E,N) on the basis
of N-particle periodic orbits seems practically impossible for many particles. Secondly, it is
necessary to account for the symmetry character ofMB states representingN identical particles
in quantum physics. Finally, and perhaps most challenging, to be truly valuable interaction
effects must be incorporated as an integral part of MB quantum chaos.
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Figure 2. Semiclassical regimes and limits of quantumMB dynamics—at fixed particle
number N, the usual semiclassical limit S/ℏ→∞, often referred to as ℏ→ 0, corres-
ponds to a (horizontal) transition from quantum mechanical waves to classical particles,
nearly always involving nonlinear dynamics. Semiclassical theory within the field
of quantum chaos has traditionally addressed single-particle systems, i.e. the lower
right zone. From the perspective of quantum field theory, the vertical direction of
increasing particle number N, consistent with what is usually considered as thermody-
namic for non-dilute systems, formally corresponds to a complementary semiclassical
regime with effective ℏeff = 1/N→ 0. In that limit quantum fields pass into nonlinear
waves.

Consequently, corresponding attempts have been rare, even for (non-integrable) few-
particle systems. An early example is the successful semiclassical quantization of the cor-
related Coulomb dynamics of the electrons in the helium atom, a longstanding problem dating
prior to Schrödinger and his equation, i.e. to the ‘old quantum theory’ [45], see [46, 47] for
reviews of the history. By applying a cycle expansion to chaotic dynamics in six-dimensional
phase space ground and exciting states of helium could be semiclassically computed with high
precision [48]. In [49] the accuracy of the semiclassical trace formula for systems with more
than two degrees of freedomwas considered and numerically studied for the three-dimensional
Sinai-billiard. More recently, the dynamics of quantum maps with up to eight-dimensional
phase spaces has been visualized and thoroughly investigated [50]. Furthermore, interesting
collective MB dynamics were recently semiclassically identified in kicked spin-chains up to
particle numbers of order N∼ 20 [51, 52] making use of a remarkable particle number-time
duality in the Ising spin chain [53].

There are only a few scattered examples for generalizations of the van Vleck-Gutzwiller
propagator [17] to truly many particles. In [54] Gutzwiller’s trace formula for the density of
states ρosc(E,N) was reconsidered for systems of non-interacting identical particles, in par-
ticular fermions. However, being based on classical SP phase space, this construction of the
MB density of states remains purely formal without a direct interpretation in terms of MB
phase space. With regard to semiclassical theory for many interacting fermions (for a review
see [55]), in [56] it was shown that the orbital magnetic response can be greatly enhanced
by the combined effects of interactions and finite size. In the context of MB scattering [57]
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contains a semiclassical calculation of the transmission probabilities through mesoscopic cav-
ities for systems of many non-interacting particles, in particular photons, thereby generalizing
advanced semiclassical SP techniques [58–60] for scattering in chaotic conductors. There the
interplay between interference at the SP level and due to quantum indistinguishability leads to
specific universal correlations in MB scattering properties with relevance for boson sampling
[61] and the Hong–Ou–Mandel effect [62].

In a parallel development, remarkable progress has been achieved by Gutkin and co-authors
providing certain classical foundations of many particle chaos based on models for coupled
cat maps [63, 64]. In view of correlations between partners within ‘braided classical orbit
bundles’, known to be relevant for universal spectral properties and to be reviewed below,
they highlighted the existence of partner orbits specific to MB systems. For a sufficiently large
particle numberN, these new partners are considered as relevant for construction of a consistent
MB semiclassical theory. Very recently, a chaotic scalar lattice field theory (in one dimension)
has been proposed [65, 66], complementary in spirit to Gutzwiller’s periodic-orbit approach
for low-dimensional chaotic dynamics [67] and to generalizations presented in section 3.

The above works comprise various attempts to generalize semiclassical periodic-orbit the-
ory for the fluctuating level density ρosc(E,N) to spectra of systems with few to many particles.
The MB phase space dimensions increase with N, and accordingly the spectral MB density of
states grows immensely [68]. In turn, the spacing between MB levels tends to zero and indi-
vidual highly excited MB levels are with rare exceptions (such as slow neutron resonances) no
longer resolvable. Hence the smooth part ρ̄(E,N) of the spectral MB density in equation (1),
which is not sensitive to the nature of the dynamics, chaotic or regular, and often referred to as
Weyl part of the spectrum [69], gains particular importance. It plays for instance a central role
in computing thermodynamic equilibrium and non-equilibrium properties. However, to com-
pute even this smooth part quantum mechanically is numerically challenging since systems
with fixed N require elaborate MB techniques generating ground and low excited states. They
quickly reach their limits when increasing N or the degree of excitations. This has prompted
the development of MB techniques specifically devised to directly compute ρ̄(E,N), thereby
circumventing the intricate or often impossible calculation of individual excited MB levels,
which requires detailed information that is afterwards smoothed out anyway. For example, in
the nuclear physics context, French and co-workers developed statistical spectroscopy based
on moment methods [6, 70–72].

In the SP case, the Weyl expansion [69] provides a well defined semiclassical 1/ℏ expan-
sion of the smooth part [19, 73]. In [74–76] the SP Weyl expansion has been generalized to
MB systems of N indistinguishable particles in D dimensions. Corresponding expressions for
ρ̄(E,N) take the form of sums over clusters of particles moving freely around manifolds in
configuration space invariant under permutations. This approach contains the famous Bethe
law [77] for the mean fermionic spectral density as a limiting case3. Furthermore, the correct
emergence of the fermionic MB ground state is a consequence of a delicate cancellation effect
of cluster contributions. Moreover, by including interaction effects in a non-perturbative way
this MBWeyl appraoch has further been extended to systems of experimental relevance in cold
atom physics, such as interacting bosons in traps, demonstrating for instance that systems with
very few up to many particles share the same underlying spectral features [76]. We believe that
such underlying MB scaling laws have much in common with related semiclassical scalings
in recent generalizations of Thomas–Fermi theory [80].

3 Shell corrections to the Bethe law for the MB density of states were semiclassically considered in [78] and are more
generally reviewed in [79].
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1.2.2. The thermodynamic limit of large particle number. Besides the usual notion of S/ℏ→
∞ discussed so far, in quantum field theory, where wave functions are replaced by field
operators, there is the complementary limit of large particle number N, but not necessarily
small ℏ. In the limiting case of N=∞ and as long as the typical occupations of SP states
are large enough, referred as the non-dilute case, the equations for the quantum fields pass
into nonlinear wave equations characteristic of the thermodynamic limit. From the viewpoint
of quantum field theory, these wave equations appear as a kind of ‘classical’ fluid dynamics.
For instance, in the large-N limit, systems of interacting bosons are described by the Gross-
Pitaevskii equation. Formally, the large-N-but-not-infinite regime, corresponding to the upper
(left) region in figure 2, can be associated with an effective Planck constant ℏeff = 1/N≪ 1
and hence also be considered semiclassical.

Wave interference is usually built into semiclassical propagators through coherent sums
over classical paths with interfering amplitudes in configuration space, leading for instance
to the van Vleck propagator [81] or the Gutzwiller trace formula (1) [18] for ρosc in terms of
unstable periodic orbits of classical particles. In the complementary limit, ℏeff = 1/N≪ 1,
many-particle propagators and quantum observables derived from those can be formally
described also by means of semiclassical sums over paths defined by classical field solutions,
which have a completely different interpretation and meaning. The summations are taken over
collective modes of MB densities in a continuum version of high-dimensional MB Fock space
[82], instead of particle trajectories in configuration space, as is outlined in section 3. These
Fock-space paths represent the various, in principle infinitely many, time-dependent solutions
of the nonlinear wave equations in the classical limit 1/N= 0 (upper region of figure 2).
Quantum MB interactions turn into nonlinearities in these wave equations and may result
in unstable, possibly chaotic MB mode dynamics. In this way chaos at the level of these
classical-limit nonlinear waves implies MB quantum chaos at the level of quantum fields4.
This is entirely analogous to signatures of chaotic classical particle dynamics in wave func-
tions at the Schrödinger equation level, i.e. quantum chaos in the limit ℏ→ 0. In a sense, such
an approach transports Gutzwiller’s semiclassical theory of the time evolution operator from
the level of ‘first quantization’ to that of ‘second quantization’. Note that the classical quant-
ities entering semiclassical path integrals have different meanings in the two complementary
limits: for instance different Lyapunov exponents quantify the instability of particle traject-
ories and collective modes, respectively. Remarkably, the semiclassical theory in the limit
ℏeff = 1/N≪ 1 also applies to ground or low-lying excited MB states.

The classical paths in MB space, i.e. the time-dependent solutions of the nonlinear wave
equations, just represent mean-field solutions of the fullMB problem. This opens an interesting
new perspective on the connections between chaotic mean-field dynamics, quantum correla-
tions due to MB interactions, scrambling, and the generation of entanglement. MB interaction
effects beyond mean-field are commonly considered as correlation effects [83]. Hence, as will
be explained in section 3, the interpretation of equation (1) as a coherent sum over different col-
lective mean-field modes implies that massive MB interference between these chaotic modes
describes or explains quantum correlations in the MB propagator. Hence MB quantum chaos
and quantum correlation phenomena are intimately intertwined. To highlight the difference
between (SP) wave and MB quantum interference we coin the term for the latter case genuine
MB quantum interference.

4 There are other conceivable routes to many-body quantum chaos not considered further in this contribution, but this
issue is revisited for brief speculation in section 4(i).
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1.3. Outline of this review: Universality in MB quantum chaos from a semiclassical
perspective

The semiclassical approach reviewed below addresses these leading-order (in ℏeff = 1/N) MB
quantum mechanical contributions to the thermodynamic limit. The theory’s strength is its
capacity to apply broadly to dynamical MB systems that are either fully chaotic, partially
chaotic, or are even integrable as well. Hence, on the one hand it deals with systems not
behaving in a universal manner and allows for addressing system specific individual, possibly
quite atypical properties. On the other hand, the MB semiclassical approach provides dynam-
ical foundations for universal aspects of quantum chaotic MB systems, i.e. in the statistical
RMT-like sense. This review focuses on the latter issue, primarily based on the recent accom-
plishments in [82, 84–86]. Assuming fully chaotic MB mean-field dynamics, this branch of
semiclassical MB theory follows the strategy of invoking ergodic properties and correspond-
ing sum rules for the exponentially numerous classical paths, i.e. collective modes entering
into semiclassical trace formulas for various MB observables and correlation functions. Such
assumptions often enable an analytical treatment of the arising multiple sums over chaotic MB
modes. Generalizing corresponding SP techniques based on classical (periodic-)orbit correla-
tions mentioned above provides the key to explaining aspects of RMT universality also in the
many-particle context.

The remainder of the review is structured as follows: in section 2 the earlier semiclas-
sical theory providing the link between RMT-universality and SP chaos is summarized. This
includes the encounter calculus for special braided classical orbit bundles relevant for the eval-
uation of spectral correlation functions and, closely related, the treatment of phenomena at and
beyond Ehrenfest time scales. In section 3 the foundations of an advanced semiclassical theory
of MB quantum fields and chaos are given for ℏeff = 1/N≪ 1. After deriving a MB version
of the van Vleck-Gutzwillerß propagator, a Gutzwiller-type trace formula for MB density of
states is presented. The resultant formulas provide the basis for deriving MB spectral correlat-
ors, response functions, and echo-type observables. With regard to the latter the semiclassical
theory of OTOCs [87], which have recently gained an enormous amount of attention [41] in
various fields of physics from condensed matter via cold atoms to cosmology, are sketched
out. This review is completed with perspectives and open questions discussed in section 4.

2. Semiclassical theory of SP quantum chaos

Treating semiclassical limits of quantum theory by starting from Feynman’s path integral and
invoking corresponding stationary phase approximations naturally leads to expressing unit-
ary quantum time evolution in terms of sums over phase-carrying classical paths. Quantum
interference, as a direct consequence of the principle of quantum superposition, is then cap-
tured by the existence of multiple classical solutions and their coherent summation. Depending
on the structure of the quantum observable to be considered, for instance spatial or spectral
n-point correlation functions, a multitude of time evolution operators can be involved leading
to a corresponding number of summations over classical paths. Modern semiclassical theory is
concerned with the challenge of how such multiple summations can be carried out efficiently
and appropriately while preserving the inherent underlying quantum interference mechanisms.
In this respect the Ehrenfest time tE [88] plays a key role. As will be discussed below, it has
turned out to be of tremendous importance for the quantum dynamics of chaotic systems since
it separates quantum propagation in the phase space around one dominant (unstable) classical
trajectory at short time scales from subsequent times governed by strong wave interference,
i.e. involving propagation of amplitudes along many trajectories.

9
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Beyond tE, semiclassical approaches that do not appropriately cope with such many-
trajectory interferences break down. Due to the exponential sensitivity to initial conditions
for chaotic dynamics, tE is a logarithmically short time scale as a function of ℏ, and hence
absent the interference contributions the corresponding range of validity of such approaches
is extremely limited. In view of the fact that RMT-type spectral universality is reached in the
limit where tE/tH → 0, with

tH = 2πℏρ̄(E) (2)

the Heisenberg time, the time dual to the mean level spacing 1/ρ̄(E) (with ρ̄(E) the mean
density of states), there has been the quest for devising advanced semiclassical methods to
adequately treat post-Ehrenfest quantum dynamics. In fact, for a number of reasons, early on
it was even thought that post-Ehrenfest quantum chaotic dynamics were beyond the range
of any semiclassical approach. However, it was shown by the early 1990s that the validity
of a complete semiclassical dynamics extended far, far beyond the logarithmic tE scale limit
[89–92].

In the following, a semiclassical theory is outlined that provides the link between chaos
and RMT-universality for SP dynamics. It is based on Gutzwiller’s trace formula [67] for the
SP density of states that is briefly introduced in section 2.1. The theory further involves clas-
sical orbit correlations and the encounter calculus for braided orbit bundles (see section 2.2.3).
Intimately connected to that, it deals with interference phenomena at and beyond Ehrenfest
time scales (see section 2.3).

2.1. Single sums over paths: van Vleck propagator and Gutzwiller trace formula

For a time-independent SP HamiltonianH, the van Vleck propagator Ksp(t), and its refinement
by Gutzwiller, is a semiclassical approximation to the quantum time evolution operatorU(t) =
exp(−(i/ℏ)Ht) in configuration space. Here, the derivation ofKsp(t) and Gutzwiller’s periodic
orbit theory are skipped, as they can be found in various excellent text books [1, 15, 18, 19, 44].
The relevant expressions are directly introduced.

Evaluating the Feynman propagator ⟨rf|U(t)|ri⟩ in a stationary phase approximation yields
the van Vleck-Gutzwiller propagator for the evolution of a quantum particle between initial
and final coordinates ri and rf in d dimensions:

Ksp(rf,ri, t) =
∑
γ

(
1

(2πiℏ)d

∣∣∣∣∂2Rγ(rf,ri, t)
∂rf∂ri

∣∣∣∣)
1
2

ei(Rγ(rf,ri,t)/ℏ−νγπ/2) (3)

with classical action Rγ(rf,ri, t) =
´ t
0 L(ṙ,r, t)dt along the trajectory γ connecting ri to rf in

time t, and topological index νγ , which appropriately tracks the correct phase of the determin-
ant’s square root; see [93], for example. For simplicity, all the various topological indices are
referred to as Maslov indices. This expression for Ksp(t) holds generally for either chaotic or
integrable classical dynamics, and even for systems with coexisting stable and unstable phase
space regions. After computing the energy-dependent Green function via a Laplace transform
of Ksp(t) and upon calculating the spatial trace integral by means of further stationary phase
approximations, Gutzwiller derived the famous trace formula for the density of states ρsp(E)
of a classically chaotic quantum SP system, thereby laying the foundations of periodic-orbit
theory in quantum chaos [17]:

ρsp(E)≃ ρ̄sp(E)+ ρ(osc)sp (E) = ρ̄sp(E) +
1
πℏ

Re

{∑
po

Apoe
(i/ℏ)Spo(E)

}
. (4)
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The Weyl term ρ̄sp(E) is a smooth function of energy E. It is obtained, to leading order in ℏ,
by calculating the volume of the on-energy-shell classical phase space volume,

ρ̄sp(E) =

(
1

2πℏ

)dˆ
dr dp δ(E−Hsp(r,p)) , (5)

where Hsp is the classical Hamiltonian. In the above trace formula the remaining oscillatory

part ρ(osc)sp (E) of the density of states appears as a coherent sum over all periodic orbits (po)
of the corresponding classical system at energy E, namely over the solutions (r(t),p(t)) of
Hamilton’s equations with energy E for which there exists a T such that

(r(t+ nT),p(t+ nT)) = (r(t),p(t))

for all integers n. The respective phases

Spo(E) =
ˆ
po

p · dq− ℏµpo π/2 (6)

contain their classical actions andMaslov indices µpo. Note that the sum over all periodic orbits
includes also all higher repetitions with periods Tpo = nTppo for n⩾ 2 of a given primitive
periodic orbit (ppo) with period Tppo. The amplitudes in equation (4) read

Apo(E) =
Tppo(E)

|det(Mpo(E)− I|1/2
. (7)

The monodromy (or stability) matrixMpo(E) takes into account, in a linearized way, the phase
space structure in the vicinity of the periodic orbit. It characterizes its instability in terms of
stability exponents (similar to Lyapunov exponents) for chaotic dynamical systems.

The trace formula, equation (4), decomposes the quantum spectrum in a Fourier-type hier-
achical way: whereas short periodic orbits contribute with long-energy-ranged cosine-like
spectral modulations, accounting for contributions from longer and longer periodic orbits, in
principle, generates an increasing spectral resolution5. To resolve the quantum density of states
at scales beyond the mean level spacing 1/ρ̄(E) requires, in turn, to control semiclassical wave
interference in the time domain on scales in the range of or longer than the Heisenberg time,
tH, the longest time scale involved. The challenge of coping with this late-time behavior leads
to partially solved issues, but also many open questions that are addressed below in the context
of spectral correlations.

2.2. Multiple sums over paths: classical correlations and quantum universality

2.2.1. Spectral two-point correlation function. In many circumstances, the quantities of
interest are not the bare densities of states ρsp(E), but rather the spectral n-point correlation
functions. In particular, the normalized connected spectral two-point correlator

C(ϵ) =
1

ρ̄sp(E)2

〈
ρ(osc)sp

(
E+

ϵ

2ρ̄sp(E)

)
ρ(osc)sp

(
E− ϵ

2ρ̄sp(E)

)〉
E

(8)

with ρ(osc)sp defined in equation (4) is a simple but fundamental measure of spectral correlations.
Here the angular brackets denote a running local average over energy E. The dimensionless
variable ε stands for a spectral energy distance in units of the mean level spacing 1/ρ̄sp(E).

5 There is an extensive literature about convergence properties of the trace formula and the challenges associated with
semiclassically computing individual energy levels; see [94].
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Corresponding energy correlation functions are defined, e.g. for Green functions and scattering
matrix elements. Instead of energies, also spatial or time-like correlators are of relevance in
various branches of physics.

The quantum objects entering such correlators can commonly be semiclassically repres-
ented in terms of sums over (periodic) trajectories, similar to that in the trace formula (4)
(see e.g. the reviews [95–97] for such semiclassical correlation functions in mesoscopic phys-
ics). Hence, a semiclassical approach to n-point correlators naturally leads to n-fold coherent
summations over amplitudes evolving along, in principle, infinitely many trajectories. Coping
with such multiple infinite sums over highly oscillatory objects seems, at first glance, hope-
less. However, an intrinsic strength of semiclassical theory lies in the fact that systems with
diffusive or ergodic classical dynamics often do not require the computation of specific tra-
jectories (nor is it always desirable). Instead, invoking ergodicity and uniformity of chaotic
phase space implies powerful classical sum rules that permit a treatment of the orbits in a stat-
istical manner. As no system-specific information is required, such approaches naturally lead
to universal features of quantum-chaotic dynamics and may provide physical laws applicable
to whole classes of quantum systems, exclusively characterized by means of their respective
symmetry class.

The semiclassical evaluation of multiple sums over paths is illustrated for the prominent
case of the two-point correlator, equation (8); the corresponding treatment of four-point objects
is in section 3.3 on OTOCs. Replacing ρsp in equation (8) by its semiclassical approximation,
equation (4), one obtains

C(ϵ)≃ 1
ρ̄sp(E)2

(
1
πℏ

)2

×

〈∑
γ

∑
γ ′

AγA
∗
γ ′ e(i/ℏ)[Sγ(E)−Sγ ′ (E))+(Tγ(E)+Tγ ′ (E))ϵ/(2πρ̄sp)]

〉
E

. (9)

Here, S(E+E ′)≃ S(E)+ T(E)E ′ with T(E) = ∂S/∂E (the orbit’s period). The contributions
of periodic orbit pairs γ,γ ′ that exhibit an action difference ∆S(E) in the phase factor are
handled separately from those that do not. Of course, ∆S(E) vanishes for the joint contribu-
tions of the specific orbit pairs γ = γ ′, i.e. the diagonal contributions. In addition, if a system
is invariant with respect to some symmetry, for instance time-reversal symmetry, then that
symmetry is reflected in multiplicities of symmetry related orbits with classical action degen-
eracies as well. The resultant constructive interference encodes the symmetry’s influence on
the quantum system. In effect, this can be considered as part of the diagonal contributions.

In the semiclassical limit, the phases Sγ(E)/ℏ oscillate rapidly upon varying E, and only
terms with sufficiently small action differences

∆S(E) = Sγ(E)− Sγ ′(E) (10)

can survive the energy averaging ⟨. . .⟩E. Using the classical sum rule of Hannay and Ozorio
de Almeida [28],

∑
γ

1
det(Mγ − I)

fγ(Tγ)≃
ˆ
T0

dT
f(T)
T

, (11)
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that follows from the assumption of uniform phase space exploration by unstable periodic
orbits, Berry computed the diagonal contribution

Cd(ϵ)≃
1

ρ̄sp(E)2

(
1
πℏ

)2ˆ
T0

dT T eiTϵ/(2πℏρ̄sp) (12)

to the two-point correlator [29]. He thus derived the spectral rigidity found in RMT semi-
classically. For the spectral form factor K(τ) (with τ=T/tH), the Fourier transform of C(ϵ),
the diagonal approximation leads to the linear ‘ramp’: K(τ) = ητ , with η = 2 and 1 for sys-
tems with and without time reversal symmetry, respectively. Berry’s analysis provided the first
intimate theoretical link between RMT and the semiclassical theory of chaos.

Apart from the diagonal terms there is an enormous number of off-diagonal orbit pairs in
a chaotic system due to the exponential proliferation of the number of periodic orbits with
increasing period, Tγ(E). Most of the orbit pairs consist of periodic orbits with actions that are
uncorrelated. Summing over them and performing the energy average, they collectively have
a vanishing average, including the effects of ‘accidental’ nearly equal actions S(E). However,
from RMT it had been known that for case of time-reversal invariant systems, there had to be
further universal spectral correlations beyond those related to the diagonal term [98]:

KGOE(τ) =

{
2τ − τ log(1+ 2τ) if τ < 1 ,

2− τ log 2τ+1
2τ−1 if τ > 1 .

(13)

Hence to describe such universal RMT features, one had to find orbit pairs with non-random
action differences [99]. Although it was expected that such non-vanishing contributions come
from a relatively small number of pairs of correlated orbits, for a long time it was unclear how
these orbit correlations could emerge from an ergodic phase space structure.

2.2.2. Braided classical orbit bundles and encounters. Henri Poincaré had already recog-
nized in 1899 that chaotic motion, which ergodically fills the classical configuration space
or phase space in a uniform manner and is often mistakenly equated with ‘stochasticity’, is
indeed subject to structural principles. In his Les Méthodes Nouvelles de la Mécanique Céleste
[100] appears the notion that arbitrarily long trajectory segments can be approximated with
arbitrary accuracy by pieces of a periodic orbit6. For this reason, sometimes periodic orbits
are considered as a ‘skeleton’ or backbone of chaotic dynamics [101], along which all the
non-periodic orbits must wind; see also [102–104]. Research since 2000 has brought to light
how this ‘skeleton’ is constructed and that chaotic dynamics is subject to further principles of
order: (periodic) orbits do not appear as independent individual entities but in pairs, as first
discovered by [30, 58, 105], and more generally in densely packed bundles [59]. This hidden
classical property of periodic orbits in chaotic systems turned out to play a central role for
understanding universal spectral properties.

According to the popular notion of chaos, chaotic classical movement is extremely unpre-
dictable. Two closely adjacent paths diverge exponentially ∼eλspt, with the SP positive Lya-
punov exponent(s) λsp as the divergence rate. However, this statement does not include all
aspects of symplectic Hamiltonian dynamics: exponentially diverging motion happens loc-
ally on or in the neighborhood of local unstable manifolds in phase space, and there exists its
complement, motion along stable manifolds where initial phase space distances exponentially

6 ‘Étant données [. . . ] une solution particuliére quelconque de ces équations, on peut toujours trouver une solution
périodique (dont la période peut, il est vrai, être trés longue), telle que la différence entre les deux solutions soit aussi
petite que l’on veut, pendant un temps aussi long qu’on le veut.’.
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Figure 3. ‘Where’s Waldo’?—Example of a correlated pair of two periodic orbits in the
hyperbola billiard, essentially differing from each other in the regions marked by the
red circle, where the left orbit exhibits a self-crossing while the right partner orbit does
not cross. This orbit pair illustrates a two-encounter (here in two-dinensional configura-
tion space). The corresponding encounter region, centered around the crossing, extends
along the orbits over a scale of vtE comprising various reflections at the boundaries,
depending on logℏ−1. [32] John Wiley & Sons. © 2011 Wiley-VCH Verlag GmbH &
Co. KGaA, Weinheim.

decrease. The combination of these two structural elements of Hamiltonian dynamics lies
behind the formation of (periodic) orbits in braided bundles. On the other hand, the probability
of a solitary chaotic orbit’s existence decreases exponentially with its length.

The fact that braided bundles generally tend to arise due to the symplectic phase space
structure is best illustrated by considering just two orbits. Figure 3 shows a representative
example of such a pair of periodic trajectories in the hyperbolic billiard known to exhibit
chaotic dynamics. Since the configuration space in the billiard interior is bounded, long peri-
odic trajectories necessarily have many self-crossings, including those with a small angle
between the intersecting segments (see the self-crossing marked by a red circle in the left
panel of figure 3). The right panel shows an almost identical partner trajectory, which differs
in topology from the reference trajectory only in the area of the self-encounter in that the part-
ner orbit has no intersection. Such a trajectory doublet is shown in the left panel of figure 4
again schematically. One of the paths has a crossing in the configuration space under a small
angle ε. From this the corresponding partner trajectory can be uniquely constructed by match-
ing trajectory segments associated with the local stable and unstable manifold of the reference
orbit [30]. Then for each such long orbit, a partner orbit starting and ending (exponentially)
close to the first one exists. For the fundamental braided orbit pair shown in the left panel of
figure 4, each of the two paths around the intersection has a self-encounter, where its segments
are close to each other in configuration space. Outside the encounter region the two loop-like
connecting pieces (‘L’ and ‘R’ in figure 4, called ‘links’) are almost indistinguishable for the
two trajectories, since they are exponentially close. In a rough but helpful simplification, one
can consider the links (loops) of both orbits as the same, whereas the two possibilities of their
interconnection in the encounter region allows for constructing and distinguishing the two
different orbits.

The close similarity of periodic orbits forming a pair, such as those depicted in figure 3 and
sketched in figure 4 implies a tiny difference ∆S(E), equation (10), in their classical action,
and accordingly, a small phase difference (i/ℏ)(Sγ(E)− Sγ ′(E)) entering the semiclassical
expression, equation (9), for the spectral correlator. Placing a transversal Poincaré surface of
section inside the encounter and considering the differences between the two points where the
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Figure 4. Braided periodic orbit pairs—left: Scheme of a fundamental pair of classically
correlated long periodic orbits linked to each other through a common self-encounter
region [30]. Right: Two periodic orbits (dashed lines) forming a pseudo orbit of order 2
contributing to the pseudo-orbit expansion of the spectral determinant in equation (19)
according to the rules in equation (20). In this particular case where the composing
orbits almost touch and therefore define an encounter region, they are correlated with
the longer eight-shaped orbit (solid). Reproduced from [59]. © IOP Publishing Ltd and
Deutsche Physikalische Gesellschaft. CC BY 3.0.

resepctive encounter stretches pierce through that section, the distances between the piercings
can be decomposed into stable and unstable components s,u. They determine the approxim-
ate action difference of the two partner orbits in a two-encounter as ∆S≈ su [59] (see also
[30, 105]). In [106] exact geometric relations are given for ∆S in terms of the properties of
Moser invariant curves in the homoclinic structure underlying encounters. The relative scale
of the correction between ∆S≈ su and the exact result is exponentially small.

In constructing a partner path by switching at a self-encounter, it may happen that not one
periodic trajectory, but two or more shorter ones form in such a way that their combination
corresponds to the original orbit as a whole. Such a way of combining orbits is a particular
instance of a pseudo-orbit [107], a composite object where a set of orbits combine their stability
and actions in a specific way shown later in equations (19) and (20). Figure 1 and the right
panel of figure 4 show simple examples. Such composites connecting orbits with pseudo-orbits
also play a role in the next subsection. While the orbit pair to the left requires time-reversal
symmetry, the bundle to the right also exists for the non-time reversal symmetric case.

The notation of links connecting self-encounters is helpful for devising the general mech-
anism for ‘constructing’ (pseudo-) orbits via close self-encounters [1, 59]. Every long periodic
orbit necessarily has many close self-encounters in configuration space. Not only two, but also
three or generally l orbital segments can temporarily approach each other, thus defining an l
encounter. The corresponding l links outside of the encounter can be interconnected in l! dif-
ferent ways through the l encounter, defining a bunch of l! different trajectories. Given one,
the Hamiltonian phase space structure assures the existence of all of these orbits. Inasmuch
as a long periodic orbit has many close self-encounters k, each of which realizes lk! possible
switchings, such a trajectory is a member of a group of trajectories with a total number given
by the product of all factors,N=Πklk!. Figure 5 shows a bundle ofN= (3!)22! = 72 trajectory
structures, generated from two three- and one two-encounter. This bundle comprises individual
periodic orbits as well as pseudo-orbits of nearly the same total period7.

7 In principle, the periodic orbits sketched in figure 5 may contain higher repetitions of the entire orbits or parts of
them. However, it has been shown [108] that trajectories with multiple partial traversals do not contribute (to leading
order) to the spectral two-point correlator discussed below.
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Figure 5. Braided periodic orbit bundles—example of a bundle of 72 periodic-orbit
structures (single periodic orbits or pseudo-orbits composed of shorter periodic orbits)
with nearly equal lengths and actions differing in two three-encounters and one two-
encounter. The illustration deliberately conveys the impression that it is only a single
orbit. Only in the boxes the different l! interconnections within the encounter regions
appear to be resolved. Reproduced from [59]. © IOP Publishing Ltd and Deutsche
Physikalische Gesellschaft. CC BY 3.0.

The existence of encounters and the construction scheme outlined above is not restricted
to periodic orbits but holds in general also for open trajectories [58, 102], with relevance for
instance in quantum chaotic transport and scattering; see also sections 2.3 and 3.3. The under-
lying mechanism of forming orbit bundles is the same in all cases. Generally, the longer open
or periodic orbits become, the more close encounters they have with other orbits, leading to
the notion that in the long-time-limit all orbits form whole nets weaving the classical phase
space with a fine mesh: in the sense of Poincaré’s original conception.

2.2.3. Quantum spectral universality. The issue of orbit bundles does not naturally arise in
classical SP physics, but their relevance for quantum physics is immediately obvious: due to
the close similarity of all members of an orbit bundle, e.g. as depicted in figure 5, the members
exhibit near-degenerate actions and are too highly correlated to ignore when energy averaging.
This was discovered and first worked out by Sieber and one of the authors [30] for the case
of correlated orbits pairs forming a two-encounter (figure 4, left). Their analysis provided
the leading quadratic contribution to the gaussian orthogonal ensemble (GOE) spectral form
factor, equation (13), beyond the linear ramp, thereby revealing symplectic chaotic dynamics
as the semiclassical origin of RMT behavior. Based on these insights, Haake and members of
his group worked out the encounter calculus that allows one to classify and compute general
encounter structures, and used it in a ‘tour de force’ approach for systematically calculating
the semiclassical theory for the two-point correlator and spectral form factor, respectively. In
the following, the major steps of their approach are outlined, which can be generalized to the
MB context; see section 3.2.2. All details can be found in Haake’s textbook [1].

Historically the semiclassical calculation of spectral correlators, that starts with the classic
1985 paper by Berry [29], was based on their representation in terms of the bare trace formula

16

https://creativecommons.org/licenses/BY/3.0/


J. Phys. A: Math. Theor. 55 (2022) 453001 Topical Review

as in equation (9). In this representation the only structures of relevance are consequently built
from pairs of orbits. The initial success of the semiclassical program for spectral universality
based on the enumeration, classification, and calculation of the pertinent encounter structures
contributing to the spectral form factor was, however, restricted to times shorter than the Heis-
enberg time [109]. Deriving the behavior of spectral fluctuations beyond this point requires
understanding the semiclassical mechanisms that account for quantum unitarity and its non-
perturbative effects. Whereas a version of the trace formula in which unitarity can be studied
and/or implemented remains elusive, the so-called spectral determinant

Z(E) = B(E)det(E− Ĥ) (14)

(where B(E) is a real function of the energy E without real zeros) provides a powerful periodic
orbit expansion. There unitarity can be explicitly enforced, and it offers a more convenient
starting point for a semiclassical calculation based on action correlations aiming to include
post-Heisenberg time effects. The price to pay is that the whole enumeration problem now
involves pairs of pseudo orbits.

The starting point of this analysis is the formal identity

logdet(E− Ĥ) = Tr log(E− Ĥ) (15)

that, together with the definition of the spectral resolvent

R(E+ i0+) = Tr (E+ i0+ − Ĥ)−1 (16)

at the complex energy E+ = E+ i0+, allows one to write

Z(E+)∼ exp

(ˆ E+

R(E)dE

)
. (17)

Here the symbol ∼ indicates that an arbitrary integration constant producing a multiplicative
term absorbed in the function B(E) is omitted. The semiclassical approximation to the spectral
determinant is readily obtained by means of the semiclassical representation of the resolvent
as a sum over periodic orbits a la Gutzwiller: Integrating equation (4) yields, to leading order
in ℏ,

Rsp(E) =−iπN̄sp(E)− i
∑
po

Apo(E)

Tpo
eiSpo(E)/ℏ . (18)

A careful analysis of this object, beautifully done by Berry and Keating [110] requires the
consistent treatment of the sum over repetitions implicit in the trace formula. A simplified
version where repetitions are neglected at both the level of the density of states and the spectral
determinant is then obtained by simply expanding the exponential in (18). Noticing that for
primitive orbits Tppo = Tpo and therefore Apo/Tpo = Fpo depends only on the stability of the
orbit, one then naturally regroups the terms of the exponentiated sum and orders it by the
number of primitive orbits that compose them. The resulting expression is then a sum

Zsp(E
+)∼ e−iπN̄(E)

∑
pso

(−1)npsoFpsoe
iSpso/ℏ (19)

over pseudo orbits (pso) of increasingly large order n with

Fpso =
n∏

ppo

Fppo, and Spso =
n∑

ppo

Sppo, (20)

including the empty pseudo-orbit F0 = 1,S0 = 0.
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The implementation of quantum unitarity at the semiclassical level, so far beyond control
due to the very nature of the sum over periodic orbits as being formally divergent, follows now
in two steps. First, the correct analytical structure of the resolvent as a meromorphic function
of the complex energy (correspondingly the density of states being a distribution given as by
the usual sum over Dirac-delta peaks) is imposed by imposing the exact relation

R(E+) =
d

dE+
logZ(E+) =

(
1

Z(E ′)

d
dE+

Z(E+)

)
E ′→E+

, (21)

on the corresponding semiclassical approximations Rsp,Zsp. To finally implement quantum
unitarity in full, in a second step one reinforces the reality of the quantum mechanical energies
by constructing a spectral determinant that is real for real energies. This condition can be
implemented as well at different levels of rigor, the lowest being simply the replacement

Zsp(E)→ Z̄sp(E) =RZsp(E) for real E (22)

that, however, makes the definition of how to perform the limit Z̄(E+ → E) ambiguous.
In a remarkable paper [31], the resulting two-point spectral correlator, equation (8) based

on the improved resolvent

Rsp(E
+) =

 d
dE+

∑
A,B

(−1)nA
(
RFA(E+)eiSA/ℏ

)
FB(E

′)eiSB(E
′)


E ′→E+

(23)

was computed by incorporating the encounter calculus to include correlated quadruplets of
pseudo-orbits of any order appearing in the generating function

Z(EA,EB,EC,ED) =

〈
Z̄sp(EA)Z̄sp(EB)

Zsp(EC)Zsp(ED)

〉
(24)

that then leads to the spectral correlators by differentiation and identification

⟨Rsp(EA)Rsp(EB)⟩=
(

∂2

∂EA∂EB
Z(EA,EB,EC,ED)

)
(EC,ED)→(EA,EB)

. (25)

The calculation of correlated quadruplets of pseudo-orbits requires generalizing the meth-
ods initially devised for orbit correlations in [109] to include now multiple correlated orbits
within pseudo-orbits. These correlations are defined through the familiar mechanism where
orbits with systematically small action difference ∆S, equation (10), are obtained by reshuff-
ling the segments of the orbits inside an encounter, and such differences are consequently char-
acterized by the number and type of the encounters. Two important aspects of the encounter
structure of correlated pseudo-orbits are their total number (V) and the total number of orbit
segments that approach within all encounters (L). Terms in the semiclassical expansions are
then typically labeled by the function g= L−V.

To gain intuition about the encounter mechanism in the context of pseudo-orbits, consider
first some of the lowest orders in the expansion of the generating functionZ . Besides the diag-
onal approximation, that is accounted for separately, the first correlated pseudo-orbits corres-
pond to the sets A= {γ},B= {γ ′},C= D= {}with γ,γ ′ a pair of correlated orbits. Neglect-
ing highly oscillatory terms proportional to e2iN̄sp(E) that vanish under average, this pairing can
be obtained in two different ways. The enumeration of all possible pairs of correlated orbits
was already achieved in [109]. It starts with the lowest order of one two-encounter, the Sieber-
Richter pair corresponding to L= 2,V= 1 that, following the diagramatic rules of encounter
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calculus, contributes to the spectral correlation with a term proportional to 1/(EA−EB)g with
g= L−V= 1, as depicted in figure 6 on the leftmost top diagram. As this contribution requires
the existence of time-reversal invariance symmetry, it is simply not present in the unitary
case.

Generalizing this situation, the contributions from correlated orbits with higher and higher
structures and increasingly larger g can be considered. This is nothing but the encounter expan-
sion one obtains from the usual orbit (instead of pseudo-orbit) approach. There are cancella-
tions between contributions for all g> 1 in the unitary case. This is shown for the particular
case g= 2 where the contributions from the only possible diagrams allowed by broken time-
reversal invariance (grey shadow) have L= 4,V= 2 and L= 3,V= 1 and exactly cancel each
other. The other possible diagrams admitted in the case of preserved time-reversal invariance
end up giving the corresponding non-zero contribution to order 1/(EA−EB)3 in accordance
with the perturbative expansion of the universal RMT result.

Genuine pseudo-orbit correlations, beyond what can be obtained by pairing of two orbits,
are shown in the n : n ′ columns of figure 6, where (n,n ′) ̸= (1,1) indicates the order of the
pseudo-orbits involved. The key observation is that at the perturbative level all such contri-
butions must be cancelled against each other order by order in both orthogonal and unitary
symmetry classes, as the result from simple orbit correlations n= 1,n ′ = 1 was already shown
in [109] to give the correct perturbative part of the universal result. The explicit verification of
such cancellation mechanism crucially depends on the (−1)n factors in equation (23) and was
carried on in [31].

The result of the semiclassical evaluation of equation (25) is finally split into two con-
tributions arising from the two possible identification of arguments (EC,ED)→ (EA,EB) or
(EC,ED)→ (EB,EA). As shown in [31], the first, i.e. diagonal, identification simply reproduces
the result obtained from the representation in equation (9) with the form of a power expansion
in the small parameter 1/(EA−EB), and it is therefore denoted as perturbative. Interestingly,
the cross identification (EC,ED)→ (EB,EA) results in a characteristic oscillatory dependence
e−2πiρ̄(EA−EB) that is obviously non-perturbative, also denoted as the oscillatory contribution.
The result of the combined calculation of the semiclassical diagrams for both the perturbative
and oscillatory contributions turns out to correctly reproduce term by term the same precise
structure in the universal RMT result.

The reduction of the large set of pseudo-orbit correlations back to the perturbative result
obtained from orbit pairs relies both on the consistence of pseudo-orbit vs orbit correlations,
and on massive cancellations, with the lowest order examples shown in the table in figure 6.
Interestingly, as shown in [111], in the case of ratios instead of spectral determinant products,
the origin and interpretation of these cancellations is related instead with so-called curvature
effects.

Besides for the spectral two-point correlator and form factor, respectively, during the last
20 years the encounter calculus has been developed for and applied to higher spectral cor-
relation functions [112] and many other observables, including scattering, quantum transport,
and quantum echoes, to name just a few. In sections 2.3 and 3.3 we will partly review these
activities.

2.3. Ehrenfest phenomena

The formation of orbit bundles with quasi-degenerate actions is intimately connected with
encounters as a structural element of chaotic Hamiltonian dynamics braiding the orbits
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Figure 6. tableau of periodic-orbit bundles—some of the pseudo-orbit pairs whose cor-
related actions are responsible for the generating function of spectral correlators in
equation (24). Reproduced from [59]. © IOP Publishing Ltd andDeutsche Physikalische
Gesellschaft. CC BY 3.0.

involved. For trajectory pairs with action difference of order ℏ, the encounter time tenc cor-
responds to the Ehrenfest time

tspE =
1
λsp

log
L
λdB

=
1
λsp

log
S
ℏ
, (26)
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where the label ‘sp’ is used to delineate the ℏ-dependent Ehrenfest time in the SP context from
the ℏeff-dependent MB Ehrenfest or scrambling time, equation (90), discussed in section 3.3.
Notably, tspE links classical and quantum scales, namely the largest positive Lyapunov exponent
λsp with ℏ or the ratio between linear system size L and (de Broglie) wave length λdB,
respectively. In equation (26), L/λdB can be replaced by S/ℏ where the classical action S
can be viewed as scale for a corresponding phase space section. Rewriting equation (26) as
L= λdB exp(λspt

sp
E ) provides a simple interpretation: tspE corresponds to the time it takes an

initial minimum uncertainty Gaussian density of phase points of width λdB to spread to a scale
of the system size L in a possibly higher dimensional chaotic system governed by λsp. Beyond
the logarithmically short time scale tspE interference necessarily sets in [113] and the Ehren-
fest theorem [88] soon fails (for a recent review of early work of Chirikov and coworkers on
tspE -effects for the standard map, see [114]).

In section 2.2, RMT-type universality was deduced by formally taking the semiclassical
limit of large tH for fixed τ= t/tH, i.e. involving increasing times t. In turn, this implies
that encounter times, tspE , collapse to zero, since they scale logarithmically with ℏ. How-
ever, measurements and numerical calculations commonly show fascinating quantum chaotic
phenomena in the regime of small but non-vanishing ℏ, i.e. non-vanishing tspE , implying devi-
ations from RMT-type universality [29]. Here a brief non-technical overview is given over this
regime that is perfectly amenable to semiclassical methods, but beyond RMT approaches; for
a detailed review-type account of the underlying semiclassical theory of Ehrenfest effects with
an exhaustive account of the literature, see e.g. [115].

After it had been demonstrated in the early 90
′
s that—contrary to the prevailing

perspective—it was possible to develop advanced methods to adequately treat post-Ehrenfest
quantum dynamics purely semiclassically [89–92], Ehrenfest phenomena were investig-
ated, particularly for observables relevant in mesoscopic quantum systems. There the
tspE -dependence was considered for a large variety of scattering, transport, spectral, and
quantum decay properties of chaotic conductors for which representative examples are given
in the following.

2.3.1. Quantum transport. For the Lorentz gas, a prototypical model of randomly placed
disks acting as chaotic classical scatterers in an otherwise ballistic two-dimensional system
[116], tspE -signatures in weak localization were first theoretically discussed in [117]. Based
on a ballistic σ-model, and invoking averaging over weak disorder, this approach accounted
for correlations in the initial chaotic dynamics (dashed box in figure 7) up to tspE . For later
times dynamics merges into uncorrelated diffusive behavior in the Lorentz gas setting. The
combined mechanism of initial chaotic spreading, followed by diffusive backscattering lead
to the prediction [117]

∆σ ≃− e2

πℏ
exp

(
− tspE
tϕ

)
ln

(
tϕ
te

)
(27)

for the weak localization correction to the two-dimensional conductivity. In equation (27),
te and tϕ(T) denote the elastic scattering time and the temperature-dependent phase break-
ing time, respectively. The subsequently observed unusual exponential temperature depend-
ence of∆σ(T) for a ballistic electron gas in between randomly placed antidots (right panel of
figure 7) allowed for experimentally detecting and extracting the Ehrenfest time [118] using
equation (27). In view of equation (26), it is then possible to estimate the classical Lyapunov
exponent λsp of such an electron antidot billiard from the quantumweak localization correction
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Figure 7. Ehrenfest effect on weak localization in a Lorentz gas—left: sketch of a pair
of paths contributing to coherent backscattering in a ballistic system composed of ran-
domly placed disks. Trajectories of a minimal wave packet of size λdB, marked as black
dot, separate on scales of tspE , equation (26), up to a distance of the size L of the classical
scatterers, providing a mechanism for splitting the initial wave packet and leading to
coherent backscattering due to constructive interference of time-reversed back-reflected
paths. Right: Experimental realization of a Lorentz gas built from an irregular array of
‘antidots’ in a high-mobility two-dimensional electron system. Reproduced from [95],
with permission from Springer Nature. Reprinted (figure) with permission from [118],
Copyright (2000) by the American Physical Society.

∆σ. See [119] for later work on how the Ehrenfest time effectively poses a short-time threshold
for the trajectories contributing to the interaction correction in antidot lattices.

After these earlier studies, and parallel to the development of the encounter calculus
for spectral correlators introduced above, the particular relevance of action correlations
and braided orbit bundles for chaotic quantum transport has quickly become evident. In
[58] the leading-order weak localization correction to the classical magneto-transmission of
ballistic mesoscopic conductors was computed and related to off-diagonal contributions and
interference of encounter-correlated lead-connecting trajectories. This finding is in agree-
ment with RMT and solved a decade long issue concerning missing current conservation in
semiclassical transport theory (based on the diagonal approximation [120, 121]) for chaotic
disorder-free conductors. Various subsequent theoretical works have extended semiclassical
quantum transport theory on the basis of encounter calculus or related approaches. These
include the semiclassical calculation of higher-order corrections to the classical conduct-
ance of ballistic cavities [122], shot noise in chaotic conductors [123–128], weak anti-
localization in spin-orbit coupled semiconductor cavities [129–131], higher transport moments
and correlators [60, 127, 132–135], Wigner-Smith time delay [133, 136–139], role of tunnel
barriers [140–143], and extensions to the ac-conductance [144].

Moreover, for transport through chaotic conductors Ehrenfest phenomena were again the
focus of interest. It turned out that the weak localization correction to the classical conductance
indeed shows a characteristic exponential suppression, reading (for large number of scattering
channels) [145]

∆G=−2
e2

h
et

sp
E /tD (28)

in terms of the dwell time, tD, characterizing the typical time for a particle that enters the scat-
tering region to leave again. Equation (28) has a straight-forward interpretation: if tspE > tD, a
charge carrier will leave the chaotic conductor with dwell time tD before an encounter could be
formed, thereby suppressing the conductance correction on scales smaller than the encounter
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time. Adagideli [145], focussing on the transmission, has been complemented and general-
ized by further trajectory-based approaches [97, 146–149] that also considered tspE -effects on
the complementary weak localization mechanism for the quantum reflection. In addition, shot
noise measured in terms of the Fano factor exhibits such a tspE -behavior implying that it van-
ishes in the strict limit of large Ehrenfest times [126, 128]; see [150] for the generalization
to full counting statistics. Corresponding techniques allow for computing tspE -modifications of
the RMT form factor (13) giving rise to deviations from the linear ‘ramp’ for the GUE case
[97, 151].

Contrary to the suppression of weak localization in the classical limit, in a chaotic quantum
dot the variance of the conductance comprises tspE -independent terms, as was first numerically
observed in [152, 153]. The fact that the variance measuring the size of mesoscopic conduct-
ance fluctuations prevails in the classical limit is also captured by semiclassical theory [148].
It arises from trajectories spending a long time in the vicinity of periodic orbits inside the
cavity. Since the associated dwell times are arbitrarily long, these trajectories overcome the
mechanism that tspE provides a short-time suppression for quantum effects. Moreover, conduct-
ance fluctuations in ballistic conductors differ from those of disordered conductors at large tspE ;
see [128] for a unified semiclassical treatment of chaotic quantum dots and extended systems
exhibiting diffusive dynamics at long time scales, such as depicted in figure 7.

2.3.2. Quantum decay. Naturally, the imprints of the Ehrenfest time should appear most
directly in the time domain, i.e. in explicitly time-dependent quantities. Quantum mechan-
ical decay of an open chaotic quantum system, such as a cavity with a hole in the boundary,
is predominantly governed by classical exponential decay with dwell time tD. However, a
semiclassical interference mechanism similar to that of coherent backscattering leads to an
enhancement of the quantum probability compared to the classical survival probability [154],
confirming RMT predictions [155]. Going beyond RMT one can semiclassically compute
explicit tspE -effects on the time-dependent quantum decay. The spatially integrated probabil-
ity density inside the open quantum system decreases as

ρ(t)≃ e−t/tD + e−(t−tspE )/tD (t− 2tspE )
2

2tDtH
Θ (t− 2tspE ) (29)

where the second contribution is the leading term in a series in 1/tH of quantum corrections
arsing from special pairs of interfering, correlated open trajectories with encounters located at
their ends [154]8. From times t> 2tspE on, the quantum decay is delayed compared to the clas-
sical decay e−t/tD because it takes a minimum time 2tspE to form encounters thereby generating
quantum interference effects. This unique tspE -behavior has been confirmed by numerical wave
packet simulations [154].

2.3.3. Proximity effect in Andreev billiards. Finally, post-Ehrenfest interference mechanisms
are at the heart of the formation of an induced gap in the density of states of a chaotic quantum
dot in proximity to a superconductor. Such an ‘Andreev billiard’ [157, 158] possesses the
interesting peculiarity that the suppression of its density of states at the Fermi energy crucially
depends on whether the dynamics of its classical counterpart is integrable or chaotic [159].
The spectrum of a chaotic Andreev billiard was expected, according to RMT, to exhibit a hard
gap to scale with the energy∼ℏ/tD, where tD is the average dwell time a particle moves in the

8 These trajectories also provide the keymechanism establishing an appropriate semiclassical version of the continuity
equation [156].
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billiard between successive Andreev reflections [159]. On the contrary, semiclassical theory
based on the diagonal approximation yielded only an exponential suppression of the density of
states [160–162] pointing to an obvious discrepancy that attracted much theoretical interest;
see e.g. [163, 164] for first attempts to account for tspE -aspects, and [165] for a review.

Later it was shown [166–168], using encounter calculus, how classical orbit correlations
lead to the formation of the hard gap, as predicted by RMT in the limit of negligible Ehrenfest
time, and how the influence of a finite tspE causes the gap to shrink until the classical regime
of exponential suppression is reached. Notably, this crossover is not smooth; instead, for
intermediate tspE a second pronounced gap was predicted to appear around E∼ ℏ/tspE that would
be a particularly striking feature of tspE -effects.

The Ehrenfest time has reappeared as ‘scrambling time’ in a new guise in the MB con-
text. In section 3.3 the saturation of OTOCs at Ehrenfest time scales are discussed as another
clear-cut tE-singature, marking the change in interference governed by pre- and post-Ehrenfest
semiclassical dynamics.

3. Semiclassical theory of bosonic MB quantum chaos

3.1. van Vleck propagator for bosonic systems

It might seem that the semiclassical approximation, based on the unaltered kinematic structure
of quantum mechanics (Hilbert spaces, linear time evolution, observables as Hermitian oper-
ators, entanglement, etc) supplemented by the asymptotic analysis of the propagator, requires
only minimal modifications to be ushered into the realm of interacting MB systems. Due to
the product form of the total Hilbert space in such systems, the corresponding modification of
the MB propagator would be simply accounted for by adapting the classical limit into the high
dimensional phase space characteristic ofMB classical systems. However, this picture does not
account for a kinematic aspect of purely quantum origin, namely quantum indistinguishability,
that imposes severe restrictions on the allowedMB identical particle system states by demand-
ing that they have a well defined transformation rule under particle label permutations [169].
This restriction on the allowed states is completely alien to the world of classical mechanics
where identical particles can be made indistinguishable only in a statistical sense, whereas the
fundamental microscopic dynamics enables, in principle, tracking of each particle’s identity
simply by following its path in phase space. This feature is even essential at the non-interacting
level where it has macroscopic effects, such as the stability of fermionic matter [170–172], the
phenomena of Bose–Einstein condensation [173, 174], the Hong-Ou-Mandel effect [62], and
related coherence effects of much recent interest, boson sampling [61]. It is therefore critical
to incorporate it in any semiclassical program aimed at MB quantum systems.

In the spirit of the semiclassical theory of particle systems, quantum indistinguishability
can be implemented by the application of (anti-) symmetrization operators [169] directly on
the arguments of the van Vleck-Gutzwiller propagator for distinguishable particles. In this
way, the fermionic (F), bosonic (B) propagators are explicitly given by

KF,B
sp (rf,ri, t) :=

1
N!

∑
P
ϵPKsp(Prf,ri, t) (30)

involving a sum over theN! elementsP of the permutation group acting on the particle labels of
theNd-dimensional configuration eigenstate |r⟩, weighted by their parity ϵP where ϵ=−1 (1)
for fermions (bosons). The advantage of the semiclassical approximation in this first-quantized
representation is that it is solely based on the semiclassical approximation for distinguishable
particles, which does not know anything about the F/B nature of the degrees of freedom.
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This first-quantized formalism has been very successful, especially in the framework of
non-interacting MB systems (or weakly interacting ones using perturbation theory), from the
mesoscopic theory of quantum transport [95, 96] and quantum dots [175] to the description
of the scattering of bosonic states through chaotic cavities [57]. The problem is substantially
more involved if interactions are taken into account due to the very different nature of the
sum over classical paths inherent in the semiclassical propagator and the sum over permuta-
tions accounting for indistinguishability. This lack of compatibility is clearly seen in the limit
N≫ 1 that becomes an essentially impossible task due to the (factorial) proliferation of terms
in the (anti-) symmetrization process, even if one could efficiently account for the classical
distinguishable limit.

The path towards extending semiclassical methods into the realm of quantum interacting
systems of identical particles naturally profits from the change of perspective given by the
description of such systems in terms of quantum fields [176]. On the conceptual level, under-
standing particle states as excitations of a quantum field means that the individual identity of
the distinguishable degrees of freedom, now an extra conceptual baggage without any phys-
ical relevance, is immediately absent from the description: instead of building MB states out
of (anti-) symmetrized states of distinguishable particles, one specifies states by saying how
many particles occupy any given set of SP orbitals irrespective of their individual identities.

The space of quantum states labeled by such configurations is the familiar Fock space,
and the goal of this section is to review the conceptual and technical steps that enable the
adaptation of the semiclassical program into this new landscape, as well as its new regime of
validity, advantages, and limitations.

3.1.1. Semiclassical derivation. Following standard [176], the construction of the Fock space
begins with selecting an arbitrary but fixed set of SP states, denoted from now on as ‘sites’ or
‘orbitals’

ϕi with i= 1, . . . ,d (31)

where d is the (maybe infinite) dimension of the SP (or ‘local’) Hilbert space. The quantum
mechanical state |Ψ⟩ of a bosonic MB system is then an element of the Fock space |Ψ⟩ ∈ F
of the form

|Ψ⟩=
∑
n

Ψn|n⟩ (32)

where the basis states, called Fock states,

|n⟩= |n1, . . . ,nd⟩ with ni = 0,1,2, . . . (33)

are labeled by occupation numbers ni, the eigenvalues of the observables n̂i

n̂i|n⟩= ni|n⟩ (34)

that count how many particles occupy the SP states ϕi. Observables in F are written in terms
of the corresponding creation/annihilation operators b̂†, b̂ defined through their action in the
basis Fock states,

b̂i|n1, . . . ,ni, . . . ,nd⟩ =
√
ni− 1|n1, . . . ,ni− 1, . . . ,nd⟩

b̂†i |n1, . . . ,ni, . . . ,nd⟩=
√
ni|n1, . . . ,ni+ 1, . . . ,nd⟩ (35)

satisfying the important relations[
b̂i, b̂j

]
= 0,

[
b̂i, b̂

†
j

]
= 1̂δi,j and n̂i = b̂†i b̂i. (36)
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As a rule, Hermitian operators that are quadratic forms in b̂†, b̂ represent SP observables,
whereas two-body interactions are represented by combinations of fourth order. The general
form of the Hamiltonian describing a system of bosons evolving under the influence of external
potentials and pairwise interactions is then

Ĥ=
∑
i,j

hi,jb̂
†
i b̂j+

∑
i,j,i ′,j ′

vi,j,i ′,j ′ b̂
†
i b̂jb̂

†
i ′ b̂j ′ . (37)

Correspondingly, the Fock-space propagator (assuming for simplicity time-independent
external and interaction potentials) is defined as usual by

K(n( f),n(i), t) = ⟨n( f)|e− i
ℏ Ĥt|n(i)⟩ (38)

and our goal is to first identify the MB version of the semiclassical regime ℏeff = 1/N→ 0,
and then, starting from a suitable path integral representation of K, perform the steps to derive
the Fock space version of the van Vleck-Gutzwiller semiclassical sum over classical paths.

The first difficulty in attempting this program is the very fact that there is not a path integral
between Fock states, at least not in the usual sense of time slicing and inserting representations
of the unit operator in terms of Fock states. The issue here is clear: the Fock states define a
discrete basis. Historically, this problem was addressed by shifting to the coherent state basis
on F [176] defined as the common eigenstates of the (non-Hermitian) annihilation operators,
and labeled by a set of continuous complex numbers

b̂i|z⟩= zi|z⟩ . (39)

They admit a realization of the unit operator in F

1
(2πi)d

ˆ ∏
i

dzidz
∗
i |z⟩⟨z|= 1̂ (40)

in a form suitable for the usual time-slicing path integral construction.
The resulting form of the coherent state path integral for bosonic quantum fields has been

extensively used as a basis for semiclassical approximations [176–178], so its use to derive a
van Vleck-Gutzwiller type of approach is quite appealing. Although, one conceivable draw-
back of coherent states is that the resulting saddle point equations do not generally admit
real solutions, thus requiring the complexification of the classical limit of the theory [178].
This approach has recently been implemented and successfully applied to describe quantum
dynamics in cold atomic systems in optical lattices [179], but its conceptual and technical
foundation differs in some essential ways from the van Vleck-Gutzwiller approach taken into
Fock space. A main feature of the usual (coordinate) path integral in SP systems, which dif-
fers from the complexified phase space inherent in the coherent state approach, is its charac-
teristic Hamiltonian classical limit in terms of real phase space coordinates. This happens to
be naturally consistent with the boundary value problem of ordinary time-dependent Wentzel-
Kramers-Brillouin (WKB) theory [180]. If one is interested in maintaining the reality of the
dynamical variables, the widely used coherent state path integral turns out not to be the ideal
starting point for the van Vleck-Gutzwiller derivation.

Interestingly, a more direct approach follows the actual historical development of semi-
classical methods for SP systems, where the wave packet propagator (constructed from the
translations of the harmonic oscillator ground state) was a later development that came only
after the construction of semiclassical approximations in a configuration representation cul-
minating with ordinary time-dependent WKB theory [93, 180].
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A path integral in Fock space that provides a semiclassical approximation with real paths
can be based on MB states of operators that have three key properties of the familiar config-
uration (or momentum) operators in SP systems. First, they must have a real, continuous, and
unbounded spectrum. Second, they must have, in some precise sense, a classical limit where
they play the role of half of a canonical pair. Third, when the corresponding realization of the
unit operator is inserted in the time-sliced propagator, they must produce a real action func-
tional admitting real solutions when extremized with fixed boundary conditions on the paths.
A very natural choice is then the manifestly Hermitian combinations

q̂i =
b̂†i + b̂i√

2
, p̂i =

b̂†i − b̂i√
2i

(41)

again reminding us of the relation between the creation/annihilation and position/momentum
operators for the SP harmonic oscillator [169]. In fact, these pairs can be easily shown to fulfill
the relations

[q̂i, q̂j] = [p̂i, p̂j] = 0 and [q̂i, p̂j] = iδi,j (42)

of canonically conjugate operators. Together with their eigenbases that satisfy all the required
conditions as can be seen by direct computation, they are at the center of the construction of the
semiclassical approximation for bosonic matter fields. Following the terminology of quantum
optics where these canonical pairs are of common use as Hermitian versions of the standard
field operators, we refer to them as quadrature operators or simply quadratures [181]. Armed
with the quadratures and their eigenbases

q̂i|q⟩= qi|q⟩ and p̂i|p⟩= pi|p⟩ (43)

nicely satisfying [182]

⟨q|p⟩= eiq·p

(2π)d/2
(44)

it is possible to express the exact path integral by the usual method of time-slicing and inserting
unity. However, note that inserting the quadrature definitions, equation (41), into the generic
form of the Hamiltonian, equation (37), leads to Hamiltonians of a very different character than
the ‘kinetic plus potential energy’ (mechanical type) often found in non-relativistic SP systems.
In fact, despite their identical formal properties, the configuration and momentum quadratures
do not represent anything like position and momentum, and they can be considered as just
a technical tool used to develop a path integral with the desired properties. For systems of
massive bosons, they are not observable in the strict sense (a property they share with coherent
states [183]), and therefore the construction of the propagator between physical (Fock) states
must be also eventually addressed.

Given the above considerations, the construction of the path integral form of the propag-
ator between configuration quadratures is implemented similarly to the standard methodology
[184] with a few key modifications. In a nutshell, one first time slices the evolution into a
large number of factors of the form e−iδtĤ/ℏ with δt→ 0, and inserts the representation of
the unit operator in Fock space in terms of the q-quadratures. The form of the Hamiltonian
in equation (37), very different from the usual kinetic-plus-potential-energy with the only
dependence on the momentum being at most quadratic, demands a careful treatment of the
resulting matrix elements. This is conveniently achieved by
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⟨q|e− i
ℏ δtĤ|q′⟩=

ˆ
dp⟨q|e− i

ℏ δtĤ|p⟩⟨p|q′⟩

=

ˆ
dp⟨q|p⟩e−

i
ℏ δt ⟨q|Ĥ|p⟩⟨q|p⟩ ⟨p|q′⟩+O(δt)

therefore introducing extra integrations over momentum quadratures, to get the so-called
Hamiltonian (or phase space) form of the propagator [176]

K(q( f),q(i), t) := ⟨q( f)|e− i
ℏ Ĥt|q(i)⟩=

ˆ
D[q(s),p(s)]eiR[q(s),p(s)] (45)

where the integral is now defined over the space of paths (q(s),p(s)). In this representation,
only the paths in configuration quadrature endpoints are constrained,

q(s= 0) = q(i),q(s= t) = q( f). (46)

whereas the momentum quadrature endpoints are completely unconstrained. Finally, the real-
defined action functional is given in its Hamiltonian form by

R[q(s),p(s)] =
ˆ

ds [p(s) · q̇(s)−Hcl(q(s),p(s))/ℏ] (47)

where the classical symbol is obtained from the Hamiltonian operator expressed with all p̂
operators moved to the right of the q̂ ones as

Hcl(q,p) =
⟨q|Ĥ|p⟩
⟨q|p⟩

. (48)

Note that the action functional in Fock space is dimensionless, an aspect that reflects once
again how quadrature operators are not related with any physical coordinate/momentum in
any sense beyond the formal analogies with their SP counterparts. A nice feature is the very
natural way that the Hamiltonian symbol appearing in the exact path integral is obtained from
the quantum operator. Preparing the road for the semiclassical approximation where ordering
effects lead to subdominant contributions, and denoting

Ĥ= H(b̂†, b̂), (49)

the phase space function appearing in the path integral is given by

Hcl(q,p) = H

(
q+ ip√

2
,
q− ip√

2

)
. (50)

Before commencing with the Fock space version of Gutzwiller’s celebrated analysis of
the exact path integral that culminates in the derivation of the semiclassical propagators, two
deeply intertwined aspects must be addressed, namely the identification of the semiclassical
regime where an asymptotic analysis of the path integral can be meaningfully applied, and
the connection of the quadrature propagator to physical Fock states. First, the semiclassical
regime in Fock space is not defined by ℏ→ 0. Here, as in many other important situations,
the fundamental nature of the quadrature operators as formally, but not physically, the MB
version of the canonical position and momentum operators in particle systems plays a key
role. In contrast to the first quantized approach, inspection of the action functional reveals that
in Fock space, ℏ is simply a constant that transforms energies like H into frequencies, but
does not play the fundamental role of defining the small parameter upon which the asymptotic
analysis is built on.
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In order to identify a suitable asymptotic parameter, focus on the action of the quadrature
propagator on the physical Fock states. Consider first the exact relation

K(n( f),n(i), t) =
ˆ

dq( f)dq(i)⟨n( f)|q( f)⟩K(q( f),q(i), t)⟨q(i)|n(i)⟩ (51)

where the transformation overlaps ⟨q|n⟩ are formally derived from the algebraic properties of
quadrature states as in [182]. This gives

⟨q|n⟩= e−q2/2

π1/4
√
2nn!

Hn(q) . (52)

The transformation kernel in equation (52) above is essentially the same as the correspond-
ing results for the familiar harmonic oscillator in terms of the Hermite polynomials Hn(x). It
is worth mentioning, however, that in the present second-quantized framework all operators
involved in the change of basis, namely quadratures and number operators, are strictly dimen-
sionless. This is in contrast to a first-quantized framework where a typical classical action, Styp,
has dimensions and enters the definition of a unitless ℏeff = ℏ/Styp. Thus, the identification of
an ℏeff for the MB case does not involve a classical action scale.

Armed with equation (52), one can obtain the propagator between Fock states based on the
path integral in quadrature representation. The semiclassical analysis, and the identification
of a proper asymptotic regime, begins with the analysis of this kernel in the limit of large
occupations n≫ 1. In this case, a well known asymptotic form [185]

⟨q|n⟩ ≃ A(q,n)cos(F(q,n)+π/4) (53)

holds, where A(q,n) is a smooth prefactor and following [182]

F(q,n) =
ˆ

dq
√

2n+ 1− q2 (54)

is naturally identified as the generating function of the classical canonical transformation
between the canonical pairs (q, p) and (n,θ) with

q+ ip=
√
2neiθ. (55)

Using this generating function, the phase space variables (q, p) labeling quadrature eigenstates
on each orbital are maximal for q2 + p2 = 2n if the quadrature propagator is applied to Fock
states with large occupation numbers. Thus, acting on a Fock state with large occupations ni ≫
1, the overlap between quadrature and Fock states suggests the scaling qi ∝

√
ni,pi ∝

√
ni.

For many systems of interest, the Hamiltonian has an additional conservation property
already easily seen in the general Hamiltonian of equation (37), namely the operator repres-
enting the total number of particles in the system

N̂=
∑
i

n̂i (56)

is conserved, a constraint that is fundamental in the case of massive bosons [183]. A
consequence of this symmetry is that the Fock state propagator is different from zero if
and only if

N( f) = N(i) = N (57)

and therefore all possible dynamical processes and amplitudes are restricted to the subspace
of F fixed by the particular eigenvalue N of N̂. This observable appears as a real numerical
constant parameterizing the propagator. Furthermore, simple combinatorial arguments imply
that for asymptotically large N and fixed number of orbitals d, the vast majority of Fock
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states satisfy ni ≃ N/d. In essence, as long as Fock states with occupations bounded away
from zero are considered, the regime of validity of the scaling with the large occupations is
simply given by setting a large enough total numberN of particles with the quadrature variables
scaling as

(qi,pi) =
√
N(Qi,Pi). (58)

The effect of this scaling with the total number of particles on the quadrature propagator is
reduced, except for considerations about the functional measure that can be accounted for by
a convenient regularization, to its effect on the action functional as

R[
√
NQ(s),

√
NP(s)] =

ˆ
ds
[
NP(s) · Q̇(s)−Hcl(

√
NQ(s),

√
NP(s))ℏ

]
. (59)

Given the specific homogeneity properties of the second-quantized Hamiltonian of
equation (37),

Hcl(
√
NQ(s),

√
NP(s)) = NHcl(Q(s),P(s)) (60)

as long as the interaction matrix elements are rescaled by

v= ṽ/N , (61)

a requirement arising from a very intuitive observation: for large occupations,N≫ 1, the inter-
action term in equation (37) trivially dominates the dynamics given its natural scaling with N2.
It would otherwise overwhelm the N-dependence of the single particle part. This observation
suggests that a meaningful limit is only achieved by

N→∞, v→ 0, vN= ṽ= const . (62)

Thus,

R[
√
NQ(s),

√
NP(s)] = N

ˆ
ds
[
P(s) · Q̇(s)−H(Q(s),P(s))/ℏ

]
(63)

where H denotes the classical Hamiltonian with rescaled interaction strength and therefore
dynamics that are fully independent of N. The form of equation (63) gives the formal identi-
fication ℏeff = 1/N and N→∞ as the semiclassical regime of systems with a large number of
interacting bosons.

There is one remaining ingredient in equation (51) to be written in terms of scaled variables,
the part corresponding to the transformation kernels. One readily sees that

F(
√
NQ,n) = NF(Q,ρ), ρ= n/N, (64)

thus bringing the quadrature propagator, when projected on initial and final Fock states with
large total number of particles, into a linear combination of integrals of the form

K(n( f),n(i), t) =
ˆ

dQ( f)dQ(i)
∏
i

A(Q( f)
i ,ρ

( f)
i )eiNF(Q

( f)
i ,ρ

( f)
i )A(Q(i)

i ,ρ
(i)
i )

× eiNF(Q
(i)
i ,ρ

(i)
i )

ˆ Q(t)=Q( f)

Q(0)=Q(i)

D[Q(s),P(s)]eiNR[Q(s),P(s)] . (65)

The asymptotic limit for N→∞ naturally emerges since the corresponding action functional
R[Q(s),P(s)] and phase functions F(Q,ρ) are independent of N. Therefore, both the stationary
phase condition δR= 0 that defines a consistent classical limit when supplemented with the
boundary conditions Q(0) =Q(i),Q(t) =Q( f ), and the canonical transformation performing
the change of phase space coordinates (Q,P)→ (ρ,θ) can be performed using stationary phase
analysis.
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Performing explicitly the variations over the Q,P paths we get the corresponding
Hamilton’s equations

δR
δQ

= 0→ ℏ
d
ds

P=−∂H
∂Q

δR
δP

= 0→ ℏ
d
ds

Q=
∂H
∂P

(66)

which, using equations (49) and (50), are recognized as the real and imaginary parts of the
mean field equations

iℏ
d
ds
ψi(s) =

∂

∂ψ∗
i
HMF(ψ,ψ

∗) (67)

that now emerge neatly as a classical limit of the quantum field theory, where the mean field
Hamiltonian is defined in terms of the classical symbol Hcl as

HMF(ψ,ψ
∗) = Hcl(Q,P). (68)

Finally, the mean field Hamiltonian is a function of the complex classical fields

ψi =
Qi+ iPi√

2
(69)

that together with ψ∗ parameterize the manifold in the phase space of the classical limit with
the constraint ∑

i

ρi = 1. (70)

We see then that in our construction, the classical limit is identical to the celebrated mean-
field equations well known from the theory of interacting bosonic systems in their discrete
(lattice) version. In fact, for a Hamiltonian with the form

Ĥ=
∑
i

ein̂i− J
∑
i

(
b̂†i b̂i+1 + b̂†i+1b̂i

)
+
U
2

∑
i

n̂i(n̂i− 1) (71)

a continuous limit with suitable redefinitions reads

iℏ
d
ds
ψ(x,s) =

(
− ℏ2

2m
∂2

∂x2
+V(x)

)
ψ(x,s)+U|ψ(x,s)|2ψ(x,s) (72)

which is the familiar Gross-Pitaevskii equation [176] widely used to describe interacting
bosonic systems. Now that the mean field equations are identified as the underlying theory
playing the role of the classical limit of the MB quantum theory in the asymptotic regime
N≫ 1, the relationship between quantum, semiclassical, and mean-field descriptions becomes
transparent. In the same vein as Hamilton’s classical equations for particles not being able to
describe quantum interference simply because the (phase) space of classical states does not
allow for superpositions, the mean-field solutions cannot by themselves contain genuine MB
quantum interference. Here, as with the SP case, to understand the connection between mul-
tiplemean-field solutions and their interference requires the full machinery of the semiclassical
approximation.

The first point where a semiclassical approximation drastically departs from the mean field
limit is in its way of treating the information provided by the mean-field equations. Invari-
ably, mean-field methods are based on the propagation of a single solution of the mean-field
equations, fully and uniquely determined by its initial condition ψ(s= 0). Quite to the con-
trary, in this approach the classical limit of the interacting MB quantum theory is not an initial

31



J. Phys. A: Math. Theor. 55 (2022) 453001 Topical Review

value problem, but actually a two-point boundary value problem consistently determined by
the mean field equations supplemented with the boundary conditions

Q(s= 0) =Q(i),Q(s= t) =Q( f) (73)

and thus generally admitting multiple solutions, except for the non-interacting case. Trans-
formations can be made to an initial value representation method, but the multiplicity of solu-
tions remains a key feature. Following the conceptual framework of the semiclassical approx-
imation, the role of these multiple mean-field solutions is clear: they describe genuine MB
quantum interference.

The way MB quantum interference is made explicit naturally comes from the application
of the stationary phase approximation to the MB propagator, fully justified now by the emer-
gence of the large parameter N. This renders all integrals involved to be highly oscillatory
and allows for following formally Gutzwiller’s classic calculation [186]. In a first stage, the
(scaled) quadrature path integral is calculated to obtain

ˆ Q(t)=Q( f)

Q(0)=Q(i)

D[Q(s),P(s)]eiNR
(r)[Q(s),P(s)]

≃
∑

γ(Q(i),Q( f),t)

Dγ(Q(i),Q( f), t)eiNRγ(Q(i),Q( f),t) (74)

as a sum over the mean field solutions γ with given boundary conditions, involving semiclas-
sical amplitudesDγ that account for the stability of the solutions and other topological features
of the Hamiltonian mean-field flow around them and, most importantly, the actions Rγ along
each of them.

The semiclassical propagator in quadrature representation, equation (74), is strictly speak-
ing just an intermediate step in the construction of its Fock state version. Nevertheless, it is
a very useful object with very desirable features. The first is the perfect analogy between the
quadrature and coordinate representations in the semiclassics of MB and SP systems respect-
ively, and the suggestive possibility of directly importing into theMB context several key ideas
and results. Specifically, the derivation of the MB trace formula follows identical steps as in
Gutzwiller’s derivation as discussed ahead. The second concerns the friendly way coherent
states are treated in quadrature representation, allowing for a very tractable way to connect
these two useful and natural sets of MB states. Last, but not least, it is the very natural way
in which systems with negligible interactions are described by a mean-field that defines a
simple linear problem, a very appealing feature that is lost if physical Fock states are used
instead [187].

For this last change of representation the integrals are performed over quadratures,
equation (65), in the stationary phase approximation. Leaving aside lengthy technical details
that can be found in [182, 188], the final result is [189]

K(n( f),n(i), t)≃
∑

γ(n(i),n( f),t)

Aγ(n(i),n( f), t))eiNRγ(n(i),n( f),t) (75)

where the sum extends over the solutions (nγ(s),θγ(s)) of the mean-field equations with
boundary conditions

|ψi(s= 0)|2 = n(i)i , |ψi(s= t)|2 = n( f)i (76)

32



J. Phys. A: Math. Theor. 55 (2022) 453001 Topical Review

and actions Rγ . The semiclassical amplitudes are explicitly given by

Aγ(n(i),n( f), t) =
[
det

∣∣∣∣ N2π ∂2Rγ(n(i),n( f); t)
∂n(i)∂n( f)

∣∣∣∣]1/2 e−iπ2 µγ (77)

where the index µγ is the Maslov index of the trajectory γ [190].
The semiclassical approximation of the Fock state propagator is a starting point for the

semiclassical analysis of both dynamical and stationary properties of MB quantum systems of
interacting bosons. The propagator (75) is not restricted to chaotic dynamics, but also allows,
in principle, for investigating the imprint of more complex, e.g. mixed regular-chaotic, phase
space dynamics and the consideration of system-dependent properties unique to individual
bosonic MB systems.

Having at hand both the semiclassical propagator and a well defined classical (mean field)
limit, a fundamental conceptual aspect can be addressed, namely, the meaning of MB quantum
chaos. Since the asymptotic analysis automatically provides as a limit a theory with a well
definedHamiltonian structure [190] given by equation (72), the quantum ramifications ofmean
field chaotic dynamics can be rather precisely investigated and interpreted. Therefore, for sys-
tems of interacting bosons with large occupations the MB quantum manifestations of MB
mean field chaos can be placed on a firm theoretical foundation.

The following passage summarizes the directions that, starting with the semiclassical
propagator in Fock space or its variants, have been pursued by several groups during the last
years in an attempt to understand the quantum signatures of mean field integrability and chaos.

3.1.2. Relationship to the truncated Wigner approximation (TWA). It is possible to view the
way the classical limit plays a role in the quantum mechanical description of an MB system in
three stages. At the most primitive level, expectation values of time-dependent (Heisenberg)
observables Â(t) = A(b̂†(t), b̂(t)) defined with respect to an initial coherent state |z⟩= |ψ⟩ are
obtained from the classical limit simply by transporting the classical symbol along the solution
ψ(t),ψ(0) =ψ of the mean field equation (67),

⟨ψ|Â(t)|ψ⟩ ≃ A(ψ(t),ψ∗(t)) , (78)

which defines the strict mean field approximation.
The second stage adds a little more sophistication in which the classical solutions are still

used directly to guide the quantum evolution, but zero-point motion underlying the quantum
state is incorporated that evolves under the mean field flow,

⟨ψ|Â(t)|ψ⟩ ≃
ˆ
dΨdΨ∗e−|Ψ−ψ|2A(Ψ(t),Ψ∗(t)), (79)

giving the celebrated TWA [191]. The pure mean field approximation is then obtained as a
particular case when the classical symbol Acl is smooth and the integral is well approximated
by taking Ψ≃ψ. Both the mean field and TWA fail to account for coherent effects due to
path interference. The former because it is based on a single unique classical solution, and
the latter because it is based on adding probabilities instead of amplitudes. In essence, both
approximations are classical.

The third stage is to incorporate fully the semiclassical approximation. It accounts for inter-
ference effects explicitly and completely by the use of the sum over amplitudes. In the exact
expression

⟨ψ|Â(t)|ψ⟩=
∑

n,n ′,m,m ′

ψ∗
nψn ′Am,m ′K(n,m, t)K∗(n ′,m ′, t) (80)

33



J. Phys. A: Math. Theor. 55 (2022) 453001 Topical Review

where

ψn = ⟨ψ|n⟩, and Am,m ′ = ⟨m|Â|m ′⟩, (81)

the substitution of K by its semiclassical approximation given in equation (75) does the trick.
The key object to analyze is the product

K(n,m, t)K∗(n ′,m ′, t)≃
∑
γ,γ ′

AγA
∗
γ ′eiN(Rγ−Rγ ′ ) (82)

where γ labels mean field paths joining n with m in time t, and similarly for γ ′. The TWA is
readily obtained (in its polar form where ψ =

√
neiθ) from the diagonal approximation where

the action is linearized for the γ ′ = γ terms [82]. Genuine MB interference arises from the
off-diagonal contributions γ ′ ̸= γ. It is then a question to be addressed in a case-to-case basis
of how much off-diagonal information, which demands a great effort to evaluate, is necessary
to describe the physical phenomena of interest. This may range from the explicit and precise
description of every quantum fluctuation around the classical background as done in [179]
well beyond the Ehrenfest time, to the selective use of restricted off-diagonal contributions to
capture robust interference effects as in [192].

It is worth noting that the derivation of the TWA here relies on the more fundamental semi-
classical approximation for MB amplitudes. As such, it is expected that the foundations of
the TWA may suffer from ambiguities in systems where either the classical limit and/or semi-
classical regime cannot be precisely defined. Extremely important systems such as spin half
chains and Fermi-Hubbard models indeed represent such cases. Progress towards a formal
construction of the TWA in these cases has been an active field recently (see [193] and refer-
ences therein), with successful applications to Sachdev–Ye–Kitaev (SYK) models [194] and
spin chains [195].

3.1.3. A first application: coherent backscattering in Fock space. The capacity of semiclas-
sical propagators to describe quantum interference comes from the natural way such effects are
describedwithin the path integral formalismwhere the coherent superposition of amultitude of
paths carrying different phases produce the interference patterns. In the semiclassical regime
the largely uncontrolled proliferation of all possible quantum paths is replaced by a sum over
specific mean field paths, making the mechanism of interference much more explicit. Applied
to MB Fock space the discrete sum over paths is now a coherent sum of amplitudes associated
with the discrete set of mean-field solutions. Following the success of the SP semiclassical
approach in describing the leading-order interference term in disordered conductors [24], the
so-calledweak localization correction due to interference between pairs of time-reversed paths,
the corresponding MB effect arising from the superposition of amplitudes associated with two
such corresponding mean-field solutions is given in [189]. There it is shown that such coher-
ent backscattering produces a characteristic enhancement of the return probability in MB Fock
space.

The numerical confirmation of this coherent MB effect is shown in figure 8. Here, the prob-
ability P(n(i),n( f ), t) = |K(n(i),n( f ), t)|2 of finding the system in the final Fock state n( f ) at
time t initially prepared in the state n(i) is obtained by solving numerically the quantum dynam-
ics of a 6-site Bose–Hubbard ring in the regime of chaotic mean field dynamics. After a relat-
ively short relaxation time scale, the tendency toward uniform equilibration is clearly visible
where all transition probabilities roughly reach the same classical value (also well described by
the TWA). The only exception happens for n( f ) = n(i) in which a non-classical enhancement
is clearly observed. Furthermore, if time-reversal invariance of the system is broken by means
of a gauge field parametrized by ϕ, this enhancement, a hallmark of coherent backscattering
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Figure 8. Many-body coherent backscattering in Fock space. Numerical simulation of
the transition probability in Fock space for a ring-shaped 6-site Bose–Hubbard ring
(upper right inset). The initial state n(i) (indicated by the vertical line) is propagated
for a time larger than the equilibration time and the probability of finding the system in
the final state n( f ) indicated in the horizontal axis is calculated by exact numerical solu-
tion of the quantum dynamics. The observed enhancement of the transition probability
when n( f ) = n(i) over the classical uniform background is a purely coherent effect that
is suppressed by the application of a gauge field ϕ that destroys the time-reversal invari-
ance of the system. Reprinted (figure) with permission from [189], Copyright (2014) by
the American Physical Society.

due to quantum interference among classical paths related by time reversal, disappears. The
semiclassical explanation of this effect starts with the double-sum over mean field solutions in
equation (82), and the realization that only for n( f ) = n(i), there is an off-diagonal contribution
from orbits γ,γ ′ related by time reversal as depicted in figure 9.

3.2. Spectral properties

Beyond its use for calculating dynamical properties of observables, such as coherent backs-
cattering, the MB van Vleck-Gutzwiller propagator (75) represents the fundamental building
block for a semiclassical theory of spectral properties of MB bosonic systems. In this vein
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Figure 9. Many-body coherent backscattering in Fock space. The semiclassical propag-
ator used to calculate the transition probability between Fock states |K(n(i),n( f ), t)|2
naturally leads to the consideration of double sums over mean field equation solutions.
Under local averaging only robust, smooth contributions survive. Generically, these
smooth contributions simply correspond to interference from pairs of identical amp-
litudes corresponding to the same mean field solutions. For n( f ) = n(i), however, two
different solutions related by time-reversal constructively interfere, a purely quantum
effect due to coherent superposition of amplitudes. Reprinted (figure) with permission
from [189], Copyright (2014) by the American Physical Society.

a calculation of the MB density of states is summarized, which leads to a MB version of
Gutzwiller’s trace formula following [84]. It turns out that periodic mean field solutions of
the nonlinear wave equations play the role of the classical SP periodic orbits in Gutzwiller’s
original trace formula. Based on the MB trace formula RMT-type universal spectral correla-
tions can be addressed through the lens of semiclassical theory as proposed in [84, 85]. There
post-Ehrenfest phenomena and the encounter calculus in theMB context naturally arises again.

3.2.1. MB Gutzwiller trace formula. Given the success of Gutzwiller’s trace formula,
equation (4), over the past 50 years, it is quite natural to investigate the corresponding MB
extensions. A straightforward generalization consists in increasing the particle number N for
the usual semiclassical limit ℏ→ 0, i.e. the horizontal crossover in figure 2. However, for large
N this approach would require periodic orbits in a vast 6N-dimensional phase space, and in
addition dealing with the (anti-)symmetrization. Hence in deriving a semiclassical approxim-
ation for the MB density it is prefereable to resort to the complementary limit ℏeff = 1/N→ 0
following [84].

Either starting from the quadrature or coherent state representation of the semiclassical
propagator, under the assumption of chaotic mean field dynamics, a series of further stationary
phase calculations leads eventually to the semiclassical approximation for the MB density of
states in the form [84]

ρ(E,N)≃ ρ̄(E,N)+ ρosc(E,N) = ρ̄(E,N) +
∑
pm

Apme
iNSpm(E) . (83)

The first (Weyl) term is given, to leading order in ℏeff, by the phase space volume of the cor-
responding mean field energy shell,

ρ̄(E,N) =

(
N
2π

)dˆ
dq dp δ(E−Hcl(q,p)) δ(N−N(q,p)) , (84)
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where Hcl is defined in equation (50). The sum in equation (83) extends over all periodic
solutions

(q,p)(t= 0) = (q,p)(t= T) (85)

(for some period T) of the classical mean field equations

ℏ
dq
dt

=
∂Hcl(q,p)

∂p
, ℏ

dp
dt

=−∂Hcl(q,p)
∂q

(86)

with fixed energy E and particle number

N(q,p) =
1
2

∑
i

(q2i + p2i ) . (87)

This implies that unstable periodic mean field modes (pm) in equation (83) play the role of the
classical periodic orbits in the SP context. In close analogy, the modes’s actions take the form

Spm(E) =
˛
pm

p(q,E) · dq (88)

and the amplitudes read, as in equation (7),

Apm(E) =
Tppm(E)

|det(Mpm(E)− I|1/2
e−iµpm

π
2 , (89)

in terms of the period Tppm of the primitive mean field mode, the monodromy matrix Mpm

depending on the stability of the mode, and its Maslov index µpm. The resulting semiclassical
MB trace formula for discrete quantum fields incorporates genuine MB interference including
that required to build up the discreteness of the MB spectrum, which arises from the coherent
sum over phases associated with periodic mean field solutions. This is in close analogy to
Gutzwiller’s expression for the SP case.

Here, a few further remarks are in order (for details see also [84]): (a) notice that the range
of validity in energy extends down to lowest energies because ℏeff and not ℏ controls the semi-
classical limit, and thus equation (83) holds true even forMB ground states; (b) due to the exist-
ence of the continuous symmetry related to particle number conservation, symmetry-projected
semiclassical densities of states were considered to get an expression for theMB spectral dens-
ity within each sector with fixed total particle number; (c) by using quadrature states of the
field the above derivation does not employ the coherent state representation that requires a
complexification of the theory’s classical limit [85]; (d) because in the non-interacting case
the quantum problem reduces to a harmonic system, the trace formula is still applicable since
the corresponding periodic mean field solutions (of the linear Schrödinger equations) turn out
to be isolated in the generic case where the SP energies defining their frequencies are incom-
mensurate; (e) the trace formula, equation (83), may also shed light on the the fact that MB
systems often exhibit incoherent, possibly chaotic, SP dynamics, while at the same time show
collective motion [12, 196]; and (f) there is a certain conceptual analogy between the semi-
classical MB propagator and the corresponding MB density of states as sums over mean field
solutions on the one hand and configuration interaction methods, constructing MB wave func-
tions as linear combinations of Slater determinants, i.e. fermionic mean field solutions on the
other.

37



J. Phys. A: Math. Theor. 55 (2022) 453001 Topical Review

The MB trace formula allows, in principle, for computing an approximate MB density of
states9 for MB energies and particle numbers that are out of reach of usual numerical MB
techniques.Moreover, the close formal relation between the semiclassical SP, equation (4), and
MB, equation (83), trace formulas implies that many insights and results known for quantum
chaotic SP dynamics can be taken over into the MB context as summarized in the following
for spectral fluctuations.

3.2.2. MB encounters and universal spectral correlations. In section 2.2.3 the semiclassical
foundations of RMT-type spectral universality are outlined for chaotic SP dynamics, reflected
in the BGS conjecture [27]. Although it might be evident to consider that this reasoning simply
carries over to the quantum chaotic MB case, a formal justification has been missing. Also it
was not straightforward how the encounter calculus would be generalized to the MB case.

For the usual semiclassical limit ℏ→ 0, the encounter formalism has been shown to be
applicable and to lead to RMT results for any phase space dimensionality [197], and hence
also to the 6N dimensions of an N-particle system in 3 spatial dimensions. However, MB gen-
eralizations require some care. For instance, for a non-interacting MB system with chaotic SP
dynamics, e.g.N non-interacting particles in a billiard, theMB density of states is composed of
independent SP spectra—with conserved SP energies as associated constants of motion—and
thus do not obey RMT-statistics. The spectral statistics are Poissonian in the infinite dimen-
sional limit; for recent work showing rich spectral features due to finite dimensionalities see
[198]. Correspondingly, in the complementary limit ℏeff → 0 the non-interacting case also
features non-generic spectral fluctuations that do not correspond to the expected Poissonian
spectra of integrable systems. This is a consequence of the field theoretical context where the
free field corresponds to a peculiar linear system that is non-generic since it is not merely integ-
rable. There, treating the quasi-integrable case due to the effect of a small interaction within a
semiclassical perturbation theory may provide a useful approach.

Consider strongly interacting MB systems with an associated chaotic mean field dynam-
ics characterized by a largest MB Lyapunov exponent λ. For SP dynamics universal spectral
correlations arise from interference between periodic orbits with quasi-degenerate actions and
periods beyond the Ehrenfest time tE(sp) = (1/λsp) log(S/ℏ), see equation (26). For quantum
chaotic large-NMB systems in the limit ℏeff → 0, correspondingly genuineMB quantum inter-
ference is governed by another log-time scale, the Ehrenfest time

tE =
1
λ
logN , (90)

also referred to as the scrambling time in the MB context [199].
This very close formal analogy between the SP ℏ→ 0 and theMB ℏeff → 0 regimes—based

on corresponding trace formulas and hierachy of times scales—allows for the straightfor-
ward generalization of the bosonic MB spectral form factor semiclassical calculation [84, 85]
by applying the encounter calculus summarized in section 2.2.3. This amounts to replacing
ℏ by ℏeff, the Lyapunov exponent λsp by λ, the Ehrenfest time tE(sp) by tE, equation (90),
SP phase space by the 2 L-dimensional phase space of the lattice, and the SP density of
states ρoscsp (E) by ρosc(E;N), equation (83). Encounters between different (periodic) mean
field modes take on the role of encounters between classical (periodic) orbits. This implies
the interpretation that interfering periodic mean-field solutions of equations (86) with quasi-
degenerate actions Spm(E), equation (88), lead to the emergence of universal MB spectral

9 In [179] a spectrum of a Bose–Hubbard system (with N=40 atoms) was computed with high accuracy, using cor-
responding MB semiclassical techniques.
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fluctuations, in close correspondence with the reasoning in the SP case. This includes in par-
ticular the same RMT-type expressions for the spectral MB two-point correlator R(∆E;N)∼
⟨ρosc(E;N)ρosc(E+∆E;N)⟩ and its associated spectral form factor10.

These conclusions drawn from the semiclassical MB encounter formalism coincide both
with long known results from nuclear shell models and data [6, 7], embedded Gaussian
ensembles [72], including those restricted to two-body interactions, as well as with recent
results showing random-matrix behavior of the spectral form factor for a periodically kicked
Ising spin-1/2 model without a semiclassical limit (to leading orders in t/tH [200, 201]) and for
a Floquet spin model [202]. Moreover, Wigner–Dyson-type level statistics have recently been
numerically shown with appropriate parameters for a discrete Bose–Hubbard system [85, 203]
and the SYK-model [68] in the large N-limit. They help close an important missing theoretical
link in the sense that the k-body restricted interaction ensembles, i.e. embedded randommatrix
ensembles, have resisted analytic proofs of their asymptotic behaviors [204–206] unlike the
original classical random matrix ensembles. Semiclassical results for spectral determinants
[31, 59, 107, 108, 111, 207] in terms of pseudo-orbits carry over to the MB case, i.e. the semi-
classical finding [108] that pseudo- mean field paths with durations t> tH necessarily must
involve multiple partial traversals that do not contribute to the MB spectrum.

It is worth, highlighting again the relevance of the scrambling time scale tE, equation (90),
and the role of encounters for entangling mean field modes: The semiclassical MB propagator
and the trace formula, as sums over mean field paths, contain genuine MB interference thereby
giving rise to MB correlations. The encounter calculus is involving ergodic averages distilling
out of all these paths, otherwise mostly random interference terms, that prevail for an observ-
able after energy or spatial averages. Each encounter diagram, such as those shown in figure 6,
represents all interferences resulting from certain types of coupled mean field trajectory con-
figurations with quasi-degenerate actions. If we think of entanglement as coupling between
different product states, as mean field solutions are, then encounters generate entanglement
that resists (energy) averaging. After starting to propagate a wave packet along a separable
initial (periodic) mean field path, it will split at an encounter, acting like a rail switch and
entangling the mean field paths that come close to each other in the encounter region in Fock
phase space. The time scale of this entanglement process is given by tE. Whereas the relev-
ance of encounters for entanglement arises naturally, developing tools to measure the degree of
entanglement created through encounter structures remains open. This would also distingish
encounter-mediated entanglememt growth from some sort of entanglement captured through
TWA approaches introduced in section 3.1.2. Quantum unitaries acting as interconnects in
quantum networks can be viewed as mimicking certain encounter structures of a quantum
chaotic dynamical system. For such random unitary dynamics entanglement growth has been
measured [208].

To conclude, MB semiclassical methods developed for systems with underlying chaotic
dynamics can provide a direct theoretical derivation of universality in the spectral statistics of
large-N MB systems, and the applicability of RMT more generally. In the regime of exponen-
tially unstable mean field chaos in the classical limit, the local fluctuations of MB spectra com-
ply with RMT predictions. Though beyond the objective of this contribution, keep in mind that
MB semiclassical methods accomplish more than this. They apply to individual systems and
system specific non-statistical quantities as well. In particular, if some system displayed unex-
pected properties from an RMT perspective, it would still be expected that the semiclassical

10 Note that R(∆E;N) contains interesting new parametric correlations with regard to (changes in) particle number
and or interaction strength.
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Figure 10. Scheme of an out-of-time-order correlator—F(t) can be viewed as the over-
lap between two MB states arising from the operation of V(0) and W(t) on |Ψ⟩ in dif-
ferent time order, i.e. F(t) contains four non-time ordered operators.

theory would capture that behavior. This is especially true of system specific MB dynamics
before, up to, and just beyond the Ehrenfest time scale, a time scale that has collapsed to zero
in RMT.

3.3. OTOCs and commutators

3.3.1. Concept and heuristic semiclassical reasoning. Based on correlations between peri-
odic mean field modes and by invoking ergodicity and classical hyperbolicity, it was just
discussed how spectral RMT-type universality can be semiclassically explained in the MB
context. For the GOE spectral form factor beyond Ehrenfest timescales, terms based on MB
interference and organized through a hierarchy of encounters of mean field modes, provide
higher-order ℏeff-corrections to Berry’s diagonal contribution. This section presents another
prime example for ergodic MB interference, so-called OTOCs [40, 41, 87]

F(t) = ⟨Ψ|Ŵ†(t) V̂†(0)Ŵ(t) V̂(0)|Ψ⟩ ; (91)

see figure 10, and their closely related relatives, out-of-time-order commutators (OTOCs)
[41]

C(t) = 2− Im(F(t)) = ⟨Ψ|
[
Ŵ(t), V̂(0)

]† [
Ŵ(t), V̂(0)

]
|Ψ⟩ . (92)

Both, F(t) and C(t) comprise two forward and two backward propagations by means of the
Heisenberg operator Ŵ(t) = exp(−iĤt/ℏ)Ŵ(0)exp(iĤt/ℏ).

Consider a Bose–Hubbard system in which the local measurement of an atom at a given
site perturbs (locally) the MB system. The squared commutator C(t) of such a suitable (local)
operator Ŵ(t)with another (local) operator V̂(0)measures the temporal growth of Ŵ, including
its increasing complexity at another site at a certain distance. Hence the initial local (quantum)
information is spread and scrambled across the huge Hilbert space of the interacting MB sys-
tem with its vast number of degrees of freedom [209], making OTOCs the measures of choice
for quantifying growing complexity and instability of MB systems, thereby with relevance for
quantum computing [210]. Although OTOCs require rewinding time and their implementation
is experimentally challenging, already several measurement protocols exist [199, 211–214].
For a recent comprehensive tutorial on OTOCs; see [215]).

OTOCs represent one of the most direct quantum analogues of classical measures for hyper-
bolic instability of chaotic dynamics. For the single particle case invoking a heuristic classical-
to-quantum correspondence for small ℏ and replacing the commutator (92) for pre-Ehrenfest
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times by Poisson brackets {·, ·} generates a leading-order Moyal expansion, e.g. Ŵ= p̂i and
V̂= q̂j [41, 87],

C(t)−→ |iℏ|2 {pi,qj(t)}2≃ℏ2

(
∂qj(t)
∂qi

)2

∝ ℏ2 e2λt . (93)

The leading off-diagonal monodromy matrix element ∂qj(t)/∂qi is replaced by an exponen-
tial growth determined by the classical SP Lyapunov exponent λSP. This close quantum-
to-classical correspondence for quantum chaotic SP dynamics is intriguing, and thus there
is also the quest for establishing a corresponding MB quantum-to-classical correspond-
ence, i.e. an MB version of such a quantum butterfly effect. This, in particular, includes
an interpretation of the quantum mechanical growth rate of OTOCs for MB systems with
a classical limit. Most notably their growth is bounded in time and OTOCs saturate due
to a MB interference mechanism setting in at the Ehrenfest time, i.e. scrambling time. It
gives rise to an interference term that is of the same order as the corresponding diagonal
contribution [86]. Such distinct features at tE render OTOC evolution a hallmark of Ehrenfest
phenomena.

3.3.2. Pre- and post-Ehrenfest times: exponential growth and saturation. To derive the
OTOC pre-Ehrenfest growth and to illustrate these genuine MB interferences consider again
Bose–Hubbard systems describing N interacting bosons with creation (annihilation) operators
b̂† (b̂) at sites i=1, . . . ,L. Evaluate the OTOC (92) for the position and momentum quadrature
operators, equation (41),

q̂i = (b̂i+b̂
†
i )/

√
2N, p̂i = (b̂i−b̂†i )/(

√
2Ni) , (94)

which are related to the occupation operators n̂i through (q̂2i +p̂
2
i )/2= ℏeff(n̂i+1/2). The

OTOC, equation (92), reads

C(t)=⟨Ψ|
[
p̂i, Û

†(t)q̂jÛ(t)
][
Û†(t)q̂jÛ(t), p̂i

]
|Ψ⟩ (95)

in terms of the MB time evolution operator Û(t) = exp(−iĤt/ℏ). In equation (95) consider an
initial coherent state |Ψ⟩ localized in both quadratures.

The semiclassical derivation is based on approximating Û(t) by its asymptotic form for
small ℏeff, the MB version [84, 189], equation (75), of the van Vleck-Gutzwiller propag-
ator. The corresponding sum runs over all mean-field solutions γ of the Equations of motion
iℏ∂Φ/∂t= ∂Hcl/∂Φ

∗ of the classical Hamilton function (50) that denotes the mean-field limit
of Ĥ for ℏeff = 1/N→ 0:

Hcl (q,p) =
∑
i,j

hijΦ
∗
i Φj+

∑
i,j,i ′,j ′

Viji ′j ′Φ
∗
i Φi ′Φ

∗
j Φj ′ . (96)

In the coherent sum over mean-field paths in equation (74) the phases are given by classical
actions Rγ(q(f),q(i); t)=

´ t
0 dt[pγ(t) ·qγ(t)−Hcl (qγ(t),pγ(t))/ℏ] along γ, and the weights Aγ

reflect their classical (in)stability.
In order to make a connection to RMT-type universality assume that the mean-field limit

exhibits uniformly hyperbolic, chaotic dynamics with the same Lyapunov exponent λ at any
phase space point. Evaluating equation (95) in position quadrature representation, inserting
unit operators, and using equation (74) for the propagator K gives a general semiclassical MB
representation of the OTOC. To leading order in ℏeff, the derivatives p̂i =−iℏeff∂/∂qi only act
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on the phases Rγ in K. Employing the relations p(i)γ =−∂Rγ/∂q(i) generates for the OTOC
[86], equation (95),

C(t)≃
ˆ

dnq ′
1

ˆ
dnq2

ˆ
dnq ′

3

ˆ
dnq4

ˆ
dnq ′

5Ψ
∗(q ′

1)Ψ(q ′
5)

×
∑

α ′:q ′
1→q2

∑
α:q ′

3→q2

A∗
α ′Aαe

(i/ℏeff)(−Rα ′+Rα)
(
p(i)α ′,i−p

(i)
α,i

)
q(f)2,j

×
∑

β ′:q ′
3→q4

∑
β:q ′

5→q4

A∗
β ′Aβe

(i/ℏeff)(−Rβ ′+Rβ)
(
p(i)β,i−p

(i)
β ′,i

)
q(f)4,j . (97)

The four time evolution operators in equation (95) have been converted into fourfold sums over
mean-field trajectories of time t linking the various initial and final position quadratures. In the
semiclassical expression, equation (97), the operators p̂i and q̂j are replaced by their classical

counterparts p(i)γ,i and q
(f)
γ,j. The commutators translate into differences of initial momenta of

trajectories not restricted to start at nearby positions.
The geometric connections amongst the trajectories quadruples involved are sketched in

figure 11. Panel (a) shows an arbitrary orbit quadruple and (b) the corresponding diagram.
Black and orange arrows refer to contributions to K and K∗, respectively, i.e. forward and
backward propagation in time. The grey shaded spots mimic the initial state |Ψ⟩.

In the semiclassical limit Rγ(q(f),q(i); t)≫ℏeff. Hence, the corresponding phase factors in
equation (97) are highly oscillatory with respect to initial and final positions. Thus, contribu-
tions from arbitrary trajectory quadruples are usually suppressed whereas correlated traject-
ory quadruples with action differences such that Rα−Rα ′+Rβ−Rβ ′ ≃ O(ℏeff) are not aver-
aged out and contribute dominantly to C(t). For post-Ehrenfest times these are quadruples
where for most of the propagation the four paths are pairwise nearly identical except for
encounter regions where trajectory pairs approach each other, evolve in a correlated manner,
and exchange their partners. The encounter calculus applies in the high-dimensional phase
space associated with the MB Fock space.

To leading order in ℏeff, the relevant quadruples for OTOCs involve a single encounter.
These can be subdivided into four classes depicted in figures 11(c)–(f). Diagram (c) represents
a bundle of four trajectories staying in close vicinity to each other throughout time t, i.e. form-
ing an encounter marked by the dashed box. This diagram turns out to be dominant for times
t< tE, equation (90), the time scale for traversing an encounter region, if the associated action
differences are of order ℏeff. Due to exponential divergences in chaotic phase space the dynam-
ics merges beyond the encounter boundary into uncorrelated time evolution of the individual
trajectories. However, the symplectic Hamiltonian structure implies that the exponential separ-
ation along unstable phase space manifolds is complemented by motion near stable manifolds.
This enables the formation of pairs of exponentially close trajectories [30], e.g. paths α ′ and
α or β and β ′ in figures 11(d) and (f). This mechanism becomes quantum mechanically relev-
ant for times beyond tE; see the discussion in section 2.3. Here it is crucial for understanding
post-Ehrenfest OTOC saturation. Panels (c, d) display diagramswith an encounter at the begin-
ning or end of two such trajectory pairs. The diagrams in (f) are characterized by uncorrelated
motion of four trajectory pairs before and after the encounter.

The evaluation of equation (97) requires a thorough consideration of the dynamics in and
outside the encounter regions. Inside an encounter, figure 11(c), the hyperbolic dynamics
essentially follows a common mean-field solution: linearization in the vicinity of one ref-
erence path allows for expressing contributions from the remaining three trajectories. The
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Figure 11. Configurations of interfering mean-field paths that contribute to the OTOC
C(t), equation (97). (a) arbitrary trajectory quadruple and (b) corresponding general dia-
gram denoting forward and backward propagation along black and orange mean-field
paths. (c)–(f): Relevant configurations contributing predominantly to C(t): The traject-
ory quadruples reside (c) inside an encounter (marked by dashed box), form a ‘two-
leg’-diagram with an encounter (d) at the beginning or (e) at the end, or (f) build a
‘four-leg’-diagram with the encounter in between. Reprinted (figure) with permission
from [86], Copyright (2018) by the American Physical Society.

detailed evaluation of the diagrams ((d)–(f)) in figure 11 is given in [86]. It involves the cal-
culation of corresponding encounter integrals based on phase space averages invoking ergodi-
city. Diagrams similar to class (f) have been earlier considered in the context of shot noise
[123–125] and observables based on quantum chaotic SP [166] and MB [57] scattering. How-
ever, the evaluation of such encounter integrals for OTOCs requires a generalization to high-
dimensionalMB phase spaces. The occurence of operators (positions andmomenta) in the case
of OTOCs demand a generalization of the encounter calculus and special treatment, depending
on whether the initial or final position quadratures are inside an encounter.

Using the amplitudes Aγ in equation (97) to convert integrals over final positions into initial
momenta, the OTOC contribution from each diagram is conveniently represented as an ergodic
phase-space average

C(t)≃
ˆ

dnq ′
ˆ

dnp ′W(q ′,p ′)I(q ′,p ′; t) . (98)
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Figure 12. universal contribution to the time evolution of out-of-time-order
commutators—exponential increase according to F<(t), equation (100), before
and according to F>(t), equation (101), after the Ehrenfest time tE = (1/λ) logN
marked by the vertical dashed line. Insets depict diagrams (c), (f) and (e) from figure 11
representing interfering mean-field trajectories.Reprinted (figure) with permission from
[86], Copyright (2018) by the American Physical Society.

Here,

W(q ′,p ′)=

ˆ
dny/(2π)nΨ∗(q ′+y/2 )Ψ(q ′−y/2 )exp[(i)yp ′] (99)

is the Wigner function [190] and I(q ′,p ′, t) comprises all encounter integrals. The detailed
evaluation of the encounter integrals I represented by the different diagrams in figure 11, and
therebyC(t), yields the following results for pre- and post-Ehrenfest time evolution [86]: From
diagram (c) it follows for λ−1 < t< tE upon ergodic averaging in the semiclassical limit

I(q ′,p ′; t)≃ F<(t) ; F<(t)≈ e2λ(t−tE)Θ(tE − t) = ℏeff
2e2λtΘ(tE − t) . (100)

Diagram (d) turns out to be negligible, diagrams (e, f) together yield for t> tE

I(q ′,p ′; t)≃ F>(t)⟨(p ′
i − pi)

2 ⟩(⟨q2j ⟩− ⟨qj⟩2); F>(t) = Θ(t− tE) . (101)

Here,

⟨ f⟩= 1
Σ(E)

ˆ
dnq
ˆ

dnpf(q,p)δ
(
E−Hcl (p,q)

)
(102)

is the ergodic average with Σ(E) the phase space volume of the energy shell at energy E.
The time-dependences of the universal functions F< and F> are sketched in figure 12. For

t< tE the semiclassical evaluation for MB systems confirms the heuristic result, equation (93).
The careful treatment of the encounter dynamics, diagram (c), provides a natural cut-off (expo-
nential suppression) at tE, absent in equation (93). It results from the mechanism that the initial
phase space area enabling four trajectories to stay close to each other is exponentially shrink-
ing for t> tE. The fact that for t< tE all four mean-field solutions essentially follow in the
linearizable vicinity of a common one, see diagramm (c), indicates that the initial exponential
increase of an OTOC of a chaotic MB system can be considered as a property of unstable
mean-field dynamics that would also be captured by a truncated Wigner approach.

On the contrary, the term F>(t) in equation (101) is suppressed for t< tE, but is indeed
responsible for OTOC saturation. After the scrambling time t> tE genuine MB interference
sets in captured by encounter diagrams such as in panel (f). This diagram represents successive
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Figure 13. Out-of-time-order commutator of a Bose–Hubbard (BH) system—
numerically exact calculation of equation (92) for a BH system with four sites and
N= 40 particles. The system is initially described by a coherent state localized near
a hyperbolic fixed point of the classical mean-field dynamics. For the choice of para-
meters J/NU≃ π/2 in equation (96) with hopping hi,j = J(δi,j+1 + δi+1,j) and local
interactions Vi,j,i ′,j ′ = Uδi,jδi ′,j ′δi,j, the corresponding stability exponent is given by
(J/ℏ)λ. For times 1< λt< log(N) (time in units of the typical hopping time between
sites ∼ℏ/J ) a clear exponential growth due to this local hyperbolicity can be observed.
Reproduced with permission from Mathias Steinhuber.

forward and backward dynamics swapping back and forth along different encounter-coupled
mean-field trajectories. This involves correlated quantumMB dynamics and the temporal build
up of entanglement betweenmean-field modes. This mechanism is evidently in a regimewhere
mean-field approaches fail [216]. Thus, genuine MB interference is the quantum mechanism
behind the commonly observed saturation of OTOCs at the scrambling or Ehrenfest time.

Note that the expression, equation (101), for the OTOC contains variances of classical
quantities, e.g. the variance of the jth final position quadrature that determine the OTOC satura-
tion level. Here different types of classical MB dynamics at post-scrambling times, e.g. diffus-
ive versus chaotic evolution, may lead to a different time-evolution of these classical variances.
As shown in [86], diffusive dynamics implies a linear increase with time, whereas a calcula-
tion assuming ergodic dynamics yields C(t)≈ 2/L2 for t≫ tE with L the number of sites of a
Bose–Hubbard system (for |Ψ⟩ being either a localized wave packet or extended chaotic MB
state) corresponding to the flat plateau in figure 12.

Figure 13 shows the OTOC equation (92) with V̂= n̂0 and Ŵ= n̂1 denoting occupation
operators for adjacent sites obtained quantum mechanically for a four-site BH system with
N= 40 particles. These numerics confirm the semiclassical predictions. Up to tE the OTOC
increases exponentially with slope 2λwhere λ agrees with the Lyapunov exponent of the (here
locally) unstable MB mean-field dynamics of the specific BH system. At t≃ tE saturation
sets in.

The present semiclassical analysis of MB OTOCs in the large-N limit, the vertical limit
in figure 2, can be readily generalized to systems of N particles in d spatial dimensions in
the complementary limit of small ℏ, in particular to the quantum chaotic SP case. Invoking
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the corresponding Gutzwiller propagator, equation (3), in n= d×N dimensions the exponen-
tial increase of the OTOC CN(t) in equation (100) is then governed by the leading Lyapunov
exponent λN of the corresponding classical N-particle system. Saturation sets in at the corres-
ponding Ehrenfest time (1/λN) logS/ℏ with S a typical classical action. For a chaotic phase
space average the usual semiclassical limit the saturation value C(t)≈ ℏ2N/d results [86]. For
N= 1 this short-time growth with λ1 has also been independently semiclassically derived in
[217, 218]. The exponential increase and saturation of such SP OTOCs was considered in
detail in numerical case studies of the kicked rotor [219] and quantum maps [220].

3.3.3. Extensions. There are two further interesting extensions of semiclassical results to
summarize for MB OTOCs. First it is worth considering how the time dependence of the
OTOC changes for open MB quantum systems, specifically for N-particle systems where each
particle has a large but finite average dwell time tD > tE to stay in the system. The correspond-
ing classical decay can be incorporated into the encounter integrals I(t) in equation (98) by
means of terms ∼exp(−t/tD). Most notably, their individual consideration in the encounter
diagrams 11(c)–(f) for t< tE and t> tE, respectively, yields, to leading order, different decay
rates [221]

F<(t)∼ e(2λt−t/tD)Θ(tE − t) , (103)

F>(t)∼ e(−2t/tD) Θ(t− tE) , (104)

as depicted in figure 14(a). The non-trivial, doubled decay rate 2/tD in the regime of MB inter-
ference arises from the structure of the corresponding encounter diagrams ((d)–(f)) containing
two independent ‘legs’ (trajectory pairs) of length∼t that can lead to particle decay, compared
to correlated dynamics centered around one path of length t inside the encounter, diagram (c).
Its experimental observation would clearly indicate this subtle and possibly unexpected aspect
of MB interfernce.

Second, it is of interest to consider kth order generalizations of the usual OTOC [222],
i.e. k-OTOCs

Ck(t) = ⟨Ψ| [p̂i(0), q̂j(t)]k |Ψ⟩ . (105)

Note that this definition does not contain absolute values as in the definition, equation (92),
of the usual OTOC, i.e. C(t) ̸= C2(t). Generalizing the semiclassical encounter calculus to the
case of a k-OTOC, k− 1 encounters can be placed into a trajectory structure comprising 2 k
paths. Careful evaluation [221] of the leading-order encounter diagrams suggests a stepwise
structure for Ck(t) with stepsize tE as visualized in figure 14(b).

Returning to the usual OTOCs, ergodic quantum MB systems with a chaotic classical limit
ℏ→ 0 or ℏeff → 0 show an OTOC growth with exponent 2λN or 2λ, respectively. However, an
exponentially increasing OTOC does not necessarily imply chaotic dynamics, i.e. OTOCs are
not necessarily indicative of chaos. Important exceptions are large-N MB systems (near critic-
ality) where their quantum dynamics are accompanied by unstable fixed points (separatrices)
in the associated MB mean-field dynamics that can even be integrable. The local fixed point
instability λs also leads to an exponential increase C(t)∼ e2λst up to times tE [223, 224]. Thus
scrambling does not necessarily imply chaos. In such systems the quantum critical states may
be viewed as residing close to separatrices that have much in common with encounters. How-
ever, due to the integrable classical limit, the fast initial scrambling is followed subsequently
by oscillatory behavior between reentrant localization and delocalization of information in
Hilbert space [223].
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Figure 14. Generalized OTOCs—(a) semiclassical prediction for the OTOC C(t) of an
open chaotic MB quantum system with decay time tD > tE. For t< tE, the classical
regime governed by a dominant mean-field path, the exponent is diminished by the
rate 1/tD, while in the regime of genuine MB quantum interference (t> tE) the OTOC
exhibits an exponential decay with twice that rate, −2/tD. (b) Sketch of the semiclas-
sical prediction for the k-OTOC Ck(t), equation (105). Characteristic steps are expected
at multiples of the scrambling time tE. Reproduced with permission from [221].

For such quantum critical systems the semiclassical leading-order 1/N-expansion has been
refined providing e2λt/N (and not 1/N) as a renormalized parameter that non-perturbatively
rules the quantum–classical transition [225]. For scrambling in MB hyperbolic systems this
provides formal grounds for a conjectured and numerically observed multi-exponential form
of OTOCs for the SYK-model [226].

Apart from quantum chaotic and critical large-N systems, the imprints on OTOCs of non-
ergodic dynamics, for example, a mixed (regular-chaotic) phase space in the classical limit,
have also been recently considered [227], but are not in the focus of this review.

4. Perspectives

During the past twenty years considerable progress has been made and various breakthroughs
have been achieved in laying the foundations of a semiclassical theory that successfully
provides the understanding of quantum chaotic universality, or more precisely, of universal
(spectral) features of SP and MB quantum systems exhibiting chaotic classical limits. How-
ever, as is generally accepted, this RMT-type universality applies to much broader classes
of quantum systems, including those without a strict classical limit, such as quantum graphs
and networks, MB quantum circuits and spin chains (see section 3.2.2 and [228] for a recent
review) that often may be represented by ensemble theories, i.e. theory of disordered systems
and RMT. Why such quantum chaotic systems in a wider sense exhibit the same universal fea-
tures as quantum chaotic systems in a narrow sense, i.e. those with a classical limit, partially
remains a mystery.

Leaving aside such conceptual questions, the now existing theoretical framework, reviewed
here, opens various interesting perspectives and challenges. Although semiclassical theory
applies to the dynamics of individual systems, enabling a complete understanding of system
specific properties and deviations from universal behaviors (at least theoretically), we conclude
this review with perspectives of particular relevance to quantum universality:

(a) Variety of classical limits—in both complementary asymptotic limits considered, the
quantum–classical transition is singular. The limiting, but non-vanishing, values of ℏ/S≪
1 and ℏeff = 1/N≪ 1 imply ever shorter wave lengths and extensive quantum interference.
Classical and mean field physics arise for ℏ/S≡ 0 and ℏeff ≡ 0, respectively. Such singular

47



J. Phys. A: Math. Theor. 55 (2022) 453001 Topical Review

asymptotic behavior is generally indicative of fascinating physical phenomena. The semi-
classical theory presented provides the leading-orders (in ℏ and ℏeff) of quantum mechan-
ical contributions: the former dealing with quantum wave interference and the latter with
genuine MB quantum interference. These two quite distinct limits, sketched in figure 2,
represent two avenues of asymptotic analysis. It may be interesting to consider other lim-
iting procedures where both ℏ and ℏeff come into play in concert. Indeed, short wavelength
approximations (semiclassical methods) are applied universally across classical field the-
ories, e.g. optics, acoustics, gravity waves, seismic waves, etc.. in which the limit leads to
ray equations underlying the motion of classical waves. In turn these rays themselves can
be chaotic. Beginning with quantum fields, it is possible to imagine a kind of ‘asymptot-
ics of asymptotics’ in which there are chaotic rays underlying the classical field solutions
underlying semiclassically the quantum field solutions. This is as opposed to just the single
limit ℏeff ≪ 1 considered here generating some kind of nonlinear, unstable classical field.
Does the asymptotics of asymptotics chaotic limit lead to a distinct kind of MB quantum
chaos from that mainly considered in this text? On another front, following the ‘diagonal’
in figure 2, i.e. sending ℏ and ℏeff to zero simultaneously appears particularly appealing
and challenging, since there is no reason to expect the two limits to commute and could
lead in another unique direction. There is a great deal yet to uncover.

(b) The limit of dilute local Hilbert spaces—the construction of the semiclassical propagator
relies on two key facts: the existence of a classical limit (defined through extremizing an
action identified in turn from the exact path integral) and a semiclassical regime (iden-
tified as the small parameter ℏeff → 0 scaling the action). In situations where either of
these two ingredients is not obvious or explicit, the semiclassical program relies on fur-
ther assumptions. Three very important situations where such problems appear and await
for further progress are semiclassical analysis of fermionic Fock space, the related case
of spin-1/2 chains, and the extension to fields in the continuum. In systems described by
(continuous or discrete) fermionic degrees of freedom, the natural path integral based on
Grassman-valued fields leads to Grassman-valued actions [176] where the stationary phase
approximation cannot be defined in any sensible manner. This problem reflects in turn the
difficulty in identifying an ℏeff due to the fundamentally quantum character of the Pauli
principle, a problem shared by spin systems with low spin with their fundamentally dis-
crete natural basis states (in fact, fermionic and spin-1/2 degrees of freedom are rigorously
mapped by means of the Jordan-Wigner transformation [229]). Progress in this direction
can be achieved by forcing a description in terms of bosonic (commuting) classical fields
as in [82, 187, 188] for both fermionic and spin systems. The subsequent semiclassical
program can be formally defined, and in some situations provides extremely accurate res-
ults for delicate MB interference effects as shown in [182, 187], but so far it lacks rigorous
support. A similar violation of the large local Hilbert space assumption also occurs in
bosonic systems if one considers the continuum limit. Since the number of sites tends to
infinity, any finite number of particles will get effectively diluted thus breaking the funda-
mental assumption of large occupations. Identifying a proper semiclassical regime for the
propagator of bosonic fields in the continuum holds the key for a very promising program,
as several important results are known for such non-linear classical field equations. There
are the existence of chaos [230, 231], a precise definition of classical mean-field integ-
rability by means of the inverse scattering method, and the corresponding semiclassical
quantization based on solitons as building classical blocks [232]. Extending this approach
into the chaotic regime remains a fundamental and fascinating open problem.

(c) MB scarring and deviations from equilibration—ergodicity is commonly related to the
equidistribution of eigenfunctions linked to a chaotic phase space energy shell leading to
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generic equilibration as predicted by the eigenstate thermalization hypothesis [233, 234].
There are various properties and mechanisms that lead to different degrees of ergodicity
breaking and, as a result, to the possibility of hindered relaxation. Corresponding settings
possibly include: 1. MB systems without a classical limit, which are subject to additional
constraints [235, 236], leading to disconnected sub-Hilbert spaces with reduced dimen-
sions; 2. MB systems with a classical limit that exhibits a non-ergodic limit, e.g. mixed
phase space structures of co-existing chaotic and regular regions. As an obvious case,
quantum states residing on tori associated with locally integrable phase space regions are
long-lived and typically decay or MB equilibrate on (exponentially) long time scales.
However, there is a hierarchy of weak ergodicity breaking mechanisms reflected in devi-
ations from equilibration. In this context, two examples from SP physics are dynam-
ical localization due to partial transport barriers leading to additional time scales whose
effects are to localize eigenfunctions [237] and the concept of scars, discovered and
introduced by Heller [238] for low-dimensional quantum-chaotic systems. Both repres-
ent prime examples of weak ergodicity breaking. For the latter, a quantum eigenstate that
is semiclassically anchored on or close to an unstable periodic orbit [238] is scarred, if
the period of the orbit is short and its Lyapunov exponent weak enough, such that an SP
wave packet launched along this orbit shows distinct recurrences after one period. This
can be cast into a rough criterion for scar formation [238]. This concept naturally requires
a classical limit, and is intriguing because it indicates deviations from ergodicity for a
fully chaotic system that globally shows eigenstate thermalization, and must be differen-
tiated from the aforementioned quantum states localized in regular regions. Very recently,
scarring in Heller’s original sense could be demonstrated for an MB Bose–Hubbard sys-
tem with a high-dimensional associated classical phase space, including the corresponding
generalization of the scar criterion [239].
Earlier, MB ‘scars’, reflected in persistent oscillations of local observables, were observed
in Rydberg-based quantum simulators [235], as well as in corresponding numerical
simulations [39, 240]. They were found in spin-chain type MB Hamiltonians that do not
possess a natural classical limit. It remains to be understood how such a ‘MB scarring’ of
this type can be related to the semiclassical scar mechanism associated with periodic orbits.
Furthermore, for systems with a semiclassical limit, it has to be explored, whether true
MB scars prevail in the thermodynamic limit of large site or particle number. This could
be probed employing ultracold bosonic atoms in optical lattices as quantum simulators.

(d) Entropies, entanglement and encounters—the use of quantum information concepts in the
framework of MB systems has lead to deep insights into the mechanisms of equilibration,
thermalization and the role of quantum coherence [34, 241–243]. In this context, RMT
has rather successfully been applied to various universal aspects of particular information
measures [202, 244]. It has been of further utility for studying weakly connected bipartite
chaotic systems as well [245–248]. In contrast, the use of MB semiclassical methods face
severe technical difficulties and only limited work has been accomplished. The origin of
the problem is the extreme nonlinear way the propagator appears when calculating such
measures, typically involving functions with dependencies such as logKK∗, lacking the
usual structure of multiple sums over paths where further analysis based on action cor-
relations is possible. Only the so-called purity (a linearized version of the entanglement
entropy) has allowed for a semiclassical study in first-quantized systems as carried out in
[249, 250]. Properties of entanglement of two (non)interacting particles in the quantum
chaotic Chirikov standard map were very recently numerically considered in [251].

(e) Dual-unitary dynamics—In [53, 63] a correspondence between unitary propagation in
time and a non-unitary evolution in particle number in terms of an operator dual to the
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time evolution operator was established. The case where the dual operator is also unitary,
referred to as ‘self-dual’ [200], is of special interest: corresponding (disordered) spin
chains have been shown to exhibit RMT behavior [201], whereas deviations from self-
duality can lead to MB localization [252]. Correspondingly, so-called dual-unitary cir-
cuits consist of networks of special unitary gates leading to interrelated unitary evolution
in space and time directions [253, 254]; for a recent review see [255]. The locality of
the gates, together with dual-unitary propagation implies correlations to be possible only
along a ‘ray’ |x|= |t| in ‘space time’. Such dual-unitary circuits are special and particularly
appealing as they represent a class of exactly solvable quantum systems that exhibit RMT
behavior. It would be interesting to devise dual-unitary quantum dynamical systems with
a semiclassical limit. This could open up the possibility to extend and apply the semiclas-
sical tools outlined in this review to a conceptually simple case that still carries quantum
chaotic features.

(f) Quantum chaos meets quantum gravity—during the last two decades, quantum chaos con-
cepts have entered the realm of research towards possible quantization of gravitational
degrees of freedom. Early suggestions pointing to the chaotic character of black holes
[209] were finally made precise through the study of scrambling of (quantum) information
and the proposal of black holes as systems where such scrambling is maximal, see [41] and
references therein. This connection between toy models of quantum gravity where, unlike
the realistic scenario describing the Universe, a full solution is available and quantum
chaos was made precise in the cornerstone paper [256]. There, the authors showed the dual
relation, by means of the equivalence of correlation functions, between quantized Jackiw-
Teitelboim gravity, a solvable model of gravity coupled with a dilaton field in 1+1 dimen-
sions, and a suitably double-scaled theory of random matrices. This finding has triggered
lots of attempts towards understanding the origins of this duality with prospective links to
supersymmetry and semiclassical analysis in quantum chaos [257].

Just these few speculations illustrate the richness of possibilities from following various
semiclassical paths to interesting future theoretical challenges in MB quantum chaos.
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