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Abstract
In this paper we want to estimate the nonlinearity of Boolean functions, by probabilistic
methods, when it is computationally very expensive, or perhaps not feasible to compute
the full Walsh transform (which is the case for almost all functions in a larger number of
variables, say more than 30). Firstly, we significantly improve upon the bounds of Zhang and
Zheng (1999) on the probabilities of failure of affinity tests based on nonhomomorphicity,
in particular, we prove a new lower bound that we have previously conjectured. This new
lower bound generalizes the one of Bellare et al. (IEEE Trans. Inf. Theory 42(6), 1781–
1795 1996) to nonhomomorphicity tests of arbitrary order. Secondly, we prove bounds on
the probability of failure of a proposed affinity test that uses the BLR linearity test. All these
bounds are expressed in terms of the function’s nonlinearity, and we exploit that to provide
probabilistic methods for estimating the nonlinearity based upon these affinity tests. We
analyze our estimates and conclude that they have reasonably good accuracy, particularly
so when the nonlinearity is low.
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1 Introduction andmotivation

Boolean functions are defined on a vector space over the binary finite field F2 with output
in F2. For many cryptographic applications it is important that functions are not affine, and
not even close (with respect to the Hamming distance, defined in (3)) to being affine. The
nonlinearity of a function f , denoted dA(f ), defined as the minimum Hamming distance to
any affine function, is therefore an important cryptographic property. This indicator can be
computed by using the Walsh transform (also called Walsh-Hadamard or discrete Fourier
transform). The Walsh transform of a function f in n variables can be computed from its
truth table by an algorithm similar to the fast Fourier transform in time O(n2n). Computing
the Walsh transform is not feasible in practice when the number of variables is large (e.g., it
is not feasible for functions in 80 variables; functions which model an output of a stream or
block cipher as a function of the key would have a number of variables equal to the length
of the key, i.e. at least 80 variables) and the function is given as a “black box” (or given by
an algorithm or formula which is not amenable to simple manipulation for the purpose of
computing the Walsh transform).

The motivation of this paper is to probabilistically estimate the nonlinearity of f to a
reasonable degree of accuracy. The main idea is as follows. Consider a probabilistic test
(we will see some examples shortly) which has a success/fail outcome based on the values
of f at some fixed number k of points in F

n
2 (f can therefore be given as a “black box”

function). Denote by T (f ) the probability of failing the test (with the probability taken over
all possible choices of k inputs in F

n
2). We assume T (f ) is positively correlated, to some

extent, with the nonlinearity dA(f ), and can be bounded by some functions in dA(f ), say
Lower(dA(f )) ≤ T (f ) ≤ Upper(dA(f )). If we can obtain T (f ) with reasonable accuracy
by practical statistical testing (e.g. binomial proportion confidence interval), we can then
estimate the nonlinearity as:

dA(f ) ∈ [min(Upper−1(T (f ))), max(Lower−1(T (f )))], (1)

(we use F−1(x) to denote the preimage of x under F ), or, if the preimage has only one
element,

dA(f ) ∈ [Upper−1(T (f )), Lower−1(T (f ))]. (2)

To obtain an accurate estimate, it is important that T (f ) depend strongly on dA(f ) and that
the bounds are very good. We will examine several probabilistic tests, improve some of the
existing bounds, and analyze the accuracy of the resulting estimation.

The linearity test most commonly used is based on the textbook definition of a linear
function, namely f (u + v) = f (u) + f (v) (often called the BLR test from [3]): what it
means is that we pick u, v∈ F

n
2 uniformly at random, compute u+v, query the black box to

extract f (u), f (v), f (u + v), and check if the aforementioned condition holds. If f passes
this test for many pairs (u, v), then f is probably linear. If f fails the test for at least one pair,
then f is certainly not linear. We denote by P2(f ) the probability of f failing the test (with
probability taken over all pairs (u, v) ∈ F

n
2×F

n
2) and by dL(f ) the normalized Hamming

distance of f to the closest linear function. Several authors have determined upper and lower
bounds for P2(f ) as a function of dL(f ) (see [1, 9] and the references therein).

For cryptographic applications we are not so much interested in whether the function is
linear, but rather whether it is affine. For example, such tests play a crucial role in the cube
and AIDA attacks (see [6, 12]), which are refined high-order differential attacks, targeted at
primitives in stream and block ciphers based on low-degree components. The probabilistic
test used in [6] for deciding whether a function f is affine is to check whether f (u +
w) + f (u) + f (w) + f (0) = 0 holds (for u,w chosen uniformly at random), which can
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be viewed as using the BLR test to check whether f (u) − f (0) is linear. The functions
of interest f are functions in many variables (typically at least 80 variables), obtained as
higher-order derivatives of a function g which describes, for example, the first output bit
of the stream cipher as a function of the key and initialisation vector. Although explicit
algorithms are available for computing g and f (in the case of the Trivium cipher, the
algorithm for computing g starts with some relatively simple functions of algebraic degree
two, which are iteratively composed 1152 times for the full cipher, or about 700 times for
reduced versions of the cipher), it is not feasible in practice to compute their algebraic
normal form, or truth table, or nonlinearity, or Walsh transform. Instead, g is treated as a
“black box” function, and f can be evaluated at any given input using several calls to g.

Another test used in the literature for deciding whether a Boolean function is affine is to
check whether the equation f (u + v + w) + f (u) + f (v) + f (w) = 0 holds, for some
u, v, w ∈ F

n
2 chosen uniformly at random. Like in the case of the linearity test, if f passes

the test for many triples u, v, w, then f is probably affine. We denote by P3(f ) the probabil-
ity of f failing this affinity test (with the probability taken over all triples (u, v, w) ∈ F

3n
2 ).

As in the case of the linearity tests, a natural question is whether P3(f ) is related to dA(f ),
the distance to the closest affine function (note that this is the nonlinearity of f ). A lower
bound for P3(f ) in terms of dA(f ) was given in Bellare et al. [1].

A generalization of the tests above was proposed by Zhang and Zheng in [14], where the
authors defined the notion of (k + 1)-st order nonhomomorphicity of a function f as the
probability Pk(f ) of failing the test

f (u1 + · · · + uk) + f (u1) + · · · + f (uk) = 0,

with the probability taken over all tuples (u1, . . . , uk) ∈ (Fn
2)k (see Definition 1). It was

shown that for k odd, f is affine if and only if Pk(f ) = 0; for k even, f is linear if and only
if Pk(f ) = 0; also, still for k even, f is affine if and only if Pk(f ) ∈ {0, 1}. Furthermore,
some bounds on Pk(f ) with respect to dA(f ), for k odd, were given in [14].

In this paper, we firstly improve both the upper and lower bounds presented by Zhang
and Zheng in [14] for Pk(f ) with k odd (see Sections 3 and 4). Our lower bound holds for
arbitrary k and generalizes the lower bound proven in [1] for k = 2, 3. The proofs use the
techniques employed in [1] as well as additional combinatorial manipulation. We also prove
the lower bound we conjectured in [11].

Secondly, we consider the following probabilistic test for affine functions. We can use
any probabilistic linearity test, and test whether f is linear or f + 1 is linear. If either of
these holds, then f is affine. For the nonhomomorphicity test with k even, this is equivalent
to testing whether Pk(f ) ∈ {0, 1}. The fact that f is affine if and only if Pk(f ) ∈ {0, 1}
was proven in [14]. However, when f is not affine no results were given regarding how
the probability of failing this test depends on the nonlinearity of f . In Section 5 we show
that upper and lower bounds can be obtained for the value of min(Pk(f ), Pk(f + 1)) in the
case k = 2 (i.e. the BLR test). Namely, using the bounds on failing the BLR linearity test
from [1], which depend on the distance to the closest linear function, we show that similar
bounds hold for min(P2(f ), P2(f + 1)), but this time the bounds depend on the distance to
the closest affine function. We also show that the refinements of the bounds from [1] given
in [9] can be applied to our bounds too.

The nonlinearity of a function f can be estimated by first using any of the above tests and
a practical statistical method to estimate the probability of failing that test (as demonstrated
in [14]). Then, using (1) or (2), we obtain an estimate for the nonlinearity of f . In Section 6
we analyze the accuracy of the estimation. There are functions f, g such that f has higher
probability of failing the test than g, even though f has lower nonlinearity than g. This
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was shown in [2] for the BLR test and in [14] for the tests based on the (k + 1)-st order
nonhomomorphicity with k odd. However, the estimates get more accurate as k increases.
For example, for k = 7, for any given value of P7(f ) we can estimate the nonlinearity as
being within an interval of length 0.011 or less if P7(f ) ≤ 0.49 and length 0.053 or less if
P7(f ) ∈ [0.49, 0.5].

Other nonlinearity tests were proposed for reducing the number of evaluations needed for
the black box function, such as [7, 13] (the latter being also useful to estimate the algebraic
degree of f ). The (k + 1)-st order nonhomomorphicity for k = 3 was used for attacks on
actual ciphers in [10]. We intend to push further the connection between the probability
of failing these tests and the nonlinearity, as well as look at estimating the nonlinearity of
functions of cryptographic interest.

2 Preliminaries

We recall definitions and known results needed for the rest of the paper.
Throughout, n will denote a positive integer. Boolean functions in n variables are func-

tions f : Fn
2 → F2, where F2 is the binary field, and F

n
2 is the n dimensional vector space

over F2. It is well known that any such function can be uniquely represented in its ANF
(Algebraic Normal Form), i.e. as a polynomial in F2[x1, . . . , xn] of degree at most 1 in each
variable. The total degree of the ANF representation is called the algebraic degree of f .
Functions of algebraic degree at most one are called affine; affine functions with zero con-
stant term are called linear. We will denote by A the set of affine functions and by L the set
of linear functions in n variables over F2, if the dimension is understood from the context.

In this paper, like in [1], it will be convenient to use the normalized version of the Ham-
ming distance and weight. More precisely, we define the (normalized) Hamming distance
and Hamming weight for vectors a = (a1, . . . , at ) and b = (b1, . . . , bt ) in F

t
2, as well as

the distance of a vector a ∈ F
t
2 to a set of vectors S ⊆ F

t
2 as:

d(a, b) = 1

t
|{i : 1 ≤ i ≤ t, ai �= bi}| ,

w(a) = 1

t
|{i : 1 ≤ i ≤ t, ai �= 0}| ,

dS(a) = min
s∈S

d(a, s). (3)

In the literature, the Hamming weight and distance are more often used without normaliza-
tion (i.e. in the definitions above, one does not divide by the length of the vector) but we will
explain shortly why normalization is useful for our purpose. The truth table of a function f

is the vector T T (f ) = (f (v0), . . . , f (v2n−1)), where vi are all the elements of Fn
2 in some

fixed order, e.g., lexicographical order. The (normalized) Hamming weight, denoted by
w(f ), of a Boolean function f is w(T T (f )) and the distance, denoted by d(f, g), between
two Boolean functions f, g is d(T T (f ), T T (g)).

Of particular importance will be the distance of a function f to the set of affine or of
linear functions. The minimum distance to any affine function, dA(f ), is called the (nor-
malized) nonlinearity of f and is a very important cryptographic indicator. It is easy to see
that dA(f ) = min(dL(f ), dL(f + 1)). Our motivation for using the normalized version
of nonlinearity (based on the normalized version of Hamming distance) is that it allows a
meaningful comparison of the nonlinearity of two functions which might not have the same
number of variables.
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The Fourier-Hadamard transform of a function f : Fn
2 → R (the 0/1 values of a Boolean

functions are viewed as real numbers for this purpose) is the function W(f ) : F
n
2 → R

defined as

W(f )(v) = 1

2n

∑

u∈Fn
2

f (u)(−1)v·u,

where the dot product can be defined as u · v = ∑n
i=1 uivi . Note that we use a normal-

ized version of the transform here. If f is replaced by its sign function, f̂ , defined by
f̂ (u) = (−1)f (u), then W(f̂ ) is customarily referred to as the Walsh (or Walsh-Hadamard)
transform of f , and the values W(f̂ )(v) for v ∈ F

n
2 are called the Walsh coefficients. We

will refer to the sequence of output values of the Walsh transform (when the input is ordered
lexicographically) as the Walsh spectrum.

We will be using later Parseval’s identity (see [5] for example):
∑

v∈Fn
2

(W(f̂ )(v))2 = 1, (4)

which holds for any Boolean function f .
It is well-known [5] and easy to see that the Walsh transform of a Boolean function f

expresses its distance to the set of linear functions, and consequently the distance of f to
the set of affine functions. Denoting �a(u) = a · u, the nonlinearity of f is related to the
Walsh transform as follows:

d(f, �a) = 1

2

(
1 − W(f̂ )(a)

)
,

d(f, �a + 1) = 1

2

(
1 + W(f̂ )(a)

)
,

dL(f ) = 1

2

(
1 − max

v∈Fn
2

W(f̂ )(v)

)
,

dA(f ) = 1

2

(
1 − max

v∈Fn
2

|W(f̂ )(v)|
)

. (5)

Note that 0 ≤ dL(f ) ≤ 1
2 . It is known [5] that 0 ≤ dA(f ) ≤ 1

2

(
1 − 1

2
n
2

)
. We call a

function f : Fn
2 → F2 (n ≥ 2) bent if its nonlinearity is exactly 1

2

(
1 − 1

2
n
2

)
(they exist

only for even integers n). It is known [5] that f is bent if and only if the absolute values of
all of its Walsh coefficients satisfy |W(f̂ )(v)| = 2− n

2 .

Definition 1 ([14]) Let f : Fn
2 → F2 be a Boolean function in n variables and let k ≤ 2 be

an integer. The (k + 1)-st order nonhomomorphicity of f , denoted Pk(f ), is defined as the
probability that the equation f (u1 + · · · + uk) + f (u1) + · · · + f (uk) = 0 does not hold,
with the probability taken over all tuples (u1, . . . , uk) ∈ F

kn
2 i.e.

Pk(f ) = |{(u1, . . . , uk) ∈ F
kn
2 : f (u1 + · · · + uk) + f (u1) + · · · + f (uk) �= 0}|

2kn
.

In other words, Pk(f ) is the normalised Hamming weight of the function F : Fkn
2 → F2,

F(u1, . . . , uk) = f (u1 + · · · + uk) + f (u1) + · · · + f (uk). Equivalently, consider-
ing U1, . . . , Uk independent uniformly distributed random variables in F

n
2, we can define

Pk(f ) = P [f (U1 + · · · + Uk) + f (U1) + · · · + f (Uk) �= 0].
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Note that the BLR test corresponds to the particular case of k = 2.

3 Improved bounds on the probability of failure of existing affinity
tests

We consider the test of whether a function is affine by checking whether f (u1 +· · ·+uk)+
f (u1)+· · ·+f (uk) = 0, for some fixed odd integer k. We examine the relationship between
the probability Pk(f ) of failing this test and dA(f ), the nonlinearity of f . It is well known,
and easy to prove, that f is affine if and only if Pk(f ) = 0.

A lower bound for P3(f ) was proven in [1, Lemma 5.1] (with x = dA(f )):

P3(f ) ≥ max

(
8x(1 − x)

(
1

2
− x

)
, 2x(1 − x)

)

=
{

8x(1 − x)
(

1
2 − x

)
if x ≤ 1

4

2x(1 − x) if x > 1
4 .

(6)

The following lower and upper bounds were given in [14] for k odd (we reformulated
them to use the normalized version):

1

2

(
1 − 2n (1 − 2dA(f ))k+1

)
≤ Pk(f ) ≤ 1

2

(
1 − 1

2(k−1)n/2

)
. (7)

We improve on the bounds (7) as follows:

Theorem 2 Let f : Fn
2 → F2 and let k ≥ 2 be an integer. Then:

1

2

(
1 − (1 − 2x)k−1

)
≤ Pk(f ), (8)

where x = dA(f ) if k is odd, and x = dL(f ) if k is even.
For k odd we have the upper bound Pk(f ) ≤ Upperk(dA(f )), where

Upperk(x) = 1

2

(
1 − (1 − 2x)k+1

)
. (9)

If we allow the bound to also depend on n, we have the improved bound Pk(f ) ≤
Uppern,k(dA(f )), where

Uppern,k(x) = 1

2

(
1 − (1 − 2x)k+1 − 1

(2n − 1)
k−1

2

(4x(1 − x))
k+1

2

)
. (10)

Proof In [8, Theorem 3.1], [14, Theorem 2] (and, for k ≤ 3, in [1]) the following expression
for Pk is obtained (we reformulate it for the normalized versions of the Walsh transform and
nonhomomorphicity):

Pk(f ) = 1

2

⎛

⎝1 −
∑

u∈Fn
2

(W(f̂ )(u))k+1

⎞

⎠ , (11)

where f̂ (x) = (−1)f (x) and W(f̂ ) is the Walsh transform of f .

464 Cryptography and Communications (2022) 14:459–481



In order to obtain the lower bound in the statement we need an upper bound on the sum∑
u∈Fn

2
(W(f̂ )(u))k+1, which we obtain by a technique similar to the one of [1]:

∑

u∈Fn
2

(
W(f̂ )(u)

)k+1 ≤ max
u∈Fn

2

(
W(f̂ )(u)

)k−1 ∑

u∈Fn
2

(W(f̂ )(u))2 = max
u∈Fn

2

(
W(f̂ )(u)

)k−1
,

where the last equality uses Parseval’s identity (4). Using (5), we obtain (8) as follows:

max
u∈Fn

2

(
W(f̂ )(u)

)k−1 =

⎧
⎪⎨

⎪⎩

(
maxu∈Fn

2
W(f̂ )(u)

)k−1
if k is even

(
maxu∈Fn

2
|W(f̂ )(u)|

)k−1
if k is odd

=
{

(1 − 2dL(f ))k−1 if k is even

(1 − 2dA(f ))k−1 if k is odd.

When k is odd (so the exponent k + 1 is even), all the terms in the sum in (11) are
non-negative, so a simple lower bound for this sum is

∑

u∈Fn
2

(
W(f̂ )(u)

)k+1 ≥ max
u∈Fn

2

(
W(f̂ )(u)

)k+1 =
(

max
u∈Fn

2

|W(f̂ )(u)|
)k+1

= (1−2dA(f ))k+1,

which gives the upper bound (9). For the bound (10), let u0 ∈ F
n
2 be such that |W(f̂ )(u0)| =

maxu∈Fn
2
|W(f̂ )(u)|. We have

∑

u∈Fn
2

(
W(f̂ )(u)

)k+1 = |W(f̂ )(u0)|k+1 +
∑

u∈Fn
2\{u0}

((
W(f̂ )(u)

)2
) k+1

2

.

Recall that the weighted power means inequality states that for any integers m ≥ 1, j ≥ 2

and any positive real numbers a1, . . . , am we have
∑m

i=1
1
m

a
j
i ≥

(
1
m

∑m
i=1 ai

)j

(see for

example [4, Chapter III]). Using this inequality and Parseval’s identity, we obtain

∑

u∈Fn
2\{u0}

((
W(f̂ )(u)

)2
) k+1

2 ≥ 2n − 1

(2n − 1)
k+1

2

⎛

⎝
∑

u∈Fn
2\{u0}

(W(f̂ )(u))2

⎞

⎠

k+1
2

= 1

(2n − 1)
k−1

2

(
1 − |W(f̂ )(u0)|2

) k+1
2

.

Substituting |W(f̂ )(u0)| = 1 − 2dA(f ), we obtain (10).

Note that for k ≥ 3 odd, the bounds in the theorem above are better than the bounds (7).

The lower bound in (7) is negative when dA(f ) < 1
2

(
1 − 1

2
n

k+1

)
, so it does not provide

any useful information in that range. When it is positive, it is still always smaller than
the lower bound in (8), only reaching equality when dA(f ) attains its maximum value,

namely 1
2

(
1 − 1

2
n
2

)
. The upper bound in (7) does not depend on dA(f ), whereas the one

in (10) increases continuously from 0 to 1
2

(
1 − 1

2(k−1)n/2

)
as dA(f ) increases from 0 to

1
2

(
1 − 1

2
n
2

)
.

465Cryptography and Communications (2022) 14:459–481



We examine the tightness of the bounds in Theorem 2. The upper bound (9) cannot be
reached (except for the trivial case dA(f ) = 0 and Pk(f ) = 0) because Uppern,k(x) <

Upperk(x) for 0 < x < 0.5. Note however that Upperk(x) is the limit of Uppern,k(x), as n

approaches infinity. We found experimentally functions f for which Pk(f ) is very close to
the upper bound Upperk(dA(f )), while dA(f ) covers many values throughout the interval
(0, 0.5), see the last graph in the Appendix. We suspect therefore that this upper bound
cannot be improved much (as a bound which is independent of n).

The examples below present functions for which the upper bound (10) as well as the
lower bound in Theorem 2 are attained.

Example 3 For n even and k odd, consider a bent function in n variables, for example
f (x1, . . . , xn) = x1x2 + x3x4 + · · · + xn−1xn. The nonlinearity achieves the maximum

possible value for a function in n variables, namely dA(f ) = 1
2

(
1 − 1

2
n
2

)
. All the Walsh

coefficients of a bent function are equal to ± 1

2
n
2

, with 2n−1 + 2
n
2 −1 having one sign and

2n−1 − 2
n
2 −1 the opposite sign. Using (11) we can compute

Pk(f ) = 1

2

(
1 − 2n

(
1

2
n
2

)k+1
)

= 1

2

(
1 −

(
1

2
n
2

)k−1
)

= 1

2

(
1 − (1 − 2dA(f ))k−1

)
.

Note that in this case
1

2

(
1 − (1 − 2dA(f ))k−1

)
= Pk(f ) = Uppern,k(dA(f ))

so both the lower bound (8) and the upper bound (10) are attained.

Example 4 Consider the function f (x1, . . . , xn) = x1x2 · · · xn with n ≥ 2. The Walsh
coefficients can be easily computed directly from the definition:

W(f̂ )(u1, . . . , un) =
{

1 − 1
2n−1 if (u1, . . . , un) = (0, . . . , 0)

1
2n−1 (−1)1+∑n

i=1 ui otherwise.

The nonlinearity is dA(f ) = 1
2n . Using (11) we have for k odd

Pk(f ) = 1

2

(
1 −

(
1 − 1

2n−1

)k+1

− (2n − 1)

(
1

2n−1

)k+1
)

= 1

2

(
1 − (2n−1 − 1)k+1 + (2n − 1)

2(n−1)(k+1)

)
.

One can verify that in this case Pk(f ) = Upperk,n(dA(f )) so the upper bound (10) is

attained.

Example 5 Consider an arbitrary function in m variables, f ′(x1, . . . , xm). We can view it
as a function in a larger number n of variables for any n ≥ m by defining f (x1, . . . , xn) =
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f ′(x1, . . . , xm). We show that f and f ′ have the same nonlinearity and Pk(f ) =
Pk(f

′). To this end, we examine the Walsh transform. Denoting x′ = (x1, . . . , xm)

and x′′ = (xm+1, . . . , xn), as well as, y′ = (y1, . . . , ym) and y′′ = (ym+1, . . . , yn),
we have

W(f̂ )(x1, . . . , xn) = 1

2n

∑

(y′,y′′)∈Fn
2

(−1)f (y′,y′′)+x′·y′+x′′·y′′

=
⎛

⎜⎝
1

2n−m

∑

y′′∈Fn−m
2

(−1)x
′′·y′′

⎞

⎟⎠

⎛

⎝ 1

2m

∑

y′∈Fm
2

(−1)f
′(y′)+x′·y′

⎞

⎠

= W(f̂ ′)(x′) 1

2n−m

∑

y′′∈Fn−m
2

(−1)x
′′·y′′

=
{

W(f̂ ′)(x′) if x′′ = 0

0 otherwise,
(12)

by using [5, Lemma 2.9]. Therefore we conclude that dA(f ) = dA(f ′) using (5); also
Pk(f ) = Pk(f

′) using (11).
We consider now the function f (x1, . . . , xn) = x1x2 +x3x4 +· · ·+xm−1xm with m even

and m ≤ n and let k be odd. Using the argument above and the computation in Example 3 we

know that dA(f ) = 1
2

(
1 − 1

2
m
2

)
and Pk(f ) = 1

2

(
1 − (1 − 2dA(f ))k−1), so this function

reaches the lower bound in Theorem 2 as well.

Summarising the examples above, for each fixed number of variables n and each odd k,
the upper bound Uppern,k in Theorem 2 is reached at nonlinearity 1

2n (which is the lowest

possible non-zero nonlinearity) and if n is even, also at 1
2

(
1 − 1

2
n
2

)
(which is the highest

possible nonlinearity). The lower bound in Theorem 2 is reached for nonlinearities 1
2n as

well as all nonlinearities of the form 1
2

(
1 − 1

2
m
2

)
for m even, m ≤ n, i.e. 1

4 , 3
8 , 7

16 , . . ., for

m = 2, 4, 6, . . ., respectively. In between these values, the lower bound might not be tight.
Indeed for dA(f ) < 1

4 , (6) provides a better lower bound for k = 3.
We conjectured in [11] that the lower bound (6) can be generalized to arbitrary odd k ≥ 3,

as follows:

Conjecture 6 ([11]) For any odd k ≥ 3, putting x = dA(f ), we have

Pk(f ) ≥ 1

2
max

(
1 − (1 − 2x)k+1 − 2k+1xk(1 − x), 1 − (1 − 2x)k−1

)

=
{

1
2

(
1 − (1 − 2x)k+1 − 2k+1xk(1 − x)

)
if x ≤ 1

4
1
2

(
1 − (1 − 2x)k−1

)
if x > 1

4 .
(13)

In the next section we will prove this conjecture.
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4 Reformulated conjecture and its proof

Theorem 7 Let f be a Boolean function in n variables, k ≥ 2 an integer and
� a linear function in n variables if k is even or an affine function if k is odd.
Then

Pk(f ) = 1

2

(
1 − (1 − 2d(f, �))k+1 + (−1)k+12k+1

(
d(f, �)k+1 − sl(f, �)

))
, (14)

where for any Boolean function h in n variables sl(f, h) (called the “slack” in [1]) is
defined as

sl(f, h) = P

(
f (u1) �= h(u1), . . . , f (uk) �= h(uk), f

(
k∑

i=1

ui

)
�= h

(
k∑

i=1

ui

))

with the probability taken over all u1, . . . , uk ∈ F
n
2 .

Proof The first part of the proof follows the lines of [1, Lemma 2.3]. Denote x = d(f, �).
Let u1, . . . , uk ∈ F

n
2 and denote uk+1 = ∑k

i=1 ui . The function f fails the test f (u1 +
· · · + uk) + f (u1) + · · · + f (uk) = 0 exactly for those values u1, . . . , uk for which an
odd number of the values f (u1) − �(u1), . . . , f (uk+1) − �(uk+1) are equal to 1 (note that
� always passes the test). Denote by Aj the probability that the first j of these k + 1 values
are equal to 1 and the rest are equal to 0, i.e.

Aj := P
(
g(u1) = 1, . . . , g(uj ) = 1, g(uj+1) = 0, . . . , g(uk+1) = 0

)
,

where, for ease of notation, we denoted g = f − �, and the probability is taken over all
the 2kn elements of the set V = {(u1, . . . , uk+1) ∈ (Fn

2)k+1 : ∑k+1
i=1 ui = 0}. For any

subset I ⊆ {1, . . . , k + 1} of cardinality j , Aj also equals the probability (again over all
(u1, . . . , uk+1) ∈ V ) that g(ui) = 1 for all i ∈ I and g(ui) = 0 for all i ∈ {1, . . . , k +
1} \ I . Therefore, taking into account that there are

(
k + 1

j

)
subsets of cardinality j ,

we obtain

Pk(f ) =
∑

1≤j≤k+1
j odd

(
k + 1

j

)
Aj .

For each fixed i, the probability P(f (ui) − �(ui) = 1) over all ui ∈ F
n
2 equals x = d(f, �).

For any j with 0 ≤ j ≤ k we have

Aj = P
(
g(u1) = 1, . . . , g(uj ) = 1, g(uj+1) = 0, . . . , g(uk) = 0

)

−P
(
g(u1) = 1, . . . , g(uj ) = 1, g(uj+1) = 0, . . . , g(uk) = 0, g(uk+1) = 1

)

= xj (1 − x)k−j − Aj+1 = · · ·

=
k∑

i=j

(−1)i−j xi(1 − x)k−i + (−1)k−j+1Ak+1.
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We obtain

Pk(f ) =
∑

1≤j≤k+1
j odd

(
k + 1

j

) k∑

i=j

(−1)i−j xi(1 − x)k−i

+Ak+1

∑

1≤j≤k+1
j odd

(−1)k−j+1
(

k + 1
j

)
. (15)

In the second part of the proof we will obtain a closed form for the formula above. Firstly,
let us process the inner sum in (15); we replace the index of summation by u = i − j and
then use the well-known identity an − bn = (a − b)(an−1 + an−2b + · · · + bn−1):

k∑

i=j

(−1)i−j xi(1 − x)k−i =
k−j∑

u=0

(−1)uxu+j (1 − x)k−j−u

= xj

k−j∑

u=0

(−x)u(1 − x)k−j−u

= xj (1 − x)k+1−j − (−x)k+1−j

(1 − x) − (−x)

= xj (1 − x)k+1−j − (−1)k+1−j xk+1.

Substituting this in (15) and since (−1)k+1−j = −(−1)k+1, when j is odd, we obtain

Pk(f ) =
∑

1≤j≤k+1
j odd

(
k + 1

j

)
xj (1−x)k+1−j +(−1)k+1(xk+1 −Ak+1)

∑

1≤j≤k+1
j odd

(
k + 1

j

)
. (16)

We note that the first sum consists of alternating terms of a binomial expansion. The
following result is therefore useful:

∑

0≤j≤m
j odd

(
m

j

)
ajbm−j = 1

2

(
(a + b)m − (−a + b)m

)
, (17)

where m ≥ 1 is an integer and a, b indeterminates. This is a known result, but for a quick
proof, we denote by A and B the following quantities

A =
∑

0≤j≤m
j odd

(
m

j

)
ajbm−j = −

∑

0≤j≤m
j odd

(
m

j

)
(−a)j bm−j ,

B =
∑

0≤j≤m
j even

(
m

j

)
ajbm−j =

∑

0≤j≤m
j even

(
m

j

)
(−a)j bm−j ,

and use the fact that A + B = (a + b)m and −A + B = (−a + b)m. For a = b = 1, (17)
becomes

∑

0≤j≤m
j odd

(
m

j

)
= 2m−1. (18)
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Using Equations (17), (18) and Ak+1 = sl(f, �) in (16), we obtain (14):

Pk(f ) = 1

2

(
(x + 1 − x)k+1 − (−x + 1 − x)k+1

)
+ (−1)k+12k(xk+1 − Ak+1)

= 1

2

(
1 − (1 − 2x)k+1 + (−1)k+12k+1(xk+1 − sl(f, �))

)
.

This concludes the proof.

We are now ready to prove Conjecture 6; we will, in fact, prove a more general result
that also includes the case of k even.

Corollary 8 For odd k we have Pk(f ) ≥ Lowerk(dA(f )) and for even k we have Pk(f ) ≥
Lowerk(dL(f )) where Lowerk(x) equals

{
1
2 max

(
1 − (1 − 2x)k+1 − 2k+1xk(1 − x), 1 − (1 − 2x)k−1

)
if k is odd

1
2 max

((
1 − (1 − 2x)k+1 − 2k+1xk+1

)
, 1 − (1 − 2x)k−1

)
if k is even.

In more detail, for k odd we have

Lowerk(x) =
{

1
2

(
1 − (1 − 2x)k+1 − 2k+1xk(1 − x)

)
if x < 1

4
1
2

(
1 − (1 − 2x)k−1

)
if x ≥ 1

4 .

Proof Put Hk(x) = 1
2

(
1 − (1 − 2x)k−1

)
and

Gk(x) =
{

1
2

(
1 − (1 − 2x)k+1 − 2k+1xk(1 − x)

)
if k is odd

1
2

((
1 − (1 − 2x)k+1 − 2k+1xk+1

))
if k is even.

The Hk(x) component of the lower bound was proven in Theorem 2, so we concentrate on
the Gk(x) component.

For k even, Theorem 7 gives

Pk(f ) = 1

2

(
1 − (1 − 2d(f, �))k+1 − 2k+1d(f, �)k+1 + 2k+1sl(f, �)

)
(19)

for any linear function �. Using the fact that sl(f, �) ≥ 0 and choosing � to be a linear
function whose distance to f is minimal, we obtain Pk(f ) ≥ Gk(dL(f )) as required.

For any function h (affine or not) we have

sl(f, h) ≤ P (f (u1) �= h(u1), . . . , f (uk) �= h(uk)) = d(f, h)k

with the probability taken over all tuples (u1, . . . , uk) ∈ (Fn
2)k . Combining this inequality

with Theorem 7 for k odd gives

Pk(f ) ≥ 1

2

(
1 − (1 − 2d(f, �))k+1 + 2k+1

(
d(f, �)k+1 − d(f, �)k

))
(20)

for any affine function �. Choosing � to be an affine function whose distance to f is
minimal, we obtain Pk(f ) ≥ Gk(dA(f )) as required.

Surely, we can ask ourselves whether it is possible that another affine/linear function
(for k odd/even) say �1, which is further from f , i.e. d(f, �1) > d(f, �0), could yield a
better lower bound, i.e. Gk(d(f, �1)) > Gk(d(f, �0)). This is not the case, and we give
a sketch of the proof for k odd. Firstly, the reader can verify that Gk(x) ≥ 0 on [0, 0.5],
Gk(x) ≤ 0 on [0.5, 1], and that on the interval [0.25, 0.5], the function Gk is monotonically
decreasing. Therefore, when d(f, �0) ≥ 0.25, keeping in mind that 0 ≤ d(f, �0) < 0.5 and
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d(f, �0) < d(f, �1) ≤ 1, we have indeed Gk(d(f, �1)) ≤ Gk(d(f, �0)). Secondly, when
d(f, �0) < 0.25, the triangle inequality gives

d(f, �1) ≥ d(�1, �0) − d(f, �0) ≥ 0.5 − d(f, �0) ≥ 0.25.

Therefore Gk(d(f, �1)) ≤ Gk(0.5 − d(f, �0)) by the same argument as above. To show that
Gk(0.5 − d(f, �0)) ≤ Gk(d(f, �0)) we compute

Gk(x) − Gk(0.5 − x) = 2x(1 − 2x)((1 − 2x)k−1 − (2x)k−1),

which is greater than or equal to zero on [0, 0.25].
Finally, the more explicit expression (19) for k odd is obtained by verifying that Gk(x) >

Hk(x) when x ∈
[
0, 1

4

)
, Gk(x) < Hk(x) when x ∈

[
1
4 , 1

2

]
, and Gk(

1
4 ) = Hk(

1
4 ). A similar

situation happens for k even, but the intersection of the two functions does not occur at 1
4 ,

but at a point whose value depends on k, and is in the interval
[

1
4 , 1

3

]
.

The new lower bound in Corollary 8 is attained for k odd by some functions with
nonlinearity in the range 0 < dA(f ) < 1

4 and for k even by some functions with
0 < dL(f ) < 1

4 :

Example 9 Let f (x1, x2, . . . , xn) = x1x2 · · · xm with 3 ≤ m ≤ n. Using the computations
in Example 4 and the same arguments as in Example 5 we see that dA(f ) = dL(f ) = 1

2m

and the Walsh spectrum consists of one element equal to 1 − 1
2m−1 , 2m−1 elements equal to

1
2m−1 , and 2m−1 − 1 elements equal to − 1

2m−1 , the remaining elements being zero.
For k odd, like in Example 4 we compute

Pk(f ) = 1

2

(
1 − (2m−1 − 1)k+1 + (2m − 1)

2(m−1)(k+1)

)
.

On the other hand, computing Lowerk(x) defined in Corollary 8 for x = dA(f ) = 1
2m we

obtain

Lowerk(dA(f )) = 1

2

(
1 −

(
1 − 1

2m−1

)k+1

− 2k+1 1

2mk

(
1 − 1

2m

))

= 1

2

(
1 − (2m−1 − 1)k+1 + (2m − 1)

2(m−1)(k+1)

)
,

so the lower bound is attained.
For k even we compute using (11)

Pk(f ) = 1

2

(
1 −

(
1 − 1

2m−1

)k+1

− 2m−1
(

1

2m−1

)k+1

+ (2m−1 − 1)

(
1

2m−1

)k+1
)

= 1

2

(
1 −

(
1 − 1

2m−1

)k+1

−
(

1

2m−1

)k+1
)

= Lowerk

(
1

2m

)
,

so again the lower bound is attained.
This shows that for each fixed n our lower bound is attained at nonlinearity (for k odd) or

dL(f ) (for k even) equal to 1
8 , 1

16 , 1
32 , . . . , 1

2n , but in between these values, the bound might
not be tight.
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While not the purpose of this paper, we get an interesting consequence of the previous
theorem, namely an upper bound for the moments of the Walsh coefficients.

Corollary 10 For any integer k ≥ 2, the (k + 1)-st moments of the Walsh transform satisfy

∑

u∈Fn
2

(W(f̂ )(u))k+1 ≤
{

min(yk+1 + (1 − y)k(1 + y), yk−1) if k is odd

min(yk+1 + (1 − y)k+1, yk−1) if k is even,

where y = maxu∈Fn
2
|W(f̂ )(u)| for k odd and y = maxu∈Fn

2
(W(f̂ )(u)) for k even.

Proof The claim follows by using (5), (11) and the previous corollary.

5 Affinity tests using linearity tests and bounds on the probability of
failure

In this section we focus on the test f (u1 + · · · + uk) + f (u1) + · · · + f (uk) = 0 for k

even, and on the probability Pk(f ) of failing this test. It is shown in [14] that f is linear if
and only if Pk(f ) = 0; moreover, f is affine if and only if Pk(f ) ∈ {0, 1}. The test can
therefore be used as a probabilistic affinity test as follows: run the test several times on f ,
and if f always passes the test (suggesting a probability of failure Pk(f ) = 0), or f always
fails the test (suggesting that Pk(f ) = 1), then declare f to be affine. Note that f +1 passes
the linearity test above for some given tuples if and only if f fails the test for those same
tuples; therefore we have Pk(f + 1) = 1 − Pk(f ). Another way of looking at this affinity
test is that we are testing both f and f + 1 for linearity, and if one of them passes all the
tests and is declared linear then f can be declared affine. Any other linearity test could be
used this way as an affinity test.

When f is not affine however (and therefore neither f nor f + 1 are linear), there are to
our knowledge no results regarding the relationship of the probability Pk(f ) of failing the
test (for k even) and the nonlinearity dA(f ) of f ; the existing lower and upper bounds on
Pk(f ) depend on dL(f ), the distance of f to the set of linear functions. Since this affinity
test is equivalent to testing both f and f + 1 for linearity, it seems natural to consider both
Pk(f ) and Pk(f + 1) when examining a connection to dA(f ). We define

P k(f ) := min(Pk(f ), Pk(f + 1)) = min(Pk(f ), 1 − Pk(f )).

and study its relation to dA(f ). Further motivation for this choice is given in Remark 12.
For k = 2, we will prove lower and upper bounds for P 2(f ) in terms of the nonlinearity of
f .

In Bellare et al. [1] lower and upper bounds were given for P2(f ) in terms of dL(f ).
Namely, it was proven that

Lower2(dL(f )) ≤ P2(f ) ≤ Upper2(dL(f ))), (21)

where Lower2, Upper2 : [0, 1
2 ] → R. The function Lower2(x) is defined as

Lower2(x) =

⎧
⎪⎨

⎪⎩

3x − 6x2 if 0 ≤ x ≤ 5
16

45
128 if 5

16 ≤ x ≤ 45
128

x if 45
128 ≤ x ≤ 1

2

(22)
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(observe that 3
16 , 5

16 are the two solutions of the equation 3x − 6x2 = 45
128 , and so, since

45
128 > 5

16 , then the value Lower2(x) = 45
128 is greater than 3x − 6x2 on the interval 5

16 ≤
x ≤ 45

128 ). The function Upper2(x) is defined as Upper2(0) = 0 and for x > 0

Upper2(x) = 3x − 6x2 + 22	log2 x
+2 + 12
(
x − 2	log2 x
)2

. (23)

We now prove bounds for P 2(f ) in terms of dA(f ), the distance to the closest
affine function, which is the natural parameter to consider when testing if a func-
tion is affine. Note that in the following theorem, although the bounds look similar
to the bounds in (21) above, there is a subtle and important difference: the bounds
are now a function of dA(f ), the distance to the closest affine function, whereas in
(21) the bounds are expressed in terms of dL(f ), the distance to the closest linear
function.

Theorem 11 Let P 2(f ) = min(P2(f ), 1−P2(f )), where P2(f ) is the probability of failure
of the BLR test. We have

Lower2 (dA(f )) ≤ P 2(f ) ≤ min

(
1

2
, Upper2(dA(f ))

)
, (24)

where dA(f ) is the nonlinearity of f and Lower2(x), Upper2(x) are as defined above in
(22), respectively, (23).

Proof We know that dA(f ) = min(dL(f ), dL(f + 1)). We can assume, without loss of
generality, that dL(f ) ≤ dL(f + 1) (otherwise, we can just replace f by f + 1, and P 2(f )

is unchanged) and therefore dA(f ) = dL(f ).
First, let us examine the function Upper2(x) more closely. If 1

4 ≤ x < 1
2 then

	log2 x
 = −2 so a simple computation shows that Upper2(x) = 6x2 − 3x + 1 in this
case. If 1

8 ≤ x < 1
4 then 	log2 x
 = −3 so Upper2(x) = 6x2 + 1

4 in this case. One

can check that the function Upper2(x) is monotonically increasing on the domain
[
0, 1

2

]
.

(It is continuous, and the derivative exists at all points except those of the form x = 1
2m

for some integer m ≥ 1. The derivative is greater than zero at all points where it exists.)

The equation Upper2(x) = 1
2 has only one solution in the interval

[
0, 1

2

]
, namely x =

1
2
√

6
∈
[

1
8 , 1

4

)
. Therefore Upper2(x) ≤ 1

2 if and only if x ≤ 1
2
√

6
(see the first graph in the

Appendix).
For the upper bound, from (21) we have

P2(f ) ≤ Upper2 (dL(f )) ,

1 − P2(f ) = P2(f + 1) ≤ Upper2 (dL(f + 1)) .

Therefore, using the fact that Upper2 is monotonic and the assumption dL(f ) ≤ dL(f + 1)

we obtain

P 2(f ) = min(P2(f ), 1 − P2(f ))

≤ min(Upper2(dL(f )), Upper2(dL(f + 1)))

= Upper2(dL(f )) = Upper2(dA(f )).
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The bound P 2(f ) ≤ 1
2 is immediate from P 2(f ) = min(P2(f ), 1 − P2(f )).

Now let us deal with the lower bound. If P2(f ) ≤ 1−P2(f ) (in other words, P2(f ) ≤ 1
2 ),

then P 2(f ) = P2(f ) ≥ Lower2(dL(f )) = Lower2(dA(f )) and we are done. Let us assume
P2(f ) > 1 − P2(f ) i.e. P2(f ) > 1

2 . From the behaviour of Upper2(x) discussed above,
we see that this can only happen when dL(f ) ≥ 1

2
√

6
. We have to prove that in this case

1 − P2(f ) ≥ Lower2(dL(f )).
Let us first consider the case 1

2
√

6
≤ dL(f ) ≤ 1

4 . We have

P2(f ) ≤ Upper2 (dL(f )) = 6 (dL(f ))2 + 1

4
, (25)

therefore

1 − P2(f ) ≥ 1 − 6 (dL(f ))2 − 1

4
= 3

4
− 6 (dL(f ))2

≥ 3dL(f ) − 6 (dL(f ))2 = Lower2 (dL(f )) ,

where the last inequality uses the fact that dL(f ) ≤ 1
4 .

Next assume that 1
4 < dA(f ). Consider first the subcase 1

4 ≤ dA(f ) < 5
16 . We have:

P2(f ) ≤ Upper2 (dL(f ))

and therefore using the fact that Upper2(x) = 6x2 − 3x + 1 when x ≥ 1
4 we have

1 − P2(f ) ≥ 1 − Upper2 (dL(f )) = 3dL(f ) − 6 (dL(f ))2 = Lower2 (dL(f )) . (26)

Finally, let us consider the subcase dA(f ) ≥ 5
16 . We have

1 − P2(f ) = P2(f + 1) ≥ Lower2 (dL(f + 1)) ≥ Lower2 (dL(f )) , (27)

with the last inequality based on the fact that 5
16 < dL(f ) ≤ dL(f + 1) and Lower2(x) is

monotonically increasing when the argument is above 5
16 .

Remark 12 One might wonder if the situation where dL(f ) ≤ dL(f + 1) and P2(f ) >

P2(f + 1), which is the non-straightforward case in the proof of Theorem 11, does even
happen in practice. Experimentally, we did find such functions, but they seemed to be rel-
atively rare. For example, for n = 6 and n = 7, we generated several random functions
for each possible nonlinearity and we only observed that behaviour in a proportion of less
than 0.06 of them. Therefore it is a reasonable heuristic, but only a heuristic, to assume
that whichever of the functions f and f + 1 achieves min(P2(f ), P2(f + 1)) also achieves
min(dL(f ), dL(f + 1)). It also justifies our choice to examine min(P2(f ), P2(f + 1)) for
its correlation to dA(f ) = min(dL(f ), dL(f + 1)).

As a byproduct of the proof of Theorem 11, we can also obtain bounds on how large
the difference P2(f ) − P2(f + 1) can be when dL(f ) ≤ dL(f + 1). Namely, denoting

x = dL(f ), we have the following cases. When x ∈
[
0, 1

2
√

6

]
we cannot have P2(f ) >

P2(f + 1). When x ∈
(

1
2
√

6
, 1

2

]
both P2(f ) ≤ P2(f + 1) and P2(f ) > P2(f + 1) are
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possible. If the latter happens, when x ∈
(

1
2
√

6
, 1

4

]
we obtain from (25) that P2(f )−P2(f +

1) = 2P2(f ) − 1 ≤ 12x2 − 1
2 ≤ 1

4 ; when x ∈
(

1
4 , 1

2

]
we obtain from (26) and (27) that

P2(f ) − P2(f + 1) = 2P2(f ) − 1 ≤ 1 − 2Lower2(x) ≤ 38
128 ≈ 0.296.

By contrast, for arbitrary functions f, g such that dL(f ) < dL(g) but P2(f ) > P2(g),
the difference P2(f ) − P2(g) can be larger, approaching 0.5. For example, for any integer
t ≥ 2 consider the functions f (x) = 1+x1x2 · · · xt and g(x) = x1x2+x3x4+· · ·+x2t−1x2t .
Using the calculations in Examples 3, 4, 5 and 9, we have that dL(f ) = 1

2 − 1
2t < 1

2 − 1
2t+1 =

dL(g), and P2(f ) > P2(g) with a difference

P2(f ) − P2(g) = 1

2
− 3

2t
+ 13

22t+1
−→
t→∞

1

2
.

An improvement of the lower bound for the BLR linearity test (21) is given in [9].
Namely, it is shown that P2(f ) ≥ H(dL(f )), where

H(x) =
{

3x − 6x2 if 0 ≤ x < 5
16

max
(

45
128 , min(g1(x), g2(x))

)
if 5

16 ≤ x ≤ 1
2 ,

(28)

where for any constant 0 < c ≤ 1
2 , g1, g2 are defined as

g1(x) = x + cx(1 − 2x)4,

g2(x) = x + 212
(

1 − 5

4
c + 1

8
c2
)

x3(1 − 2x)12.

Note that this is indeed an improved lower bound as Lower2(x) ≤ H(x) and the inequality

is strict on the interval
(

45
128 , 1

2

)
. The analogue of Theorem 11 holds for this improved bound

as well.

Proposition 13 With the notations in Theorem 11, we have P 2(f ) ≥ H (dA(f )), where
H(x) is as defined above in (28).

Proof Examining the proof of Theorem 11 we see that for the lower bound in the inter-

val
[

5
16 , 1

2

]
the only property that is used is that it is monotonically increasing. It suffices

therefore to show that min(g1, g2) is monotonically increasing. We compute g′
1 and g′

2, the
derivatives of g1 and g2, and show that they are positive on the specified domain. Namely,
0 < c ≤ 1

2 implies 0 < 1 − 5
4c + 1

8c2 ≤ 1; further, 5
16 ≤ x ≤ 1

2 implies 1 − 2x ≤ 3
8 ,

10x − 1 ≤ 4 and x(1 − 2x) ≤ 15
27 . Therefore,

g′
1(x) = 1 − c(1 − 2x)3(10x − 1) ≥ 1 − 1

2
· 33

83
· 4 = 1 − 33

28
> 0,

g′
2(x) = 1 − 3 · 212

(
1 − 5

4
c + 1

8
c2
)

x2(1 − 2x)11(10x − 1)

≥ 1 − 3 · 212 · 152

214
· 39

89
· 4 = 1 − 312 · 52

227
> 0.

This concludes the proof.
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6 Estimating nonlinearity

The above affinity tests can be used to estimate the nonlinearity of a Boolean function.
The probability of failing a test can be estimated by running the test several times and
using statistical methods such as the binomial proportion confidence interval (see [14]). The
bounds will then allow to give an interval for the value of the nonlinearity as per (1) and (2).
For simplicity, we will assume that we have obtained an exact value for Pk(f ) (in practice
we will actually obtain a confidence interval). We will examine each test in turn. The graphs
in the Appendix will aid the discussion.

We first look at the affine test based on the BLR test, as described in Section 5. The first
graph in the Appendix displays the lower and upper bound described in Theorem 11. Thus,
for values of 0 ≤ P 2(f ) < y

(2)
1 = 45

128 = 0.3515625 we can estimate the nonlinearity with
good precision as being in the interval dA(f ) ∈ [

Upper2
−1(P 2(f )), Lower2

−1(P 2(f ))
]

.
The length of this interval increases with P 2(f ) to a length of approximately 0.058. For
P 2(f ) = 45

128 we get

dA(f ) ∈
[

Upper2
−1
(

45

128

)
,

3

16

]
∪
[

5

16
,

45

128

]
.

For 45
128 < P 2(f ) < 1

4 , Lower2
−1(P 2(f )) = {α(2)(P 2(f )), β(2)(P 2(f )), P 2(f )}, where

0 < α(2)(y) ≤ β(2)(y) < 5
16 are the two roots of the equation 3x − 6x2 = y in this domain.

We obtain two disjoint intervals where dA(f ) might be:

dA(f ) ∈
[
Upper2

−1(P 2(f )), α(2)(P 2(f ))
]

∪
[
β(2)(P 2(f )), P 2(f )

]
.

Finally, for P 2(f ) ≥ 1
4 , the interval for dA(f ) is

[
Upper2

−1(P 2(f )), P 2(f )
]
. The estimate

for dA(f ) becomes less and less precise (the interval length increases) as P 2(f ) increases.

When P 2(f ) reaches 1
2 , we obtain dA(f ) ∈

[
1

2
√

6
, 1

2

)
, an interval of length approximately

0.295.
Next we look at the nonhomomorphicity test f (u1 +· · ·+uk)+f (u1)+· · ·+f (uk) = 0

with odd k ≥ 3. We use the upper bound Upperk described in Theorem 2 and the lower
bound Lowerk described in Corollary 8, illustrated for k = 3, 5 in the second and third
graph in the Appendix.

As x increases in the interval [0, 0.5], Upperk(x) increases, whereas Lowerk(x) first

increases from 0 to a local maximum y
(k)
2 , then decreases to a value of y

(k)
1 = 1

2

(
1 − 1

2k−1

)

(reached for x = 1
4 ) and increases again to 0.5. Consequently, we have three cases. When

0 ≤ Pk(f ) < y
(k)
1 we have that

dA(f ) ∈
[

1

2

(
1 − k+1

√
1 − 2Pk(f )

)
, α(k)(Pk(f ))

]
,

where for each 0 ≤ y ≤ 0.5 we denote by 0 < α(k)(y) ≤ β(k)(y) < 1
2 the two roots of the

equation 1
2

(
1 − (1 − 2x)k+1 − 2k+1xk(1 − x)

) = y. The length of this interval increases
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as Pk(f ) increases from 0 to y
(k)
1 (for illustration, it increases to a value of 0.028, 0.016 and

0.011 for k = 3, 5 and 7, respectively).
When y = Pk(f ) ∈ [y(k)

1 , y
(k)
2 ], we have that

dA(f ) ∈
[

1

2

(
1 − k+1

√
1 − 2y

)
, α(k)(y)

]
∪
[

β(k)(y),
1

2

(
1 − k−1

√
1 − 2y

)]
.

Finally, for y
(k)
2 < Pk(f ) ≤ 0.5, we have

dA(f ) ∈
[

1

2

(
1 − k+1

√
1 − 2Pk(f )

)
,

1

2

(
1 − k−1

√
1 − 2Pk(f )

)]
. (29)

Note that the less tight bounds (7) from [14] would give the considerably less accurate
estimate

dA(f ) ∈
[

0,
1

2

(
1 − k+1

√
1 − 2Pk(f )

2n

)]
.

The length of the interval produced by our estimate (29) is

1

2

(
k+1
√

1 − 2Pk(f ) − k−1
√

1 − 2Pk(f )
)

.

This quantity has a unimodal behavior: the length increases as a function of Pk(f ), peaking
at a value of

1

2

((
k − 1

k + 1

) k−1
2 −

(
k − 1

k + 1

) k+1
2
)

,

achieved when

Pk(f ) = 1

2

⎛

⎝1 −
(

k − 1

k + 1

) k2−1
2

⎞

⎠ ,

and then decreases to 0, when Pk(f ) reaches 0.5. For example, if k = 3, 5, 7, the length
of the interval peaks at a value of 0.125, 0.0741 and 0.05273, respectively (achieved when
Pk(f ) = 0.469, 0.496 and 0.4995, respectively). The maximum length of the interval is
achieved when Pk(f ) is quite close to 0.5; the larger the value of k, the smaller the maximum
length of the interval, that is, the more precisely we can estimate the nonlinearity.

We summarize these results in Table 1, which contains, for different values of k, the
maximum length of the interval obtained when estimating the nonlinearity. The length is

Table 1 Precision of estimating the nonlinearity

k Length of interval for dA Length of interval for dA
when Pk is low when Pk is high

2 ≤ 0.058 ≤ 0.295

P 2 ≤ 0.3515625 0.3515625 ≤ P 2 ≤ 0.5

3 ≤ 0.028 ≤ 0.125

P3 ≤ 0.375 0.375 ≤ P3 ≤ 0.5

5 ≤ 0.016 ≤ 0.0741

P5 ≤ 0.46875 0.46875 ≤ P5 ≤ 0.5

7 ≤ 0.011 ≤ 0.05273

P7 ≤ 0.492188 0.492188 ≤ P7 ≤ 0.5
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Table 2 Examples of estimating the nonlinearity

Function dA k = 3, estimated dA k = 5, estimated dA k = 7, estimated dA

x1x2
1
4

[
1
4 − 0.10355, 1

4

] [
1
4 − 0.06498, 1

4

] [
1
4 − 0.0473, 1

4

]

x1x2 + x3x4
3
8

[
3
8 − 0.125, 3

8

] [
3
8 − 0.07343, 3

8

] [
3
8 − 0.05178, 3

8

]

x1x2 + x3x4
7
16

[ 7
16 − 0.11428, 7

16

] [ 7
16 − 0.06250, 7

16

] [ 7
16 − 0.04261, 7

16

]

+x5x6

x1x2 + x3x4
31
32

[
31
32 − 0.09375, 31

32

] [
31
32 − 0.04750, 31

32

] [
31
32 − 0.03125, 31

32

]

+x5x6 + x7x8

x1x2x3
1
8

[
1
8 − 7.85 · 10−3, 1

8

] [
1
8 − 5.98 · 10−4, 1

8

] [
1
8 − 5.00 · 10−5, 1

8

]

x1x2x3x4
1
16

[
1

16 − 6.82 · 10−4, 1
16

] [
1

16 − 9.30 · 10−6, 1
16

] [
1

16 − 1.42 · 10−7, 1
16

]

x1 · · · x5
1
32

[
1

32 − 7.17 · 10−5, 1
32

] [
1

32 − 2.13 · 10−7, 1
32

] [
1

32 − 7.09 · 10−10, 1
32

]

x1 · · · x6
1
64

[
1

64 − 8.26 · 10−6, 1
64

] [
1

64 − 5.73 · 10−9, 1
64

] [
1

64 − 4.47 · 10−12, 1
64

]

displayed firstly, for low values of Pk(f ), namely the values in the interval [0, y
(k)
1 ] dis-

cussed above. Secondly, the last column displays the maximum length of the interval for the
remaining (higher) values of Pk(f ).

We also present in Table 2 the estimate of the nonlinearity dA that would be obtained
by this method for a few examples of functions, and compare it with the true value of
the nonlinearity. The examples in this table are the ones in Example 5, f (x1, . . . , xn) =
x1x2 + · · · + xm−1xm with m = 2, 4, 6, 8 and n ≥ m and the functions in Example 9 of
the type f (x1, . . . , xn) = x1x2 · · · xm with m = 3, 4, 5, 6 and n ≥ m. We observe that
for all these functions, the true value of the nonlinearity is at the top end of the estimated
interval.

We also examined experimentally random functions in up to 9 variables (see the fourth
figure in the Appendix), plotting the probability of failure P3(f ) as a function of the
nonlinearity dA(f ). To obtain data for each possible value of the nonlinearity we started
by randomly generating several functions for each possible weight lower than 0.5. We
then computed their nonlinearity (for weights lower than 0.25 it is equal to the weight
of the function, as the function is closer to the all-zero function than to any other affine
function; for higher weights, the nonlinearity can be different from the weight, but many
functions will have a nonlinearity close to their weight). We noticed that for functions
in 7 or more variables most of the functions in our data have probability P3 of failing
the test close to the upper bound for P3. This translates to the true value of the nonlin-
earity being at the low end of the estimated interval. We observed a similar situation for
k = 5, 7.

To conclude this section, we note that each test we considered is quite accurate in esti-
mating nonlinearity when the probability of failing the test is small (and consequently the
nonlinearity of the function is small), but the accuracy decreases as the probability of fail-
ing the test increases. If we were to apply different tests to the same function, we note that
the estimated interval for the nonlinearity is least accurate when using the affinity test based
on the BLR test. The tests based on (k + 1)-st order nonhomomorphicity with k odd have
better accuracy, and this accuracy improves as k increases.
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