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Abstract: Doxorubicin is the most frequently used chemotherapeutic agent for the treatment of
hepatocellular carcinoma. However, one major obstacle to the effective management of liver cancer
is the drug resistance derived from the cancer stem cells. Herein, we employed a CD133 aptamer
for targeted delivery of doxorubicin into liver cancer stem cells to overcome chemoresistance. Fur-
thermore, we explored the efficacy of autophagy inhibition to sensitize liver cancer stem cells to the
treatment of CD133 aptamer-doxorubicin conjugates based on the previous observation that doxoru-
bicin contributes to the survival of liver cancer stem cells by activating autophagy. The kinetics and
thermodynamics of aptamer-doxorubicin binding, autophagy induction, cell apoptosis, and self-renewal
of liver cancer stem cells were studied using isothermal titration calorimetry, Western blot analysis,
annexin V assay, and tumorsphere formation assay. The aptamer-cell binding andintracellular accumula-
tion of doxorubicin were quantified via flow cytometry. CD133 aptamer-guided delivery of doxorubicin
resulted in a higher doxorubicin concentration in the liver cancer stem cells. The combinatorial treatment
strategy of CD133 aptamer-doxorubicin conjugates and an autophagy inhibitor led to an over 10-fold
higher elimination of liver cancer stem cells than that of free doxorubicin in vitro. Future exploration of
cancer stem cell-targeted delivery of doxorubicin in conjunction with autophagy inhibition in vivo may
well lead to improved outcomes in the treatment of hepatocellular carcinoma.
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1. Introduction

Multidrug resistance is one of the main causes of chemotherapy failure in hepatocellu-
lar carcinoma (HCC). Accumulating evidence has shown that a small subset of liver cancer
cells, termed liver tumor-initiating cells or liver cancer stem cells, are responsible for the
initiation, propagation, metastasis, and treatment resistance in liver cancer [1]. Differing
from bulk cancer cells, this liver cancer stem cell subpopulation displays resistance to tradi-
tional chemotherapeutic drugs via overexpression of the ATP-binding cassette transporters
(i.e., ABCB1, ABCG2, and ABCC1), which serve as pumps to actively expel small molecular
drugs [2].

Aptamers, also known as chemical antibodies, are short single-stranded oligonu-
cleotides that can bind to their targets with high affinity and specificity. Compared with
traditional antibodies, aptamers possess several advantages, such as low production cost,
minimal batch-to-batch variation, lack of immunogenicity, prolonged shelf life, and ease
of incorporating chemical modifications for enhanced binding properties [3]. During the
past three decades, various aptamer-based drug delivery systems for either oligonucleotide
therapeutics (i.e., siRNA, antimir, antisense oligonucleotides) or chemotherapeutics have
been reported. In the current work, we endeavor to improve the targeting of liver cancer
stem cells of doxorubicin (DOX) via conjugating DOX to an aptamer against CD133, a
confirmed liver cancer stem cell marker with elevated expression in liver cancer cells [4].

Recent studies have revealed the pro-survival roles of autophagy in liver cancer stem
cells in the hypoxic and nutrient-deprived tumor microenvironment [5]. The inhibition of
autophagy led to the potentiation of the tumoricidal effects of chemotherapy, implying that
inhibition of autophagy may sensitize liver cancer stem cells to DOX.

In this study, the anti-hepatocellular carcinoma stem cell effect of the combined treat-
ment of CD133 aptamer-DOX and autophagy inhibitors was explored. Our results indicate
that while CD133 aptamer-DOX conjugate alone enables effective targeting and penetration
of liver cancer stem cells, the concomitant inhibition of autophagy inhibition can further
potentiate the capacity of CD133 aptamer-DOX in eliminating liver cancer stem cells.

2. Materials and Methods
2.1. Cell Culture

Huh7 cell line (human HCC, Japanese Collection of Research Bioresources) was kindly
provided by Dr. Liang Qiao (University of Sydney, Australia). The PLC/PRF/5 (human
HCC, ATCC CRL-8024) cell line was purchased from ATCC. These cells were cultured
in DMEM medium supplemented with 10% fetal bovine serum and 1 × Glutamax (Life
Technologies, Gaithersburg, MD, USA) in a humidified atmosphere containing 5% CO2 at
37 ◦C.

2.2. Generation and Characterization of the CD133 Aptamer-Doxorubicin Conjugates (CD133
Aptamer-DOX)

The development of CD133 aptamer-DOX, and the determination of the molar ratio
of aptamers to DOX, DOX-loading efficiency, and stability of CD133 aptamer-DOX were
performed according to our previous publication [6] with modifications described in the
Supplementary Materials.

2.3. Isothermal Titration Calorimetry (ITC)

ITC experimental parameters were set up as described in our previous publication [7],
with details described in the Supplementary Materials.

2.4. Determination of Binding Affinity

The equilibrium dissociation constant (KD) of CD133 aptamer to CD133-positive and
CD133-negative cells was determined using flow cytometry described in our previous
publication [8], with details presented in the Supplementary Materials.
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2.5. Annexin V Assay

The 7-AAD/Annexin V assay was used to determine the early- and late-stage apopto-
sis of cells. The cells were trypsinized and stained with annexin V (BioLegend, San Diego,
CA, USA; #640918, 1:20 dilution) and 7-AAD (BioLegend, San Diego, CA, USA; #420404,
1:20 dilution) for 15 min at room temperature in the dark to determine cell apoptosis.
Apoptosis was evaluated by 7-AAD/Annexin V assay using flow cytometry. The cells in
both the early and late stages of apoptosis were considered apoptotic cells.

2.6. In Vitro Tumorsphere Formation Assay

The tumorsphere assay was conducted according to our previously published proto-
col [6] with modifications described in the Supplementary Materials.

2.7. Statistical Analysis

All statistical analyses were performed using GraphPad Prism 8.0 (San Diego, CA,
USA). An unpaired t-test was used for comparisons between two experimental groups, and
one-way analysis of variance (ANOVA) was used for comparisons of more than two groups.
All analyses were two-tailed. Data normality was tested by the Kolmogorov–Smirnov test,
and parametrical statistical tests were only carried out if normality was confirmed. The
homogeneity of variance was tested by Bartlett’s test. The Dunnett or the Tukey post hoc
tests were conducted to compare every mean to a control mean or with every other mean
only if the F value in ANOVA achieved p < 0.05, and there was no significant variance
in homogeneity. Otherwise, the data were converted to logarithms for further analysis.
Unless otherwise indicated, all results were averaged from biological triplicates, and values
are reported as means ± SD. p < 0.05 was considered statistically significant.

3. Results
3.1. Development and Characterization of a CD133 Aptamer-DOX Conjugate

DOX is known to preferentially bind to double-stranded 5′-GC-3′ or 5′-CG-3′ se-
quences of DNA [9]. Previous studies in our laboratory showed that the loop of the CD133
aptamer is the main determinant for target binding [4]. Thus, the original RNA stem in
the aptamers was replaced by a DNA segment consisting of 10 repeated GC pairs for DOX
loading while maintaining the binding competence of the aptamer (Figure 1A). 2′-O-methyl
(OMe) modification has been shown to alter the three-dimensional structure of an RNA
aptamer and thus abolish its binding [10]. Therefore, an aptamer with the same sequence
as the CD133 aptamer but with a 2′-OMe modification instead of a 2′-fluoropyrimidine (F)
modification at the pyrimidines (C and U) was adopted as a negative control.

To determine the optimal molar ratio for optimal preparation of the DOX-aptamer
conjugation, we prepared the aptamer-DOX conjugates with different molar ratios of
aptamers to DOX. We measured DOX fluorescence using a plate reader. As shown in
Figure 1C, the fluorescence of DOX was progressively quenched with the increasing molar
ratios of aptamers to DOX. The fluorescence quenching reached the plateau (>90% of
quenching) at the molar ratio of aptamer: DOX of 0.27, indicating that approximately four
DOX molecules were conjugated with one CD133 aptamer molecule. The efficiency of DOX
loading onto aptamers was determined to be 96.2 ± 2.1%.

As a targeted therapy, the CD133 aptamer-DOX complex must remain stable in the
systemic circulation. On the other hand, the DOX should be released swiftly from the
aptamer after being endocytosed by the CD133-positive liver cancer cells. To investigate
the pH-dependent loading of DOX to the CD133 aptamer, we used PBS (pH 7.4) to mimic
the pH in the blood and acidified PBS (pH 5.0) to simulate the acidic environment in the
lysosomes. As shown in Figure 1D, less than 15% of DOX was released from the CD133
aptamer-DOX after incubation with PBS (pH 7.4) for 8 h. In contrast, DOX was rapidly
released from the CD133 aptamer-DOX after only 2 h incubation at a pH of 5.0. Specifically,
~89% of intercalated DOX was released from the aptamer after 72 h at pH 5.0, compared to
a 26.2% release after 72 h at the pH of 7.4. The pH-dependent release of DOX is critically
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essential for CD133 aptamer-DOX. It could potentially minimize the systemic exposure
of DOX to sensitive organs in the circulation system, particularly to reduce cardiotoxicity,
but allows rapid drug release upon entry of CD133 aptamer-DOX conjugates into the
CD133-positive cancer cells.
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Figure 1. Schematic illustration of the hybrid RNA-DNA CD133 aptamer and characterization of the
CD133 aptamer-doxorubicin conjugates (CD133-DOX). (A) The predicted secondary structure of the
CD133 aptamer. A 10-bp DNA GC stem was engineered to replace the original RNA stem in the RNA
aptamers, along with a 2′-fluoropyrimidine modification of all pyrimidines, 5′-methyl-dC in the stem,
and an Alexa 647 fluorophore conjugation to the 3′-end of the CD133 aptamer. A hexylamine cap
of the CD133 aptamer was added to the 3′-end for enhanced nuclease resistance. (B) The negative
control aptamers are aptamers of the same sequence as the CD133 aptamer but with a 2′-O-methyl
(OMe) modification instead of a 2′-fluoropyrimidine (F) modification at the pyrimidines (C and U),
which changes the three-dimensional structure of the aptamer and thus abolishes the binding of
the control aptamers to CD133. (C) In vitro pH-dependent DOX release from CD133-DOX at a pH
of 5.0 and 7.4. (D) The intercalation of DOX into the CD133 aptamer. The fluorescence quenching
of DOX (10 µM) after incubation with different aptamer concentrations (1, 2, 3, 4, 5, 6, 7, 8, 9, and
10 µM, respectively) for 30 min. (E) Isothermal titration calorimetry (ITC) of interaction between
CD133 aptamer and DOX. Left, representative raw calorimetric data for titration of CD133 aptamer
(2 µM) with serial injections of DOX solution (100 µM) (left). Right, binding isotherms resulting from
the integration of the raw calorimetric data. (F) Left, the thermodynamic signature for titration by
stepwise injection of DOX into CD133 aptamers. Right, thermodynamic parameters for DOX binding
to CD133 aptamers obtained by ITC at 25 ◦C. Data shown are means ± SD, (n = 3).

To study the kinetic and thermodynamic properties of the aptamer-DOX binding, we
employed isothermal titration calorimetry (ITC) for further characterization of the binding.
As shown in Figure 1E, the binding of DOX to CD133 aptamers resulted in a negative
peak of differential power, indicating that the aptamer-DOX interaction is exothermic. This
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finding was further confirmed by the thermodynamic profile of the aptamer-DOX binding,
as well as the kinetic and thermodynamic parameters shown in Figure 1F. The validity of
the ITC study is routinely confirmed by the Wiseman c value, in which an optimal curve
fitting results in a c between 10–500 [11]. In our experimental system, the desirable c values
ranging from 10.37 to 22.95 were achieved (Figure 1F).

The equilibrium dissociation constant (KD), dictated by the changes in Gibbs free
energy (∆G), measures the tendency of a large complex to dissociate into its components.
A low KD value indicates a high affinity of the ligand for the target. The KD for CD133
aptamer binding to DOX was 634 nM (the right panel of Figure 1E), which is considered
medium affinity [12]. Such a medium KD value is desirable for maintaining the stability
of the CD133 aptamer-DOX complex in systemic circulation while promoting effective
dissociation of DOX from the CD133 aptamer after endocytosis.

The stoichiometry parameter N represents the number of ligands that bind to the target.
In our ITC study, the N value was measured to be 4.32, indicating that approximately four
DOX molecules bound to one CD133 aptamer (Figure 1F). This finding is consistent with
the data from Figure 1C, which shows that the molar ratio of DOX vs. aptamer was
approximately 4 in the aptamer-DOX conjugates.

Enthalpy changes (∆H) reflect the change in the number and strength of the non-
covalent bond from the free state to the bound state and can be measured by ITC. Entropy
change (∆S) is the change in entropy from desolvation and conformational changes upon
binding and can be calculated as ∆S = (∆H − ∆G)/T. In our study, a negative ∆H and ∆S
value were determined, indicating ample involvement of hydrogen bonding and unfavor-
able conformational changes in this reaction, respectively (Figure 1F). Moreover, the fact
that the enthalpy changes (∆H) were higher than the change of entropy (−T∆S) indicates
that the CD133 aptamer-DOX binding is mainly driven by enthalpy changes.

Next, we determined the association rate constant (Kon) and the dissociation rate con-
stant (Koff) of the binding between the CD133 aptamer and DOX with the aid of AFFINIme-
ter software [13]. Compared with the published Kon and Koff values obtained from aptamer-
ligand interaction in the literature [14], our aptamer-DOX interaction exhibited a lower Kon
value and higher Koff value (Figure 1F). Such values indicate that once bound, DOX can be
readily released from the aptamer-DOX conjugates in the desired environment. Indeed,
such prediction is in accordance with our experimentally determined dissociation of DOX
from CD133 aptamer-DOX (Figure 1D).

3.2. The CD133 Aptamer Specifically Binds to CD133-Positive Human Liver Cancer Cells

The CD133 aptamer used in this project was previously developed in our labora-
tory [4]. Here, we investigated the interaction between CD133 aptamer and CD133-positive
expression cell lines using flow cytometry. Using an anti-CD133 antibody, we found that
35.4% of Huh7 cells and 15.5% of PLC/PRF/5 cells expressed CD133 (Supplementary
Figure S1). The Huh7 and PLC/PRF/5 cells used in the current study may represent HCC
cells from different pathological backgrounds. The difference in the origin of these two
cell lines would help to mimic the heterogeneity of the primary cells, although not com-
pletely [15]. For example, our previous studies show that these two cell lines have different
surface expression levels of drug efflux pumps (MDR1 and ABCG2), as well as different
levels of cancer stem cell surface markers (EpCAM and CD133) [16]. Furthermore, the
PLC/PRF/5 cell line was established from a patient with hepatitis B virus (HBV) infection,
which is among the main risk factors for HCC [17]. The HBV-encoded X antigen (HBx)
has been shown to promote stemness and chemoresistance via activating the PI3K/AKT
signal pathway [18–20]. In contrast, Huh7 was established from a patient without HBV in-
fection [21,22], representing the cohort of HCC patients with a very different etiology from
those infected with HBV. Indeed, the overall survival rate of HCC patients without HBV is
significantly better than that of HBV-HCC [23]. The apparent KD for the CD133 aptamer
towards the liver cancer Huh7 and PLC/PRF/5 cell lines was determined as ~27 nM and
~11 nM, respectively (Figure 2). In contrast, there was a minimum binding of the CD133
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aptamer to the CD133-negative HEK293T cell line, evidently forming a KD of >1000 nM.
The specificity of the interaction was further demonstrated by the lack of binding to target
cells by a negative control CD133 aptamer (KD > 1000 nM, Figure 2), which has an identical
nucleotide sequence but with an altered three-dimensional structure due to a different
side-chain chemical modification at 2′-pyrimidines (Figure 1B). Furthermore, upon binding
to target cells, the CD133 aptamers were efficiently internalized into CD133-positive liver
cancer cells via receptor-mediated endocytosis (Supplementary Figure S2).
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Figure 2. Characterization of the specificity of the CD133 aptamer. Alexa Fluor 647-labeled CD133
aptamers were incubated with indicated human cells and analyzed by flow cytometry. The median
fluorescence intensity (MFI) was plotted against varying concentrations of CD133 aptamer (1–400 nM).
(A) Binding of CD133 aptamer to CD133-positive Huh7 and PLC/PRF/5 cells. (B) Binding of the
negative control CD133 aptamers to Huh7 and PLC/PRF/5 cells. (C) Binding of CD133 aptamers to
CD133-negative HEK293T cells. Data shown are means ± SD, (n = 3).

3.3. Enhanced Delivery of DOX into Liver Cancer Stem Cells via CD133 Aptamer

To ensure the conjugation of DOX molecules does not compromise the binding capacity
of the original aptamer sequence, it is critical to evaluate if CD133 aptamer-DOX conjugates
can successfully deliver DOX into the CD133-expressing liver cancer cells. To this end, we
used flow cytometry to determine the intracellular accumulation of DOX in the liver cancer
stem cells, which can be phenotypically defined by the double immunostaining of the cell
surface CD133 and epithelial cell adhesion molecule (EpCAM) [24].

CD133 aptamer-mediated delivery of DOX was found to accomplish a higher intracel-
lular DOX than free DOX, evident from the percentage of DOX-positive cells and cognate
DOX fluorescence intensity (Figure 3 and Supplementary Figures S3 and S4). Specifically,
there was at least an ~180% or 80% increase in intracellular DOX in Huh7 and PLC/PRF/5,
respectively. Importantly, CD133 aptamer-mediated delivery of DOX resulted in at least
300% or 260% increases in intracellular DOX in the EpCAM+-CD133+ subpopulation of
Huh7 and PLC/PRF/5 cells, respectively.

Next, we sought to verify the ability of the CD133 aptamers to deliver DOX into
bulk liver cancer cells and liver cancer sphere-forming cells, which are in vitro surrogates
of liver cancer stem cells [25], using alternative experimental approaches. To this end,
semi-quantitative assessment via confocal microscopy (Supplementary Figure S5) and
quantitative high-performance liquid chromatography (HPLC) assays were employed
(Supplementary Figure S6). Consistent with the findings from fluorescence-based studies
(Figure 3), the intracellular concentration of DOX delivery by CD133 aptamer-DOX con-
jugates in the bulk and sphere-forming liver cancer cells was found to be several folds
higher than that in cells treated with an equivalent concentration of free DOX (p < 0.01)
(Supplementary Figures S5 and S6).

Thus, the CD133 aptamer enhances the delivery and intracellular retention of DOX to
the bulk of liver cancer cells in general and the liver cancer stem cells in particular.
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3.4. Autophagy Inhibition Augmented Apoptosis Elicited by DOX

DOX has been reported to induce apoptosis in bulk cancer cells in a time- and dose-
dependent manner [26]. We next investigated if the elevated intracellular concentration of
DOX achieved via the treatment of CD133 aptamer-DOX conjugates can translate into ele-
vated chemotherapeutic efficacy. Furthermore, accumulating preclinical data have revealed
the capacity of autophagy inhibition to reverse DOX resistance in various cancer types,
suggesting the inhibition of autophagy as one of the promising therapeutic strategies [5].
Therefore, we wished to explore if autophagy inhibition by a pharmacological inhibitor or
RNAi could lead to a synergized promotion of apoptosis in combination with DOX. For this
purpose, a 7-AAD and Annexin V assay was employed to gauge the extent of apoptosis.

First, we used RNAi to inhibit autophagy by transfecting cells with ATG5 siRNA and
achieved a >75% reduction in autophagy activity as measured by the formation of the LC3-II
protein (Supplementary Figure S8). Of note, the inhibition of autophagy itself did not increase
DOX accumulation in either the EpCAM+-CD133+ population or bulk of the HCC cells
(Supplementary Figure S9). As illustrated in Figure 4 and Supplementary Figures S10 and S11,
the treatment with CD133 aptamer-DOX conjugates led to an approximately 70% and 100%
increase in the percentage of apoptotic cells in the EpCAM+-CD133+ population of Huh7 and
PLC/PRF/5 cells, respectively, compared with those treated with free DOX. Surprisingly, the
combined treatment with DOX plus autophagy inhibition using the pharmacological inhibitor
3-MA or siRNA against ATG5 further increased apoptosis by 66% in the bulk HCC cells and
150% in the EpCAM+-CD133+ population of the HCC cells, respectively.
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Figure 4. The effect of the inhibition of autophagy combined with the treatment of CD133 aptamer-
DOX conjugates on DOX-induced apoptosis. The cells were treated with autophagy inhibitor 3-MA
(2 mM) or ATG5 siRNA (200 nM) followed by the addition of either free DOX or an equivalent dose
of CD133 aptamer-DOX conjugates (200 nM for Huh7 and 100 nM for PLC/PRF/5) for 24 h. The total
percentage of apoptotic cells was defined by the combination of the percentage of 7-AAD-/Annexin V+

and 7-AAD+/Annexin V+ cells and are shown for the (A) bulk Huh7 cells, (B) bulk PLC/PFR/5 cells,
(C) EpCAM+-CD133+ Hun7 cells, as well as (D) EpCAM+-CD133+PLC/PRF/5 cells. Data shown are
means± SD, n = 3. ** p < 0.01; *** p < 0.001; **** p < 0.0001; compared with that in the DOX-only treatment.

Next, an alternative experimental strategy, i.e., the TUNEL assay, was employed to fur-
ther confirm the efficacy of the combinatorial treatment of CD133 aptamer-DOX conjugates
and 3-MA in eliciting apoptosis in tumorsphere-forming cells of Huh7 and PLC/PRF/5.
Consistent with the flow cytometry-based assay data (Figure 4), the microscopy-based
TUNEL assays revealed that CD133 aptamer-mediated delivery of DOX resulted in approx-
imately 180% more apoptosis in HCC tumorsphere-forming cells than those treated by free
DOX. Moreover, when combined with 3-MA, CD133 aptamer-DOX conjugates achieved a
further increase in apoptosis in the liver cancer sphere-forming cells by at least ~140% and
~300% compared with that by free DOX alone or CD133 aptamer-DOX alone, respectively
(Supplementary Figure S12).

Therefore, the delivery of DOX via the CD133 aptamer as CD133 aptamer-DOX conju-
gates has enhanced the potency of DOX in inducing apoptosis in both the bulk and cancer
stem cell subpopulation of HCC cells, whereas the concomitant inhibition of autophagy
further enhanced the therapeutic efficacy of DOX in these cells.
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3.5. Enhanced Elimination of Liver Cancer Stem Cells via CD133-Targeted Delivery of DOX and
Inhibition of Autophagy

Having established that the combination of the increased and persistent intracellular
dose of DOX delivered by a CD133 aptamer and inhibition of autophagy resulted in
enhanced apoptosis of liver cancer stem cells, we proceeded to evaluate if such a favorable
pharmacological and pharmacodynamic effect could translate into the therapeutic outcome
of eliminating liver cancer stem cells. To this end, we employed an in vitro tumorsphere
formation assay to assess the therapeutic impact of our treatment on a key functional
feature of cancer stem cells, namely the ability of self-renewal [27].

As shown in Figure 5, in the saline control group, tumorspheres formed from both the Huh7
and PLC/PRF/5 cell lines had a tumorsphere frequency of 100% (Supplementary Table S1).
In contrast, cells treated with free DOX or 3-MA alone showed a moderate decrease
in the frequency of tumorsphere formation than those treated with the vehicle control
(saline). Compared with the treatment with free DOX, the delivery of DOX in the form of
CD133 aptamer-DOX conjugates resulted in an approximately 6-fold enhanced reduction
in tumorsphere formation in the bulk Huh7 and PLC/PRF/5 cells, respectively (Figure 5).
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Figure 5. The percentage of tumorsphere formation determined 5–7 days after the treatment. The cells
were treated separately with 3-MA (2 mM), DOX (200 nM for Huh7 and 100 nM for PLC/PRF/5), CD133
aptamer-DOX conjugates (equivalent to 200 nM or 100 nM DOX for Huh7 or PLC/PRF/5, respectively),
3-MA plus DOX or 3-MA plus CD133-DOX for 48 h. Cells were then plated onto ultra-low attachment
96 plates in stem cell culture media. The self-renewal capacity of cells in various treatment groups
was analyzed using an in vitro limiting dilution assay. The frequency of tumorsphere-forming cells for
(A) Huh7 and (B) PLC/PRF/5 under various treatments is shown. Data presented are means ± SD,
n = 3. * p < 0.05; ** p < 0.01; *** p < 0.001, compared with DOX-only treatment.

Since autophagy is involved in the maintenance of stem cells [28], it is also vital to
explore if autophagy inhibition could augment the capacity of DOX to eliminate liver
cancer stem cells. To this end, the inhibition of autophagy was found to significantly
potentiate the capacity of free DOX to eradicate liver cancer stem cells by nearly 7-fold
in Huh7 and 9-fold in PLC/PRF/5, respectively (Figure 5). Moreover, the combinatorial
treatment using autophagy inhibitor 3-MA and CD133 aptamer-DOX conjugates ensured a
further reduction in tumorsphere formation frequency by 2.2-fold in Huh7 or 1.3-fold in
PLC/PRF/5 cells, compared to those treated with CD133 aptamer-DOX conjugate alone
(Supplementary Table S1). Taken together, these results indicate that DOX delivered as a
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CD133 aptamer-DOX conjugate can effectively impair the self-renewal of liver cancer stem
cells, while a further boost in the efficacy of DOX in eliminating liver cancer stem cells can
be accomplished by the inhibition of autophagy.

4. Discussion

Current strategies in treating liver cancer patients largely focus on eliminating the bulk
cancer cells, which often fail as the cancer stem cells can survive chemotherapy, and tumor
recurrence inevitably follows. The transmembrane protein CD133 has been identified as
a marker for liver cancer stem cells [29]. A series of anti-CD133 antibodies have been
developed for targeted therapy, including the anti-human CD133 monoclonal antibody
6B6 [30] and the CD133 antibody-toxin conjugates C178ABC-CD133Mab, dCD133KDEL, dE-
pCAMCD133KDEL, and CD133-paclitaxel, which have exhibited high efficacy to eliminate
tumors in vitro and in vivo [31]. Among these drugs, CD133KDEL entered Phase I clinical
trials in 2016 (NCT02845414). However, the limited penetration of monoclonal antibodies
into solid tumors restricts their anti-tumor efficacy due to their large size [31]. Our previous
work has shown that the aptamer against the epithelial cell adhesion molecule (EpCAM)
exhibited tumor penetration capacity in xenograft tumor tissue that was at least four-fold
of that of the EpCAM antibody due to the smaller size of aptamers [8]. In the current
study, we delivered chemotherapeutic agents into the CD133+ HCC cells using the CD133
aptamer, aiming at improving the effective intracellular concentration of chemotherapy
agents in HCC cells.

There has been debate on whether CD133+ cancer cells are cancer stem cells, as CD133-
negative glioma and colon cancer cells are tumorigenic in immunocompromised mice [32].
Studies by Kemper et al. [33] have shed light on this by demonstrating that AC133, a
glycosylated form of CD133 epitope rather than the CD133 protein itself, is the marker
for cancer stem cells. Indeed, experiments investigating CD133 in HCC have detected the
AC133 epitope (CD133/1) rather than the CD133 protein [34]. The CD133 aptamer used in
this study has been demonstrated to target the AC133 epitope [4], leading to an increased
concentration of DOX in the liver cancer stem cells via the CD133 aptamer-mediated
delivery of DOX, compared with that of free DOX (Figures 3 and 6).

Our laboratory has reported on an engineered EpCAM aptamer with the same stem
structure of 10 GC pairs as the CD133 aptamer used in the current investigation for DOX
intercalation [6]. Interestingly, here we found that the CD133 aptamers are able to load
twice as much DOX as the EpCAM aptamers do (Figure 1) [6]. One possible explanation
is that this different DOX-loading efficacy could be attributed to their different 3′-ends:
EpCAM aptamer has an inverted deoxythymidine (idT) cap while the CD133 aptamer has
a hexylamine cap, which may lead to different three-dimensional structures in the stem of
these two aptamers. The potential interaction between the loop and stem of the aptamer
may contribute to the difference between the enhanced DOX loading to the stem between
the CD133 aptamer-DOX in this study and the less efficient DOX loading to the stem of the
EpCAM aptamer, as previously reported [6].

In this study, we show that the addition of the autophagy inhibitor 3-MA dramat-
ically augmented the capacity of Dox or CD133 aptamer-DOX to eliminate liver can-
cer stem cells via compromising DOX-induced autophagy activation (Figures 4 and 5,
Supplementary Figure S8). Notably, the treatment of 3-MA alone seems to have a mini-
mum effect on the autophagic activity of HCC cells. Wu et al. have reported that 3-MA
plays a dual role in autophagic activity. On one hand, 3-MA can not only promote au-
tophagy activity when treated under nutrient-rich conditions with a prolonged treatment
period (up to 9 h), but also suppress starvation-induced autophagy [35]. In the current
study, the HCC cells were incubated with 3-MA for two days, which is much longer than the
treatment period reported by Wu et al. [35]. Therefore, the longer treatment period in the
current study might explain the different effects on the autophagic activity as determined
by the expression of LC3-II.
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Figure 6. A schematic summary. (A) Schematic illustration of the impact of DOX, autophagy inhibitor
3-methyladenine (3-MA), and downregulation of autophagy-related 5 (ATG5) on autophagy. Class
III phosphoinositide 3-kinase (PI3K-III) complex and ATG5 are critical components in autophago-
some formation. DOX upregulates the formation of PI3K-III complex and ATG5, thus facilitating
autophagosome formation. In contrast, 3-MA inhibits the formation of PI3K-III complex, while
anti-ATG5 siRNA downregulates ATG5 expression. (B) Schematic summary of aptamer-guided
targeted delivery of DOX into liver cancer stem cells. Upon binding to the CD133-positive cancer
cells, the aptamer-conjugated DOX is efficiently internalized via receptor-mediated endocytosis,
thus bypassing the drug efflux mediated by ABC transporters on the plasma membrane. Following
endocytosis, DOX is released from the CD133 aptamer from endolysosomes. The free DOX is able to
gain entry into the nuclei and induce apoptosis via binding to the DNA and poisoning topoisomerase
II. LCSC: liver cancer stem cells; ABC transporter: ATP-binding cassette transporter.

In oncologic clinics, increased autophagy response has been found in advanced HCC,
correlating with malignant progression and poor prognosis [36]. Notably, several studies
revealed the protective role of autophagy in liver cancer stem cells. For example, Song et al.
have reported the involvement of autophagy in the maintenance of CD133+ liver cancer
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stem cells in hypoxic and nutrient-deprived conditions and the autophagic inhibitor chloro-
quine (CQ) increased cell apoptosis and decreased clonogenic capacity of CD133+ liver
cancer stem cells [5]. In the clinical management of liver cancer, DOX-based transarterial
chemoembolization, instead of systemic administration, is the current standard treatment
for intermediate-stage HCC. The findings from this study have shown the combinatorial
treatment of CD133 aptamer-DOX and autophagy inhibition leads to enhanced elimination
of the bulk HCC cells and more importantly, the cancer stem cell population of HCC
cells compared to free DOX. Thus, upon verification in future in vivo studies, the CD133
aptamer-mediated delivery of DOX combined with autophagy inhibitor hydroxychloro-
quine may constitute a novel approach to transarterial chemoembolization to improve the
therapeutic outcome of patients with intermediate-stage HCC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12111623/s1, Figure S1: The expression of cancer stem
cell markers EpCAM and CD133 on Huh7 and PLC/PRF/5 cells; Figure S2: CD133 aptamer is
endocytosed via receptor-mediated endocytosis; Figure S3: Representative flow cytometric diagrams
showing DOX accumulation in the bulk population of (A) Huh7 or (B) PLC/PRF/5 cells; Figure S4:
Representative flow cytometric diagrams showing DOX accumulation in the EpCAM+-CD133+

population of (A) Huh7 or (B) PLC/PRF/5 cells; Figure S5: Cellular uptake of DOX and CD133
aptamer-DOX in (A) Huh7, (B) PLC/PRF/5, and (C) HEK293T cells; Figure S6: In vitro tumorsphere
assay; Figure S7: Evaluation of the impact of DOX and 3-MA on autophagy; Figure S8: ATG5
knockdown induced inhibition of autophagic activity; Figure S9: Flow cytometric measurement of
DOX accumulation in the bulk and EpCAM+-CD133+ population of Huh7 and PLC/PRF/5 cells;
Figure S10: The contour diagram of 7-AAD/Annexin V flow cytometry; Figure S11: The contour
diagram of 7-AAD/Annexin V flow cytometry of the EpCAM+-CD133+ population; Figure S12.
Induction of apoptosis in the sphere-forming liver cancer cells; Table S1. Effect of autophagy in-
hibition on the capability of DOX or CD133 aptamer-DOX to eliminate cancer stem cells in vitro.
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