VH–RODA 2022 Workshop 7 – 10 November 2022 | ESA-ESRIN | Frascati (RM), Italy

H2020 Copernicus CalVal Solution CCVS

B. Alhammoud (ARGANS), S. Clerc (ACRI-ST), B. Pflug (DLR), M. Ligi (Univ. Tartu), A. Meygret (CNES)

Scope of the CCVS project

CCVS

Objective:

To define a holistic solution for all Copernicus Sentinel missions (either operational or planned) to overcome current limitations of Calibration and Validation (Cal/Val) activities.

Project duration: Dec. 2020 to Nov. 2022

Project website: <u>https://ccvs.eu</u>

Contact us: <u>contact@ccvs.eu</u>

Sentinel Cal/Val Requirements

WP 1 Sentinel Cal/val Requirements

CCVS

T1.1 Optical Missions

T1.2 Altimetry missions

T1.3 Radar and Micro-wave imaging missions

T1.4 Atmospheric composition missions

ARGAN

ACRI

 Establish calibration and validation needs for all Sentinel L1 and L2 products

sentinel-2

sentinel-sp

Series of reports released in 2021

sentinel-

Existing Cal/Val Sources

WP 2 Existing Cal/Val sources T2.1 On-board calibration T2.2 Vicarious methods on natural targets T2.3 Inter-satellite comparisons T2.4 Systematic ground-based measurements T2.5 Field and aerial campaigns

T2.6 Cal/Val data distribution services Identify currently available Calibration and Validation sources

- Establish constraints and limitations affecting these sources (technical and operational)
- Identify perspectives on methods and emerging technologies

Series of reports in 2021

Gap Analysis & CCVS

WP 3 Gap Analysis and Copernicus Cal/Val solution

> T3.1 Instrumentation technologies

T3.2 Cal/val Methods

T3.3 Measurement networks and supersites

> T3.4 Data distribution

T3.5 Performance analysis and Level 3 impact

> T3.6 Copernicus Cal/val Solution

- Identify gaps in the current cal/val of Sentinel missions
- Identify synergies and cross-Sentinel harmonization needs
- Define a network of core operational sites for the Sentinel missions
- Define an operational organization and procedures for the cal/val activities of the Sentinel missions (data curation and distribution)
- Analyse expected impact on uncertainty of Sentinel products and downstream products (including Level-3)

WP 4 Reference Scenario for Implementation

T4.1 Coordination with European agencies

T4.2 Coordination with measurement networks

T4.3 Coordination with Copernicus Services

> T4.4 Coordination with international agencies

T4.5 Roadmap and sustainability analysis

T4.6 Reference Scenario for Implementation

Reference Scenario for Implementation

- Define a way forward for the implementation of the Copernicus Cal/Val solution
- Establish roles and responsibilities among Copernicus stakeholders
- Analyse sustainability and identify funding gaps
- Define implementation schedule

Implementation Summary

• WG1 – Agencies, coordinated by ACRI-ST

acri

- WG2 Measurement Networks, coordinated by University of TARTU
- WG3 Copernicus Services, coordinated by ACRI-ST
- WG4 International, coordinated by ACRI-ST

Type of recommendations

*****Actions

CCVS

***** E.g. calibration activities/operations to be performed, documentation to be issued...

R&D activities

Substitution of the second second

Need for reference data with uncertainty estimates

Geographic and thematic gaps

Challenges to be addressed for the cal/val of future missions

CRISTAL (Ka band), ROSE-L(L Band), CO2M (high accuracy requirements), ...

***** Organization and coordination aspects

CCVS

On-board calibration

- Current approaches based on solar reflectance diffusers shows some limits (OLCI-A marginally compliant, SLSTR-A and B out of spec in the VIS SWIR)
- ***** If technology cannot be further improved, need to anticipate a vicarious correction approach
 - ✓ Tandem phases, harmonization coefficients
 - ✓ Calibration missions (TRUTHS)

Instrument pre-flight characterization

- ***** Documentation needs to be improved: SI traceability, measurement uncertainties
- ***** To be complemented with in-flight characterization or verifications:
 - ✓ Sun diffuser BRDF from yaw manoeuvers
 - ✓ Straylight from Moon acquisitions (TBC)

CCVS

Improved models for natural scenes

- On-going efforts to improve models must be sustained (DCC, PICS, Moon)
- Inter-comparisons needs to be continued
- Develop 3D RTM simulation of complex scenes

Atmospheric RTM

- Support inter-comparison activities (RAMI4ATM)
- Establish commonly agreed guidelines for modelling (follow-on of COPA study)

Cal/Val methods for surface reflectance

Use of UAVs, BRDF effect assessment, uncertainty validation...

CCVS

Operational hyperspectral directional surface reflectance network

- ***** Needed for validation of L2 data on representative environment
- A network of operational sites needed (land and water)
- Sustainability needs to be secured

Field campaigns

- **Regular field campaigns needed**, especially for fire products, OTCI, water properties
- Develop community processors

FRM4 fire products

Low maturity in the CEOS LPV assessment => need work on methodologies

CCVS

Improvement of geolocation CalVal methods

Support open-source GCPs database (e.g. Global Reference Image (GRI))

Improvement of cloud/cloud shadow masks

- Support new algorithm development
- Robust confidence level estimates
- Stablish robust validation guidelines: one step beyond CMIX => "FRM4cloud" ?
- Develop open-source validation database
- Develop ground-based validation methods

CCVS

Uncertainty for Copernicus data products

- Activity currently in progress, needs to be continued
- Uncertainty need to be propagated through the whole processing chain, including L3 and L4 Copernicus services products ideally
- Methodologies for assessment of prognostics uncertainties need to be consolidated and generalized
- Long-term strategy needs to be discussed:
 - $\checkmark\,$ Which level of detail is needed ?
 - ✓ How to limit the impact on processing, dissemination and archiving? User-side production? On-demand processing? Rolling archive?

Training / education on uncertainties and advanced validation methods

Cross-mission aspects

CCVS

Labelling of FRM sites

- **CCVS** recommends a labelling mechanism for measurement sites
- Based on self reporting (similar to CARD4L certification)
- Ideally an FRM-maturity level with several steps
- CEOS would be in the best position to deliver this "certification"

Campaign coordination

- Announcement of future campaigns (at CEOS level) to foster potential collaboration
- Formatting and archiving of cal/val campaign data

Where/How can VH-RODA assist?

D1.1

D1.2

D1.3

D1.4

CCVS deliverables

Deliverable

Optical Missions Cal/Val Requirements

and passive Microwave Missions Cal/Val

Be aware that this project is happening

- Know where to look for information:
 <u>https://ccvs.eu</u>
 <u>contact@ccvs.eu</u>
- Get involved! /Join a working group / contact CCVS
- Keep an eye out for follow-on programme funding to implement the CCVS

CCVS

D2.1	On-Board Calibration Sources	June 2021
D2.2	Vicarious Methods on Natural Targets	June 2021
D2.3	Inter-Satellite Comparison Methods	June 2021
D2.4	Systematic Ground-Based Measurement Sites and Networks	June 2021
D2.5	Field and Aerial Campaigns	June 2021
D2.6	Cal/Val Data Distribution Services	June 2021
D3.1	Recommendations for R&D activities on instrumentation technologies	September 2022
D3.2	Recommendations for R&D activities on Cal/Val methods	September 2022
ent	the CCVS	

Due Date

June 2021

June 2021

June 2021

June 2021

Invitation to submit Manuscript for a Special-Issue of Remote sensing MDPI

Special Issues / Copernicus Sentinels Missions Calibration, Validation, FRM and Innovation Approaches in...

Submit to Special Issue
Submit Abstract to Special Issue
Review for Remote Sensing

Special Issue "Copernicus Sentinels Missions Calibration, Validation, FRM and Innovation Approaches in Satellite-Data Quality Assessment"

Expected topic areas covered by Copernicus Sentinels missions but are not limited to:

- remote sensing of atmospheric composition, land, ocean, snow and ice surface,
- calibration and sensors' intercomparison,
- validation of geophysical data products,
- innovations to products' retrieval algorithms and Cal/Val techniques,
- Fiducial Reference Measurements (FRM) for satellite data validation.

https://www.mdpi.com/journal/remotesensing/special_issues/J3CYH3OQV0#editors

Guest-Editors: Dr. B. Alhammoud, Dr. S. Clerc, Dr. S. Dransfeld, Dr. J-C. Lambert, Mr. P. Féménias

IMPAC

FACTOR

5.349

CITESCORE

7.4

!

Deadline for manuscript submissions: 30 June 2023

B. Alhammoud | CCVS | VH-RODA 2022 | ESRIN-Frascati | 7-10/11/2022 | 19