HiFlex – Lessons Learnt from Permitting Process of the HiFlex Project SolarPACES 2021, 27th September – 1st October 2021 Miriam Ebert German Aerospace Center (DLR)

HiFlex

Knowledge for Tomorrow

Luca Ruini, Gaetano Iaquaniello, Annarita Salladini, Matti Lubkoll, <u>Miriam Ebert</u>, Reiner Buck and Lars Amsbeck

HiFlex –

High Storage Density Solar Power Plant for Flexible Energy Systems

- → Solid particles
- \neg As heat transfer and storage medium
 - → Increase process temperature
 - \neg Two times higher storage densities
- → Demonstrate pre-commercial CSP plant
- → 24 hours steam production for process heat
- → Supply to industrial application of Barilla in Italy

Source: Data sheet carboceramics

CARBOBEAD HSP

Direct Absorption Particle Receiver

- → Thermal power: 2.5 MW_{th}, peak
- → Particle outlet temperature: up to 1000°C

For further information on the plant design

Introduction Permitting Process

Provides several unique permitting challenges:

- → Particle based CSP system as a first of its kind
- \neg Nearby the town of Foggia, < 10 km away from airport
- ✓ Integrated into an existing industrial reality already owning authorizations
- \rightarrow Condition for future process heat applications

Authorizations

Authorizations

DLR.de • Chart 9 HIFLEX – Lessons Learnt from Permitting Process of the HiFlex Project > M. Ebert > SolarPACES 2021, 27 September - 1 October 2021

Environmental permit

Amendment on the existing Integrated Environmental Authorization (AIA) of Barilla's Foggia factory

Barilla has analyzed:

 \neg Potential emissions from the receiver (dust and particles)

DLR.de • Chart 10 HIFLEX – Lessons Learnt from Permitting Process of the HiFlex Project > M. Ebert > SolarPACES 2021, 27 September - 1 October 2021

- → Particles remain in the direct proximity of the tower
- ✓ Negligible magnitude of PM10* emissions reaching the ground
 - Monitoring measure:
 Measurement of dust before starting the construction and during operation
 - → Mitigation measure:

DLR.de • Chart 11 HIFLEX – Lessons Learnt from Permitting Process of the HiFlex Project > M. Ebert > SolarPACES 2021, 27 September - 1 October 2021

- \checkmark Hot particles from leakage from the HIFLEX receiver, driven by wind
 - \checkmark fire risk and the protection of human life
- → 2 main scenarios analyzed
 - \neg spillage of a single particle
 - → spillage of a set of particles

DLR.de • Chart 12 HIFLEX – Lessons Learnt from Permitting Process of the HiFlex Project > M. Ebert > SolarPACES 2021, 27 September - 1 October 2021

Performance thresholds are identified

Effect	Heat Flux (kW/m²)
Solar radiation (sunny day)	1
Wood volatiles ignite with flame exposure*	12.5

Fire risk:

- → Exchanged heat output < 12.5 kW/m²
- → Thermal power 2-5 orders of magnitude below threshold

Protection of human life

- → Heat exposure time according to "Stoll criterion"
- Assess time at which particle in contact with human body create second-degree burn

Source:

→ No risk of burn

Stoll criterion

Li-Na Zhai, Jun Li, Prediction methods of skin burn for performance evaluation of thermal protective clothing Burns, https://doi.org/10.1016/j.burns.2015.02.019.

- * I. Lawson and L. Simms, "The ignition of wood by radiation"
- ** The Society of Fire Protection Engineers, *Engineering Guide: Predicting 1st & 2nd Degree Skin Burns from Thermal Radiation

DLR.de • Chart 13 HIFLEX – Lessons Learnt from Permitting Process of the HiFlex Project > M. Ebert > SolarPACES 2021, 27 September - 1 October 2021

Authorization from:

ENAC (National civil aviation body) and ENAV (National Flight Assistance Body)

- ✓ Fundamental input for environmental and building permit
- Permit has been identified as the most difficult one
- → Tower height
 - → Limited to 40 m
 - → Design of plant adjusted
- → Glint and glare assessment
 - Airport close to plantPlant location

Glare of heliostat field Picture Source: DLR, Plataforma Solar de Almería (CIEMAT

Location of HIFLEX plant and airport Picture Source: google maps

Strada del

Salice Onc 516

VILLAGGIO

ARTIGIANI

SS673

SS544

Foggia

SS673

Via Napoli

Hotel Holiday

Contrada

anta Cecilia

rgo Segezia

Tavernola

SS544

Barilla

Incoronata

DLR.de • Chart 14 HIFLEX – Lessons Learnt from Permitting Process of the HiFlex Project > M. Ebert > SolarPACES 2021, 27 September - 1 October 2021

Obstacles/Interference with airport Glint and glare assessment - Methodology

Based on requirements of Federal Aviation Administration (FAA) regulation

- 1. No potential for glint or glare in Airport Traffic Control Tower
- 2. No potential for glare or "low potential for after-image" along final approach path for landing

Kinetics Technology

Gint and glare assessment impact on pilots HIFLEX Report

Potential ocular impact

Source: Jr, Diver & Ghanbari, Cheryl & Ho, Clifford. (2011). Methodology to Assess Potential Glint and Glare Hazards From Concentrating Solar Power Plants: Analytical Models and Experimental Validation. Journal of Solar Energy Engineering. 133. 10.1115/ES2010-90053. DLR.de • Chart 15 HIFLEX – Lessons Learnt from Permitting Process of the HiFlex Project > M. Ebert > SolarPACES 2021, 27 September - 1 October 2021

Obstacles/interference with airport Glint and glare assessment - Results

Distance in line of focus from any single heliostat to be exposed to

- No eye damage for airmen
- \neg Low risk of after-image is up to 1350 m: \times
 - → Mitigation measures:
 - \neg Several stand-by points to reduce flux density in focal points \checkmark
 - → Stow positions not 100% horizontal to reduce reflection intensity for aircraft passing above
 √

Summary and Outlook

- \neg Innovative plant, no previous project to take as example
- → Assessments carried out to obtain required information
- ✓ Mitigation measured defined for implementation in plant
- → Authorization process started with beginning of project
- → Progress achieved, processes defined, basis for future plant
- ✓ Permit from National Civil & Flight Body critical path in the authorization process → first step successful
- \rightarrow Near to submit the environmental permit and permit to build
- Foreseen to receive a feedback within 2021
- → Start construction in 2022, Start solar operation in 2023

Thank you for your attention!

Miriam Ebert Miriam.Ebert@dlr.de

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 857768.