Deep Learning-based Segmentation and Deblurring of Microscopic Cell Images

STED Microscope Image

× Generalist algorithm for **cellular** segmentation

(www.cellpose.org)

- × **U-Net** architecture
- × Human-in-the-loop training possible via GUI

[1] Stringer, C., Wang, T., Michaelos, M. et al. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods 18, 100–106 (2021). https://doi.org/10.1038/s41592-020-01018-x [2] Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. Jun-Yan Zhu*, Taesung Park*, Phillip Isola, Alexei <u>A. Efros</u>. In ICCV 2017. (* equal contributions)

Motivation

Method

Method

Deblurring

× Microscopic images from fluorescence or STED microscopy can contain blurry parts due to diffraction barrier, astigmatism, defects and human error × Tracing of intracellular filamentous structures not possible/difficult × Use a **CycleGAN** to translate blurry images into sharp images

× Using https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix [2] implementation × Results based on **103 paired images** with blurry (domain X) and sharp (domain Y) version \times Based on domain X/Y, G/F generates fake images in domain Y/X \times D_x/D_y discriminates if image is from domain X/Y

× Adversarial loss: $\mathbb{E}_{y \sim p_{\text{data}}(y)}[\log D_Y(y)] + \mathbb{E}_{x \sim p_{\text{data}}(x)}[\log(1 - D_Y(G(x)))]$ × Cycle consistency loss: $\mathbb{E}_{x \sim p_{\text{data}}(x)}[||F(G(x)) - x||_1] + \mathbb{E}_{y \sim p_{\text{data}}(y)}[||G(F(y)) - y||_1]$

Cell Filament Analysis

Motivation

× Manual analysis of the differences between actin fibers from cells grown under microgravity compared to cells grown under standard conditions entails an extremely high workload

× An automated analysis would benefit research areas that work with such filamentous cell data

× Ridge Detection via first Eigen value of the Hessian Matrix of the cell image **×** Filtering out small filament candidates × Calculating the **orientation** of individual filaments via **PCA**

Simon Schmitz, Kai Konen, Tobias Hecking, Alexander Rüttgers, Christian Liemersdorf, Yannick Lichterfeld in cooperation with DLR ME-BIO (Gravitational Biology)

From ME-BIO	
and the second	
Section 1	

Results

