
DEVELOPMENT OF A SOFTWARE LIBRARY FOR PERFORMANT AND
CONSISTENT CPACS DATA PROCESSING

M. Alder∗, A. Skopnik†

∗German Aerospace Center (DLR), Institute of System Architectures in Aeronautics, 21129 Hamburg, Germany
†TU Chemnitz, 09111 Chemnitz, Germany

Abstract
The Common Parametric Aircraft Configuration Schema (CPACS) is increasingly used as a standard for data exchange
in collaborative aircraft design projects involving many heterogeneous disciplines and expert knowledge [1,2]. CPACS
provides a hierarchical parametrization of fixed-wing aircraft and rotorcraft spanning from a detailed component level
up to the interaction of the vehicle and its peripheral aviation system such as airline operations. Following the CPACS
paradigm - data must be unique and explicit - all parameters are uniquely specified using an XML Schema Definition
(XSD) which allows for a robust syntactic interpretation of the data. The transformation of this data (e.g., unit
transformations of physical quantities) or the inference of additional information (e.g., interpolation of aerodynamic
coefficients) usually requires rules and assumptions which are specified in a human interpretable format within the
CPACS documentation. However, practical experience shows that even whilst having comprehensive documentation
available, there is a potential source for inconsistency if such rules and assumptions are not available as standardized
software implementations. While the TiGL geometry library serves as common software library for geometry data,
other disciplines are lacking standardized approaches on how to infer knowledge from CPACS data. The present
paper therefore introduces a software library called cpacsLibrary aiming to ensure consistent data handling in large
collaborative aircraft design projects, and to enable an easier entrance into connecting models to CPACS as well as
re-using implementations across disciplines. As it is tightly coupled to the development of CPACS itself and closely
aligned with TiGL, cpacsLibrary intends to complete the CPACS eco-system by providing standardized methods for
non-geometric data handling. A detailed description of the software architecture comprises the implementation of
low- and high-level methodologies in C++, test-driven development, version control, bindings to Python as well
as data visualization strategies. The practical application of the library is demonstrated by the interpolation of
irregular, multidimensional performance maps (aerodynamic and engine) stemming from disciplinary analysis tools in
automated aircraft design processes applying Radial Basis Functions (RBF). The paper concludes by describing the
future development roadmap, including opportunities for collaboration.

Keywords
CPACS; Software Library; RBF interpolation; Aerodynamic Performance Maps

1. BRIEF INTRODUCTION TO CPACS

The Common Parametric Aircraft Configuration Schema
CPACS is a standardized data model for air transporta-
tion systems. CPACS has been developed since 2005 to
meet the challenges of collaborative design projects [1].
One is to reduce the amount of possible interfaces be-
tween N disciplines from N(N−1) to 2N by introducing
a central data source (see Fig. 1). A second challenge is
to ensure a consistent data transfer between the very het-
erogeneous expert domains. CPACS tries to tackle these
challenges by establishing a common language for aircraft
design via the Extensible Markup Language (XML), mak-
ing it both human and machine readable. The underlying
XML Schema Definition (XSD) allows to model complex
structural and semantic rules. Strengths and weaknesses
of this approach will be discussed in Sec. 1.1.
Starting as a development within the German Aerospace
Center e.V. (DLR), CPACS has become a community

FIG 1. The amount of possible data interfaces reduces
from N(N − 1) to 2N by using a central data
source.

1

FIG 2. Example of XML file containing address data.

project involving universities, research institutes and in-
dustry, which drives the continuous development, testing
and application of the data model in practice [2]. Sec-
tion 1.2 presents some application examples within cur-
rent research projects. Based on this, requirements and
strategies for consistent handling of data are derived in
Sec. 1.3.

1.1. Data Modeling with XSD

First, the terminology used in the following discussions
should be clarified. In computer science, a distinction is
made between data models and data formats. A data
model is an abstract model that organizes elements of
data and standardizes how they relate to one another
and to the properties of real-world entities. A data format
specifies the representation of data in terms of bits and
bytes [3]. The actual development of CPACS itself is
about developing an explicit and unique data structure
to describe air transportation systems in all its facets
(e.g. geometry and material properties, analysis results of
flight characteristics, etc.). CPACS therefore constitutes
a data model. For the practical realization XML is chosen
as data format.
XML provides XML Schema Definition (XSD) to describe
the data model. XSD itself is an XML document specify-
ing data in terms of elements, their relation to each other,
their data type and occurrence. In the following, only the
basic foundations which are required for the understand-
ing of the present papers’ content will be discussed. An
an extensive literature on XML/XSD is available for fur-
ther reading [4–6].
A simple representative example shall illustrate how to
develop a data model like CPACS from a technical per-
spective. The goal is to store addresses in an address
book, each specifying name, affiliation, street and
city of a person (see Fig. 2). In XML it is common
practice to use the so called camel case style capitaliz-
ing the first letter of the second and all following words,
thus spelling addressBook. So, the data model shall de-
scribe an addressBook with multiple addresses each
containing the above mentioned address data. Figure 2
constitutes an instance of this model, i.e. the actual data
stored in an XML file.

FIG 3. Example of a data model for an address book
in XSD (Note: If not specified, minOccurs and
maxOccurs equals 1.)

FIG 4. XSD diagram representation of an address book
data model.

Figure 3 shows an implementation the corresponding data
model with XSD. The syntax follows a standard from
the World Wide Web Consortium (W3C) [7] which is in-
cluded by the XMLSchema namespace and in this example
referred to via the prefix xsd. Each data is represented
by an element and a corresponding type. Such type is
called simple if it describes elementary data, for example
string or double values. If an element consists of child
elements, then its type is complex (xsd:complexType).
In this way, a hierarchical structure can be easily set
up by defining elements which either have complex or
simple types. Another important property of elements
is how often they may occur in a certain position of
the data tree, defined by minimum and maximum oc-
curence (minOccurs and maxOccurs) with a value of
1 being the default setting. The order of the elements
can be set arbitrarily (xsd:all) or strictly predefined
(xsd:sequence). Finally, elements can be enhanced by
attributes (xsd:attribute), which can only be defined
as simple data types. Attributes are usually used to de-
scribe meta information, such as unique identification
keys (xsd:ID) which might be used as a reference for
linking (via xsd:IDREF).
For easier communication of data models, for example
during discussions with stakeholders or to illustrate new
developments, an abstraction of the XSD syntax via so-
called XSD diagrams can be used. An XSD diagram of
the above address book example is shown in Fig. 4. El-
ements are represented by rectangles in a hierarchically
tree-view. The border style indicates their occurence:

2

A solid line corresponds to single occurring elements,
dashed lines represent optional elements and staggered
borders indicate element repetitions.
These are the basics which are needed to understand the
implementation of the CPACS data model in XSD and
how the development of corresponding software libraries
can benefit from this. For additional information on XSD
techniques used for CPACS, such as inference, extensions
or restrictions of types, the authors refer to the available
literature [4–6].

1.2. CPACS Current Status and Applications

A comprehensive overview on recent developments
in CPACS is given in a previous publication by the
author [2]. Currently CPACS is available in version 3.4.
An an excerpt from the corresponding XSD diagram is
shown in Fig. 11. Among others, current developments
focus on the different facets of aircraft systems, including
the geometric, material, functional and physical prop-
erties of the various sub-systems and components and
how they interact. Also topics like weight and balance
descriptions for vehicles with in-flight configurational
changes (e.g., military airplanes or rescue helicopters)
require extensions of the CPACS data model.
This is reflected in current research projects where
CPACS is employed as a central data exchange model. A
small selection of projects illustrates that CPACS is cur-
rently strongly driven by topics concerning environmental
sustainability and safety:

EXACT

Starting in 2020, forty-five researchers from twenty DLR
institutes have been working together on the Explo-
ration of Electric Aircraft Concepts and Technologies
(EXACT) project, which is developing new technological
components for an environmentally friendly commercial
aircraft [8, 9]. Here, CPACS plays a crucial role as the
central data exchange model and is extended with regard
to novel aircraft system architectures, e.g. power/energy
breakdowns, enhancements of the mass breakdown,
definition of liquid hydrogen tanks or electric propulsion
architectures.

IMOTHEP

The core of a project on the Investigation and
Maturation of Technologies for Hybrid Electric
Propulsion (IMOTHEP) is an integrated end-to-end
investigation of hybrid-electric power trains for com-
mercial aircraft, performed in close connection with the
propulsion system and aircraft architecture. This EU
granted project (Horizon 2020) is running four years
and is supported by seven research institutes, eleven
industries (from aviation and electric systems), a service
SME and seven universities from nine EU countries [10].
CPACS is used for the design of regional aircraft con-
figurations and recent development work was devoted
to the question of how to specify complex propulsion
system architectures and corresponding assumptions.

AGILE 4.0

AGILE 4.0 (Aircraft 3rd Generation MDO for Innovative
Collaboration of Heterogeneous Teams of Experts) tar-
gets the digital transformation of the aeronautical supply-
chain: design, production and certification and manufac-
turing. The three-year project involves sixteen partners
from eight countries, involving universities, research in-
stitutions and industry [11–13]. AGILE project members
developed concepts for the geometric and mass descrip-
tion of system components, among others for space allo-
cation analyses.

DIABOLO

The DLR-project Diabolo investigates the multidisci-
plinary design of both an unmanned military vehicle
(MULDICON) and the DLR Future Fighter Demonstra-
tor (FFD) to demonstrate DLR’s design capability and
to further-develop the required key technologies and
design procedures. The project involves eleven DLR
institutes and facilities as well as the industrial partners
Airbus Defence and Space, MTU Aero Engines and
German-Dutch Wind Tunnels (DNW) [14]. In this con-
text, CPACS faces the challenge of representing in-flight
configurational changes, such as air-to-air refueling or
military store releases, in terms of weight and balance
changes and the resulting flight characteristics.

CHASER

The three-year CHASER project involves nine DLR insti-
tutes and investigates the design process of highly flexible
and fast helicopter configurations, such as those used in
medical rescue [15]. One of the challenges for CPACS
here, similar to the Diabolo project, is how to map the
configurational flexibility of rotorcraft to the weight and
balance characteristics, for example in mission definitions
that require the repeated delivery of emergency physi-
cians to accident sites and the evacuation of patients.

1.3. Challenges of Consistent Data Processing

The main philosophy behind CPACS is that data is
explicit and unique. The latter means that information
must be unambiguous in order to ensure the consis-
tency of a data set, for example after modifications
or additions to the data. Explicitness is comparatively
easy to achieve through well-chosen element names,
but from practical experience it is a continuous search
for the appropriate balance between unambiguous de-
scription of data and flexibility of use. The following
question illustrates this: Should the wing of an aircraft
be referred to as mainWing, horizontalTailplane,
verticalTailplane, and so on, or just as generic
wing? The latter allows high flexibility in the interpreta-
tion and therefore enables unconventional configurations
(e.g., boxed-wing airplanes), but at the same time
poses the risk of misinterpretation when evaluating data
sets. A rule that the main wing is always the largest
one is implicit and might not always apply. Modern
knowledge-based engineering techniques attempt to
enrich data with such information to ensure correct

3

mutual understanding of knowledge, but the above
example shows that the problem is more fundamental
and not easily solvable when using a central data model
in an interdisciplinary environment.
Another challenge is how to derive additional data from
existing CPACS parameters. Again, the wing provides a
good example where individual wing sections are explic-
itly defined in the data set by airfoil point coordinates. In
the next step, robust geometry operations are required to
determine the three-dimensional lofting of the wing skin.
CPACS does not specify which mathematical methods
are to be used for lofting. In multidisciplinary projects,
therefore, a common approach to process CPACS data
should be agreed upon. A software library called TiGL
Geometry Library (TiGL) is typically used to translate
the CPACS parameters into three-dimensional surfaces
and thus ensures that all project partners are working on
the base of the same geometry [16].
To summarize, the two main challenges when applying
CPACS in multidisciplinary design activities are: (1) the
communication and consistent application of implicit
rules on how to process data and (2) the derivation of
additional information from existing data, e.g. through
interpolation.

2. CPACSLIBRARY: DESIGN AND IMPLEMEN-
TATION

While TiGL has established as the primary software li-
brary for geometric operations on CPACS data, an equiv-
alent solution is missing for other disciplines, such as
aerodynamics or flight performance analysis. The follow-
ing sections therefore introduce a new software library
called cpacsLibrary. The focus of cpacsLibrary is to ad-
dress the challenges when working with CPACS as out-
lined in Sec. 1.2, i.e. implement rules on how to handle
CPACS data (which are currently only written in the doc-
umentation) and to provide interpolation algorithms for
data other than geometry.
The present study focuses particularly on the concep-
tual design of a robust and sustainable software archi-
tecture. Therefore, the Software Engineering Guidelines
of the DLR Institute for Software Technology are ap-
plied, providing recommendations for requirements man-
agement, software architecture, design and implementa-
tion, change management, software test, release man-
agement and more [17].

2.1. Software Requirements

The requirements of the cpacsLibrary are derived from a
stakeholder analysis and their intentions to use the soft-
ware. Stakeholders will primarily be actual CPACS users
who need robust, performant and simple access to the
data and the information derived from it. Practical ex-
perience with similar use-cases has already been gained
with TiGL. From this, it is known that typical users need
to integrate the library into different programming lan-
guages, of which Python is most frequently used. Fur-
thermore, C, C++ as well as Matlab are actively used
by stakeholders. CpacsLibrary should therefore provide

interfaces to different programming languages. A typical
user-story would for example be:

[User Story 1] As a tool developer I want to
integrate cpacsLibrary into my C++ tool to
receive aerodynamic lift and drag coefficients
for a given set of Mach number, altitude and
angle of attack to analyze flight performance.

or

[User Story 2] As a data analyst I want to
use cpacsLibrary in Python to extract and
evaluate the flight trajectories, e.g. by plot-
ting the flight altitude versus the flight dis-
tance.

While the first user story is a request on a higher level of
data interpretation (i.e., aerodynamic coefficients must
be interpolated from existing data, which requires knowl-
edge beyond what is defined in XSD), the second user
story is a request on a lower level of interpretation as
only the existence of values needs to be checked and
then returned without further manipulation. In this case
the interface must also be accessible via Python.
Another requirement stemming from CPACS users is that
methods must be available to create or modify CPACS
data:

[User Story 3] As a CPACS user I want to
create a new CPACS file from scratch.

[User Story 4] As a CPACS user I want to
change the aspect ratio of an existing wing
definition.

The third user story requires that cpacsLibrary is able
to write XML data according to the CPACS specifica-
tion (i.e., XSD). The fourth user story aims at modifying
existing CPACS data, as the aspect ratio is not directly
available in CPACS but must be derived from the wing
parametrization. This requires explicit rules on how to
change the corresponding wing sections and how to treat
interdependent data, such as internal structures. The
user must be informed on what data will be affected by
the changes.
Furthermore, an important use-case often experienced in
practice is represented by the following user story:

[User Story 5] As a CPACS user I received a
CPACS file and I want to quickly inspect its
content without scripting or programming.

In summary, the following requirements are stemming
from the above user-stories:
1) The cpacsLibrary must be able to extract data from

a given CPACS file.
2) The cpacsLibrary must be able to modify existing

CPACS data.
3) The cpacsLibrary must be able generate new CPACS

data.
4) The cpacsLibrary must provide interpolation routines

for data in multi-dimensional parameter spaces.
5) The cpacsLibrary must allow for easy inspection of

CPACS data.

4

FIG 5. Schematic representation of the software architec-
ture of cpacsLibrary.

6) The cpacsLibrary must provide interfaces to different
programming languages

2.2. Software Architecture

Considering the requirements derived in the previous sec-
tion, a software architecture has been developed as shown
in Fig. 5. It is composed of different interface levels:
• A low-level interface, called cpacsTree
• A mid-level interface, called cpacsEvaluator
• A high-level interface containing different disciplinary

modules (e.g., cpacsAero or cpacsMissions)
The purpose of the low-level interface is to convert
CPACS data, which is imported from an XML file, into
an object oriented structure which can be accessed in-
memory. At this level, no additional knowledge is applied
to the data than what is defined in XSD.
The high-level interface uses data from the low-level
interface and adds CPACS-specific knowledge. Such
knowledge is usually discipline-specific and therefore
en-capsuled into disciplinary modules. One example here
is that CPACS defines aerodynamic maps in terms of
dimensionless coefficients in the aerodynamic coordinate
system. Currently, this information is not specified in
XSD, but only in the human-readable documentation.
To avoid the risk of errors during user-specific data
processing, the knowledge must be available in the
corresponding cpacsAero module. This allows for con-
sistent unit conversions, coordinate transformations and
other disciplinary operations. The goal of the disciplinary
modules is thus to enable a view on CPACS data through
the glasses of disciplinary experts.
In addition to the previously mentioned interfaces, a mid-
level interface is implemented. Its task is to evaluate
data via generic algorithms that cannot be assigned to
specific disciplines, but must contain knowledge that goes
beyond the low-level interface. A typical example is inter-

polation algorithms, which are employed for both aero-
dynamic and engine performance maps.
An additional Graphical User Interface (GUI), called
cpacsExplorer, uses data from the low- and high-level
interface for easy data inspection and visualization. An
essential role of this component is extensive testing and
debugging in practice.
Finally, the low- and high-level interfaces should be acces-
sible via an Application Programming Interface (API) for
different programming languages. This is not intended
to be the case for the mid-level interface, as this is only
for internal usage.

2.3. Implementation

The programming language C++ (version 11) has been
chosen for the implementation of cpacsLibrary. This
choice is based on balancing the following pro- and
contra-arguments:

Arguments for using C++:
• Enables a close collaboration with TiGL development

team (e.g., lessons learned, mutual support, interoper-
ability of both software libraries)

• Existing third-party software and code-base already
available in C/C++, such as the XML Interface
TiXI [18], the CPACSGen software for automatic gen-
eration of C++ classes from XSD [19] and Exception
handling methods [20]

• Good performance of compiled C++ code
• Established programming language with a large com-

munity
• No technical limitations expected
• Possibility to provide interfaces for many other

programming languages (e.g., via pybind11 [21] or
Swig [22])

Arguments against using C++:
• Entry barrier for new developers is higher than, for ex-

ample, with Python or Matlab. This could slow down
the development process and make community building
challenging.

• Maintenance is rather difficult due to the complexity of
C++ and availability of experienced developers com-
pared to, e.g., Python.

The advantages of using C++ outweigh the contra-
arguments here, which is why this programming language
is chosen for the implementation of cpacsLibrary.

2.3.1. Low-Level Interface

The task of the low-level interface is primarily to import
data from a CPACS file and make it accessible as in-
memory data for efficient further processing. Section 1.1
has shown that each data object is defined via XSD in
terms of element or attribute names, its occurrence, order
of appearance and the corresponding data type. This can
be used to automatically generate C++ code providing
dedicated methods for the various data types according
to the schema. Thus, an individual class could be created
for each complex XSD type with corresponding getter and

5

setter functions for its child elements and attributes. For
this purpose, CPACS generator (CPACSGen), which is
developed by RISC Software GmbH [19] to provide the
code base for TiGL, is adopted for cpacsLibrary. The
generated code make use of a TiXI instance to read and
write data from and to a CPACS file. The generated code
is compliant with C++ 11 and 14 and depends on Boost
libraries. The automatic generation of C++ code from
XSD furthermore lowers the effort to update cpacsLibrary
when new CPACS versions are released.
An often-used feature in CPACS is that elements of
type xsd:idref can reference other elements via uID
attributes of type xsd:id. TiGL manages these depen-
dencies via a so-called uID-manager. This concept has
been adopted for cpacsLibrary, although it slightly differs
as some geometric properties are not applicable for all
CPACS elements. An idea resulting from discussions be-
tween developers of CPACSGen, TiGL and cpacsLibrary
is to implement a rather general uID-manager as part
of CPACSGen. This demonstrates well the advantage of
aligning the developments of cpacsLibrary and TiGL.

2.3.2. Mid-Level Interface

The mid-level interface is internally referred to as
cpacsEvaluator. Here, for example, interpolation
routines are implemented, which contain rules and
knowledge about the processing of CPACS data that go
beyond the XSD schema, but cannot and should not be
assigned to any single discipline. Section 3 introduces in
detail the implementation of scattered data interpolation
methods for multidimensional maps, which can be
employed for aerodynamic performance maps as well as
engine maps. Another use-case for cpacsEvaluator is
performing unit or coordinate transformations.

2.3.3. High-Level interface

Finally, the high-level interface represents an enrichment
of the pure CPACS data with domain-specific knowledge
for consistent and robust processing of such. Two use-
cases are selected for the implementation to demonstrate
the concept. The first example refers to multidimen-
sional maps of aerodynamic coefficients in CPACS, which
are called aeroPerformanceMaps (see Fig. 12). While
the CPACS structure must be followed exactly using the
low-level interface (see Listing 1), the high-level inter-
face can deviate from this and directly return the lift
coefficient parameter cl as shown in Listing 2. This is
a conceptually different handling on the same data and
decouples the complex structure of the data model from
the interface design. Adding domain-specific knowledge
to cpacsLibrary therefore allows for both a more user-
friendly way of working with CPACS and for a higher
flexibility to the design of the data model itself. The first
implementation furthermore contains unit conversion and
the possibility to filter values with respect to altitude,
machNumber, angleOfAttack and angleOfSideSlip.
Another implementation concerns flight performance
analysis in order to investigate how to visualize time-
dependent data and how to treat redundancy, which
is avoided as far as possible in CPACS, but still exists

for some cases. Part of flight performance analysis is
flight trajectories resulting from mission analysis tools.
The overall flight distance can both be drawn from
the time-dependent flightPoints/groundDistance
vector or from the global/distance parameter. It
is of course convenient to directly find such evaluated
parameters in CPACS, but this example is an obvious
source of inconsistencies. Furthermore, the user must
study the CPACS documentation thoroughly to find out
whether global/distance refers to the flight distance
or ground distance. Both approaches are implemented
and will in future be used to further investigate strategies
on how to remove such redundancy from CPACS while
providing evaluation methodologies with cpacsLibrary.
Implementing the above examples is a good starting point
to test the concept of cpacsLibrary in practice. According
to the different disciplines it is subdivided into dedicated
modules defined in individual name-spaces (i.e., declara-
tive sections of code which are used to avoid name col-
lisions). This increases flexibility in the development as,
for example, students or disciplinary research groups can
contribute with their own code en-capsuled in modules.
Common evaluation routines, such as interpolation algo-
rithms, are imported from the mid-level interface. This
concept is further illustrated in Sec. 3.

2.4. Data Inspection with cpacsExplorer

On top of cpacsLibrary a GUI enables fast inspection of
CPACS data (see User Story 5; requirement 6). It fur-
thermore simplifies testing the implementations in prac-
tice and therefore supports the identification and debug-
ging of errors. The GUI has been named cpacsExplorer.
The prototype implementation is based on the Qt frame-
work. This has the advantage of developing both the
library and the GUI in the same programming language
and providing them as a cohesive package. Thus, errors
can be traced directly from the interface to the corre-
sponding methods in cpacsLibrary.
A basic feature of cpacsExplorer is the visualization of the
CPACS data in the form of a typical text-editor represen-
tation as well as a graphical representation of the tree
structure. This is already familiar to many CPACS users
from the visualization of CPACS data in the process in-
tegration framework RCE [23]. Both views are linked via
event listeners to facilitate navigation through a CPACS
file (see Fig. 6).
Additional tabs can be added to the main view to present
domain-specific data. In the Mission module, trajectories
can be evaluated and visualized as line charts and in tab-
ular form (see Fig. 7). Another example is the visualiza-
tion of multidimensional aerodynamic maps. By selecting
two input variables (two out of machNumber, altitude,
angleOfAttack and angleOfSideslip), the aerody-
namic coefficients are projected into a two-dimensional
scatter plot and also shown in tabular form. Accessing
the filter algorithms of the high-level interface further
supports data inspection.

6

FIG 6. Tree-view of CPACS data in cpacsExplorer.

FIG 7. Trajectory view in cpacsExplorer.

FIG 8. Aerodynamic map view in cpacsExplorer.

7

2.5. Python interface

The Python interface is generated via pybind11 [21]. This
continued development of the boost.python library [24]
provides a flexible way to translate complex C++ meth-
ods to Python, including strategies to handle overloaded
constructors [25].
Pybind11 is used to export methods from both the low-
level and high-level interfaces. For the current prototype,
pyhbin11 code is implemented manually. Future work
could comprise the automatic translation of the low-level
interface to pybind11 syntax.

2.6. Software configuration and dependency man-
agement

The software configuration of cpacsLibrary is managed
via CMake [26]. This allows for a flexible selection or
de-selection of the various features of cpacsLibrary be-
fore compilation, such as the export of the Python inter-
face or the inclusion of cpacsExplorer. Furthermore the
third-party modules can be managed conveniently. In
its current state cpacsLibrary depends on the following
third-party software (license in brackets):
• TiXI [18]: CPACS XML-Interface (Apache-2.0 license)
• Boost [27]: Various components supporting C++ pro-

gramming (individual Open-Source license)
• Eigen [28]: Template library for linear algebra, used for

RBF interpolation (Mozilla Public License 2)
• pybind11 [21]: Creates Python interfaces from C++

code (individual Open-Source license)
• Qt Framework [29]: C++ library used for cpacsExplorer

(Commercial or LGPL)
• QtCharts [30]: Extension for Qt Framework providing

various visualization modules, used for chart plots in
cpacsExplorer (Commercial or GPLv3)

All settings are en-capsuled in a set of CMake configu-
ration files serving as input for a compiler-independent
build of cpacsLibrary on Windows and Linux operating
systems.

2.7. Exception Handling and Logging

CpacsLibrary is equipped with exception handling classes
identifying errors during execution via adjustable error
categories and verbose levels. The Google Logging Li-
brary (glog) [31] is used for logging. Thanks to the close
alignment of the software architecture with TiGL, the ex-
ception handling and logging methods could be adopted
with small modifications from TiGL, speeding up the de-
velopment of a first prototype.

2.8. Testing and Change Management

All components of cpacsLibrary are extensively tested via
unit tests. For this, the GoogleTest framework [32] is ap-
plied for the C++ code covering the low-, mid- and high-
fidelity interfaces. Furthermore, the Python unittest
library [33] is used to test the pybind11 exports.
The source code is maintained at a DLR GitLab repos-
itory. Common software development tools, such as is-
sue tracking, milestone management as well as the provi-
sion of release versions with compiled code are employed.

Next steps involve the implementation of appropriate li-
cense models to make cpacsLibrary available via public
GitLab [34] or GitHub [35].

3. USE-CASE: INTERPOLATION OF MULTIDI-
MENSIONAL MAPS

3.1. Interpolation Requirements

With the introduction of new multi-dimensional aero- and
engine-performance maps in CPACS v3.3, it is no longer a
requirement that the data in the d-dimensional parameter
space is generated via full factorial experiment design,
i.e. the data is not necessarily mapped to a uniform
or regular grid. This is to avoid unrealistic parameter
combinations, such as flight conditions characterized by
large Mach numbers at small altitudes or vice versa.
Therefore, interpolation on scattered data in d dimen-
sions is necessary. In this study, radial basis function
(RBF) interpolation is chosen due to good performance
characteristics for large sets of given data points X :=
{x⃗1, . . . , x⃗n} in high-dimensional space Rd, compared
to, for example, triangulation [36]. The following section
gives a brief introduction to the basic theory underlying
the present study.

3.2. RBF Interpolation

An unknown function u(x⃗) fitting given data at x⃗k ∈ Rd,
the so-called interpolant, can be constructed by a linear
combination of functions ϕ(r⃗) depending solely on the
radial distance r = ∥x⃗− x⃗k∥2 from the center x⃗k:

(1) u(x⃗) =
n∑

k=1
wkϕ (∥x⃗− x⃗k∥2) ,

where ∥ · ∥2 donates the standard Euclidean norm. The
weights wk ∈ R can be determined by employing the
given data u(x⃗i) = fi at point x⃗i, i = 1, 2, . . . , n:

(2) fi =
n∑

k=1
wkϕ (∥x⃗i − x⃗k∥2)

Combining Eq. 2 and 1 yields a system of linear equations:

(3) f⃗ = Mw⃗

with the symmetric coefficient matrix (also distance ma-
trix) M :

(4) M :=


ϕ(∥x⃗1 − x⃗1∥2) · · · ϕ(∥x⃗1 − x⃗n∥2)

...
. . .

...
ϕ(∥x⃗n − x⃗1∥2) · · · ϕ(∥x⃗n − x⃗n∥2)


Typical approaches to solve such linear systems are
LU decomposition, Cholesky Decomposition or Pseu-
doinverse. In literature Eq. 3 is often expanded by a
matrix of polynomials to improve condition when using
conditionally positive definite radial functions. As several

8

0 20 40 60 80 100

No. of neighbours

10−2

10−1

100

101

102
E

rr
or
ε

Linear

Multiquadratic

Inverse Multiquadratic

Gaussian

Thin Plate

Wendland C2

FIG 9. RBF interpolation of aeroPerformanceMap lift coefficient cl with nearest neighbor search (KNN).

standard RBF are positive definite, such as Gaussian
or Inverse Multiquadratic (see below), expansion with
polynomials is not considered in the present study but
will be part of upcoming research to also improve results
with conditionally positive definite RBFs.
RBFs can be extended by a scaling parameter ε to adjust
its influence strength. The following RBFs (also referred
to as kernel) are implemented in cpacsLibrary:
• Linear:

(5) ϕ(x) = r

• Multiquadratic:

(6) ϕ(x) =
(
ε2 + r2) 1

2

• Inverse Multiquadratic:

(7) ϕ(x) =
(
ε2 + r2)− 1

2

• Gaussian:

(8) ϕ(x) = exp
(
−1

2r2ε2
)

• Thin Plate:

(9) ϕ(x) = r2 log
(r

ε

)
• Wendland C2:

(10) ϕ(x) =
(

1− r

ε

)4 (
4r

ε
+ 1

)

3.3. Implementation

Due to its generic mathematical character, the interpo-
lation algorithms are implemented in the mid-level inter-
face. The implementation is twofold: First, the distance
matrix M is determined from the known data and then
used to determine the weighting vector w⃗. This oper-

ation is numerically expensive, but has to be done only
once, because the known data sets do not change. Al-
gorithm 1 illustrates the implementation in cpacsLibrary.
The second step comprises to computation of the un-
known quantity fnew at a new point x⃗new as shown in
Alg. 2.

Algorithm 1 RBF Setup
Input: Known data D at x⃗i with corresponding values
fi, D =

{
(x⃗i, fi), i = 1, . . . , n|x⃗i ∈ Rd, fi ∈ R

}
Input: Choice of interpolation kernel

1: for i = 1 . . . n do
2: for k . . . n do
3: Compute dist← ∥x⃗i − x⃗k∥2 to all x⃗k

4: Fill distance matrix M ik ← dist
5: end for
6: end for
7: Normalize M along columns
8: Solve f⃗ = Mw⃗ for w⃗ with LU decomposition using

PartialPivLu from Eigen library [37]
9: return w⃗

Algorithm 2 RBF Interpolation
Input: New data point x⃗new for which fnew is unknown

1: Normalize x⃗new according to M
2: for all existing data points x⃗k do
3: Compute distance dist← ∥x⃗new − x⃗k∥2
4: Fill distance vector d⃗k ← dist
5: end for
6: fnew ← w⃗ · d⃗
7: return fnew

Algorithms 1 and 2 represent the basic approach. In or-
der to improve the computational performance of the in-
terpolation and to avoid overfitting, it is extended by
a K-D-Tree algorithm [38] to filter just the k nearest
neighbors (KNN) used for the interpolation.

9

Linear
Multiquadratic

Inverse Multiquadratic Gaussian
Thin Plate

Wendland C2
10−2

10−1

100
E

rr
or
ε

cpacsLibrary

SciPy

FIG 10. Comparison of interpolation errors for various RBFs and 30 neighbors.

3.4. Verification

To verify the implementation, an aeroPerformanceMap
from CPACS with 9200 entries for the lift coeffi-
cient cl over the parameters altitude,machNumber,
angleOfAttack and angleOfSideslip is chosen as
test case. First, a uniformly distributed set of N = 60
samples is removed from the given data, for which the
values are thus known. These are then reconstructed
via the RBF interpolation, varying both the kernel and
the number of nearest neighbors. The average error is
determined as:

(11) ϵ = 1
N

N∑
i

fi − fexact,i
fexact,i

· 100%

Figure 9 shows the result of this study. After an initial
reduction, both the Gaussian and Inverse Multiquadratic
kernels increase the interpolation error again as the num-
ber of neighbors increases, which could be attributed to
overfitting (i.e, the interpolant corresponds too closely or
exactly to the given data, and may therefore fail to re-
liably predict additional data [39]). Nevertheless, it can
be concluded from the results that the test points were
reconstructed with satisfactory accuracy. Furthermore, a
value of thirty neighbors seems well suited as a default
setting for typical CPACS datasets.
Furthermore, the implementation is verified by compar-
ison with the RBF interpolation in SciPy. SciPy is an
established software library dedicated to scientific data
analysis, providing verified interpolation algorithms [40].
Unfortunately, SciPy is only available in Python. Fig-
ure 10 shows the interpolation errors for thirty neighbors
computed with different kernel functions. As the errors
are in the same order of magnitude, it can be concluded
that the RBF algorithm is properly implemented.

4. SUMMARY AND OUTLOOK

This paper presents a software called cpacsLibrary for
performant and consistent processing of parametric air-
craft data in the CPACS data model. An overview of
current research projects in which CPACS is used as the
central data exchange format illustrates that the multi-
disciplinary design of novel aircraft system architectures
not only benefits from using a central source of data, but
also places new requirements on CPACS due to the in-
creasing system complexity and level of detail. Among
others, driving topics are the design of sustainable propul-
sion architectures as well as configurational changes of
military aircraft and helicopters during mission simula-
tion.
Although XML Schema Definition (XSD) allows to
create advanced data models, complex rules and knowl-
edge to further interpret the data can currently only
be captured via the CPACS documentation or, in the
case of geometric operations, with the TiGL geometry
library. CpacsLibrary therefore complements the CPACS
data model with an object-oriented low-level interface,
as well as disciplinary high-level interfaces providing
consistent data processing methods. A first prototype
demonstrates a flexible software architecture with disci-
plinary knowledge en-capsuled in dedicated modules and
serves as proof-of-concept. Implemented in C++ the
software not only allows for performant data processing
through compiled code, but also provides the possibility
to provide interfaces for other programming languages,
such as Python. The close alignment of cpacsLibrary
with the development of TiGL allows to benefit from
best-practice and lessons-learned, to use existing third
party software like CPACSGen, as well as to foster
future collaboration between cpacsLibrary and TiGL
development teams.
The concept of cpacsLibrary has been demonstrated
through processing and visualization of flight trajectories
as well as aerodynamic data sets. The implementation
of a scattered data interpolation based on Radial Basis

10

Functions (RBF) underlines the need for robust inter-
polation methods in order to guarantee a consistent
interpretation of the data in multidisciplinary projects.
The prototypical implementation was tested using four-
dimensional aerodynamic maps and the results were
compared with the Python-based open-source software
SciPy. The accuracy of interpolation is comparable to
SciPy and therefore verifies the correct implementation
of the RBF interpolation algorithms.
Currently cpacsLibrary is still in an early alpha develop-
ment phase. Next steps include extensions of the aero-
dynamic module to take increment maps for control sur-
face deflections into account. Based on the same ap-
proach, an engine module will be developed employing
the same interpolation routines. First tests indicated
good performance when applied to irregularly distributed
multi-dimensional engine performance maps. However,
further studies are needed to identify the most robust
RBF settings for the evaluation of typical aerodynamic
and propulsion performance maps which will then be im-
plemented as default values.
Next developments will aim at handling the complexity
of various system components and their complex interac-
tions. Further research on the software architecture com-
prises finding an alternative solution for cpacsExplorer
based on modern web technologies to avoid GPLv3 li-
censing from Qt-Framework modules and to provide a
state-of-the-art user experience through a web interface
with more interactive visualizations.
The above developments are currently maintained on a
DLR-internal version management infrastructure (Git-
Lab). A publication strategy is under development.
Nevertheless, any support is expressly welcome and by
contacting the authors, individual solutions for early
collaboration with external partners will be found. All
developments aim to establish cpacsLibrary as a fun-
damental component in the CPACS ecosystem and as
such, largely enhance both the easiness and consistency
in using CPACS as a central data exchange model in
multi-disciplinary research.

References

[1] Björn Nagel, Daniel Böhnke, Volker Gollnick, Peter
Schmollgruber, Arthur Rizzi, Gianfranco La Rocca,
and Juan J. Alonso. Communication in Aircraft De-
sign: Can we establish a Common Language? In
28th International Congress of the Aeronautical Sci-
ences, 2012.

[2] Marko Alder, Erwin Moerland, Jonas Jepsen, and
Björn Nagel. Recent Advances in Establishing a
Common Language for Aircraft Design with CPACS.
In Aerospace Europe Conference 2020, 2020.

[3] Jason Edelman, Scott Lowe, and Matt Oswalt. Net-
work Programmability and Automation. O’Reilly
Media, Sebastopol, CA, March 2018.

[4] W3C. XML Schema Part 0: Primer Second Edition.
www.w3.org/TR/xmlschema-0, 2004. [Online; ac-
cessed 20-August-2022].

[5] Margit Becher. XML: DTD, XML-Schema, XPath,
XQuery, XSL-FO, SAX, DOM. Springer Vieweg, 2
edition, February 2022.

[6] Eric van der Vlist. XML Schema. O’Reilly, Heidel-
berg, Germany, 1 edition, February 2003.

[7] W3C. XML Schema Part 1: Structures Second Edi-
tion. www.w3.org/TR/xmlschema-1, 2004. [On-
line; accessed 20-August-2022].

[8] Hartmann, Johannes and Nagel, Björn. Eliminat-
ing Climate Impact From Aviation - A system level
approach as applied in the framework of the DLR-
internal project EXACT. Presentation at the DLRK
2021 Web Conference, 2021.

[9] Daniel Silberhorn, Katrin Dahlmann, Alexander
Görtz, Florian Linke, Jan Zanger, Bastian Rauch,
Torsten Methling, Corina Janzer, and Johannes
Hartmann. Climate impact reduction potentials
of synthetic kerosene and green hydrogen pow-
ered mid-range aircraft concepts. Applied Sciences,
12(12):5950, June 2022.

[10] IMOTHEP. Investigation and Maturation of Tech-
nologies for Hybrid Electric Propulsion. www.
imothep-project.eu, 2022. [Online; accessed 20-
August-2022].

[11] Agile 4.0. Towards cyber-physical collaborative air-
craft development. www.agile4.eu, 2022. [Online;
accessed 20-August-2022].

[12] Luca Boggero, Pier Davide Ciampa, and Björn
Nagel. An MBSE architectural framework for the
agile definition of complex system architectures. In
AIAA AVIATION 2022 Forum. American Institute of
Aeronautics and Astronautics, June 2022.

[13] Jasper H Bussemaker, Pier Davide Ciampa, Jasveer
Singh, Marco Fioriti, Carlos Cabaleiro De La Hoz,
Zhijun Wang, Daniël Peeters, Philipp Hansmann,
Pierluigi Della Vecchia, and Massimo Mandorino.
Collaborative design of a business jet family using
the AGILE 4.0 MBSE environment. In AIAA AVI-
ATION 2022 Forum, Reston, Virginia, June 2022.
American Institute of Aeronautics and Astronautics.

[14] Diabolo. Technologies and design of next gen-
eration fighter aircraft. www.dlr.de/as/en/
desktopdefault.aspx/tabid-15880/25737_
read-66160. [Online; accessed 20-August-2022].

[15] CHASER. Conceptual Handling Assessment
Simulation and Engineering of Rotorcraft.
www.dlr.de/as/en/desktopdefault.aspx/
tabid-18135/28809_read-74794. [Online;
accessed 20-August-2022].

[16] Martin Siggel, Jan Kleinert, Tobias Stollenwerk, and
Reinhold Maierl. TiGL: An Open Source Computa-
tional Geometry Library for Parametric Aircraft De-
sign. Mathematics in Computer Science, 7(1):23,
2019.

11

www.w3.org/TR/xmlschema-0
www.w3.org/TR/xmlschema-1
www.imothep-project.eu
www.imothep-project.eu
www.agile4.eu
www.dlr.de/as/en/desktopdefault.aspx/tabid-15880/25737_read-66160
www.dlr.de/as/en/desktopdefault.aspx/tabid-15880/25737_read-66160
www.dlr.de/as/en/desktopdefault.aspx/tabid-15880/25737_read-66160
www.dlr.de/as/en/desktopdefault.aspx/tabid-18135/28809_read-74794
www.dlr.de/as/en/desktopdefault.aspx/tabid-18135/28809_read-74794

[17] Tobias Schlauch. Framework Directive Software
Engineering. Technical Report QMH-DLR-VA004,
DLR, 2022.

[18] DLR Institute for Simulation and Software Tech-
nology. TiXI: fast and simple xml interface
library. http://tixi.sourceforge.net/Doc/
index.html, 2019. [Online; accessed 18-August-
2022].

[19] RISC Software GmbH. CPACSGen: generates
CPACS schema based classes for TiGL. www.
github.com/RISCSoftware/cpacs_tigl_gen,
2018. [Online; accessed 18-August-2022].

[20] DLR Institute for Simulation and Software Technol-
ogy. TiGL. www.github.com/DLR-SC/tigl, 2018.
[Online; accessed 18-August-2022].

[21] Pybind 11. www.github.com/pybind/pybind11,
2022. [Online; accessed 18-August-2022].

[22] Swig. www.swig.org, 2019. [Online; accessed 18-
August-2022].

[23] DLR Institute for Simulation and Software Tech-
nology. RCE - Remote Component Environment.
www.rcenvironment.de, 2022. [Online; accessed
19-August-2022].

[24] Boost.Python. Building Hybrid Systems with
Boost.Python. www.boost.org/doc/libs/1_63_
0/libs/python/doc/html/article.html. [On-
line; accessed 19-August-2022].

[25] Pybind 11. Overloaded methods. http:
//pybind11.readthedocs.io/en/stable/
classes.html#overloaded-methods, 2022.
[Online; accessed 19-August-2022].

[26] CMake. www.cmake.org. [Online; accessed 19-
August-2022].

[27] Boost. www.boost.org. [Online; accessed 19-
August-2022].

[28] Eigen v3. www.eigen.tuxfamily.org, 2010. [On-
line; accessed 19-August-2022].

[29] Qt. www.qt.io, 2022. [Online; accessed 19-August-
2022].

[30] Qt Documentation. Qt Charts. https://doc.qt.
io/qt-6/qtcharts-index.html, 2022. [Online;
accessed 19-August-2022].

[31] Google. Google Logging Library. www.github.com/
google/glog, 2022. [Online; accessed 19-August-
2022].

[32] Google. GoogleTest - Google Testing and
Mocking Framework. www.github.com/google/
googletest, 2022. [Online; accessed 19-August-
2022].

[33] Python Software Foundation. unittest - Unit test-
ing framework. docs.python.org/3/library/
unittest.html, 2022. [Online; accessed 19-
August-2022].

[34] GitLab. www.gitlab.com. [Online; accessed 19-
August-2022].

[35] GitHub. www.github.com. [Online; accessed 19-
August-2022].

[36] William H. Press, Brian P Flannery, Saul A Teukol-
sky, and William T Vetterling. Numerical recipes in
C: The art of scientific computing, February 2002.

[37] Eigen. Online Documentation. www.
eigen.tuxfamily.org/dox/classEigen_1_
1PartialPivLU.html, 2018. [Online; accessed
18-August-2022].

[38] Rosettacode.org. K-d tree. www.rosettacode.
org/wiki/K-d_tree, 2022. [Online; accessed 18-
August-2022].

[39] English: Oxford Living Dictionaries. Def-
inition of "overfitting". https://web.
archive.org/web/20171107014257/https:
//en.oxforddictionaries.com/definition/
overfitting. [Online; accessed 22-September-
2022].

[40] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant,
Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones,
Robert Kern, Eric Larson, C J Carey, İlhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis
Laxalde, Josef Perktold, Robert Cimrman, Ian Hen-
riksen, E. A. Quintero, Charles R. Harris, Anne M.
Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors.
SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–
272, 2020. DOI: 10.1038/s41592-019-0686-2.

Contact address:

marko.alder@dlr.de

12

http://tixi.sourceforge.net/Doc/index.html
http://tixi.sourceforge.net/Doc/index.html
www.github.com/RISCSoftware/cpacs_tigl_gen
www.github.com/RISCSoftware/cpacs_tigl_gen
www.github.com/DLR-SC/tigl
www.github.com/pybind/pybind11
www.swig.org
www.rcenvironment.de
www.boost.org/doc/libs/1_63_0/libs/python/doc/html/article.html
www.boost.org/doc/libs/1_63_0/libs/python/doc/html/article.html
http://pybind11.readthedocs.io/en/stable/classes.html#overloaded-methods
http://pybind11.readthedocs.io/en/stable/classes.html#overloaded-methods
http://pybind11.readthedocs.io/en/stable/classes.html#overloaded-methods
www.cmake.org
www.boost.org
www.eigen.tuxfamily.org
www.qt.io
https://doc.qt.io/qt-6/qtcharts-index.html
https://doc.qt.io/qt-6/qtcharts-index.html
www.github.com/google/glog
www.github.com/google/glog
www.github.com/google/googletest
www.github.com/google/googletest
docs.python.org/3/library/unittest.html
docs.python.org/3/library/unittest.html
www.gitlab.com
www.github.com
www.eigen.tuxfamily.org/dox/classEigen_1_1PartialPivLU.html
www.eigen.tuxfamily.org/dox/classEigen_1_1PartialPivLU.html
www.eigen.tuxfamily.org/dox/classEigen_1_1PartialPivLU.html
www.rosettacode.org/wiki/K-d_tree
www.rosettacode.org/wiki/K-d_tree
https://web.archive.org/web/20171107014257/https://en.oxforddictionaries.com/definition/overfitting
https://web.archive.org/web/20171107014257/https://en.oxforddictionaries.com/definition/overfitting
https://web.archive.org/web/20171107014257/https://en.oxforddictionaries.com/definition/overfitting
https://web.archive.org/web/20171107014257/https://en.oxforddictionaries.com/definition/overfitting
https://doi.org/10.1038/s41592-019-0686-2
mailto:marko.alder@dlr.de

A. CPACS SCHEMA

FIG 11. Tree structure diagram of the CPACS v3.4 XML Schema Definition (XSD).

13

B. CODE EXAMPLES

FIG 12. CPACS XSD type for aeroMaps.

1 c on s t cha r ∗ filename = " TestData / ae roPer fo rmance . xml " ;
2 m_cpacs . openCPACS (filename) ;
3 m_cpacsTree = m_cpacs . cpacsTree () ;
4 c on s t auto& aeroMap = m_cpacsTree−>GetVehicles ()−>GetAircraft () \
5 −>GetModels () . at (0)−>GetAnalyses ()−>GetAeroPerformance () \
6 −>GetAeroMaps () . at (0) ;
7 c on s t std : : string cl = aeroMap−>GetAeroPerformanceMap () . GetCl () \
8 −>GetSimpleContent () ;

Listing 1. Low-Level Interface Example

1 c on s t cha r ∗ filename = " TestData / ae roPer fo rmance . xml " ;
2 m_cpacs . openCPACS (filename) ;
3 m_aero = m_cpacs . cpacsAero () ;
4 aeroMap1 = m_aero−>aircraftAeroMaps () . at (0) ;
5 std : : vector<double> cl = aeroMap1−>cl ()−>values () ;

Listing 2. High-Level Interface Example

14

	Brief Introduction to CPACS
	Data Modeling with XSD
	CPACS Current Status and Applications
	Challenges of Consistent Data Processing

	CpacsLibrary: Design and Implementation
	Software Requirements
	Software Architecture
	Implementation
	Low-Level Interface
	Mid-Level Interface
	High-Level interface

	Data Inspection with cpacsExplorer
	Python interface
	Software configuration and dependency management
	Exception Handling and Logging
	Testing and Change Management

	Use-Case: Interpolation of multidimensional maps
	Interpolation Requirements
	RBF Interpolation
	Implementation
	Verification

	Summary and Outlook
	CPACS Schema
	Code examples

