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Abstract. This article demonstrates the comparative possibility of constructing 
indicators of critical and crash phenomena in the volatile market of 
cryptocurrency and developed stock market. Then, combining the empirical 
cross-correlation matrix with the Random Matrix Theory, we mainly examine the 
statistical properties of cross-correlation coefficients, the evolution of the 
distribution of eigenvalues and corresponding eigenvectors in both markets using 
the daily returns of price time series. The result has indicated that the largest 
eigenvalue reflects a collective effect of the whole market, and is very sensitive 
to the crash phenomena. It has been shown that introduced the largest eigenvalue 
of the matrix of correlations can act like indicators-predictors of falls in both 
markets. 
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1 Introduction 

The instability of global financial systems with regard to normal and natural 
disturbances of the modern market and the presence of poorly foreseeable financial 
crashes indicate, first of all, the crisis of the methodology of modeling, forecasting and 
interpretation of modern socio-economic realities. The modern paradigm of synergetic 
is a complex paradigm associated with the possibility of direct numerical simulation of 
the processes of complex systems evolution [1; 11; 20; 19; 28]. 

Complex systems are systems consisting of a plurality of interacting agents 
possessing the ability to generate new qualities at the level of macroscopic collective 
behavior, the manifestation of which is the spontaneous formation of noticeable 
temporal, spatial, or functional structures. As simulation processes, the application of 
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quantitative methods involves measurement procedures, where importance is given to 
complexity measures. I. Prigogine notes that the concepts of simplicity and complexity 
are relativized in the pluralism of the descriptions of languages, which also determines 
the plurality of approaches to the quantitative description of the complexity 
phenomenon [21]. Therefore, we will continue to study Prigogine’s manifestations of 
the system complexity, using the current methods of quantitative analysis to determine 
the appropriate measures of complexity.  

The key idea here is the hypothesis that the complexity of the system before the 
crashes and the actual periods of crashes must change. This should signal the 
corresponding degree of complexity if they are able to quantify certain patterns of a 
complex system. Significant advantage of the introduced measures is their dynamism, 
that is, the ability to monitor the change in time of the chosen measure and compare it 
with the corresponding dynamics of the output time series. This allowed us to compare 
the critical changes in the dynamics of the system, which is described by the time series, 
with the characteristic changes of concrete measures of complexity. It turned out that 
quantitative measures of complexity respond to critical changes in the dynamics of a 
complex system, which allows them to be used in the diagnostic process and prediction 
of future changes.  

Cryptocurrency market is a complex, self-organized system, which in most cases can 
be considered either as a complex network of market agents, or as an integrated output 
signal of such a network – a time series, for example, prices of individual 
cryptocurrency. Thus the cryptocurrency prices exhibit such complex volatility 
characteristics as nonlinearity and uncertainty, which are difficult to forecast and any 
results obtained are uncertain. Therefore, cryptocurrency price prediction remains a 
huge challenge. 

The stock market is one of the more developed economic segments of the financial 
market, highly capitalized and globalized with well-studied trends. Therefore, a 
comparative analysis of fragments of these markets is of obvious scientific and applied 
interest. 

Unfortunately, the existing nowadays classical econometric [5; 8; 34] and modern 
methods of prediction of crisis phenomena based on machine learning methods [2; 3; 
7; 10; 13; 14; 15; 25; 36] do not have sufficient accuracy and reliability of prediction. 

Thus, lack of reliable models of prediction of time series for the time being will 
update the construction of at least indicators which warn against possible critical 
phenomena or trade changes etc. In our previous works, we constructed some indicators 
of crisis phenomena using the methods of nonlinear dynamics [276; 27] and the theory 
of complex networks [31]. Similar approaches, like the Random Matrix Theory, are 
developed in the framework of interdisciplinary science, called econophysics [17; 24]. 
This work is dedicated to the construction of such indicators – precursors based on the 
Random Matrix Theory. 

The paper is structured as follows. Section 2 describes previous studies in these 
fields. Section 3 presents classification of crashes and critical events on the example of 
a key cryptocurrency Bitcoin during the entire period (16.07.2010 – 10.01.2019) and 
stock market by the example of the index S&P 500 during the entire period (17.03.1980 
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– 10.01.2019). In Section 4, new indicators of critical and crash phenomena are 
introduced using the Random Matrix Theory. 

2 Analysis of previous studies 

Random Matrix Theory (RMT) developed in this context the energy levels of complex 
nuclei, which the existing models failed to explain [9; 16; 18; 37]. Deviations from the 
universal predictions of RMT identify system specific, nonrandom properties of the 
system under consideration, providing clues about the underlying interactions.  

Unlike most physical systems, where one relates correlations between subunits to 
basic interactions, the underlying “interactions” for the financial systems problem are 
not known. Here, we analyze cross correlations between financial agents (stocks, 
cryptocurrencies) by applying concepts and methods of RMT, developed in the context 
of complex quantum systems. Wherein the precise nature of the interactions between 
subunits are not known. 

RMT has been applied extensively in studying multiple financial time series among 
which stock markets are central [12; 22; 23; 26; 35]. The first fundamental work in the 
field of modelling self-organization processes in the US stock market after the S&P 500 
index using the RMT method was the study of [23]. Using extensive databases (every 
minute, hourly, daily), an analysis of their correlation properties is carried out. It is 
shown that there is a small part of the eigenvalues and eigenvectors containing 
important information about the structural and dynamic properties of the market. In 
particular, the authors of [23] found that the largest eigenvalue corresponds to an 
influence common to all stocks. Analysis of the remaining deviating eigenvectors 
shows distinct groups, whose identities correspond to conventionally identified 
business sectors. Finally, the authors discuss applications to the construction of 
portfolios of stocks that have a stable ratio of risk to return. Further studies, for example, 
[12; 22; 26; 35] developed the work of [23] and adapted the methodology to other 
financial objects. 

As for the cryptocurrency market, the work here has just begun [3332; 33]. In the 
work [33], the classic scheme [23] was used for crypto assets with similar conclusions. 
The authors [32] analyzed the structure of the cryptocurrency market based on the 
correlation-based agglomerative hierarchical clustering and minimum spanning tree 
and examined the market structures. As a result, the authors demonstrated the 
leadership of the Bitcoin and Ethereum in the market, six homogeneous clusters 
composed of relatively less-traded cryptocurrencies, and transformation of the market 
structure after the announcement of regulations from various countries.  

We will calculate the correlation properties of stock and crypto markets and compare 
the calculation results. 

3 Data 

At the moment, there are various research works on what crises and crashes are and 
how to classify such interruptions in the stock markets and market of cryptocurrencies. 
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We have created our classification of such leaps and falls, relying on Bitcoin time series 
during the entire period (16.07.2010 – 10.01.2019) of verifiable fixed daily values of 
the Bitcoin price (BTC) (https://finance.yahoo.com/cryptocurrencies). Critical US 
stock market events considered over time period 17.03.1980 – 10.01.2019 
(https://finance.yahoo.com/quote /^GSPC?p=^GSPC). 

Critical events are those falls that could go on for a long period of time, and at the 
same time, they were not caused by a bubble. The bubble is an increasing in the price 
of the cryptocurrencies that could be caused by certain speculative moments. Therefore, 
according to our classification of the event with number (1, 3–6, 9–11, 14, 15) are the 
crashes that are preceded by the bubbles, all the rest – critical events. More detailed 
information about crises, crashes and their classification in accordance with these 
definitions is given in the Table 1. 

Table 1. List of Bitcoin major corrections ≥ 20% since June 2011 

No Name Days in correction 
1 07.06.2011 – 10.06.2011 4 
2 15.01.2012 – 16.02.2012 33 
3 15.08.2012 –18.08.2012 4 
4 08.04.2013 –15.04.2013 8 
5 04.12.2013 –18.12.2013 15 
6 05.02.2014 – 25.02.2014 21 
7 12.11.2014 – 14.01.2015 64 
8 11.07.2015 – 23.08.2015 44 
9 09.11.2015 – 11.11.2015 3 

10 18.06.2016 – 21.06.2016 4 
11 04.01.2017 – 11.01.2017 8 
12 03.03.2017 – 24.03.2017 22 
13 10.06.2017 – 15.07.2017 36 
14 16.12.2017 – 22.12.2017 7 
15 13.11.2018 – 26.11.2018 14 

 
Accordingly, during this period in the Bitcoin market, many crashes and critical 

events shook it. Thus, considering them, we emphasize 15 periods on Bitcoin time 
series, whose falling we predict by our indicators, relying on normalized returns and 
volatility, where normalized returns are calculated as 

 ( ) ln ( ) ln ( ) [ ( ) ( )] / ( ),g t X t t X t X t t X t X t        (1) 

and volatility as  

 
1

'

1( ) ( ')
t n

T
t t

V t g t
n

 



    (2) 

Besides, considering that g(t) should be more than the ±3σ, where σ is a mean square 
deviation.  
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A similar procedure makes it possible to present a classification of crashes, crises 
and critical events for index S&P 500 with Table 2. 

Table 2. List of S&P 500 index historical corrections ≥ 20% since October 1987 

No Name Days in correction 
1 02.10.1987 – 19.10.1987 12 
2 17.07.1990 – 23.08.1990 28 
3 01.10.1997 – 21.10.1997 15 
4 17.08.1998 – 31.08.1998 11 
5 14.08.2002 – 01.10.2002 34 
6 16.10.2008 – 15.12.2008 42 
7 09.08.2011 – 22.09.2011 32 
8 18.08.2015 – 25.08.2015 6 
9 29.12.2015 – 20.01.2016 16 

10 03.12.2018 – 24.12.2018 15 
 
Calculations were carried out within the framework of the algorithm of a moving 

window. For this purpose, the part of the time series (window), for which there were 
calculated measures of complexity, was selected, then the window was displaced along 
the time series in a one-day increment and the procedure repeated until all the studied 
series had exhausted. Further, comparing the dynamics of the actual time series and the 
corresponding measures of complexity, we can judge the characteristic changes in the 
dynamics of the behavior of complexity with changes in the time series. If this or that 
measure of complexity behaves in a definite way for all periods of crashes, for example, 
decreases or increases during the pre-crashes period, then it can serve as an indicator or 
precursor of such a crashes phenomenon. 

Calculations of complexity measures were carried out both for the entire time series, 
and for a fragment of the time series localizing the crash. In the latter case, fragments 
of time series of the same length with fixed points of the onset of crashes or critical 
events were selected and the results of calculations of complexity measures were 
compared to verify the universality of the indicators. 

In the Figure 1 output Bitcoin time series, normalized returns g(t), and volatility VT(t) 
calculated for the window size 100 are presented. 

From Figure 1 we can see that during periods of crashes and critical events 
normalized profitability g increases considerably in some cases beyond the limits ±3σ. 
This indicates about deviation from the normal law of distribution, the presence of the 
“heavy tails” in the distribution g, characteristic of abnormal phenomena in the market. 
At the same time volatility also grows.  

We observe a similar picture for the index S&P 500 (Fig. 2). These characteristics 
serve as indicators of critical and collapse phenomena as they react only at the moment 
of the above mentioned phenomena and don’t give an opportunity to identify the 
corresponding abnormal phenomena in advance. In contrast, the indicators described 
below respond to critical and crash phenomena in advance. It enables them to be used 
as indicators-precursors of such phenomena and in order to prevent them. 
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Fig. 1. The standardized dynamics, returns g(t), and volatility VT(t) of BTC/USD daily values. 
Horizontal dotted lines indicate the ±3σ borders. The arrows indicate the beginning of one of 

the crashes or the critical events. 

 
Fig. 2. The standardized dynamics, returns g(t), and volatility VT(t) of S&P 500 daily values. 
Horizontal dotted lines indicate the ±3σ  borders. The arrows indicate the beginning of one of 

the crashes or the critical events. 

4 Random Matrix Theory 

Special databases have been prepared, consisting of cryptocurrency and S&P 500 index 
components time series for a certain period of time. The largest number of 
cryptocurrencies 1047 contained a base of 456 days from 31.12.2017 to 10.01.2019, 
and the smallest (24 cryptocurrencies) contained a base of 1567 days, respectively, from 
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04.08.2013 to 10.01.2019. For the logarithmic return (1) of the i  cryptocurrencies or 
stock price we calculate the pairwise cross-correlation coefficients between any two 
returns time series. For the largest databases, a graphical representation of the pair 
correlation field is shown in the Figure 3a, c. For comparison, a map of correlations of 
randomly mixed time series of the same length is shown in Figure 3b, d.  

 
   a)    b) 

 
   c)     d) 

Fig. 3. Visualization of the field of correlations for the initial (a, c) and mixed (b, d) matrix 
cryptocurrency and S&P 500 index respectively. The largest number S&P 500 index 

components is 456. 

For the correlation matrix C we can calculate its eigenvalues, TC U U  , where U 
denotes the eigenvectors,   is the eigenvalues of the correlation matrix, whose density 
fc(λ) is defined as follows, ( ) (1/ ) ( ) /cf N dn d   . n(λ) is the number of eigenvalues 
of C that are less than λ. In the limit ,  N T   and / 1Q T N   fixed, the 
probability density function fc(λ) of eigenvalues λ of the random correlation matrix M 
has a close form [18]: 

 max min
2

( )( )
( )

2c
Qf

   



 

  (3) 
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with min max[ ,  ]   , where max
min  is given by max 2

min (1 1/ 2 1/ )Q Q    and 2  is 
equal to the variance of the elements of matrix M [18]. 

We compute the eigenvalues of the correlation matrix C, 
max 1 2 15 min          . The probability density functions (pdf) of paired 

correlation coefficients cij and eigenvalues λi for matrices of 132, 312, 458 
cryptocurrencies and 163, 312, 456 S&P 500 index components are presented in 
Figure 4. 

 
  a)      b) 

 
  c)      d) 

Fig. 4. Comparison of distributions of the pair correlation coefficients (a, c) and eigenvalues of 
the correlation matrix (b, d) with those for RMT for cryptocurrency market (a, b) and stock 

market (c, d).  

Accordingly, for correlation matrices in the case of S&P 500 index, the dimensions of 
the matrices are as follows: 163, 312 and 456 (Fig. 4c, d). From Figures 4, it can be 
seen that the distribution functions for the paired correlation coefficients of the selected 
matrices differ significantly from the distribution function described by the RMT. It 
can be seen that the crypto market has a significantly correlated, self-organized system 
(Fig. 4a) and the difference from the RMT of the case, the correlation coefficients 
exceed the value of 0.6-0.8 on “thick tails”. The distribution of the eigenvalues of the 
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correlation matrix also differs markedly from the case of RMT. In our case, only one-
third of its own values refer to the RMT region. However, the stock market is even 
more correlated. On it, the difference with RMT data is even more obvious. 

The picture of correlations changes with changing market trends. This is clearly 
demonstrated by Figure 5, which shows the window distribution functions of pair 
correlation coefficients. 

 
   a)    b) 

Fig. 5. Comparison of the window distributions of the pair correlation coefficients for 
cryptocurrencies (a) and S&P 500 index components (b). 

And in this case, the stock market is more responsive to changes in market dynamics. 
Eigenvectors correspond to the participation ratio PR and its inverse participation 

ratio IPR  
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where k
lu , 1,  . . . ,  l N  are the components of the eigenvector uk (Fig. 6a). So PR 

indicates the number of eigenvector components that contribute significantly to that 
eigenvector. More specifically, a low IPR indicates that they contribute more equally. 
In contrast, a large IPR would imply that the factor is driven by the dynamics of a small 
number of assets. The irregularity of the influence of the eigenvalues of the correlation 
matrix is determined by the absorption ratio (AR), which is a cumulative risk measure  

   


n

k

N

k kknAR
1 1

/  , (5) 

and indicates which part of the overall variation is described from the total number N 
of eigenvalues.  

Figure 6 shows the results of IPR (a, b) calculations for both sets of matrices, as well 
as the results in the framework of the algorithm of a moving window, comparative 
calculations of the distribution function of eigenvalues (c, d) and IPR (e, f).  
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   a)    b) 

 
  c)      d) 

 
  e)      f) 

Fig. 6. Inverse participation ratio (a) and moving window dynamics of the eigenvalues 
distribution (b), IPR for the initial and mixed (or random) matrices (c).  

The difference in dynamics is due to the peculiarities of non-random correlations 
between the time series of individual assets. Under the framework of RMT, if the 
eigenvalues of the real time series differ from the prediction of RMT, there must exists 
hidden economic information in those deviating eigenvalues. For cryptocurrencies 
markets, there are several deviating eigenvalues in which the largest eigenvalue λmax 
reflects a collective effect of the whole market. As for PR the differences from RMT 
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appear at large and small λ values and are similar to the Anderson quantum effect of 
localization [4]. Under crashes conditions, the states at the edges of the distributions of 
eigenvalues are delocalized, thus identifying the beginning of the crash. This is 
evidenced by the results presented in Figure 7. 

 
   a)    b) 

Fig. 7. Measures of complexity λmax and its participation ratio. The numerics in the figure 
indicate the numbers of crashes and critical events in accordance with the Tables 1, 2. 

We find that both λmax and PR λmax have large values for periods containing the market 
crashes and critical events. At the same time, their growth begins in the pre-crashes 
periods. At the same time, the stock market is more responsive to crisis phenomena. 

5 Conclusions 

Consequently, in this paper, we have shown that monitoring and prediction of possible 
critical changes on both the stock and cryptocurrency markets is of paramount 
importance. As it has been shown by us, the theory of complex systems has a powerful 
toolkit of methods and models for creating effective indicators-precursors of crashes 
and critical phenomena. In this paper, we have explored the possibility of using the 
Random Matrix Theory measures of complexity to detect dynamical changes in a 
complex time series. We have shown that the measures that have been used can indeed 
be effectively used to detect abnormal phenomena for the used time series data. 

As it has been shown by us, the econophysics has a powerful toolkit of methods and 
models for creating effective indicators-precursors of crisis phenomena. We have 
shown that the largest eigenvalue λmax  may be effectively used to detect crisis 
phenomena for the cryptocurrencies time series. We have concluded though by 
emphasizing that the most attractive features of the λmax and PR λmax namely its 
conceptual simplicity and computational efficiency make it an excellent candidate for 
a fast, robust, and useful screener and detector of unusual patterns in complex time 
series.  

Thus, the results of this study confirm the main provisions of the concept of early 
diagnosis of crisis phenomena by calculating various measures of complexity of 
financial systems [6; 27; 29; 30; 31]. 
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