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ABSTRACT Deep Learning methods have produced good carrier frequency offset estimations for short
message sequences in comparison with methods based on the Fast Fourier Transform. However, these
performance gains were observed for short ranges of frequency offsets, sequences with predefined pilot
symbols and periodic modulation schemes. Chaotic modulation has an advantage over periodic signals in
offering security through the continuous changes produced by parameterising the chaotic map function.
However, synchronisation of chaotic map parameters in coherent receivers is dependent on the carrier
recovery of phase and frequency which dramatically reduces the demodulation performance under high
noise levels. This article presents a stacked sequence-to-sequence neural network architecture for blind
carrier frequency offset estimation of both periodic and chaotic modulation schemes. The results obtained
demonstrate better performance than conventional methods in low SNR for the Additive White Gaussian
Noise channel. While this technique operates without feature engineering, the results demonstrate that data
augmentation produces a higher degree of accuracy for such models, indicating the benefit of integration
with conventional signal pre-processing steps as part of the deep learning pipeline. The proposed neural
network architecture is shown to perform carrier frequency offset estimation, not only for the selected
periodic modulations, but also in the case of highly non-linear chaotic maps. This suggests the applicability
of deep learning methods for synchronisation in waveforms that employ chaotic modulation schemes for
secure communication and for applications where short and sporadic messaging are required (e.g., Internet
of Things).

INDEX TERMS Chaotic communication, Deep learning, Fast Fourier transforms, Frequency synchronisa-
tion, Carrier frequency offset estimation.

I. INTRODUCTION

THE accuracy of Carrier Frequency Offset (CFO) estima-
tion methods based on the Fast Fourier Transform (FFT)

in single carrier communications is dependent on the sample
length of the message, and on the Signal to Noise Ratio
(SNR) [1]. Short sample message lengths are advantageous
in low power Internet of Things (IoT) applications and pilot
signals used for signal detection and synchronisation. Deep
Learning (DL) methods have demonstrated to outperform

FFT-based methods under similar constraints [2], [3]. How-
ever, much of the experimentation to date has focused largely
on phase amplitude modulation (PAM) or M -ary phase shift
keying (M -PSK) modulations, and has not investigated the
potential application to chaotic modulation techniques.

Chaotic modulations present a method for providing phys-
ical layer security, and are well suited to address the con-
straints placed on IoT applications [4]. Due to the continu-
ously changing signal which results from parameterisation
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of the chaotic map sequence, chaotic modulations exhibit
high autocorrelation for the same symbol and low cross-
correlation between symbols [5]. This characteristic is ad-
vantageous for coherent detection, where each symbol is
correlated with a potential mapping function at the receiver
and is resilient to small levels of noise [5]. However to
achieve demodulation the receiver is required to estimate the
parameters for each chaotic map function which is known
as sequence synchronisation [6]. Sequence synchronisation
for chaotic maps is dependent on accurate estimation and
removal of the CFO [6], [7]. For estimating frequency offsets
in chaotic maps, autocorrelation methods are shown to be
effective for fixed preambles [8], however these methods
are difficult to implement for variable and non-repetitive
sequences.

Given that deep neural networks can learn non-linear
features, the estimation of CFO for randomised chaotic se-
quences is an application well suited to such methods. In this
article we propose a data driven method for the estimation of
the CFO in short sequences of BPSK, QPSK modulations, as
well as for the Circular, Quadratic and Zadoff-Chu chaotic
maps. The approach is applied to both fixed preamble and
randomised sequences. The model performs an iterative esti-
mation of the frequency offset using a sequence-to-sequence
(Seq2Seq) block at each level. This approach is capable of
more accurate CFO estimation for the M -PSK modulations
in comparison with the FFT and Phase Locked Loop (PLL)
approach. While brute force cross-correlation is more ac-
curate without down-sampling at the matched filter (at the
expense of execution time), the DL method is more accurate
when compared with cross-correlation on the shorter down-
sampled signal. The network can produce CFO estimates
directly from the In-phase and Quadrature (IQ) values of
the received signal, however data augmentation is shown to
provide an advantage for the accuracy of the estimation.

A. BACKGROUND AND RELATED WORK
The use of the FFT is demonstrated to perform an approxima-
tion for the maximum-likelihood function of the parameters
in a sinusoidal signal corrupted by Gaussian noise in [9].
The length of the FFT determines the accuracy of the mea-
surement, and was found to be optimal at up to 4 times the
length of the signal [9]. As the frequency step size of the FFT
produces a coarse estimation, an interpolation is required to
produce a finer estimate. In the case of [9] an iterative secant
method is applied to the fine estimate of the frequency but
is indicated to produce a larger error in low SNR [9]. The
threshold for the variance of the estimator in [9] is shown
to be optimal above an SNR between 15dB and 17dB in
[10] for corresponding sequence lengths between N = 64
to N = 2048.

Interpolation methods using points either side of the maxi-
mum value for the FFT are applied to calculate an adjustment
term for the frequency estimate in [11], [12] and improve on
the method in [9]. These methods are shown to have a bias for
short sequences and low SNR in [10] which proposes three

and five point interpolation methods making use of the phase
information in the FFT coefficients. Several methods of inter-
polation are compared in [13] which also makes use of three
coefficients to demonstrate a method that approaches uniform
error variance above 2dB. An extended number of fourier
coefficients weighted by an approximation of their mean
square error are combined to estimate the frequency offset in
[14], resulting in an estimator approaching the lower bound
of variance close to 5dB. However each of these methods
share limitations in lower SNR and for short sequences. In
addition the application of the FFT is applicable for periodic
signals and are not appropriate for use with those chaotic
modulations which do not exhibit distinctive peaks within the
power spectrum.

DL approaches, in particular convolutional neural net-
works (CNN), are demonstrated to outperform FFT based
methods on estimation of CFO for short random sequences in
1-bit ADC’s at low SNR in [2]. The selection of DL models is
able to extrapolate well over a wider range of SNR (between
-20 and 40 dB), even though they are trained on a subset of
the SNR (between 0 and 10dB) [2]. The 1-bit quantization
method reduces the amount of information available to the
network for training [2] and for conventional methods it is
known to require up to four times oversampling for the es-
timation of offset parameters [15]. In conventional methods,
knowledge of modulation order M is applied to remove the
modulation from the signal prior to the application of FFT
estimation, however the generality of the 1-bit ADC in [2] did
not motivate an exploration of the impact of the modulation
on CFO estimation. As our method is applied after down-
sampling at the matched filter output, the type of modulation
is shown to have an influence on estimation accuracy for both
FFT and DL approaches.

Further indication that DL can provide good frequency
offset estimation for sinusoidal waveforms in low SNR is
described in [3]. The network architecture was constrained
specifically to the fully connected network (FCN) with the
number of input nodes representing the length of the signal
to be processed and being dependent on the range of the fre-
quency offset, requiring larger dimensions for wider ranges
of frequency [3]. FCN networks require a larger number of
connections between layers as opposed to the CNN [16],
hence consideration of CNN layers would provide flexibility
for processing multiple signal lengths with a constant number
of layer parameters. Although the choice of network archi-
tecture limited the range of frequency offset, it was shown
that the FFT and DL methods did decrease in accuracy under
shorter signal lengths [3]. To address a wider frequency offset
range, as well as several modulations, this article proposes
the stacked network architecture, which incorporates CNN
layers to extract features at each level rather than fully
connected layers.

Short signals prevent the FFT from accurate spectral esti-
mation due to the resulting coarse resolution, whereas a DL
method for super-resolution estimation of the approximate
spectrogram is proposed in [17]. A combination of both FCN
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(linear) and CNN layers are applied in the architecture, taking
advantage of the ability of the CNN to accept multiple reso-
lutions of input during training to learn translation invariant
features [17]. A customised minimum distance loss is applied
during the learning procedure and the model is shown to
produce more accurate estimation than the periodogram and
eigenvector (MUSIC) based estimators at a limited range
of SNR [17]. The model is trained and tested on the com-
plex sinusoid with amplitudes, frequency and phase selected
from random normal distribution at different parameters [17].
A fixed output resolution is used to estimate the pseudo-
spectrum of the signal which is then mapped onto a known
frequency range [17], the resolution is dependent on the sig-
nal length and is fixed. Our proposed stacked model refines
the peak frequency estimate at increasing resolutions for each
stack in the network and estimates an error correction term to
produce a high resolution estimate for the carrier frequency
offset at the final layer.

The CNN is leveraged in the literature on the CFO es-
timation task, however as the signal varies over time, a
recurrent neural network (RNN) may be applied to learn
time dependent features over the signal. Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) network
models are trained to perform CFO estimation with the short
training field (STF) of the IEEE 802.11ah preamble frame in
[18]. Results demonstrate that the network performs well on
the CFO estimation task in comparison with the conventional
correlation method in low SNR [18]. The STF is a fixed pat-
tern within the frame and is useful in simplifying the process
of timing and CFO estimation [18]. It is designed to improve
the resulting accuracy of the estimation method. In the pro-
posed method, we experiment with both the fixed preamble
as well as randomised sequences for several modulations and
demonstrate that the DL approach can learn to estimate the
CFO even where the modulation exhibits chaotic behaviour.
In the proposed architecture, recurrent LSTM layers learn
time dependencies resulting from features modelled by CNN
layers and are organised in encoder-decoder blocks which
share the hidden state for learnt time dependencies between
them.

A common element in the cited literature is that the DL
method is more accurate than conventional methods in low
SNR and for short sequences. While the FCN layer is applied
in [3] due to the constraints of the experiment, the CNN has
advantages as an effective choice for feature extraction in the
CFO estimation task [2], [17] and the use of the LSTM is
shown to be effective in [18]. It is clear a DL model can be
constructed for a single modulation, the impact of estimating
CFO for multiple modulations has not been investigated for
such an approach. Spectral methods are optimal under the
right conditions and would be useful to incorporate into the
design of the network model as demonstrated in [17]. The
chaotic map becomes deterministic when the state parame-
ters are known. A recurrent network modelling approach may
demonstrate the ability to learn implicit information from the
signal, thereby aiding estimation of the CFO. A combination

of RNN and CNN would enable a DL model to both extract
translation invariant features as well as learn time dependent
features. This article proposes a stacked architecture which
estimates the probability of the peak frequency as well as
an error correction term using sequence-to-sequence blocks
comprised of CNN and LSTM units.

The rest of the paper has been structured in the following
way: The next section describes the system model, as well
as the conventional carrier offset estimation method. It also
explains the proposed model architecture, as well as the data
augmentation applied when training the model. Section III
shows the experimental results obtained when the proposed
DL approach is applied to a number of CFO estimation tasks.
A discussion on these results is also provided in this section.
Section IV closes the paper, by giving some final concluding
remarks on the research carried out.

II. METHODS
When transmitted over a channel, the baseband signal s(t)
is subject to perturbations of timing t, phase θ and carrier
frequency f0 offsets, shown in Equation (1), where a(t)
represents the signal modulation after filtering, and n(t)
represents Additive White Gaussian Noise (AWGN).

s(t) = a(t)ejθej2πf0t + n(t) (1)

In this work the proposed model is trained on several mod-
ulations, which include Binary Phase Shift Keying (BPSK),
Quadrature Phase Shift Keying (QPSK), as well as chaotic
Circular, Quadratic and Zadoff-Chu maps. Frequency offsets
for M -PSK modulations are estimated in two stages: first,
a coarse estimate f̂1 is given by the position of maximum
frequency of the coarse grained FFT (Equations (2)-(4)).
The derivation for the use of the Discrete Fourier Trans-
form (applied through the FFT) as an approximation for the
maximum-likelihood estimator of the CFO is described in
Rife and Boorstyn [9], in this article we apply the Matlab
coarse frequency estimator [19] which is derived from the
use of the FFT in [20]. The received signal s(t) is first
raised to the M th power z(t) = s(t)M , then the FFT is
calculated giving S(k) (Equation (2)). The index km of the
frequency, having the maximum absolute value for S(k)
(Equation (3) ) is then divided by the modulation order M
(M = 2 in BPSK and M = 4 in QPSK) and is scaled by
the sampling frequency fs over the length of the FFT N
(Equation (4)). After the coarse estimate, a fine frequency
adjustment f̂2 is estimated via a PLL implemented by the
Matlab carrier synchronisation function [21] derived in [22].
The difference in phase error estimates ∆θ produced by the
PLL are scaled to the frequency estimate via the sampling
rate fs and the down-sampling rate d, and the operation is
averaged to estimate the adjustment for the frequency offset
(Equation (5)). Finally, the frequency offset is estimated as
the sum of the coarse frequency estimate and the fine fre-
quency adjustment (Equation (6)). Improvement in accuracy
can be gained by increasing the resolution of the FFT, results
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from [9] recommend a resolution up to four times the length
of the original signal, depending on performance constraints.
In our experiments the FFT resolution is set to 4× the down-
sampled received signal of 104 samples.

Two FFT interpolation methods are employed for compar-
ison. Both methods adjust the index km through an estimate
of the difference to the peak of the FFT, δ̂ and add it to the
index as in Equation (10), the updated index, kadj is then
applied in estimating the frequency f1 (replacing km with
the adjusted index kadj). The first interpolation method is
described in [13] where the two values either side of the
maximum index are used to estimate the difference from
the peak of the FFT (Equation (7)), this method reduces the
bias of the quadratic interpolation. The second method is
proposed in [14] which incorporates all FFT coefficients (in
K < N/2− 1) and calculates an estimate for the adjustment
δ̂k at each coefficient index k (Equation (8)). These estimates
are aggregated through weighting each with an approximate
of their mean square error term (Equation (9)) [14]. In the
results section the first interpolation method is indicated on
plots as ’Jacobsen’ and the second ’Candan’. Both methods
are suitable for use in multiple iterations, however in our
comparison we generate results with only one application of
each method.

S(k) =

N−1∑
n=0

zie
j2πkn/N (2)

km = argmax|S(k)| (3)

f̂1 =
fs
N

km
M

(4)

f̂2 =
1

N

N∑
i=1

fs
d

∆θ

2π
(5)

f̂0 = f̂1 + f̂2 (6)

δ̂ = −Re
[

Skm+1 − Skm−1

2Skm − Skm−1 − Skm+1

]
(7)

δ̂k =
N

π
tan−1

(
tan(

πk

N
)×

Re

{
Skm+ke

−j(π/N)k − Skm−ke
j(π/N)k

Skm+ke−j(π/N)k + Skm−kej(π/N)k − 2Skm

cos(kπ/N)

})
(8)

δ̂ =

∑K
k=1 1/ sin

2 (πk/N)δ̂k∑K
k=1 1/ sin

2 (πk/N)
,K < N/2− 1 (9)

kadj = km + δ̂ (10)

The cross-correlation method is applicable where a tem-
plate such as a pilot signal is known. The template signal

is rotated by frequency steps f1, f2, . . . , fn between the
range of the expected frequency offset (in our experiments
±5kHz). The complex cross-correlation between the re-
ceived signal and the distorted template is calculated and the
maximum cross-correlation is used to determine the index of
the frequency estimate. In our randomised experiments, the
DL model does not have any knowledge of the template used
for the comparative method, whereas in the fixed preamble
setting it is trained on a fixed sequence. Cross correlation
is performed prior to down-sampling at 4× sample length
and post down-sampling at 2× sample length for compar-
ison. This method is computationally expensive and is most
accurate on small frequency ranges and longer signal lengths.

A. DATA GENERATION
The data used in training and evaluation are divided into two
experimental settings, the fixed preamble setting and the ran-
domised sequence setting. In the fixed preamble setting, M -
PSK sequences are generated by repeating a fixed message
containing the 13 bit Barker code. For the chaotic maps, the
initial conditions are predefined along with a fixed length
for the recurrence relation within the map. Randomised se-
quences consist of random bits for the M -PSK messages and
sliding windows of chaotic maps. Both types of sequences
(fixed and random) are constructed where the bit sequence
length is dependent on the number of bits per symbol and
produce 2 samples per symbol resulting from matched fil-
tering (up-sampled at 8× and decimated at 4× per sample
respectively). After applying a root raised cosine matched
filter at the transmitter and receiver, a 52-bit sequence for
BPSK and 104-bit sequence for QPSK generate 104 samples.
In the chaotic modulations 52 symbols are mapped to a
resulting 104 symbols after matched filtering. All sequences
are 104 samples in length.

Chaotic sequences cannot be randomised in the same
manner as bit sequences, since they depend upon the initial
conditions for each symbol and are parameterised depending
on the mapping function. Given their reliance on successive
feedback, a randomised chaotic sequence is generated by
randomly selecting the number of feedback iterations from
an initial condition and stepping the mapping function over
the sequence length while storing the feedback signal to use
as the initial conditions for the next sequence. The mapping
functions for each of the chaotic maps are shown in Table
1, along with the feedback parameter and initial condition
parameters. Figure 1 illustrates the IQ values for each of the
corresponding map functions.

During the data generation process, no phase rotation is
applied, and the frequency offset is selected from a ran-
dom uniform distribution within the range ±5kHz with
a sampling frequency fs = 1MHz. Noise is added for
SNR, Es/N0 = 0 . . . 9dB with the noise variance σ2 being
estimated from parameters Es and N0 in Equations (11)-
(13), where Es is the energy per channel symbol, N0 the
noise power spectral density, L the number of symbols, and
n the bits per symbol. For training the network an offline
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TABLE 1. The set of chaotic map functions and their initial parameters used
in generating sliding sequences.

Map Function Parameters Initial Value

Circular Map
xi+1 = xi + b+ a

2π
sin(2πxi)

0 ≤ a, b ≤ 1
a = 0.5
b = 0.2

x0 = 0.7

Quadratic Map
xi+1 = b− ax2

i

a = 4
b = 0.5

x0 = 0.15

Zadoff-Chu Map
xi = exp

(
−j

πui(i+1)
N

) 0 < u < N
gcd(N, u) = 1

N = 63
u = 1

x0 = 0.7

FIGURE 1. Example IQ plots of the chaotic map functions for a) Circular, b)
Quadratic and c) Zadoff-Chu maps.

dataset of 102400 sequences is generated for each modula-
tion (502400 sequences) and each sequence is labelled with
the corresponding random frequency offset that was applied
to distort the signal.

Es =

∑L
t=1 s(t)

L/n
(11)

N0 =
Es

Es/N0
(12)

σ2 = N0/2 (13)

B. NETWORK ARCHITECTURE
The intuition applied to the design of the network architecture
was that the network should be capable of multiple stages
of refinement in the task of frequency offset estimation. A
stacked architecture was arrived at such that each stack would
successively estimate a discrete set of steps for the frequency
range where the step size decreases at each level in the stack.
The final level then estimates the error between the coarse
estimate of the previous layer and the target frequency. For
comparison, the error adjustment layer is implemented with
two approaches. The first applies a classification approach
that is constrained within ±100Hz of the coarse estimate.
The second approach applies a direct regression to provide
a continuous error correction to compensate for broader
variation of the error between the coarse estimate and target
frequency offset.

Each stack consists of a subnetwork block which is re-
sponsible for learning features and performing estimation for
that block. To perform feature extraction, as well as learn
recurrence relationships, a sequence-to-sequence (Seq2Seq)
network is defined within the feature extraction block. The
Seq2Seq architecture follows the approach first defined in
[23], however beam search is not applied during estimation
and the inclusion of Convolutional layers differs from the
original model. The block design includes a Convolutional
(CNN) layer to extract input features, a bidirectional Long
Short-Term Memory (LSTM) encoder, latent space imple-
mented as a CNN layer, a bidirectional decoder LSTM layer
followed by an output CNN layer. Classification is provided
by a Dense block with a soft-max activation while regression
is achieved with a tanh activation. Regularisation is provided
by applying Batch Normalisation [24] following each CNN
and intermediate Dense layer, and Layer Normalisation is
applied after each LSTM layer. Max-pooling is applied to
the output of intermediate CNN layers with Global Average
Pooling applied prior to the Dense layer.

Aside from the estimation output, the hidden LSTM state
is shared between encoder and decoder LSTM, and the
hidden state of the decoder is forwarded to the encoder
in the subsequent stack. The latent CNN state is also for-
warded between network stacks and concatenated with the
input features for the encoder in the subsequent stack. These
skip connections enable multiple forward paths fusing latent
features and sharing hidden recurrent state throughout the
network and enable gradient flow during back-propagation
[25]. Such connections are proposed to enable ensemble like
behaviours in deep networks [26]. Figure 2 presents the
schematic view of the sequence-to-sequence block as well
as the dense estimator blocks for the network output and the
interconnection between the blocks is illustrated in Figure
2. Three stacks were defined, with frequency bins of 100
and 50Hz for both the classifier and regressor networks. A
frequency adjustment of ±100Hz is applied for the final
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estimator of the classifier network, and a single continuous
parameter applied in the final estimator of the regressor
network. Table 2 lists the number of units for each layer
type.

TABLE 2. The set of chaotic map functions and their initial parameters used
in generating sliding sequences.

Layer Type Units/Filters
CNN 32

LSTM 128

Dense Classifier
units (bin Hz) per stack

102 (step size 100Hz)
202 (step size 50Hz)
202 (step size 1Hz)

Dense Regressor 1

During the network’s training, the data set is partitioned
into 50% training, 20% validation and 30% test. A cycli-
cal learning rate schedule [27] was applied which allowed
the learning rate to oscillate between 0.0001 and 0.001.
Input data was scaled by dividing the input signal by the
l2-norm and min-max normalising with parameters ±1.
Target frequency is min-max normalised with parameters
±5kHz. Back-propagation is performed with Adam opti-
misation [28]. Cross-entropy loss is applied to the classifi-
cation estimator and mean squared error loss is applied to
the regression estimator. Each stack is trained iteratively,
and the weights of each previous stack are frozen prior to
training the subsequent stack. When training the final stack,
the difference between the previous stack frequency estimate
and the true target frequency is calculated and applied as the
target after min-max normalisation (±5kHz).

The network models are trained under two experimental
settings, fixed preambles and randomised sequences, with
each setting producing separate models (eight individual
models in total, four model variants in each setting). A third
experiment explores the difference in training on a single
modulation, as opposed to multiple modulations. In this task,
two variants of the network model are independently trained
on QPSK and Quadratic map modulations for each setting,
resulting in eight individual models.

C. DATA AUGMENTATION

A comparison is made between models trained with and with-
out data augmentation. For those networks that are trained
without data augmentation, the complex signal is represented
as a matrix with two columns for the in-phase and quadrature
components. Those networks trained with data augmentation
were supplied with 17 features derived from the treatment
of the complex signal in conventional synchronisation algo-
rithms, these are described in Table 3.

During evaluation, a separate feature importance analy-
sis is undertaken by iteratively assigning uniform noise to
each feature and calculating the difference in performance
between the baseline model and the noisy input data.

TABLE 3. Data augmentation produced 17 features prior to the input for the
network. Each of the features were derived from steps used in conventional
synchronisation.

Operation Description
yt = rt+1 − rt Lag-1 Differences of IQ values of re-

ceived signal r. The difference be-
tween lags are used in the fine tuning
of coarse grained estimation in con-
ventional methods.[

r2, r4
]

Raised Powers of IQ values.
In PAM and PSK modulations raising
the signal to the order of the modula-
tion results in a constant phase for the
IQ coordinates.

[FFT (r2), FFT (r4)] FFT for raised powers of received IQ
values in r. A coarse grained FFT
of the down-sampled signal is used
to produce coarse estimates for the
frequency.

R̂(k) =
1

N−k

∑N−1
m=k r(m)r∗(m− k)

Autocorrelation of received signal r.
The autocorrelation of the signal is
used in conventional phase and fre-
quency correction procedures.

p = [|r|,∠r|]
[p2, p4]

Raised Polar form p of received signal
r. The raised polar form is used in
conventional phase estimation algo-
rithms.

y′t = r∗t+1rt Lag-1 Conjugate for received values
in r. Conventional frequency estima-
tion may employ the conjugate be-
tween two samples of a given interval
(in this case lag 1).

III. RESULTS
The Mean Absolute Error (MAE), in Hz, produced by the
Stacked Model and the FFT/PLL method for the CFO es-
timation task is shown in Figure 4 for BPSK and QPSK
modulations between 0 and 15 dB SNR in both experimen-
tal settings. Accuracy differs on each modulation for both
the proposed and conventional methods, with the proposed
method achieving higher accuracy on short sequences at 104
samples than the FFT/PLL method with 4× FFT resolution.
Similarly the MAE, in Hz, for each chaotic map sequence is
shown in Figure 5, where the panels on the left hand side
show the proposed stacked network results for estimation
using 104 samples and those on the right showing the effect
of sample length on the brute force correlation method at 2×
and 4× sample lengths (208 and 416 samples). The stacked
network is more accurate than the cross-correlation with 2×
upsampling, however the cross-correlation at 4× upsampling
demonstrates much higher accuracy at the expense of execu-
tion timing. Like the BPSK and QPSK modulations, the kind
of chaotic map influences the accuracy of the estimate.

Comparison is made between two configurations of the
network architecture where error adjustment is implemented
with either a classification layer (STACKNetC) or as a re-
gression layer (STACKNetR). In addition, models are trained
with and without data augmentation as indicated by the
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FIGURE 2. Sequence to Sequence blocks with CNN feature extraction are interconnected with paths for hidden recurrent state and latent CNN state. The final
output of each block pools the output features of the sequence to sequence block to produce the estimate for either the frequency bin or the frequency error.

FIGURE 3. Interconnection between two sequence-to-sequence blocks shares the decoder hidden state with the encoder of the subsequent block and merges the
latent CNN state with the CNN output via a concatenation.

postfix 17F . In the fixed preamble setting, there is little
difference between models that are trained with and without
data augmentation, while the regression model achieves a
lower MAE Hz on average than the classification model,
indicated in Table 4. On randomised sequences, those
models trained with data augmentation demonstrate slightly
lower MAE (Hz) on most modulations and SNR. While the
performance of the augmented classification and regression
models (STACKNetC17F and STACKNetR17F ) are similar,
the regression model does appear to perform better on most
modulations for randomised sequences, especially on QPSK
and Quadratic modulations which exhibit higher MAE (Hz)
for all models. Table 5 shows the mean improvement in MAE

(Hz) between those models in the random setting.

TABLE 4. Comparison between STACKNetC and STACKNetR on fixed
preamble sequences indicates a minor difference between model variants
when data augmentation is applied. A slight improvement in MAE Hz does
result from the regression model in comparison to the classification model.

Comparison Mean Difference in
MAE Hz

MAESTACKNetC17F − MAESTACKNetC -0.45
MAESTACKNetR17F − MAESTACKNetR 0.99
MAESTACKNetC − MAESTACKNetR -4.49
MAESTACKNetC17F − MAESTACKNetR17F -5.94

In a separate experiment, the model architecture with data
augmentation is trained on single modulations for QPSK and
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(c) BPSK Offset Prediction
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(f) QPSK Offset Prediction
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FIGURE 4. Comparison between stacked model configurations for classification (STACKNetC ) and regression (STACKNetR) demonstrates better performance for
CFO estimation on short BPSK and QPSK sequence lengths of 104 samples verse FFT/PLL methods.
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(f) Quadratic Offset Prediction
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FIGURE 5. The stacked model demonstrates higher accuracy on the chaotic map than the cross-correlation with 2× upsampling however does not perform as well
as the 8× upsampled cross-correlation.
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TABLE 5. Comparison between STACKNetC and STACKNetR on random
sequences indicates an improvement in MAE Hz when data augmentation is
applied and a small improvement in MAE Hz resulting from classification as
opposed to regression.

Comparison Mean Difference in
MAE Hz

MAESTACKNetC17F − MAESTACKNetC 25.7
MAESTACKNetR17F − MAESTACKNetR 26.9
MAESTACKNetC − MAESTACKNetR 6.1
MAESTACKNetC17F − MAESTACKNetR17F 4.9

Quadratic maps. Figure 6 indicates a lower MAE Hz for the
regression model with the exception of random QPSK where
performance between the two variants are close. Figures 4
and 5, indicate that training on a single modulation produces
results similar to training on multiple modulations and that
performance is dependent on the type of modulation.

Figure 7 displays a box plot for the execution timing
of each method. The network is more complex than the
conventional FFT/PLL, and this is reflected in the timings,
hence the trade-off between accuracy and complexity. It is
notable that it takes longer to process a single record on a
DL model than it does to process a batch size of 100 records.
This is due to the hardware environment being more suited to
parallel execution, which will be an important consideration
when integrating DL into other systems. Such an estimate
may be taken as an average across windowed sequences for
the received signal. The brute force cross-correlation method
is much more expensive than the other two given the wide
frequency range.

Those models constructed with data augmentation demon-
strate an improvement over those learning from the unpro-
cessed signal in the randomised setting. Both variants of the
models (classification and regression) appear consistent in
the influence of each of the features shown in Figure 8. One
notable difference is that they disagree on the influence of the
lagged difference for the conjugate of the signal where the
imaginary value does not contribute as highly to the model
accuracy for the classification model STACKNetC17F as
opposed to the regression model. Variables contributing the
lowest scores include the signal raised to 4th power and the
lag-1 difference of phase in the signal. Both models nominate
the phase of the squared signal ∠r2 as causing the highest
MAE when the feature is replaced with Gaussian noise. The
low resolution FFT (length of 104), appears to be influential
to both models, however is not able to be used in isolation
from the auto-correlation and squared polar form of the
signal.

A. DISCUSSION
After training the proposed stacked network on the selected
set of modulations, the model was able to produce more
accurate CFO estimates than the FFT/PLL and the cross-
correlation methods for short message sequences. On the
other hand, the cross-correlation method required a longer
message sequence to outperform the DL model. As shown

in the related research, DL is capable of CFO estimation
for short random sequences [2] and for noisy sinusoidal
modulations [3], [18]. The stacked network models are also
able to accept random sequences of several chaotic maps
without reference to a template pilot sequence, indicating
the ability of the trained network to estimate CFO without
explicit knowledge of the feedback parameters for these types
of signals. As such, this methodology is suitable for use
with chaotic modulations and, given the ability to estimate
frequency offset, it may be possible for such a method to
estimate additional parameters required for chaotic synchro-
nisation, such as the time dependent state variables of the
chaotic map. Future research in this task may investigate
the use of encoder-decoder networks in the estimation and
tracking of multiple chaotic system parameters such as in
[29].

Data augmentation was applied to the model, and in the
randomised setting, demonstrated an improvement of ap-
proximately 20Hz MAE over those models which did not
make use of data augmentation. In the fixed preamble setting,
data augmentation did not demonstrate much influence over
the performance of the model, this is indicative that the varia-
tion in message content is influential over the performance of
the model, with a fixed preamble illustrating low variation
(outside of the channel model) as opposed to randomised
sequences. While DL is capable of representation learning
without the requirement of manual feature engineering, it
is also true that domain specific feature engineering does
provide an advantage in the application of DL. Such an
approach indicates that DL will be most useful where it
can be incorporated into communications systems alongside
conventional signal processing methods in a hybridised form.

In this study we applied simulations with an AWGN chan-
nel to generate the required data. The difficulty in the super-
vised learning approach is the requirement for off-line train-
ing, which requires a large volume of data especially when
training across multiple signal modulations. The amount of
data required increases with each supported modulation so as
to ensure an equal sized population for each modulation in
the training set. However this research has not investigated
the potential for transfer learning [16] to enable the network
to adapt to new modulations or channel models, which is a
topic for future investigation.

Performance of the model is influenced by the modulation
of the signal as shown in the results, hence the network model
is learning features related to the modulation in the carrier
offset estimation task. In an end-to-end learning setting, it
may be possible to dynamically learn a suitable modulation
to reduce receiver error as demonstrated in works such as
[30] and [31]. Future work will investigate methods of in-
corporating learnt CFO estimation which may jointly benefit
from the modulations learnt at the transmitter, necessarily
moving from an offline supervised learning problem to an
online learning problem.

Execution timing demonstrated that the DL model is more
efficient on batches of signal frames rather than on a single
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FIGURE 6. Models trained on a single modulation exhibit similar MAE to those trained on multiple modulations, indicating that training on multiple modulations
does not appear to influence the performance of the model as much as the choice of modulation itself.
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FIGURE 7. Execution speed of the simpler FFT/PLL method is faster in
comparison to the deep network model which performs well on larger batches
and is faster than the brute force cross-correlation method.

signal frame. This is also a result consistent with the bench-
marking performed in [32]. This poses a design challenge for
the practical application of DL models in communications
systems, where batches of signal frames will be necessary to
most efficiently make use of the DL architecture. Future work
will be required to investigate the practical implementation
challenges of integrating DL based CFO estimation within

an end-to-end wireless communications system.

IV. CONCLUSIONS
In this article we have demonstrated the use of a stacked
sequence-to-sequence encoder to perform carrier frequency
offset estimation in multiple modulations, including for feed-
back dependent chaotic maps. The proposed architecture has
been shown to outperform FFT/PLL and cross-correlation
methods on short sequences, in both the fixed preamble
setting and in the randomised setting without knowledge
of the modulation, and in the randomised setting without
a pilot template. However increasing the message sequence
length did enable the cross-correlation method to outperform
the DL model, at the expense of additional execution time.
Data augmentation in the randomised setting, was shown to
provide an increased accuracy for the CFO estimation (of
approximately 20Hz) and indicates that while DL models
are capable of learning feature representations directly from
raw IQ values, the use of appropriately chosen features is an
avenue for enhancing the performance of the model. Iterative
estimation was performed by separate stages of the stacked
network architecture with an error correction performed at
the final stack, thereby taking advantage of the composability
of DL modules as a means of iteratively refining the CFO
estimate. This work demonstrates the capability of DL tech-
niques to estimate the carrier offset parameter for chaotic
communications, and provides an incremental step towards
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the application of DL in short messaging systems and chaotic
communication.
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