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ABSTRACT One of the key functions of global water resource management authorities is river water quality 

(WQ) COD assessment. A water quality index (WQI) is developed for water assessments considering 

numerous quality-related variables. WQI assessments typically take a long time and are prone to errors during 

sub-indices generation. This can be tackled through the latest machine learning (ML) techniques that are 

renowned for superior accuracy. In this study, water samples were taken from the wells in the study area 

(North Pakistan) to develop WQI prediction models. Four standalone algorithms, i.e., random trees (RT), 

random forest (RF), M5P, and reduced error pruning tree (REPT), were used in this study. In addition, 12 

hybrid data-mining algorithms (combination of standalone, bagging (BA), cross-validation parameter 

selection (CVPS), and randomizable filtered classification (RFC)) were also used. Using the 10-fold cross-

validation technique, the data were separated into two groups (70:30) for algorithm creation. Ten random 

input permutations were created using Pearson correlation coefficients to identify the best possible 

combination of datasets for improving the algorithm prediction. The variables with very low correlations 

performed poorly, whereas hybrid algorithms increased the prediction capability of numerous standalone 

algorithms. Hybrid RT-Artificial Neural Network (RT-ANN) with RMSE = 2.319, MAE = 2.248, NSE = 

0.945 and PBIAS = -0.64, outperformed all other algorithms. Most algorithms overestimated WQI values 

except for BA-RF, RF, BA-REPT, REPT, RFC-M5P, RFC-REPT, and ANN- Adaptive Network-Based 

Fuzzy Inference System (ANFIS). 

INDEX TERMS Water quality index, machine learning, hybrid data-mining algorithms, cross-validation 

techniques, North Pakistan 

I. INTRODUCTION 

Water pollution is one of the critical challenges of the 

modern world where the goals such as the United Nations 

Sustainable Development Goals (UN-SDGs) and a smart and 

sustainable planet are being pursued. All societies, ecologies, 

and productions require abundant clean water supplies for 

farming, drinking, sanitation, and energy production. The 

global water crisis is among the serious threats that the human 

race is currently confronted with. Accordingly, the quantity 

and quality of groundwater are significant global concerns [1]. 

Many diseases occur due to polluted water, like cholera, 

diarrhea, typhoid, amebiasis, hepatitis, gastroenteritis, 

giardiasis, campylobacteriosis, scabies, and worm infections. 

Almost 1.6 million people died due to diarrhea in 2017 alone 

[2]. Water pollutants impact its conditions, which impact 

human health and marine life. Inadequate sewage networks, 

uncontrolled and improperly planned urbanization, and 

dumping industrial trash, pesticides, and fertilizers 

contribute to water pollution [3]. Such pollution is more 

evident in local rivers or water channels closer to urban 

developments. 
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With both non-point and point sources, river pollution is 

becoming a more significant problem and presents a tough 

challenge to global water management authorities. Such 

pollution seriously deteriorates water quality (WQ). WQ 

degradation substantially impacts aquatic life and the 

availability of clean water for drinking and agricultural 

purposes [4]. The pollution challenge is harder to tackle in 

developing countries which frequently go through times of 

economic fluctuations. Further each development action can 

have severe environmental consequences. For example, with 

an increase in the population and demand for more resources, 

the requirement for more agricultural production pressures 

soils’ organic fertility, increasing the demand for artificial 

fertilizers to enhance yield [5]. Accordingly, surplus 

fertilizers are frequently dumped into rivers and waterways 

that pollute ground and underground water sources [1]. This 

increases the need for WQ assessment and surveillance.  

WQ surveillance and evaluation are critical for 

environmental, climate, and human health protection. This 

can be achieved through timely, efficient, and long-term 

water management plans. The WQ is assessed through the 

water quality index (WQI). WQI helps guide policymakers’ 

actions and decisions. However, calculating WQI is not a 

simple process due to the involvement of multiple sub-

indices and equations. WQI is a non-dimensional index 

derived from defined WQ variables. It uses variables such as 

pH (potential of hydrogen), DO (dissolved oxygen), TSS 

(total suspended solids), BOD (biological oxygen demand), 

AN (ammoniacal-nitrogen), COD (chemical oxygen 

demand), and others [6]. The associated matrices enable a 

definite evaluation of WQ. Measurements of variables such 

as Ca2+, Mg2+, NO3, and others are commonly used to 

estimate groundwater quality indicators (GQIs) [7-9].  

Several aspects of water, including physical, chemical, 

biological, and radiological, are included in the assessment 

of WQ [10]. In addition, WQI is a frequently used technique 

for assessing the effectiveness or failure of WQ management 

measures [11]. Some examples of WQIs include the 

Canadian WQI (CQI), United States National Sanitation 

Foundation WQI (NSFWQI), Interim National Water 

Quality Standards for Malaysia (INWQS), British Columbia 

WQI (BCWQI), Oregon WQI (OWQI), Florida Stream WQI 

(FWQI), and others. WQI is calculated through multiple 

methods and algorithms around the globe. However, WQI 

calculation is not a straightforward process, and the 

associated computations have many drawbacks [12]:  

1. The computation algorithms are complex.  

2.  It is a lengthy process  

3. The computations are verbose and harder to understand  

4. The process is subject to inconsistencies and errors as 

there is no uniform WQI approach and the WQI 

computations frequently utilize different and varying 

algorithms.  

Some experts have used a non-physical strategy to address 

these difficulties. Accordingly, they suggest using artificial 

intelligence (AI) to forecast WQI [13-15]. AI-based modeling 

eliminates the need for sub-index computations and quickly 

generates WQI values. Such AI algorithms are gaining 

popularity because of their nonlinear structures, capacity to 

forecast complicated events, ability to handle large datasets, 

and lack of sensitivity to missing data [16]. For WQI 

modeling, artificial neural networks (ANN) and adaptive 

network-based fuzzy inference system (ANFIS) based classic 

AI algorithms have been extensively developed. On the other 

hand, environmental scientists have researched more robust 

and trustworthy AI algorithms [17-19]. However, the 

methodology and quality of data gathering and analysis are 

critical to the predictive capability of AI systems. 

Data mining is a form of AI algorithm developed to tackle 

nonlinear equations and reduce AI’s drawbacks. It has been 

used to quantify suspended sediment yield [20], approximate 

benchmark water loss [21-23], and replicate direct sunlight 

[24]. New algorithms such as M5P, random tree (RT), 

random forest (RF), bagging (BA), reduced error pruning 

tree (REPT), instance-based k-nearest neighbors (IBK), 

random committee (RC) are currently explored in 

hydrological processes, climate science, and hydraulic 

systems [12, 20, 22, 23, 25, 26]. Another prominent solution 

for different environmental and hydrological issues includes 

the usage of tree-based algorithms such as decision trees [27] 

[28]. Furthermore, the known powerful machine learning 

(ML) tool for both linear and nonlinear regression problems 

is the support vector machine (SVM), which is used in a 

range of scientific problems with remarkable forecast 

accuracy [27, 29-31]. DT and SVM algorithms have been 

used to predict parameters of WQ, such as TDS (total 

dissolved solids), TSS, BOD, and COD.  

Granata et al. [32] developed a regression tree (RT) algorithm 

and a support vector regression (SVR) algorithm for 

predicting wastewater quality indicators and discovered that 

the SVR model provided the best results. Kayaalp et al. [33] 

developed a hybrid SVR model using monthly WQ parameter 

data with the firefly algorithm (FFA) to forecast WQI. The 

algorithm showed a significant increase in prediction 

performance compared to the standalone SVR model. 

Kamyab-Talesh et al. [34] looked into the optimization of the 

SVM algorithm to investigate the factors having the highest 

impact on the WQI. The authors observed that nitrate is the 

most crucial parameter for WQI prediction. Wang et al. [35] 

analyzed three ML algorithms, SVR, SVR-GA (genetic 

algorithm), and SVR-PSO (particle swarm optimization), to 

predict WQI and compared their performance. Since decision 

tree-based algorithms (i.e., M5P, RF, RT, REPT, and others) 

lack hidden units and modeling clarity, they can produce 

superior modeling results than ANFIS and ANN [36]. 

Furthermore, integrated modeling gives more reliable results 

than using standalone algorithms. 

Researchers from Iran [12] have introduced a new WQI to 

focus on the characteristics and conditions of the rivers and 

lakes because previous algorithms are time-consuming and 
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not accurate enough to be trusted. In addition, they added 

more parameters to their algorithm to improve prediction 

accuracy. However, its feasibility is not tested yet due to the 

diverse weather conditions that vary between the arid and 

moist seasons. As a result, applying this index to specific 

locations may be risky and yield variable results. But since 

our study area lies in a similar climate region and has the 

same metrological and climatic properties, we can rely on 

this algorithm for our study area. 

Northern Pakistan has gained economic significance over the 

last decade because of China Pakistan Economic Corridor 

(CPEC) project [1, 37]. The urban areas, for instance, Gilgit 

city, are experiencing an economic boom because of the 

latest development, which has brought improved linkage and 

connectivity through the upgradation of the Karakoram 

Highway (KKH). This enhanced connectivity is also inviting 

an urban sprawl in the region and is expected to face many 

environmental issues, including WQ [1, 38]. Very recently, 

Maqsoom et al. [38] mapped the groundwater susceptibility 

of this region and found that the region has moderate to high 

groundwater susceptibility, particularly the region around 

Gilgit city. Moreover, Awais et al. [1] also conducted a study 

and assessed nitrate contamination in this region and found 

that the region has moderate to high groundwater nitrate 

contamination risk. Overall, the two studies discovered that 

the water in the extreme Northern side appears to be of good 

quality, with minimal contamination and protected through 

natural vegetation. However, as the system approaches a 

developed region, Gilgit city, WQ rapidly degrades because 

of improper and unregulated discharges, a typical trend of 

build-up regions [39].  

The objective of this research, however, is to forecast the 

WQI for the region along KKH. For achieving this, the 

current study utilizes four standalone algorithms, M5P, RT, 

RF, REPT, and 12 unique hybrid data mining algorithms 

(randomizable filtered classifier, CV parameter selection, 

and BA) combined with the four standalone algorithms. It 

was expected that WQI could be accurately forecasted using 

a standalone decision tree algorithm, as its ability to predict 

diverse hydrological events has been proved in the literature 

mentioned earlier. However, by combining it with classifier 

algorithms, it was aimed that the precision rate could be 

enhanced further and the fundamental flaws of the given 

algorithms could be reduced. Therefore, a combination was 

proposed and utilized in this study. 

The current study differentiates itself from published works 

as two new hybrid algorithms were tested in this study for 

WQI analysis. Moreover, the outcomes of the hybrid 

algorithms were compared with the previously established 

algorithms and techniques to establish a more robust 

algorithm in terms of better accuracy. This study will benefit 

this fast-growing region as it is expected to be highly induced 

by human activities and causing many environmental issues, 

i.e., water pollution, and will help policymakers in the CPEC 

region with better water management. 

The rest of the paper is organized as follows. First, the study 

area is explained in Section 2. Then Section 3 describes the 

research methodology, followed by the presentation of the 

algorithms used in this research in Section 4. Section 5 

compares the algorithms and their performance. Section 6 

presents results and pertinent discussions. Finally, Section 7 

concludes the study and explains the key takeaways, 

limitations, and future direction for further expanding the 

current research. 
II. Study Area 

The research area extends from Gilgit to Khunjerab Pass and 

lies at 35.8819° N, 74.4643° E, and 36.8539° N, 75.4589° E. 

The study area is located in northern Pakistan and lies in the 

Districts Gilgit and Hunza-Nagar, located near the Pakistan-

China border. The study area is 20 kilometers buffer along 

the 236 kilometers (146.6 miles) stretch of the traditional 

Silk route/ KKH from Gilgit to Khunjerab Pass, 

encompassing a hilly terrain. This route has tremendous 

importance as it connects Pakistan and China and is 

considered the backbone of the CPEC project [1, 38]. The 

study area is a part of the Himalayas, Hindukush, and 

Karakoram Mountain ranges, having an elevation range from 

1294 meters to 7330 meters. River Hunza and River Gilgit 

flows from this region to provide domestic water. The area 

is located at a high altitude and receives lots of snow in 

winter, which melts in summer, thus providing freshwater [1, 

37]. In the past, this region had an excellent WQ, but the 

local WQ is deteriorating due to the recent construction and 

other development due to CPEC. This calls for a WQ study 

for the region to better manage the groundwater and surface 

water in line with the global sustainability goals. Figure 1 

shows the study area and locations of water wells from where 

the water samples were taken and analyzed for the research. 

Figure 1 further shows the water channels, district boundary, 

and elevation in the study area. 

 
FIGURE 1. Water quality monitoring stations 

 
III. Methodology 
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Figure 2 shows the methodology flow chart of this research 

and the associated steps.  

  

 

FIGURE 2. Flow chart explaining the involved steps 

Figure 2 shows that the data collection was initially 

performed, and followingly different WQ parameters were 

calculated from the water samples. The data was then 

distributed into testing and validation datasets. From the 

testing datasets, the best input combination was identified. 

Finally, multiple algorithms were applied to the best 

varieties, and an algorithm assessment was conducted for the 

best possible algorithm selection to predict WQI. The 

detailed steps of the method are subsequently presented and 

discussed. 

A. DATA COLLECTION AND PREPARATION  

Water samples were collected from different random water 

wells in the study area so that they covered the area entirely. 

Overall, the data is collected from 39 locations. To minimize 

the seasonality impact, the samples were taken over two 

years, 2020 and 2021. Followingly, multiple WQ parameters 

were calculated. These parameters include PH, DO, TDS, 

conductivity, salinity, chloride, total alkalinity, total 

hardness, sulfate, nitrate, and WQI. Pakistan’s WQ Index 

(PKWQI) was calculated using these datasets. The 

COMSATS University Islamabad, Wah Campus’s 

laboratory was used for the WQ parameter calculations. 

Using the 10-fold cross-validation method, the dataset was 

partitioned into two subsets for algorithm training and testing 

(70:30). This ratio is one of the most popular modeling 

strategies for spatial [22, 23, 26, 40] and temporal [20, 22-

25, 40] predictions. The PKWQI was created using the 

NSFWQI equation. In the index, the cleanness of water 

depends on the value of PKWQI. The river is cleaner if the 

PKWQI value is more significant (a WQI of 80 or higher 

denotes a clean river) and vice versa [15]. The PKWQI 

formula is used to determine the PKWQI, as shown in (1).  

PKWQI = ∑ 𝑊𝑛
𝑖=1 i x SIi (1) 

where, Wi is the variable I’s weight (between 0 and 1), and 

SIi is the sub-index resulting from the quality-index curve (0–

100). The calculation techniques align with the NSFWQI 

[40, 41]. Table 1 shows the ranges of quality parameters for 

the PKWQI. It classifies the WQI into seven classes based 

on the ranges of WQI. For example, <15 WQI is classified 

as very low-quality water, while >85 WQI values are 

classified as very good quality water, as stated in table 1. The 

generic ruleset is that the higher the WQI value, the better 

the WQ will be. 
TABLE 1.  

RANGES OF PKWQI AND THEIR QUALITATIVE DESCRIPTIONS 
Index Range Quality 

 <15 Very low 

 15 - 29.9 Low 

PKWQI 30 - 44.9 Approximately low 

 45 - 55 Moderate 

 55.1 - 70 Approximately good 

 70.1 - 85 Good 

 >85 Very good 

Table 2 shows the used WQ parameters and the results of 

multicollinearity analysis. These parameters were selected 

based on the literature [12, 41-45] and are among the 

standard characteristics used for WQ assessment. The 

variation inflation factor (VIF) value for all factors is less 

than 5 and satisfies the maximum threshold [46]. Thus, it can 

be stated that there is no multicollinearity present among the 

selected parameters.    

According to the descriptive data (see Table 3), the WQI 

varies from 11.45 to 87.45 (the maximum value is 100). 

Thus, the WQ ranges from excellent to unsuitable for 

drinking in the study area [47]. The average pH for the 

training dataset is 7.9 and 7.5 for the testing dataset. Overall, 

the region has a very weak basic pH. The mean total hardness 

for the training dataset is 104.6 and 103.50 for the testing 

dataset, which means this area has moderately hard water. 

Also, if we notice the TDS values, the area processes hard 

water as the TDS for both training and testing datasets are 

90.9 and 90.4, respectively.  
TABLE 2.  

USED INPUT VARIABLES AND THEIR VARIATION INFLATION FACTOR. 

Varia

ble 
pH 

D

O 

TD

S 
EC 

Salin

ity 

Cl-

1 

CO3+H

CO3 

Ca+

Mg 

SO

4 

NO

3 

VIF 
0.9

3 

0.4

3 

1.3

4 

1.6

7 
1.44 

1.5

1 
1.68 1.71 

1.7

6 

1.7

7 

 
TABLE 3.  

THE TRAINING AND TESTING DATASET’S DESCRIPTIVE STATISTICS. 
Variables Training Testing 

Mi

n 

Ma

x 

Mea

n 

Std. 

dev 

Min Max Mea

n 

Std. 

dev 
pH 7 8.75 7.9 0.59 6.67 8.42 7.5 0.26 

DO 0.49 2.2 1.6 0.37 0.16 1.87 1.3 0.04 

TDS 19.3 277 90.9 66.24 18.9

7 

276.

67 

90.6 65.91 

Conductivity 20.3 513 170.

8 

142.13 19.9

7 

512.

67 

170.

5 

141.80 

Salinity 0 0.3 0.1 0.07 0 0.02 0.0 0.04 

Chloride 6 14.8

9 

10.6 2.04 5.67 14.5

6 

10.3 1.71 

Total 

Alkalinity 

360 120

0 

773.

8 

203.36 359.

67 

1175 764.

7 

199.66 

Total 

Hardness 

28 240 104.

6 

59.16 26.9

5 

238.

95 

103.

50 

58.11 

Sulphate 9 119 36.5 28.75 7.95 117.

95 

35.4

7 

27.70 

Nitrate 5 42.7 23.0 11.06 3.95 41.6

5 

21.9

1 

10.01 

WQI 11.4

5 

87.4

5 

48.6 9.58 19.5

5 

91.6

3 

51.4 11.32 

The data were normalized (Xi′) to a 0 to 1 range to increase 

prediction ability using the following relation [48]: 
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                                 Xi′ = (Xi - Xmin) / (Xmax - Xmin)  [48] 

Where Xi′ is the normalized value of a variable (i.e., BOD, 

COD, etc.), xi is the value at a given location, and Xmin and 

Xmax are the variable’s minimum and maximum values.  

B. CONSTRUCTING THE INPUT COMBINATION 

Before modeling, the ideal input combination and the best 

value for each algorithm’s operator must be identified. Ten 

factors were examined as potential inputs, and correlation 

coefficients (CCs) between input and WQI were used to 

determine the outcome, as presented in Table 4. CCs range 

from -1 to +1. Where -1 means strong negative relations and 

+1 means strong positive relations, and 0 means no relation 

among the two variables. Ca+Mg, SO4, and NO3 strongly 

relate to the WQI, while pH has no relation to the WQI. TDS 

and salinity have moderate relation. A total of 10 input 

combinations for this purpose as presented in Table 5. 

NO3 was the initial variable included in the algorithm, 

having an excellent CC value, as shown in Table 5. The best 

estimate of the WQI is obtained using this variable alone; 

hence it is the known, accurate and effective variable. Until 

the final variable with the lowest CC was included (i.e., pH 

and other combinations), each variable with the next highest 

CC (i.e., SO4, then Ca+Mg, then CO3+HCO3, etc.) was 

added to the preceding variety. Each algorithm's most 

successful (i.e., most predictive) combination is determined 

by applying fixed input variable values (or default values) to 

all ten input combinations. The testing phase was evaluated 

using the root mean square error (RMSE) criterion. 
TABLE 4.  

EACH INPUT VARIABLE AND WQI HAVE A PEARSON CORRELATION 

COEFFICIENT. 

Variable 
p

H 

D

O 

T.

D.S 
EC 

Sali

nity 

Cl-

1 

CO3+H

CO3 

Ca+

Mg 

SO

4 

N

O3 

Correlati

on (r) 

0.

07 

0.

57 

-

0.3

4 

-

0.6

7 

-

0.44 

-

0.5

1 

-0.68 
-

0.71 

-

0.7

6 

-

0.7

7 

 

TABLE 5.  

VARIOUS COMBINATIONS OF INPUTS 
No. Different Input Combinations 

1. NO3 

2. NO3, SO4 

3. NO3, SO4, Ca+Mg 

4. NO3, SO4, Ca+Mg, CO3+HCO3 

5. NO3, SO4, Ca+Mg, CO3+HCO3, EC 

6. NO3, SO4, Ca+Mg, CO3+HCO3, EC, DO 

7. NO3, SO4, Ca+Mg, CO3+HCO3, EC, DO, Cl-1 

8. NO3, SO4, Ca+Mg, CO3+HCO3, EC, DO, Cl-1, Sal 

9. NO3, SO4, Ca+Mg, CO3+HCO3, EC, DO, Cl-1, Sal, TDS 

10. NO3, SO4, Ca+Mg, CO3+HCO3, EC, DO, Cl-1, Sal, TDS, pH 

C. DETERMINING THE OPERATOR’S OPTIMUM 
VALUES 

After establishing the optimal input parameters, trial and 

error were used to obtain the optimal values for each 

algorithm’s operator. Since operators have no universal 

optimum value (values vary per research), various values 

should be examined using the hit and trial approach to 

determine the most efficient value. To achieve this, each 

algorithm was run using default settings. Based on these 

findings, higher and lower numbers were randomly entered 

until the optimal value was found. The batch size for all the 

algorithms was set to 100, and the model was operated at 100 

iterations. DT algorithms were used as classifiers, and 

random projection was used to filter all the algorithms. The 

minimum variance proportion was set as 0.001, and the 

number of decimal places for output values was 3. 15 hidden 

layers were used for the ANN algorithm to get a single 

output. 

 
IV. Descriptions of the Algorithms 

This study uses sixteen ML algorithms to predict WQI. The 

used algorithms are divided into two groups. Jupyter 

notebook was used to implement the algorithms and process 

the obtained data. The most essential used packages are 

TensorFlow, scikit-learn, ANFIS, and weka-pyscript, and 

the most important used libraries are NumPy, Matplotlib, 

and pandas [49-52]. In this study, the WQI was predicted and 

evaluated using the unique algorithms in group 1. Following 

that, ensemble algorithms based on the algorithms in Groups 

1 and 2 were created to assess the accuracy of the WQI 

prediction. Finally, sixteen algorithms are analyzed and 

evaluated in 2 categories to choose the best algorithm to 

predict WQI. The two groups of algorithms are explained 

below: 

D. GROUP 1 (DT ALGORITHMS) 

This group contains six algorithms. These include M5P, RT, 

RF, REPT, ANN, and BPNN (back propagation neural 

network) as discussed below: 

1) M5P 

M5P, a machine-learning algorithm, is the first member of 

the DT group included in this study. M5P is a robust 

decision-tree algorithm used in various applications [53-57]. 

It works like a regression tree, with constants acting as the 

leaves [58]. The M5P algorithm was derived from the M5 

algorithm given by Quinlan [59]. The classification and 

regression tree [26] algorithm modify M5P [48]. As the M5P 

method is centered on classification and regression analysis, 

it uses a divergence metric to generate a decision tree. It 

calculated continuous parameters using the decision tree 

with linear regression functions as nodes that produced 

numerical attributes.  

2) RT 

The RT algorithm is a well-known DT technique first 

developed in 2000 [60, 61]. In contrast to typical DTs, it 

builds DTs from a random selection of columns. In addition, 

RT offers flexible and quick training [62]. From the training 

dataset containing features and labels, the RT developed the 

DT by formulating its own set of rules and then used those 

rules to make the predictions.  

3) RF 

RF was suggested for the first time by Breiman [63]. 

Supervised ML, ensemble ML, and RT are some algorithms 

that fall within this category [27, 64]. The sample subsets 

from the original data are used in the RF algorithm. It creates 

a DT for each subgroup and summarizes the sub-decision 
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tree forecasts. The DT was built with around two-thirds of 

the dataset, and the algorithm is evaluated with the remaining 

data. This type of evaluation is known as “out-of-bag” 

(OOB) evaluation. More details are given in [65-69] about 

the utility of RF algorithms in natural science areas. 

4) REPT 

REPT can learn quickly where the DTs are created based on 

data enrichment or variance reduction [70]. Reduced-error 

pruning with back over-fitting is the primary approach used 

in this strategy. Pruning procedures are used to reduce the 

size of a DT. The REPT algorithm examines each node of 

the DT and lowers the number of branches until the tree’s 

correctness is compromised [71]. The REPT considered each 

node for pruning and removed the subtrees at nodes. As per 

the REPT, the performance is compromised, making them 

leave by assigning weights. The REPT, by iteratively 

operating, continued the removal of nodes till the pruning 

became harmful.  

5) ANN 

ANNs are computer systems modeled after the biological 

neural networks that make up animal brains. An ANN is 

made up of artificial neurons, a collection of linked units or 

nodes that resemble the neurons in a biological brain [72]. 

The neurons were grouped into layers, and the best possible 

match was made for each input layer to form a single group. 

Signals went from the first layer (the input layer) to the last 

layer (the output layer) by going through the middle layer 

(the hidden layer). Neurons were assigned a threshold at 

which the signal was only transmitted once the aggregate 

signal exceeded it. The process was repeated many times till 

the convergence was achieved. 

6) BPNN 

The BPNN was created to solve the challenge of multi-layer 

perceptron training. The addition of a differentiable transfer 

function at each node of the network and using error back-

propagation to adjust the internal network weights after each 

training period were the BPNN’s key innovations. 

Backpropagation helped fine-tune the weights of every 

neural based on the error rate obtained in the previous epoch 

during the iterations. Proper tuning of the weights ensured 

lower error rates, thus, making BPNN consistent by 

increasing its generalization. Because of its capacity to 

construct complicated decision boundaries in the feature 

space, the BPNN was chosen as a classifier by Hornik et al. 

[73].  

E. GROUP 2 (HYBRID ALGORITHMS) 

This group includes ten algorithms: BA-RT, BA-RF, BA-

REPT, RT-ANN, RFC-M5P, RFC-RF, RFC-RT, BA-M5P, 

RFC-REPT, and ANN-ANFIS. These are the combination of 

various algorithms with four key algorithms: BA, RFC, 

ANN, and BPNN. ANN and BPNN have already been 

discussed, while BA, RFC, and ANFIS are subsequently 

discussed. 

1) BA 

Breiman [74] proposed the idea of BA predictors to combine 

forecasters and increase single prediction accuracy. The 

“bootstrap aggregating” process is known as “bagging” [75-

77]. BA was used to train the M5P, RF, RT, and REPT base 

learners to predict WQI in this research, resulting in four 

hybrid algorithms: BA-M5P, BA-RF, BA-RT, and BA-

REPT.  

2) RFC 

RFC is a data-classification approach that uses randomly 

filtered data [78]. The filter uses the training dataset with a 

specific structure [79]. RFC was used to train the M5P, RF, 

RT, and REPT base learners to predict WQI, similar to how 

the bagging and CVPS algorithms were trained, resulting in 

four hybrid algorithms: RFC-M5P, RFC-RF, RFC-RT, and 

RFC-REPT. The validation dataset was run through a filter 

to ensure the algorithm was of good quality without affecting 

its structure. A random number of seeds were used to create 

each base classifier using the same data. The result was the 

average of the classifiers’ predictions. Followingly, the class 

was utilized to construct a random classifier committee. The 

committee members were then categorized, and the 

randomizable interface was implemented.  

3) ANFIS 

Adaptive Neuro-Fuzzy Inference System (ANFIS) uses two 

sets of the algorithm as a single unit, i.e., Fuzzy Logic [18] 

and ANNs. Because of this combination, this algorithm 

handles complex large data structures very quickly and 

efficiently and speeds up the execution time. First, the 

ANFIS mapped input characteristics into input membership 

functions (MFs) and then input MF to a set of if-then rules. 

Followingly, the rules were converted to a set of output 

characteristics, and then the output characteristics to output 

MFs. Lastly, the output MFs were transformed into a single-

valued output or a decision associated with the output. 
V. Comparison and assessment of algorithms 

Six statistical metrics were used to analyze the algorithms 

quantitatively. These metrics have been used in the past by 

several researchers to assess the performance of data mining 

algorithms. The used metrics include the root mean square 

error (RMSE) [1], coefficient of determination (R2) [80], 

mean absolute error (MAE) [81], Nash- Sutcliffe efficiency 

[82], percentage of bias (PBIAS) [83], and percent of relative 

error index (PREI) [84].   RMSE is the difference between 

the actual and predicted value. The greater the RMSE, the 

higher the error in the model. MAE is the mean of errors 

among all actual and predicted values. The lower the mean 

error, the more reliable will be the prediction model. 

Similarly, R2 depicts the fitness of the model against the 

actual values. A higher R2 means a high correlation between 

actual and predicted values, and the model generates good 

results. NSE calculates the relative magnitude of the residual 

variance compared to the measured data variance. Its values 

range from negative infinity to 1. Where 1 means perfect 

answer and prediction of values, and values close to 1 show 

higher accuracy. PBIAS defines whether the predicted data 
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is overestimated or underestimated than the actual dataset. 

Its optimal value is 0, which means perfect estimation, and 

values low or higher than 0 mean overstated or 

overestimated, respectively. Finally, PREI calculates the 

error percentage. The higher the ratio, the higher the error 

would be. Overall, all of these parameters give information 

on how accurate the model is and which model has what type 

of limitations, i.e., the model provides an overestimated 

prediction, the model is not fit, etc. These parameters are 

calculated by using the following relations from Breiman et 

al. [83]  and Breiman [84].                         

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑ (𝑊𝑄𝐼𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑊𝑄𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)2𝑛

𝑖=1   (3) 

𝑅2 = 1 − 
∑ (𝑊𝑄𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑− 𝑊𝑄𝐼𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2𝑛

𝑖=1

∑ (𝑊𝑄𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑− 𝑊𝑄𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2𝑛
𝑖=1

    (4)       

 𝑀𝐴𝐸 =
1

𝑛
 |𝑊𝑄𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑊𝑄𝐼𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|  (5)   

𝑁𝑆𝐸 = 1 −  
∑ (𝑊𝑄𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑− 𝑊𝑄𝐼𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2𝑛

𝑖=1

∑ (𝑊𝑄𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑− 𝑊𝑄𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2𝑛
𝑖=1

    (6)         

𝑃𝐵𝐼𝐴𝑆 = (
∑ (𝑊𝑄𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑− 𝑊𝑄𝐼𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑛

𝑖=1

∑ 𝑊𝑄𝐼𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝑛
𝑖=1

)  𝑥 100 (7) 

𝑃𝑅𝐸𝐼 = (
𝑊𝑄𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑− 𝑊𝑄𝐼𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑊𝑄𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
)  𝑥 100   (8) 

where, WQIpredicted and WQImeasured are the predicted and 

measured WQI mean values, respectively. 

Visual comparisons were also performed to evaluate the 

algorithms. Scatter plots and box plots were two approaches 

used for visual comparisons. Scatter plots are frequently used 

to assess algorithm performance and study the distribution of 

datasets employed [85, 86]. For example, scatter plots are 

used to study the data organization and density. Box plots are 

a standard tool for assessing the density and distribution of 

datasets and findings. The datasets or results are separated 

into four data quartiles. It is possible to look at extreme 

values (minimums and maximums), medians, and first 

(upper) and third (lower) quartile projections. Such a boxplot 

helps to understand how all these models are calculating the 

WQI and their ranges, which are used to compare the 

accuracy and overall results among all models. 
VI. Results and discussions 

Following the holistic method adopted in this study, the 

results of pertinent analyses are present as follows: 

A. THE IDEAL INPUT COMBINATION 

Different input combinations based on CCs were constructed 

using a variety of WQ characteristics, as presented in Table 

5. pH emerged as the least relevant predictor of WQI when 

using the previously submitted equations to calculate it. The 

same has been indicated by [87] and [13]. On the other hand, 

pH was the most critical predictor of WQI in research by 

Mohammadpour et al. [88], which is the opposite of this 

study’s findings. The 16 algorithms were trained using the 

ten input combinations discussed previously. A testing 

dataset to assess these combinations, as presented in Table 6, 

and the most effective was chosen for modeling and further 

study. The results reveal how well the algorithms fit with the 

training dataset. These data points were not utilized in the 

algorithm’s evaluation. The best possible combination was 

identified based on the testing data RMSE value (Table 6). 

Since all models were built on a training dataset, this table 

only specifies how the models fit with the training dataset. 

From the testing dataset, it can be seen that, on average, five 

combinations have the lowest RMSE. Still, combinations of 

more than 5 algorithms are also close to the lowest RMSE, 

which indicates the higher dataset does not contribute much 

to error. However, lower than five combinations have 

relatively high RMSE, which is understood because a lower 

dataset would have more errors because of the non-

availability of data. 

As evident from Table 6, combination 4 gives the lowest 

RSME value for M5P; combination 7 gives the lowest 

RSME value for RT, and combination 4 gives the lowest 

RSME value for BA-RT. Similarly, combination 4 gives the 

lowest RSME value for BA-RF, RF, BA-REPT, RT-ANN, 

REPT, RFC-RT, RFC-M5P, BA-M5P, ANN, RFC-REPT, 

ANN-ANFIS, and BPNN, and combination 6 gives the 

lowest RSME value for RFC-RF. Hence, combination 4 

(NO3, SO4, Ca+Mg, CO3+HCO3), combination 6 (NO3, 

SO4, Ca+Mg, CO3+HCO3, EC, DO), and combination 7 

(NO3, SO4, Ca+Mg, CO3+HCO3, EC, DO, Cl-1) are the 

best to estimate WQI and obtain the lowest RMSE values 

during testing. 

B. ALGORITHM’S PERFORMANCE 

The 16 algorithms were tested (Figures. 3 and 4). As per the 

observations, all of the algorithms functioned well. Of all the 

algorithms, RT-ANN, BA-RT, RF, BA-RF, and BA-M5P 

have the highest prediction power. All algorithms were 

validated as the predicted WQI was compared with measured 

WQI for each model at each testing dataset. It can be seen 

that all models performed well, but RT-ANN, BA-RT, RF, 

and BA-RF models predicted the best prediction. 

Figure 3 shows how measuring and predicting WQI differ at 

each testing datapoint and how big the difference is among 

them. Again, all models performed well; no significant 

deviation between measured and predicted can be seen. Also, 

no pattern can be identified among all models identified as 

an error, so overall, all models gave reliable results.  
TABLE 6.  

RMSE OF VARIOUS INPUTS BASED ON ALGORITHMS. 
Algo

rith

ms 

RMSE of Various Input Combinations 

Phase 1 2 3 4 5 6 7 8 9 10 

M5P Train 9.2

5 

4.

62 

4.

83 

2.

67 

3.

14 

2.

43 

2.

43 

2.

37 

2.

56 

2.

82 

Test 10.

19 

5.

63 

5.

48 

3.

57 

4.

82 

3.

96 

4.

15 

4.

18 

4.

23 

4.

2 

RT Train 6.5

2 

1.

47 

2.

35 

0.

82 

1.

92 

1.

24 

1.

26 

1.

34 

1.

54 

1.

41 

Test 11.

79 

5.

54 

5.

43 

3.

15 

3.

74 

3.

12 

3.

1 

3.

16 

3.

23 

3.

13 

BA-

RT 

Train 6.0

18 

0.

65 

0.

86 

0.

27 

1.

16 

0.

45 

0.

43 

0.

36 

0.

29 

0.

1 

Test 12.

98 

7.

13 

7.

15 

4.

33 

4.

88 

4.

74 

5.

07 

5.

12 

5.

32 

5.

18 
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BA-

RF 

Train 9.0

1 

3.

98 

4.

35 

2.

69 

3.

93 

3.

26 

3.

38 

3.

45 

3.

55 

3.

54 

Test 10.

24 

5.

59 

6.

02 

4.

11 

5.

26 

4.

73 

4.

79 

4.

74 

4.

82 

4.

72 

RF Train 9.3

2 

4.

54 

4.

64 

2.

53 

3.

21 

2.

57 

2.

77 

2.

92 

2.

95 

2.

82 

Test 10.

11 

5.

34 

5.

39 

3.

95 

5.

21 

4.

31 

4.

44 

4.

45 

4.

52 

4.

38 

BA-

REP

T 

Train 7.1 2.

39 

3.

06 

1.

34 

2.

33 

1.

67 

1.

66 

1.

65 

1.

62 

1.

47 

Test 11.

52 

5.

46 

5.

37 

3.

12 

3.

76 

3.

15 

3.

17 

3.

15 

3.

24 

3.

25 

RT-

AN

N 

Train 6.7

2 

1.

78 

2.

62 

1.

04 

2.

19 

1.

56 

1.

58 

1.

64 

1.

6 

1.

47 

Test 11.

97 

5.

78 

5.

71 

3.

28 

3.

94 

3.

45 

3.

5 

3.

48 

3.

49 

4.

14 

REP

T 

Train 8.1

8 

3.

62 

3.

95 

1.

92 

3.

08 

2.

45 

2.

56 

2.

54 

2.

57 

2.

56 

Test 10.

53 

5.

34 

5.

54 

3.

29 

4.

13 

3.

54 

3.

65 

3.

67 

3.

69 

3.

6 

RCF

-

M5P 

Train 9.2

5 

4.

62 

4.

73 

2.

68 

3.

14 

2.

43 

2.

56 

2.

56 

2.

56 

2.

53 

Test 10.

19 

5.

63 

5.

47 

3.

97 

5.

19 

4.

26 

4.

59 

4.

58 

4.

62 

4.

51 

RFC

-RF 

Train 6.5 1.

46 

2.

28 

0.

79 

1.

87 

1.

21 

1.

27 

1.

34 

1.

4 

1.

3 

Test 11.

86 

5.

58 

5.

37 

3.

12 

3.

7 

3.

07 

3.

16 

3.

23 

3.

32 

3.

34 

RFC

-RT 

Train 6.0

1 

0.

28 

0.

87 

0.

17 

1.

13 

0.

47 

0.

47 

0.

44 

0.

42 

0.

27 

Test 12.

98 

7.

13 

7.

09 

4.

38 

5.

99 

5.

04 

5.

17 

5.

31 

5.

4 

5.

45 

BA-

M5P 

Train 8.9

5 

4.

45 

5.

07 

3.

07 

4.

02 

3.

49 

3.

59 

3.

61 

3.

66 

3.

67 

Test 10.

27 

6.

16 

6.

23 

4.

33 

5.

42 

4.

8 

4.

89 

4.

92 

4.

95 

4.

84 

AN

N 

Train 9.2

6 

4.

62 

4.

8 

2.

77 

5.

95 

3.

87 

4.

15 

4.

54 

4.

89 

4.

99 

Test 10.

19 

5.

63 

5.

4 

3.

57 

7.

67 

6.

59 

6.

85 

7.

03 

7.

06 

7.

02 

RFC

-

REP

T 

Train 6.4

9 

1.

46 

2.

38 

0.

82 

2.

95 

2.

05 

2.

11 

2.

17 

2.

45 

2.

25 

Test 11.

72 

5.

6 

5.

64 

3.

31 

6.

23 

5.

05 

5.

38 

5.

46 

5.

73 

5.

72 

AN

N-

ANF

IS 

Train 6.0

1 

0.

54 

0.

86 

0.

59 

1.

11 

0.

44 

0.

44 

0.

38 

0.

36 

0.

2 

Test 12.

95 

7.

26 

7.

2 

4.

77 

8.

21 

6.

54 

6.

9 

7.

12 

7.

32 

7.

25 

BPN

N 

Train 8.9

3 

4.

36 

4.

52 

2.

71 

5.

92 

4.

63 

5.

49 

5.

75 

6.

03 

6.

2 

Test 10.

4 

5.

73 

6 4.

47 

7.

75 

6.

41 

7.

12 

7.

12 

7.

37 

7.

41 

Similar to Figure 3 a-p, Figure 4 a-p show how to fit the 

models by plotting the measured WQI and predicted WQI 

for all the models. It is another representation of predicted 

and measured values.  

 

 
FIGURE 3. Time variation graph of predicted and measured value during 
the testing phase. 

 

Figure 3 a-p depicts the variation between the predicted and 

measured values. Similarly, Figure 4 a-p depicts the fitness 

of the model. Figure 4 a-p shows that all models have good 

fitness as most data points fall near the straight line, which is 

nearly perfect for model reliability. The RF algorithm has the 

minimum error among the standalone algorithms. The error 

ranges for RT and REPT were also between ±10; these 

algorithms failed to estimate the results accurately. The 

predictive value of standalone algorithms was improved by 

hybrid algorithms, notably the bagging algorithm (compare 

Figure 4a with e, c with g, and d and h). The RFC-RT, RFC-
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M5P, CVPS-M5P, M5P, and BAM5P algorithms are highly 

accurate at predicting the maximum WQI values, as shown 

by the box plots of measured and estimated WQI values. 

Only RFC-RF correctly estimated the lower values (see 

Figure 5).  

PREI, which evaluates the efficiency of algorithms on the 

potential to over-or underestimates the WQI, was used to 

analyze the results, as shown in Figure 5.  Though it has been 

established that all models predict reliable WQI, one factor 

still needs to be addressed. It must be checked if the model 

overestimates or underestimates the outcome. Only then can 

model accuracy be judged (when it predicts nearly to actual 

values, i.e., having a lower RMSE value). However, as 

shown, all the values are overestimated or underestimated, 

which means there is something wrong with the model, and 

it needs some refinement or model tuning. This 

overestimation of underestimation can be estimated by PREI 

calculation. Figure 5 shows that all the models have close to 

zero PREI values. 

Further, all models have different PREI values for each 

testing dataset, which means that the model performed 

reasonably accurately. The model has not predicted biased 

values, i.e., overestimated or underestimated. It can be seen 

that RT-ANN, BA-RT, and BA-RF models performed well 

in PREI analysis as they have close to zero PREI value 

because usually, the ±10 PREI range is considered to be 

acceptable. Nevertheless, directly analyzing the algorithms’ 

predictions to compare their effectiveness has drawbacks. 

Those with stronger prediction powers are easier to spot but 

determining the optimal algorithm and success ranking is 

complex. 

As a result, quantitative data that gives more substantial 

evidence of each algorithm’s performance is required, as 

presented in Table 7. Boxplots access the dataset’s mean, 

range, and overall distributions. Hence to compare how our 

models are predicting among all dataset’s boxplot was used, 

as shown in Figure 6.  

The boxplot shows that all models range almost equally and 

have similar distribution except RT and BA-RF, which have 

higher ranges and distribution. Since the difference is 

minimal, it cannot be declared an outlier. Furthermore, the 

boxplots show that the best models are RT-ANN, BA-RT, 

RF, BA-RF, BA-M5P, and M5P, while RCF-RT, RCF-

REPT BPNN predicted the lowest values and have relatively 

lower accuracy. The hybrid RT-ANN (R2 = 0.951) had the 

highest prediction success (R2 = 0.75), while the BPNN (R2 

= 0.752) had the lowest. The RT-ANN algorithm had the best 

MAE (2.284) and the lowest RMSE (2.319). An algorithm 

has excellent prediction ability when the NSE is 0.75 to 1 

[89]. 

 

 

 

 
FIGURE 4. Scatter plots of predicted measured values produced by all 
algorithms during testing 
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FIGURE 5. Error graph of estimated value compared to measured data 
in the testing phase. 

TABLE 7.  

FINDING THE BEST ALGORITHM FOR PREDICTING THE WQI 

Algorithm RSQ RMSE MAE NSE PBIAS Rank 

M5P 0.929 2.919 2.625 0.913 -1.127 6 

RT 0.9 3.241 2.867 0.893 -0.85 12 

BA-RT 0.945 2.362 1.868 0.943 -0.43 2 

BA-RF 0.936 2.506 2.406 0.936 0.3 4 

RF 0.942 2.376 1.943 0.942 0.05 3 

BA-REPT 0.858 3.988 3.43 0.838 1.41 13 

RT-ANN 0.951 2.319 2.248 0.945 -0.64 1 

REPT 0.867 3.636 3.519 0.865 0.28 11 

RFC-M5P 0.915 2.893 2.812 0.915 0.23 7 

RFC-RF 0.872 3.651 3.633 0.864 -0.83 10 

RFC-RT 0.85 3.848 3.729 0.849 0.24 14 

BA-M5P 0.935 2.625 2.237 0.93 -0.62 5 

ANN 0.888 3.647 3.501 0.864 -1.02 9 

RFC-REPT 0.84 4.699 3.344 0.775 2.53 15 

ANN-ANFIS 0.906 3.792 2.568 0.853 2.26 8 

BPNN 0.752 5.192 4.875 0.725 -0.72 16 

 
FIGURE 6. Box plot of applied algorithms for algorithm performance. 

As a result, all algorithms performed admirably, but RT-

ANN outperformed the competitors (NSE = 0.945). All 

algorithms except BA-RF, RF, BA-REPT, REPT, RFC-

M5P, RFC -REPT, and ANN-ANFIS overestimated WQI, 

according to the PBIAS metric. Based on their performance 

results, the algorithm’s ranking from best to worst is RT-

ANN, BA-RF, RF, BA-RF, BA-M5P, M5P, RFC-M5P 

ANN-ANFIS, RT, RFC-RF, REPT, ANN, BA-REPT, RFC-

RT, RFC-REPT, BPNN. 

C. DISCUSSION 

To forecast WQI along the KKH stretch from Gilgit to 

Khunjerab Pass, six standalone tree-based algorithms (M5P, 

RF, RT, REPT, ANN, and BPNN) were used in this study. In 

addition, ten new hybrid algorithms were created by merging 

the standalone algorithm with BA and RFC algorithms. The 

sixteen algorithms were compared in terms of performance. 

Previously researchers [12, 21, 23] have examined the 

predictive power of several independent tree-based 

algorithms using the neuron-based algorithm (ANFIS). 

These were hybridized with meta-heuristic optimization 

techniques. The findings of the previously conducted studies 

[12, 21, 23] show that isolated neuron-based algorithms have 

low prediction capacities due to significant flaws. 

Hybridization can considerably improve their forecasts. 

Their results also show that standalone tree-based algorithms 

perform similarly to ANFIS hybridized with meta-heuristic 
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optimization, which outperforms tree-based algorithms in 

prediction power.  

In the current study, hybrid algorithms improved the 

performance of specific independent tree-based algorithms, 

but not all. On their own, tree-based algorithms offer high 

predictive potential. For example, the best algorithm was 

BA-RT, with an R2 value of 0.941 in a relevant study, while 

in this research, the best algorithm is RT-ANN having an R2 

of 0.951. Overall, the comparison shows the improvement in 

algorithms, e.g., published M5P has an R2 value of 0.923, 

and this research has 0.929, etc. 

Apart from the structure of an algorithm, determining the 

appropriate mix of variables to be inputted into the algorithm 

is one of the most critical influences on performance. 

Because of the variety of point and non-point sources of 

pollution that generate nonlinear interactions between 

factors and WQ, the impact of combining variables on the 

result varies from catchment to catchment. Some studies 

failed to consider alternative variable combinations while 

determining the optimum set. Other researchers added all 

factors at the same time [6]. Similarly, some researchers used 

different approaches to pick the optimal input variables, such 

as multiple linear regression (dependent on CC) [90].  

The current study shows that various input combinations 

have distinct outcomes. Therefore, different variable input 

combinations should be tried to increase performance and 

select the most effective set. Each algorithm may have its 

own “best” combo. The outcomes are determined by the 

structure of each algorithm and the dataset’s fit to the 

algorithm’s structure (data structure and distribution). As 

mentioned earlier, new proposed hybrid algorithms 

performed better than the existing algorithms by at least 2%. 

To simulate WQI, Sahoo et al. [91] utilized ANFIS, and 

Yaseen et al. [13] employed a hybrid ANFIS. According to 

our findings, all standalone and hybrid algorithms produced 

superior WQI predictions than any previous algorithm 

examined for WQI prediction. Hence, based on the results, 

these algorithms can be used in any part of the world for WQI 

estimations and prediction. These algorithms can handle 

large long-term datasets and lower the cost of WQI 

estimation as just the WQ parameters for the algorithms to 

predict the WQI. Modifying the inputs for the algorithms 

used in this research can be done to adopt the divergent 

effects of modeling in other regions, or perhaps it can be 

done with the same variable combinations. 
VII. Conclusion 

This study investigated the performance of six standalone 

(RT, EPTR, RF, and M5P) and ten hybrid data-mining 

algorithms (hybrids of the standalone with CVPS, RFC, and 

BA) algorithms for forecasting the WQI in Northern 

Pakistan. The goal was to develop algorithms for WQI 

prediction and assess the WQ in the study area. According to 

the modeling procedure, the essential factor of the WQI was 

fecal coliform concentration. BOD, NO3, DO, EC, COD, 

PO24, turbidity, TS, and pH were then listed in relevance. It 

was discovered that multiple variable combinations led to 

varying degrees of algorithm performance. The predicting 

power was the best when the algorithms’ variables with the 

highest CCs were utilized. Low-CCs variables have a 

detrimental impact on predictive power. Compared to the 

standalone algorithms, the hybrids demonstrated an 

enhanced prediction accuracy rate (i.e., adequate than the 

standalone algorithms) as they have > 0.9 RSQ and NSE, 

respectively. The RT-ANN algorithm outperformed all other 

algorithms in terms of accuracy, with the highest RSQ value 

of 0.951. RF, BA-RF, BA-RT, BA-REPT, RFC-RF, RT, 

M5P, CVPS-M5P, RFC-M5P, BA-M5P, REPT, CVPS-

REPT, CVPS-RT, RFC-REPT, and RFC-RT are in order of 

decreasing performance after RT-ANN. Despite having the 

best performance, the RT-ANN hybrid could not effectively 

predict severe WQI values. WQI values were overestimated 

by nearly all algorithms, except BA-RF, RF, BA-REPT, 

REPT, RFC-M5P, RFC -REPT, and ANN-ANFIS. 

A. PRACTICAL AND RESEARCH IMPLICATIONS 

This research compares the implementation of new and 

existing algorithms for WQI assessment. This is important to 

mention that these algorithms can give stable outputs with a 

short-term dataset. The stability can, however, be increased 

with the longer-term dataset. As a result, these algorithms 

may be highly efficient in emerging areas with minimal 

measuring networks or when gauging networks have only 

recently been constructed. According to our results, the 

recommended RT-ANN algorithm appears practical and 

cost-effective for assessing WQI in Northern Pakistan. In the 

future, relevant research can be conducted using the 

proposed algorithms in developed and developing countries. 

The proposed algorithms can become more beneficial in 

underdeveloped nations since the costs of testing various 

WQ parameters are large and may be unaffordable generally. 

However, local climatic modifications need to be considered 

before applying this algorithm. 
However, the research outcomes can be valuable for the 

water management authorities in a way that they can take 

preventative measures to safeguard against the leaching of 

different detrimental pollutants and chemicals into the water 

resources, thus ensuring a relatively better WQ. 

B. LIMITATIONS AND FUTURE PROSPECTS 

This research has some limitations that can be potential 

future research areas. Firstly, the datasets used in this 

research were based on two years of sampling, making it a 

comparatively smaller sample, so the long-term analysis was 

impossible. The performance of these algorithms on long-

term datasets can be investigated in the future. Secondly, the 

important WQ parameters, namely COD and BOD, were not 

considered in the present due to some practical limitations.  

In future, data over multiple years such as the last decade can 

be used for similar purposes.   

Consequently, as the statistical and ML algorithms were used 

in this research, providing highly accurate results, it will be 
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beneficial to use deep learning algorithms, for instance, 

convolution neural network, to cross-check the results and 

compare them with this study to yield holistic results. 

Further, in addition to the correlation tests, other tests such 

as the PCA should be conducted in the future. Moreover, it 

would also be valuable to consider the WQ variables of COD 

and BOD for future research.  
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