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A B S T R A C T

Chemicals are involved in commercial, consumer, and industrial activ-
ities across the world marketplace. The number of chemicals circulating
in the market keeps growing, which can make it difficult for government
agencies to manage chemical risk by imposing regulatory restrictions
and for businesses to select chemical candidates with safer profiles be-
fore launching products into the market or using them in manufacturing
processes.

The identification of chemical exposure scenarios and the quantities of
chemicals that may be released into the environment are important tasks
for risk evaluation. Nonetheless, comprehensive data must be collected for
these tasks, making them time-consuming and challenging. In addition,
these tasks are even more difficult at the end-of-life (EoL) stage due to
the epistemic uncertainty about the exact pathways taken by chemicals
through the EoL management chain.

This thesis aims at moving forward to develop a holistic framework
to rapidly perform chemical flow analysis (CFA) for release estimations
and allocation and exposure scenario identification at the EoL stage. A
data-centric approach is proposed where data engineering plays a cru-
cial role in collecting, transforming, harmonizing, and storing data from
publicly-accessible, regulatory, and siloed database systems. First, this
thesis explored the use of U.S. regulatory data to track chemicals contained
in EoL flows transferred by U.S. industrial facilities to off-site locations for
further EoL management. Second, this work moves into industrial facilities
to identify the potential pollution abatement technologies implemented
by industries, thereby improving the CFA and flow allocation. Third, the
results of the above two steps are connected and extended to describe the
behavior of the EoL management chain and recycling loop, allowing us to
identify the inter-industry flow transfers and potential post-recycling expo-
sure scenarios. Fourth, an effort is made to extend the framework beyond
U.S. information and incorporate inventory data from other countries and
years. Finally, the data obtained in the fourth step is used to explore the
development of data-driven models able to identify potential EoL exposure
scenarios and be incorporated into the framework for understanding the
EoL management chain.

These studies are intended to contribute to the development and im-
plementation of a methodology for the rapid screening of potential EoL
chemical exposure scenarios and release estimates, as well as to address the



challenges in performing chemical risk evaluation for regulatory decision-
making and selecting safer profile chemicals based on life cycle thinking.



R E S U M E N

Los productos químicos están presentes en actividades comerciales,
industriales y de consumo en todo el mercado mundial. El número de
sustancias químicas que circulan por el mercado no deja de crecer, lo que
puede dificultar a los organismos gubernamentales la gestión del riesgo
químico mediante la imposición de restricciones reglamentarias y a las
empresas la selección de químicos con perfiles más seguros antes de lanzar
los productos al mercado o utilizarlos en los procesos de fabricación.

La identificación de los escenarios de exposición a las sustancias químicas
y de las cantidades que pueden liberarse en el medio ambiente son tareas
importantes para la evaluación del riesgo. Sin embargo, para estas tareas
hay que recopilar datos exhaustivos, lo que las convierte en una tarea larga
y difícil. Además, estas tareas son aún más difíciles en la fase de fin de
vida (EoL, por sus siglas en inglés) debido a la incertidumbre epistémica
sobre las vías exactas que siguen las sustancias químicas a través de la
cadena de gestión EoL.

Esta tesis pretende avanzar en el desarrollo de un marco holístico que
permita realizar rápidamente el análisis del flujo químico (CFA, por sus
siglas en inglés) para la estimación y asignación de emisiones y la identifi-
cación de escenarios de exposición en la fase de fin de vida. Se propone un
enfoque centrado en los datos, en el que la ingeniería de datos desempeña
un papel crucial en la recopilación, transformación, armonización y alma-
cenamiento de datos procedentes de sistemas de bases de datos de acceso
público, reglamentarios y aislados. En primer lugar, esta tesis explora el uso
de los datos reglamentarios de Estados Unidos para rastrear las sustancias
químicas contenidas en los flujos de EoL transferidos por las instalaciones
industriales estadounidenses a lugares externos para su posterior gestión.
En segundo lugar, este trabajo se adentra en las instalaciones industriales
para identificar las posibles tecnologías de reducción de la contaminación
aplicadas por las industrias, mejorando así el CFA y la asignación de flujos.
En tercer lugar, los resultados de los dos pasos anteriores se conectan y
amplían para describir el comportamiento de la cadena de gestión de EoL
y el bucle de reciclaje, permitiendonos la identificación de transferencias
de flujo entre industrias y los posibles escenarios de exposición posteriores
al reciclaje. En cuarto lugar, se hace un esfuerzo por ampliar el marco más
allá de la información estadounidense e incorporar datos de inventario de
otros países y años. Por último, los datos obtenidos en el cuarto paso se
utilizan para explorar el desarrollo de modelos basados en datos capaces



de identificar posibles escenarios de exposición a la EoL y de incorporarlos
al marco de comprensión de la cadena de gestión de EoL.

Estos estudios están destinados a contribuir al desarrollo e implementa-
ción de una metodología para la detección rápida de posibles escenarios
de exposición química de EoL y estimaciones de emisiones, así como para
abordar los desafíos en la realización de la evaluación de riesgos quími-
cos para la toma de decisiones regulatorias y la selección de productos
químicos de perfil más seguro basado en el pensamiento del ciclo de vida.
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1
I N T R O D U C T I O N

1.1 chemical risk evaluation issues overview

In the 21st century, the chemical industry is one of the largest manu-
facturing sectors in the world (Morris, 2003). This industry sector is the
largest manufacturer in the United States and the second largest one in
Europe after food and kindred products (Murmann, 2002). The overall
outlook for the chemical industry has been one of growth in recent years.
The global sales of chemicals increased from USD 1,220 billion in 2009 to
USD 3,820 billion in 2019 (European Chemical Industry Council, 2022).
Although the difficulties caused by the COVID-19 outbreak in 2020 caused
a reduction in the production of the chemical sector, a growth in demand
and chemical production are expected to increase in the following years
(Atradius, 2021).

Chemicals are present in products supplied by industry sectors like
wholesale, electricity, petroleum, and natural gas and products bought by
sectors like health care, plastics, textiles, paper, and rubber (Morris, 2003).
Hence, chemicals are everywhere and constitute an important aspect of
the daily lives of people around the world (The Organization for Economic
Co-operation and Development, 2021). Altough they have many benefits
for humankind’s development, anthropogenic chemical pollution has the
potential to pose one of the largest environmental threats to humanity
(Naidu et al., 2021) and some chemicals may present unreasonably high
risk of injury if they are not properly managed (Barr et al., 2006).

Chemical risk evaluation has been a widely used tool for the selec-
tion and informed use of safer chemicals, materials, and technologies
(Whittaker, 2015), driven in recent years by different aspects such as the
development of green chemistry and green engineering, life cycle thinking,
and public opinion (National Research Council, 2014). Likewise, chemical
risk assessment has been a tool for regulatory support to promote the use
of safer chemicals and to determine whether they may present a significant
risk to human health and the environment throughout their life cycle in
the market (Graham, 2008).

In the United States, the Toxic Substances Control Act (TSCA) has given
the Environmental Protection Agency (EPA) the legal means to evaluate
the risk that a chemical substance may have during its manufacture, pro-
cessing (including recycling), use in industrial, commercial, and consumer
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activities, and its end-of-life (EoL) management in the United States (U.S.
Environmental Protection Agency, 2017b). Similarly, in Europe, the Regis-
tration, Evaluation, Authorization, and Restriction of Chemicals (REACH)
Regulation has empowered the European Chemicals Agency (ECHA) to
determine whether chemical risk is under control during manufacture,
formulation, or repackaging, final application, and service life (article) or,
on the contrary, whether it is necessary to determine risk management mea-
sures throughout the territory of the Member States (European Chemicals
Agency, 2019a).

Although performing a chemical risk evaluation is necessary, it is still a
time-consuming and challenging task, as information needs to be collected
about the potential activities or emission sources of the chemicals (e.g.,
as a reactant), exposure pathways (e.g., water), exposure routes (e.g., in-
halation), susceptible receptors (e.g., workers), hazards (e.g., lung cancer),
and physicochemical properties (e.g., ethanol/water partition coefficient)
needed to perform the engineering analyses and calculations that support
such an assessment (see Figure 1.1). The above is more daunting from the
regulatory agencies’ point of view, as about 80,000 chemicals are regulated
by TSCA, of which more than 40,000 substances are active in the U.S.
market (U.S. Environmental Protection Agency, 2017a), while more than
106,213 substances are regulated by REACH across the Member States of
the European Union and European Economic Area countries (European
Chemicals Agency, 2019b). In addition, the EoL activities, i.e. disposal,
treatment, energy recovery, and recycling, are a major concern in the
framework of chemical risk assessment due to the difficulty in performing
a complete traceability and analysis of the material streams of a chemi-
cal present in industrial, commercial, and consumer waste streams. The
above leads to not anticipate additional exposure pathways that may cause
considerable risk to human health and the environment (Ragas, 2011).

Chemical risk, in general, can be separated into its three constituent
components, which are exposure, hazard, and vulnerability (Jacob, 2015).
Vulnerability is the propensity or predisposition to be adversely affected. A
hazard is the potential occurrence of an event or trend or impact that may
cause loss of life, injury, or other health impacts, as well as damage and
loss to ecosystems and environmental resources. Exposure is the presence
of people, livelihoods, species or ecosystems, environmental functions,
services, and resources, infrastructure, or economic, social, or cultural
assets in places and settings that could be adversely affected (Bojariu et al.,
2015). Thus, chemical risk evaluation can be developed by the outcomes
of different studies like hazard characterization, hazard identification, risk
characterization, and exposure assessment (Wittwehr et al., 2020). An
exposure assessment is to assess the exposure or amount of intake of
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Figure 1.1: An overview to the elements considered during the chemical risk
evaluation (developed using Flaticon).

chemicals for humans or organisms in the environment (Whaley et al.,
2016). Accounting and tracking of chemical flows are the first steps that
must be performed in exposure evaluation (Meyer et al., 2019).

The well-known environmental life cycle assessment (LCA) is somewhat
related to chemical risk assessment (Flemström et al., 2005). LCA is a
methodology that can be used to evaluate the environmental load of a
product, process, or activity throughout its life cycle (P. Roy et al., 2009).
While risk assessment focuses on managing the hazard in an exposure,
LCA seeks a holistic estimation of the impacts of substances across mul-
tiple media (Linkov et al., 2017). Hence, the above two approaches, that
dominate environmental policy and decision-making, can be integrated to
work together. The potential interoperatibility between the above assess-
ments is because they rely on the creation of life cycle inventories (LCI)
tracking the material flows (and energy) throughout product or service life
cycle to evaluate its impacts (Guinée et al., 2011). LCI not only provides
information about products and services, but it also provides a detailed
accounting of environmental releases and flows (Meyer et al., 2020).

A methodology to collect LCI is to perform a material flow analysis
(Muller et al., 2011). Indeed, material flow analysis can help to map EoL
flow movements and EoL activities (Allesch & Brunner, 2015) and has
been used by practitioners and researches to get chemical flow inventories
and perform chemical flow analysis (CFA) for a wide range of chemi-
cals (Bornhöft et al., 2013; Gottschalk et al., 2010; van Gils et al., 2020).
Some researchers have explored the use of data-driven modelling for high-
throughput CFA, chemical exposure assessment, and LCI (Cha et al., 2021;
Franzosa et al., 2021; Huang et al., 2021; Meyer et al., 2019; Ring et al.,
2019). Thus, data-driven modeling shows promising potential as a tool
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to accelerate the collection of information to identify exposure scenarios
and the traceability of chemical streams. Nonetheless, the development
of models and their performance depend on the specific dataset domain
(Priatama et al., 2022).

Considering the above, this work aims to develop a methodology and
tools based on data, mainly publicly-available, to track the flow of chem-
icals contained in industrial EoL streams, identify potential EoL generic
scenarios, understand the EoL management chain, and perform a rapid
CFA. In order to provide a continuous flow of data for the construction of
data-driven models, the work seeks to build a data pipeline that allows
training and retraining the models periodically for the prediction of poten-
tial EoL exposure scenarios for chemical substances, whether they do not
belong to the primary data sources or are new to the market. Additionally,
the work seeks to propose data models that are suitable for mimicking the
EoL supply chain behavior or providing information on the elements that
constitute it.

1.2 data engineering role

As mentioned above, both chemical risk evaluation and exposure as-
sessment require comprehensive LCI data in order to identify potential
EoL generic exposure scenarios and potential environmental releases. This
data is usually stored in siloed data sources in different formats and is
comprised of different data types. Due to the above, in recent years, LCI
practitioners have been concerned about the development of automatic
systems for mining, extracting, and transforming scatter data for using
them in different environmental applications (Birney et al., 2022; Li et al.,
2022; Young et al., 2022). In addition, data-driven models depends on a
vast amount of data for good prediction performance and to capture as
many values for input variables as possible (Roh et al., 2021). Thus, a field
known as data engineering plays an important role in big data, analytics,
and machine learning, in short, in data-driven modeling (Luściński, 2015).
Data engineering is the design and building of pipelines that transform and
transport data into a format that can be used by data scientists, machine
learning engineers, and other users. Hence, by using data engineering, the
data is in a highly usable state (Gray & Shenoy, 2000).

The growth and availability of data and the development of more com-
plex state-of-the-art machine learning algorithms have led to the devel-
opment of machine learning operations (MLOps) that enable collabora-
tion and increase the pace of delivery and quality of model development
through monitoring, validation, and governance of machine learning mod-
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Figure 1.2: Overview of machine learning operations (MLOps) (taken from Sculley
et al. (2015))

els (Soh & Singh, 2020). Figure 1.2 depicts an overview of the different
elements that constitute MLOps. As shown in the figure, data collection
has a more important role in real-world machine learning model develop-
ment (Sculley et al., 2015). In fact, data collection is the main task of data
engineering and greater attention, time, and energy should be paid to this
task to guarantee the development of data-driven models able to predict
generic EoL exposure scenarios, understand the chemical EoL management
chain, and estimate potential environmental releases from EoL activities.
In this way, this thesis proposes a data-centric paradigm, i.e., the data is
iteratively improved while the model is held fixed (Ng, 2021).

1.3 data-driven modelling

Two main modelling paradigms exist. The first one is a mechanistic
approach that incorporates the available knowledge of the system into the
model. In contrast, data-driven techniques search for relationships between
input and output variables, using the available data and without worrying
about the underlying process (Ji et al., 2012; T. Zhou et al., 2021). In fact,
the best of the approaches have been combined to create hybrid models,
i.e., models incorporating both mechanistic and data-driven techniques
(Kurz et al., 2022). Data-driven models are built up using statistical or
machine learning techniques (Solomatine & Ostfeld, 2008). Figure 1.3
depicts a Venn diagram for the main goals of statistical modelling and
machine learning methods and their intersection. A statistical model is
the use of statistics to build a representation of the data and then conduct
analysis to infer any relationship between variables or discover insights.
In contrast, machine learning is the use of mathematical and/or statistical
models to obtain a general understanding of the data in order to make
predictions (Goldstein et al., 2016; Mendis, 2019). Although both techniques
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are developed under different ideas and objectives, they share analytical
goals like accuracy and precision, potential implementation for future
applications, and understanding of data (see Figure 1.3).

Statistical model
methods

Models based on
theory and
assumptions

A priory
hypothesis

Draw inference/
understanding
from predictors

Machine learning
methods

Data-driven models
empirically optimized

Agnostic approach

Exploratory data
analysis and insights

Analytic goals

Accurate and precise
predictions

Robust to future applications
(validation)

Greater understanding of
data

Figure 1.3: One perspective on the intersection of statistical modelling (red) and
machine-learning (blue) goals (modified from Goldstein et al. (2016)).

1.3.1 Probabilistic graphical model

The EoL supply and management chain for a chemical can be considered
a complex system. Likewise, the decision-making process for selecting a
pollution abatement unit technology or EoL activity suitable for handling
a hazardous chemical or waste can be considered as a complex system.
Complex systems are ones with a large effective number of strongly-
interdependent aspects. This excludes both low-dimensional systems, and
high-dimensional ones where the aspects are either independent, or so
strongly coupled that only a few aspects effectively determine all the rest
(Shalizi, 2009). The interrelated aspects can be related to the reasoning taks
(Koller & Friedman, 2009). For instance, in the chemical EoL management
chain, there are multiple possible EoL activities to handle a chemical,
environmental regulations that can favour the implementation of an EoL
activity, economic aspects such as the chemical price, and many more
matters to consider. These domains can be characterized in terms of a set
of random variables, where the value of each variable defines an important
property of the world (Koller & Friedman, 2009).

To reason probabilistically about the values of one or more of the vari-
ables, it is necessary to construct a joint distribution over the space of
possible assignments to some set of random variables, thus obtaining tools
to answer a wide range of interesting queries. However, constructing a
joint distribution for a complex system is quite daunting. Nevertheless,
a family of statistical models called probabilistic graphical models (also
known as graphical models or structured probabilistic models) provides
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Figure 1.4: Representation of statistical graphical models. (a) an undirected graph
representation. (b) a directed acyclic graph representation.

a methodology for exploiting the structure of complex distributions to
describe them in a compact form so that they can be constructed and used
effectively. Probabilistic graphical models use a graph-based representa-
tion as the basis for compactly encoding a complex distribution over a
high-dimensional space (Koller & Friedman, 2009). In graph theory, a
graph is a structure of nodes or vertices connected by edges representing
direct interactions (Slutsky, 2014).Graphical models can be largely divided
into two categories named directed acyclic graphs and undirected graphs
(Goodfellow et al., 2016).

1.3.1.1 Directed acyclic graph

Directed acyclic graph also known as belief network or Bayesian network
(Pearl, 1988). This models are called directed because their edges are
directed, that means, they point from one vertex to another. As shown in
Figure 1.4b, an arrow represents the direction. From a statistical point of
view, the arrow direction indicates which variable’s proability distribution
is defined in terms of the others (Goodfellow et al., 2016). For instance,
the directed acyclic graph in Figure 1.4b indicates that the statistical distri-
bution of the node D depends directly on C and A. Formally, a directed
graphical model defined on variables x is defined by a directed acyclic
graph Θ whose vertices are the random variables in the model, and a set
of local conditional probability distributions p(xi|PaΘ(xi)), where PaΘ(xi)

gives the parents of xi in Θ. Hence, the probability distribution over x is
given in Equation 1.1 (Goodfellow et al., 2016).

p(x) = ∏
i=1

p(xi|PaΘ(xi)) (1.1)
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1.3.1.2 Undirected graph

Undirect graphical models also known as Markov random fields (MRFs)
or Markov networks, is the other class of statistical graphical models whose
edges are undirected (Kindermann & Snell, 1980). Directed models are
applicable to situations where the causality between the random variables is
clearly understood and the causality flows in only one direction. However,
the above described situation is rare. When the interactions seem to have
no intrinsic direction, or to operate in both directions, it may be more
appropriate to use an undirected model (Koller & Friedman, 2009). Figure
1.4a depicts a simple representation for an undirected graph. Unlike
directed models, the edge in an undirected model has no arrow and is not
associated with a conditional probability distribution (Goodfellow et al.,
2016). Formally, an undirected graphical model is a structured probabilistic
model defined on an undirect graph Θ. For each clique Λ (a subset of
vertices), a factor ϕ(Λ) (also called a clique potential) measures the affinity
of the variables in that clique Λ for being in each of their possible joint
states. Like the probabilities, the factors are constrained to be nonnegative.
Together they defined an unnormalized probability distribution, as shown
in Equation 1.2.

p̂(x) = ∏
Λ∈Θ

ϕ(Λ) (1.2)

1.3.2 Machine learning models

As shown in Figure 1.3, machine learning models are a good data-
driven modelling alternative to be empirically optimized based on available
data and their agnosticism allows to apply them in a wide variety of
knowledge fields like exposure assessment (Isaacs et al., 2016; Ring et al.,
2019). In general, machine learning models look for resolving the problem
of the probability of the output variable Y given the input variables X,
i.e., the posterior probability or P(Y|X) (Hastie et al., 2009). Based on
how the models approach to the posterior probability or P(Y|X), the
machine learning models can be classified into two categories known as
discriminative and generative models (Goyal, 2021).

posterior =
prior × likelihood

evidence
→ P(Y|X) =

P(Y)× P(X|Y)
P(X)

(1.3)
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Figure 1.5: Difference between discriminative and generative machine learning
models (taken from Goyal (2021)).

1.3.2.1 Discriminative machine learning models

Discriminative models (also known as conditional models) make pre-
dictions based on new data by using conditional probability. These kinds
of models can be used either for classification or regression problems. As
shown in Figure 1.5, discriminative models separate classes by learning the
boundaries between the classes or labels. Instead of making any assump-
tions about the data points, discriminative models assume a functional
form for the posterior probability or P(Y|X) (see Equation 1.3). Using
the available data, they estimate the parameters of P(Y|X) and find the
maximum likelihood estimator (Hastie et al., 2009). Some examples of
discriminative models available in the literature are linear regression (Ku-
mari & Yadav, 2018), logistic regression (Peng et al., 2002), support vector
machines (Evgeniou & Pontil, 2001), traditional neural networks (Grossi &
Buscema, 2008), k-nearest neighbor (Cunningham & Delany, 2007), condi-
tional random fields (Sutton & McCallum, 2010), decision trees (Rokach
& Maimon, 2005), and random forests (Breiman, 2001; Goyal, 2021). This
kind of algorithms are good for tasks with labeled data to try to predict
classes or values, i.e., classification and regression what is well-known as
supervised learning (Dobbelaere et al., 2021).

random forest : A discriminative machine learning model used in this
work is random forest. Random forest has been widely used in applications
of chemoinformatics because of its high-performance (Polishchuk et al.,
2009; Svetnik et al., 2003). Some advantages of random forest is that it can



10 introduction

perform both regression and classification tasks, produces good predictions
that can be understood easily, can handle large datasets efficiently, and
provides a higher level of accuracy in predicting outcomes over the decision
tree algorithm (J. Ali et al., 2012). Figure 1.6 shows a simplified view of
a random forest classifier. As shown in the figure, a random forest is
composed of a set of tree-based estimators or decision trees. Thus, the
unit blocks for a random forest are decision trees, which identify key
differentiating factors between classes in a dataset. Formulating yes-no
questions, the decision trees form "yes" and "no" paths that will either lead
to the next question or to a final output or prediction (Rokach & Maimon,
2005).

Figure 1.6: A simplified view of a random forest classifier (taken from Kashyap
(2019)).

The key terms that are important to understand the development of
decision trees are the following (Kashyap, 2019):

1. Classes: the list of different groups to which the data can belong is
known as the classes.

2. Nodes: the different questions that make up the decision tree are
known as nodes. These can be seen as points in the decision tree
where we form a split (or branches). Each of these is a "yes" or "no"
question, and once answered, we get one step closer to identifying
the class to which the data belongs.

3. Leaves: due to the presence of nodes, there are many alternative
paths that are created in any decision tree with even a few layers
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of nodes. The end point of each of these paths is known as a "leaf".
These leaves represent the final value or class that is predicted for the
given input data.

For discrimination and finding the decision boundary, decision trees
use the concepts of information entropy and information gain (Kashyap,
2019). Entropy (E) can be understood as a measure of the homogeneity of
a sample from a group of data. Typically, entropy is calculated on a scale
of 0 to 1. An entropy of 0 indicates that the data has minimal disorder
(very homogeneous/pure), while an entropy of 1 (or a high entropy value)
indicates that there is a lot of disorder in the data (Kashyap, 2019). Equation
1.4 presents how to calculate the entropy for a dataset with n classes. In
Equation 1.4, pi is the probability of a data point in the dataset belonging
to the class i. In contrast, information gain (IG) ensures that the entropy
is reduced by splitting the data with the questions in the decision tree. In
the decision tree, the data is split based on the features, thereby creating a
subset of the data. Thus, the splitting operation in a decision tree has an
entropy associated with it that can be compared with the entropy before
the splitting. Tha comparison is what is called the information gain for
that split and is calculated as presented in Equation 1.5. In equation 1.5, X
represents the target variable, A the attribute on the basis of which this split
has been formed, E(X) the entropy of the data at the node before the split,
and E(X, A) the weighted sum of the entropies of the two branches formed
after the split based on the attribute A. In summary, in a decision tree the
objetive is to find a model that minimizes the entropy and maximizes the
information gain (Kashyap, 2019).

E =
n

∑
i=1

−pi × log2(pi) (1.4)

IG(X, A) = E(X)− E(X, A) (1.5)

As mentioned before, decision trees are the unit blocks that form a
random forest. This collection of decision trees is known as an ensemble,
i.e., a random forest is an ensemble method that uses multiple tree-based
learning algorithms to obtain better predictive performance than could
be obtained from any of the constituent learning algorithms alone (Dižo
et al., 2022). In a random forest is decision tree is unrelated each other
and is traing using a random subset of the training data. This technique
for training each tree in different random sample of the data is known
as bagging or boostrap aggregation (Altman & Krzywinski, 2017). As
shown in Figure 1.6, each individual tree makes a prediction, and the final
prediction is then decided by measuring which prediction was made by
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the greatest number of trees in the forest. In addition to bagging, random
forest uses another technique called randomizing attributes or features so
that each decision tree does not have access to all of the dataset features.
Instead, a random subset of features is given to each decision tree in the
random forest (Scornet et al., 2014).

1.3.2.2 Generative machine learning models

A generative model focuses on the distribution of a dataset to return a
probability for a given example. These kinds of models can be used for
tasks like data augmentation (or creation of sintetic data samples), clus-
tering, and dimensionality reduction. As shown in Figure 1.5, generative
models focus on understanding the statistical distribution of individual
classes in a dataset and model the underlying patterns of data points.
To find the posterior probability or P(Y|X), generative models use the
available data to estimate prior probability or P(Y) and likelihood proba-
bility or P(Y|X), which are the same that the joint probability distribution
considering that P(X, Y) = P(Y)× P(Y|X). Then, based on new data (evi-
dence or P(X)), they calculate P(Y|X) (see Equation 1.3). Some examples
of generative models available in the literature are Naïve Bayes (Webb
et al., 2011), autoregressive models (Dalal et al., 2019), principal compo-
nent analysis (Mishra et al., 2017), latent dirichlet allocation (Blei et al.,
2003), and generative adversarial networks (Goodfellow et al., 2014; Goyal,
2021). From a machine learning and application standpoint, even statistical
graphical models such as Bayesian networks and Markov random fields
can be classified as generative models (Goodfellow et al., 2016). Unlike
discriminative models, this kind of algorithms can be used for clustering,
visualization, anomaly or outlier detection, and dimensionality reduction,
i.e., for unsupervised learning where the records are unlabeled and the
idea is to discover patterns (Dobbelaere et al., 2021).In this thesis, genera-
tive models are used for dimensionality reduction, outliers detection, and
dataset balancing, as presented in the following paragraphs.

dimensionality reduction : As mentioned before, generative mod-
els are widely used to find patterns in data and they are good for dimen-
sionality reduction tasks. The idea of dimensionality reduction is to reduce
the risk of overfitting problems due to high-dimensionality (Johnstone &
Titterington, 2009; Zong et al., 2020). There are several techniques available
in the literature to reduce the dimensionality and they can be classified
according to their taxonomy and functionality (van der Maaten et al., 2009).
A group of dimensionality reduction techniques is based on components or
factors analysis. Principal component analysis (PCA) is component-based
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technique widely used by machine learning practitioners and statisticians
in order to reduce the dimensions of large datasets. PCA is a linear method
for reducing the dimension of a dataset by using the covariance matrix for
features and then getting the eigenvalues and eigenvectors (Mishra et al.,
2017). PCA arrives at the final components, which explain most of the
dataset variability. Therefore, these new components can be thought of
as linear combinations or composites of the original features (Mahmood,
2021). As PCA works well on continuous data, if a dataset is composed of
nominal categorical data, a component-based method called multiple cor-
respondence analysis (MCA) is used to detect and represent the dataset’s
underlying structures and reduce the dimensionality (Khangar & Kamalja,
2017). MCA uses an indicator matrix or a complete disjunctive table (see
Equation 1.6). An indicator matrix is a matrix where the rows represent
samples and the columns are dummy variables representing categories
of the variables (Heiser, 2009). Unfortunately, in the real world, data is
a blend of both numerical and categorical data (i.e., mixed dataset). In
the above case, a generative technique used for dimensionality reduction
is factor analysis of mixed data (FAMD). FAMD does the analysis with
a combination of PCA and MCA techniques. Practitioners usually use
PCA using encoding techniques over categorical variables. Unlike PCA,
the FAMD technique does not require feature encoding to be performed
(Visbal-Cadavid et al., 2020).


a b c

a d e

a b e

b c e

 =



a b c d e

1 1 1 0 0

1 0 0 1 1

1 1 0 0 1

0 1 1 0 1


(1.6)

outliers detection : Outliers can cause learning problems for the
discriminative machine learning models so that they may misclassify and
poorly predict (Verma & Hansch, 2005). As mentioned above, genera-
tive machine learning models are also good at detecting outliers in a
dataset. Outlier detection techniques may have multiple kinds of catego-
rizations (Smiti, 2020), for instance, distance-based and tree-based methods.
Distance-based outlier detection techniques consult the neighbourhood
of a data point, which is defined by a given radius (distance threshold).
A data point is then considered an outlier if its neighborhood does not
have enough other points (Chepenko, 2018). Distance-based outlier detec-
tion techniques can perform well for scattered real-world data. However,
distance-based outlier detectors may be computationally expensive in large
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datasets (K. Zhang et al., 2009). Due to the above, tree-based methods
are atractive alternatives because of the required time to obtain results.
Isolation forest, an unsupervised anomaly detection technique, is a tree-
based method widely used by machine learning practitioners for detecting
and removing outliers in a large dataset (Liu et al., 2008). Like random
forests, isolation forests are built based on decision trees, but unlike ran-
dom forests, there are no predefined labels. Isolation forest assums that
outliers are the data points that are "few and different". In an isolated
forest, randomly subsampled data (i.e., boostrap aggregation) is processed
into a tree structure based on randomly selected features (i.e., randomizing
attributes or features). Samples that go further into the tree are less likely
to be anomalies, as they require more cuts to isolate. Similarly, samples
that end in shorter branches indicate anomalies, as it was easier for the tree
to separate them from other observations (S. Unrau, 2021), see Figure 1.8a.
Thus, isolation forest learns patters from the available data to determine
the dataset distribution and isolate those data points that are not normal,
as shown in Figure 1.8b.

Figure 1.7: Synthetic Sample generation using synthetic minority over-sampling
technique (SMOTE) (taken from Das (2019)).

dataset balancing : Supervised classification tasks addressed by
discriminative machine learning models can be affected by an imbalanced
dataset (Jeatrakul et al., 2010). An imbalanced dataset is one where the
number of samples for target classes is not equal, thereby leading to po-
tential type I error (i.e., false positive) and type II error (i.e., false negative)
(H. Ali et al., 2019). For dealing with imbalanced datasets, generative
machine learning models can support data processing before being fed into
discriminative models for classification. Imbalanced dataset methodologies
available in the literature can be divided into two categories: undersam-
pling and oversampling. Oversampling, also known as data augmentation
techniques, increases the number of samples in the minority class(es),
whereas undersampling decreases the number of samples in the majority
class(es) (Islam et al., 2022). A method widely used as an undersam-
pling technique is synthetic minority over-sampling technique (SMOTE)
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(Blagus & Lusa, 2013). In case of multi-class or binary classification prob-
lems, SMOTE creates synthetic data points for the minority class so that
it matches up to the majority class (Chawla et al., 2002). SMOTE works
by using a k-nearest neighbor algorithm to create synthetic data. SMOTE
algorithm can be summarized in the following steps (C. Y. Unrau, 2020):

1. It starts by choosing random data samples from the minority class.

2. It sets the k-nearest neighbors of the data samples.

3. Synthetic data would then be made between the random data and
the randomly selected k-nearest neighbor.

4. It repeats the process until data is balanced (see Figure 1.7).

Another technique used in multi-class and binary classification problems
is NearMiss (J. Zhang & Mani, 2003). Unlike SMOTE, NearMiss is an
undersampling technique for dealing with imbalanced datasets. There
are three main steps that described the underlying idea of NearMiss
(Madhukar, 2020):

1. It calculates the distance between all the data points in the majority
class with the data points in the minority class.

2. It selects data points of the majority class that have the shortest
distance with the minority class. The n samples need to be stored for
elimination.

3. If there are m samples of the minority class then the algorithm will
return m × n samples of the minority class.

4. It repeats the process until data is balanced.

Multi-label classification problems are the ones where a target variable
can have more than one possible label or class associated. This is the case
when classes are not mutually exclusive. For example, in a photograph,
there can appear a person and a car at the same time, so in an image
classification problem, both classes are valid for an image (M.-L. Zhang &
Zhou, 2014). Another example of multi-label classification problems is that
for a chemical over a period of one year, many EoL activities can occur.
For this kind of problems, methods like Near-Miss and SMOTE are not
applicable. Charte et al. (2015) proposes multilabel synthetic minority
over-sampling technique (MLSMOTE), an extension or variant of SMOTE,
for producing synthetic data points for imblance multi-lable datasets. The
following are the main steps for performing MLSMOTE (Sukhwani, 2020):
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1. It selects data to over-sample (i.e., minority class).

2. It chooses an data samples of the data.

3. It finds its k-nearest neighbours of that data points.

4. It chooses a random data point which is in k-nearest neighbours of
the selected data point and make a synthetic data point anywhere on
the line joining both these points.

5. It repeats the process until data is balanced.

1.3.3 Quantitative structure-activity relationship

Quantitative structure-activity/property relationship (QSAR/QSPR) mod-
eling has long been used in medicinal chemistry and computational toxicol-
ogy. It provides an in silico tool for the development of predictive models
towards various activity points and properties of a range of chemicals,
using experimentally determined response data and computationally or
experimentally derived molecular structure information. Once developed
and validated, these models can be used to determine response endpoints
of novel and untested chemicals, as well as to obtain a mechanistic inter-
pretation of structure-activity-property relationships. These techniques
have been successful in many runway optimization and risk assessment
problems. (K. Roy et al., 2015).

1.3.3.1 QSAR modelling workflow

As data-driven and predictive models, QSAR development requires a
workflow in order to orchestrate the needed steps for running experiments.
Figure 1.9 depicts an overview of the QSAR modelling workflow. As
shown in the figure, dataset compilation, which involves the retrieval
of data from different data sources, is the first QSAR modelling step,
which, as mentioned before, is addressed by data engineering pipelines.
After collecting data, QSAR needs data processing in order to curate,
select features, balance the data, and split the data. Data curation and
preprocessing are needed for dropping duplicate records and dealing with
null-value either by removing input features/variables or imputing them
based on, for example, a central tendency measurement like the mean or
median (Lee & Stvilia, 2017).

As presented in Figure 1.9, after data curation and preprocessing, chem-
ical descriptors have to be calculated. Chemical structure information is
noramally encoded by using the Simplified Molecular Input Line Entry
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a)

b)

Figure 1.8: Isolation forest underlying idea. (a) decision-making for isolation
forest. (b) pattern learn by isolation forest (taken from Regaya et al.
(2021)).

System (SMILES), which is a chemical notation widely utilized in chemical
information processing (Weininger, 1988). Once chemical descriptors are
obtained, feature selection is applied in order to reduce the infrastructure
need to deploy QSAR models, reduce redundant features, and mitigate
a potential risk of QSAR model over-fitting (Miao & Niu, 2016). If the
predictive problem is for classification, the data should be balanced to
avoid classification mistakes. Thus, by balancing the data, an equal number
of each label is obtained. (Kotsiantis et al., 2005). The final step in dataset
processing is splitting the data to divide the data between the train and
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Figure 1.9: Schematic representation of the QSAR modelling workflow (taken
from Nantasenamat (2020)).

test datasets. The latter dataset is for external validation and the statistical
measure of model robustness (Nantasenamat, 2020).

At the model building step, state-of-the-art machine learning algorithms
are selected for running experiments and construct QSAR models (Sarker,
2021). The models used in this part correspond to the discriminative
machine learning algorithms and the selection of any model depends on the
modelling problem complexity. On the first hand, for regression problems,
practitioners commonly develop QSARs using models like multiple linear
regressions (Kaya Uyanık & Güler, 2013), partial least squares (Pirouz,
2006), artificial neural networks (Grossi & Buscema, 2008), and Gaussian
processes (Rasmussen et al., 2004). On the second hand, for classification
problems, they select models like logistic regressions (Peng et al., 2002),
linear discriminant analysis (Tharwat et al., 2017), decision trees (Rokach
& Maimon, 2005), random forests (Breiman, 2001), k-nearest neighbors
(Cunningham & Delany, 2007), probabilistic neural networks (Specht, 1990),
and support vector machines (Evgeniou & Pontil, 2001).

After the model is constructed and its parameters are tuned to perform
well, the built model has to be evaluated to test whether it will predict
properly on new data. Different metrics can be found in the literature
based on whether the model is for classification or regression (J. Zhou
et al., 2021). The outcomes from a QSAR or machine learning modelling
experiment can be used basically in four ways. If a previous model exists,
the new one can be compared to determine if it is better than the older
one or be discarded if it is not. The QSAR model performance can be



1.3 data-driven modelling 19

evaluated on unseen data by the model, which is called external validation
or evaluation on the test dataset (K. Roy et al., 2015). In addition, if the
model allows to analyze the feature importance, the feature importance
should be analyzyed and understood from the point of view of the problem
application to obtain future model improvements (Nantasenamat, 2020).

1.3.3.2 QSAR and regulatory applications

The following aspects are addressed by regulatory bodies in order to
streamline the chemical risk evaluation via QSAR modelling (K. Roy et al.,
2015):

1. Assessment of exposure.

2. Identification and doseresponse characterization of hazard, including
classification and labeling of the chemicals.

3. Assessment of hazard and exposure.

4. Identification of persistent, bioaccumulative, and toxic (PBT) as well
as very persistent and very bioaccumulative (vPvB) chemicals.

International regulatory bodies and agencies like the Office of Toxic
Substances of the EPA, the European Centre for the Validation of Alterna-
tive Methods (ECVAM) of the European Union, and the Agency for Toxic
Substances and Disease Registry (ATSDR) and the Council for Interna-
tional Organizations of Medical Science, have fostered the use of QSAR
models to perform systemic evaluation of toxicological hazard of existing
as well as new chemical and identified QSAR as an alternative method for
toxicity testing of animals (K. Roy et al., 2015). In fact, the organization
of economic cooperation and development (OECD) has promoted a work
to develop tools based on QSAR for chemical hazards identification as
the case of the QSAR Toolbox which is a free software application that
supports reproducible and transparent chemical hazard assessment (The
Organization for Economic Co-operation and Development, 2006).

1.3.3.3 OECD principals for the validation of QSAR models for regulatory
purposes

Based on the agreement reached by OECD member countries in Novem-
ber 2004 at the 37th Joint Meeting of the Chemicals Committee and the
Working Party on Chemicals, Pesticides, and Biotechnology. The follow-
ing principles should be associated with a QSAR model for regulatory
purposes (The Organization for Economic Co-operation and Development,
2004):
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1. A defined endpoint.

2. An unambiguous algorithm

3. A defined domain of applicability

4. Appropriate measures of goodness-of–fit, robustness and predictivity

5. A mechanistic interpretation, if possible

1.4 multi-criteria decision-making

Leveraging the available data, data-driven modelling can be combined
with multi-criteria decision-making (MCDM). In fact, researchers have
developed holistic frameworks that take advatange of both data-driven
modelling and MCDM (Kartal et al., 2016). MCDM can be used to select ei-
ther EoL activities for chemicals transferred to off-site locations or pollution
abatement unit technologies to be implemented during an EoL manage-
ment activity. MCDM problems can be separated regarding whether there
are a finite or infinite number of alternatives (Giove et al., 2008). Due to
the finite nature of both the potential EoL activity and pollution abate-
ment technology alternatives, the MCDM problem corresponds to a multi-
attribute decision analysis.In this work, the MCDM problem is resolved
via a fuzzy analytical hierarchy process (FAHP). FAHP descomposes the
MCDM problem into simpler sub-problems, makes pairwise comparisons
of alternatives, and reflects the uncertainty and ambiguousness of decision
makers (Khorramrouz et al., 2019). FAHP depends on fuzzy mathematics
and logic to deal with the epistemic uncertainty (Srichetta & Thurachon,
2012), being triangular fuzzy numbers widely used to perform the different
fuzzy operations (Sabaghi et al., 2016) and Shannon’s information entropy
used to find a consensus between the different parties involved in the
MCDM problem (Sitorus & Brito-Parada, 2020).

1.5 thesis outline

Figure 1.10 presents a summary of the main topics studied in this thesis.
This thesis tries to propose a methodology and a strategy to quickly
identify possible generic EoL exposure scenarios and to perform CFA,
aiming at the rapid development of chemical risk assessment. This work is
structured into three parts. Part I is devoted to understand the chemical
EoL management chain and recycling loop based on U.S. environmental
regulatory databases; Part II looks for ways to get cross-country data for
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tracking chemical flows; and Part III proposes the development of data-
driven models for high-throughput screening of EoL exposure scenarios.

Chemical flow analysis
and allocation

EoL activities identification

Pollution abatement unit 
technologies identification

Inter-industry chemical
flow transfers

Contamination of
recycled flows with toxics

Generic EoL exposure scenarios

1

2

3

4

5

Figure 1.10: Main topics covered in this thesis.

1.5.1 Part I - Understanding the chemical end-of-life management chain and
recycling loop

chapter 3 - data engineering for tracking chemicals and

releases at industrial end-of-life activities . This chapter
explores the use of data engineering for tracking chemical flows trans-
ferred to off-site facilities located across the U.S. territories for further EoL
management. Moreover, in this chapter, a methodology is proposed to



22 introduction

leverage the data for estimating the amount of a transferred chemical that
may be released to the environment from EoL activities.

chapter 4 - a data engineering framework for on-site end-of

-life industrial operations . This chapter focuses on developing
data engineering to obtain insights about the pollution abatement unit
technologies that a facility may use to handle industrial waste streams
containing hazardous chemicals. In addition, an input-output model
is proposed to perform CFA and allocate a chemical downstream of a
pollution abatement unit technology. A Bayesian network and multi-criteria
decision-making are combined to suggest potential pollution abatement
unit technology sequences.

chapter 5 - a data engineering approach for sustainable

chemical end-of-life management. This chapter brings together
the frameworks proposed in both chapter 3 and chapter 4 to understand
the chemical EoL management chain and identify potential post-recycling
scenarios that may occur once a chemical is recycled. A Markov random
field is suggested to represent the relationship between the different nodes
constituting the chemical EoL management chain.

1.5.2 Part II - Towards a cross-country framework

chapter ?? - tracking off-site end-of-life stage of chemicals :
a scalable data-centric and chemical-centric approach .
This chapter moves forward to harmonize and structure cross-country
data to track chemical flow transfers to off-site locations. The framework
considers the future building of robust machine learning systems to train
and retrain models and deploy them for making predictions on new data.
In addition, it analyzes the potential implications and limitations of using
the obtained data for building data-driven models.

1.5.3 Part III - A step to high-throughput screening of end-of-life exposure
scenarios

chapter ?? - a high-throughput screening of chemical end-of

-life transfer scenarios using structure-based classifica-
tion models . This chapter gives a step forward in developing data-
driven models that allow the rapid identification of potential generic EoL
scenarios that could occur for a chemical. Based on QSARs, different
modelling strategies are evaluated in order to find a data preparation and
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modelling pipeline to build robust models for predictions on new data,
considering the implications and infrastructure needed to deploy models
to be used by stakeholders.
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2
O B J E C T I V E

2.1 scope and objectives of the thesis

2.1.1 Main objective

This thesis aims to develop a data-driven methodology from publicly-
accessible data for rapid estimation of emissions and exposure to chemicals
during generic end-of-life scenarios in order to incorporate and understand
exposure pathways during such scenarios to streamline the chemical risk
assessment process.

2.1.2 Specific objectives

objective i : Develop data engineering pipelines to connect publicly-
available and siloed database systems to build a centralized database and
datasets that include the necessary elements for the generation of concep-
tual models of chemical exposure during generic end-of-life scenarios.

objective ii : Perform exploratory data analysis for early identification
of constraints and implications for building data-driven models from data
obtained through data engineering.

objective iii : Propose data-driven modeling alternatives in order to
identify potential generic end-of-life chemical exposure scenarios, perform
a chemical flow analysis and understand the elements that make up the
end-of-life management chain.
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A C T I V I T I E S

abstract

Performing risk evaluation is necessary to determine whether a chemical
substance presents an unreasonable risk of injury to human health or the
environment across its life cycle stages. Data gathering, reconciliation,
and management for supporting risk evaluation are time-consuming and
challenging, especially for end-of-life (EoL) activities due to the need for
proper reporting and traceability. A data engineering framework using
publicly-available databases to track chemicals in waste streams generated
by industrial activities and transferred to other facilities across different
U.S. locations for waste management is implemented. The analysis tracks
chemicals in waste streams generated at industrial processes and handling
at off-site facilities and then estimates releases from EoL activities. The
final product of this effort is a framework that identifies a set of chemical,
activity, and industry sector categories as well as hazardous waste flows,
emission factors, and uncertainty indicators to describe EoL activities. This
framework helps to identify EoL exposure scenarios that would otherwise
not be evaluated. As a case study, methylene chloride, one of the first
ten chemicals to undergo risk evaluation under the amended U.S. Toxic
Substances Control Act, was evaluated with results highlighting potential
additional exposure scenarios.

Keywords: Chemical releases; Chemical risk; Data management; Indus-
trial activities; Waste management
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resumen

La evaluación de riesgos es necesaria para determinar si una sustancia
química presenta un riesgo excesivo de daño para la salud humana o el
medio ambiente en todas las fases de su ciclo de vida. La recopilación,
la conciliación y la gestión de datos para apoyar la evaluación de riesgos
requieren mucho tiempo y suponen un reto, especialmente en el caso
de las actividades de fin de vida (EoL, por sus siglas en inglés), debido
a la necesidad de una información y una trazabilidad adecuadas. Se
implementa un marco de ingeniería de datos que utiliza bases de datos
disponibles públicamente para rastrear las sustancias químicas en los flujos
de residuos generados por las actividades industriales y transferidos a otras
instalaciones en diferentes lugares de Estados Unidos para la gestión de
residuos. El análisis rastrea las sustancias químicas en los flujos de residuos
generados en los procesos industriales y la manipulación en instalaciones
externas y luego estima las liberaciones de las actividades de EoL. El
producto final de este esfuerzo es un marco que identifica un conjunto
de categorías de productos químicos, actividades y sectores industriales,
así como flujos de residuos peligrosos, factores de emisión e indicadores
de incertidumbre para describir las actividades de EoL. Este marco ayuda
a identificar los escenarios de exposición de EoL que, de otro modo, no
se evaluarían. Como estudio de caso, se evaluó el cloruro de metileno,
una de las diez primeras sustancias químicas que se sometieron a una
evaluación de riesgos en virtud de la Ley de Control de Sustancias Tóxicas
modificada de Estados Unidos, con resultados que ponen de manifiesto
posibles escenarios de exposición adicionales.

Palabras clave: Emisiones químicas; Riesgo químico; Gestión de datos;
Actividades industriales; Gestión de residuos
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3.1 introduction

Chemical risk evaluation has been broadly utilized for supporting alter-
native assessment via a strategy of informed substitution to select chemicals
and materials with safer profiles (Whittaker, 2015). The use of risk analysis
has increased due to drivers such as green chemistry and engineering,
circular economy, and life cycle analysis for avoiding the selection and
use of undesirable chemical substitutions (Bodar et al., 2018; National
Research Council, 2014). This evaluation has not only been performed in
technical fields but also in regulatory decision-making to protect society
and the environment (Bernas, 2013), thereby driving the promotion of safer
chemical adoption and identifying so-called priority substances (e.g., per-
sistent, bioaccumulative, and toxic chemicals) (National Research Council,
2014). The Toxic Substances Control Act (TSCA), amended in June 2016

by the Frank R. Lautenberg Chemical Safety for the 21st Century Act (U.S.
Environmental Protection Agency, 2017b), requires the development of a
strategy to determine whether a chemical substance in the U.S. market
may pose an unreasonable risk of harming the environment or human
health (U.S. Environmental Protection Agency, 2016g). However, there
is a continued growth of the TSCA chemical inventory, currently listing
86,406 existing chemicals that can legally be used in U.S. commerce, of
which 41,484 are believed to still be in use today, and 90 chemicals are
part of the TSCA Workplan near-term review and risk assessment (U.S.
Environmental Protection Agency, 2017a). These facts make the chemical
risk evaluation a time-consuming and challenging task for anyone to per-
form. Thus, based on hazards, the potential for exposure, and available
information, a prioritization step before risk evaluation is addressed to
identify existing chemicals that are of high-priority for subsequent risk
analysis (U.S. Environmental Protection Agency, 2016g).

EPA published the list of the first ten chemicals for risk evaluation on
December 19, 2016, and, in June 2018, the problem formulation documents
of these chemicals were made available. In the problem formulation, EPA
develops conceptual models for chemical substances based on evaluation
of reasonably available information for physical and chemical properties,
environmental fate, exposures, hazards, uses, and consideration of ex-
posure/emission restrictions implemented under other statutes by EPA
or other regulatory authorities (U.S. Environmental Protection Agency,
2018a). The models include elements such as exposure pathways (e.g.,
air), exposure routes (e.g., inhalation), potentially exposed and suscepti-
ble subpopulations (e.g., workers), and hazards (e.g., carcinogenic effect),
through manufacturing, processing, use (industrial, consumer, and com-
mercial), and disposal of the concerning chemical. Also, EPA identifies
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potential exposure pathways at the end-of-life (EoL) stage and determines
which EoL activities, i.e., recycling, energy recovery, treatment, and dis-
posal (U.S. Environmental Protection Agency, 2014a), will be considered
and which will not. Some exposure routes are identified as potentially of
concern due to the lack of regulatory requirements or current chemical
management methods that may be insufficient to protect human health
or the environment. Otherwise, some pathways do not require further
analysis, as these do not represent a risk due to the physical properties
of the chemical under evaluation. For example, in the risk evaluation of
N-methylpyrrolidone, the land-applied biosolids pathway is not consid-
ered because N-methylpyrrolidone has a high-water solubility, limited
potential for adsorption to organic matter, and biodegrades rapidly (U.S.
Environmental Protection Agency, 2018a). Therefore, N-methylpyrrolidone
partitions to the aqueous phase, and its residues would not be expected to
persist in the environment. Furthermore, other pathways are not included
because of the assumption that other EPA regulations provide adequate
protection. For instance, air emissions from municipal and industrial waste
incineration and energy recovery units are not further assessed as the U.S.
Clean Air Act provides standards to regulate all sources of air emissions.
Other pathways, like off-site EoL activities, are not under consideration be-
cause of the epistemic uncertainty or limited data availability. For instance,
during the off-site recycling of waste containing N-methylpyrrolidone,
other additional releases of this chemical may occur to the environment,
which was acknowledged but not addressed in the N-methylpyrrolidone
problem formulation document due to a lack of reasonably available infor-
mation (U.S. Environmental Protection Agency, 2018a).

Therefore, determining pathways that a chemical flow may follow at the
EoL stage is essential since a key step in any chemical risk evaluation is
understanding if, where, and how exposure to the chemical may occur.
Several studies describe the implementation of different methods and soft-
ware tools to estimate releases or connect chemical flows with exposure
pathways through various life cycle stages (e.g., manufacturing) and activi-
ties (e.g., container filling). For instance, among the methods focusing on
EoL scenarios, there are those developed by Li et al. (2015) and Clift et al.
(2000) based on life cycle analyses to assess human health risk due to solid
waste management activities and the EPA model-based approaches for
characterizing potential human and ecological health risks from land-based
solid waste management units (U.S. Environmental Protection Agency,
2003a).Pizzol et al. (2019) used probabilistic-based strategies to evaluate the
risks posed by organic pigments. McNally et al. (2014) and Banerjee et al.
(2014) developed Bayesian models for occupational exposure assessment
during the manufacturing stage. Conley (2011) applied spatial interaction
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models for estimating exposure to carcinogenic chemicals associated with
lung cancer mortality. Although the latter four frameworks are not focused
on EoL, these can be extrapolated to EoL scenario analyses. Likewise,
Rosenbaum et al. (2007) proposed a versatile framework based on matrix
algebra that can be extended to EoL for connecting emissions to impacts.
Nevertheless, all those methods are case-by-case oriented applications,
manual-configuration basis, and time-consuming routines for gathering in-
dividual information for running the model and estimate chemical releases
and exposures.

Cashman et al. (2016) developed a data mining framework for the rapid
life cycle inventory, and Meyer et al. (2020) proposed an ontology model-
ing for assessment of life cycle chemical exposure. Although the former
frameworks move beyond the case-by-case and time constraints, these
are only applicable to substances that are in the original data source and
require some advanced knowledge about the regulatory programs pro-
viding the data. However, their underlying idea is extendable to the EoL
stage. Delmaar et al. (2005) developed and applied some model-based and
data-driven tools to evaluate human exposures to chemical compounds in
non-food consumer products, even in the absence of data about exposure
to the compounds in the consumer products. Meyer et al. (2019) proposed
a machine learning approach to estimate chemical air releases during its
manufacturing. These latter approaches advance the prediction of an out-
put state variable (e.g., air emissions) in cases where there is an absence of
data. However, the performance of these data-driven models is strongly
dependent on the specific dataset domain.

Academic research and government programs have moved forward to
provide data and insights for supporting material flow traceability at the
EoL stage. For example, Nost et al. (2017) used USPEA’s waste records
for developing HazMatMapper for visualizing transnational flow transfers
in North America. However, HazMatMapper focuses on environmental
justice purposes and tracks only total amounts of hazardous waste flows
instead of individual chemicals and their risk evaluation. The Organization
for Economic Co-operation and Development started working on Pollutant
Release and Transfer Registers, because of the United Nations Conference
on Environment and Development in Rio de Janeiro in 1992. The Pollu-
tant Release and Transfer Registers are publicly accessible databases with
information about releases to air, water, and soil and off-site transfers
for further management (Organization for Economic Co-operation and
Development, 2015). This set of databases provides information about
which chemicals are being transferred or released, where, how much, and
by whom. However, in the case of waste brokering, they do not directly
give information about the facility in charge of final waste management.



44 chemical off-site end-of-life transfers

Also, these inventories do not allocate the quantities of chemical releases
to the facility receiving the chemical of concern. The EPA’s Standardized
Emission and Waste Inventories is a collection of Python modules that
provide processed EPA emission and waste generation inventory data in
standard tabular formats using common identifications for facilities and
chemicals (U.S. Environmental Protection Agency, 2017c). However, this
last approach does not track chemical transfers nor target chemical risk.

Therefore, our novel data engineering framework for tracking chemical
flows at EoL activities would enhance chemical risk assessment by identi-
fying EoL exposure scenarios that would otherwise not be evaluated. This
framework effectively gathers, cleans, transforms, and integrates qualitative
and quantitative information from multiple publicly-available databases.
The framework has five key aims to provide relevant data and describe
EoL activities. First, exposure pathways at the EoL stage are identified,
considering automatically whether an exposure pathway may be of interest
for an environmental regulation and material flow analysis downstream
of the waste generation source; therefore, optimizing time and resources.
Second, transfers of existing chemicals for the facilities in charge of the
final waste management are tracked and mapped, also considering those
scenarios where there is waste brokering, which is not a direct task using
the Pollutant Release and Transfer Registers databases. Third, leveraging
facility-level information, a quick estimate is made of how much of a chem-
ical transferred may be potentially released to the environment during
an EoL activity. Fourth, an EoL dataset and machine-readable queries
for future automatization are developed, which may be used to supply
specific dataset domain for the development of data-driven models and
thus, extending the framework to chemicals that are not in the built EoL
dataset. Fifth, the framework is made easily accessible and interoperable
to connect with exposure, hazard, and subsequent risk assessments.

Currently, this data engineering framework considers waste flows gen-
erated by industrial and commercial facility activities and transferred for
further waste management at off-site facilities across different U.S. loca-
tions. The EoL framework dataset contains records of chemical transfers,
and their classification (e.g., acrylamides); type of EoL activity (e.g., recy-
cling); the industry sector of the recycling, energy recovery, treatment &
disposal facility (e.g., materials recovery); and the environmental compart-
ment where emission occurs (e.g., surface water, air). Also, the framework
can be used for supporting the inclusion of EoL activities in life cycle
assessment by providing inventories for existing chemicals in the build
EoL dataset (Cashman et al., 2016), using sustainability performance indi-
cators for chemical risk assessment at the EoL stage (Hernandez-Betancur
& Ruiz-Mercado, 2019), integrating life cycle assessment and risk analysis
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results at EoL activities (Linkov et al., 2017), and boosting a safer circular
economy of chemicals while minimizing environmental and human health
risks (Lahl & Zeschmar-Lahl, 2013).

3.2 generic conceptual model for chemical risk evaluation

As part of the development of risk evaluation, the step is the preparation
of conceptual models. The models are composed of different elements, like
those presented in Figure 3.1. A generic conceptual model includes:

1. Condition of use (CoU): A CoU is the circumstance under which a
chemical substance is intended, known, or reasonably foreseen to be
manufactured, processed, distributed in commerce, used, or disposed
of (U.S. Environmental Protection Agency, 2016j).

2. Stressors: Chemical substances that may have an adverse effect on
human health or the environment (U.S. Environmental Protection
Agency, 2003b).

3. Exposure pathways and routes: They are included to understand the
relationship between receptors and stressors. An exposure pathway
is defined as the physical passage (environmental fate and transport)
that a stressor takes from its CoUs to a receptor. In contrast, an
exposure route is a way that a stressor enters an organism after
contact (e.g., inhalation) (U.S. Environmental Protection Agency,
1992).

4. Receptors: Agents exposed to the stressors, for instance, workers in a
recycling facility..

5. Hazards or endpoints: Effects of a stressor on a receptor, e.g., cancer.

As presented in Figure 3.1, the EoL stage includes recycling, energy re-
covery, treatment, and disposal activities. However, recycling activities are
included at the processing stage in TSCA analysis, while energy recovery,
treatment, and disposal activities constitute the TSCA disposal stage. This
framework groups these four activities into the EoL stage for analyzing
these CoUs of chemical stressor releases separately from the rest of the
activities and uses in the life cycle. Figure 3.1 depicts that chemical manu-
facturing, processing, and use stages can be a source of waste containing
a concerning chemical. The framework classifies these waste sources into
CoU categories in Table 3.1, based on TSCA Chemical Data Reporting
(TSCA CDR). TSCA CDR requires manufacturers and importers to provide
information on the chemicals they produce domestically or import into the
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Figure 3.1: A generic conceptual model with examples of possible elements and
linkages for chemical risk evaluation (adapted from U.S. Environmen-
tal Protection Agency (2003b), and modified based on U.S. Environ-
mental Protection Agency (2003c, 2016g)).

U.S. (U.S. Environmental Protection Agency, 2016d). Nevertheless, this
framework is limited to tracking wastes from industrial and commercial
sources that are transferred to off-site facilities located across the U.S. But,
outcomes from this research can support the inclusion of EoL activities in
life cycle assessment studies elsewhere.

The problem formulation document for carbon tetrachloride describes
an example of a conceptual model. EPA established this compound could
be used as a chemical processing aid in agricultural product manufacturing
(U.S. Environmental Protection Agency, 2018b). In this case, the chemi-
cal is present at the industrial use stage, and according to Table 3.1, the
category of CoU is a non-incorporative activity. This CoU may generate
wastewater and liquid waste containing carbon tetrachloride. The resulting
waste is then transferred to EoL activities for further handling (i.e., waste
handling for disposal, treatment, energy recovery, or recycling), such as
industrial wastewater treatment. From those EoL activities, for example,
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Table 3.1: Categories of condition of use under which waste may be generated
at industrial facilities. The classification is based on Chemical Data
Reporting under the Toxic Substances Control Act (U.S. Environmental
Protection Agency, 2016d).

Life cycle stage Category Comment

Manufacturing
Domestic manufacturing

A chemical substance is produced

in the U.S.

Import
A chemical substance is imported

into the U.S.

Processing

As reactant

A chemical substance is used in

chemical reactions for the

manufacturing of another chemical

substance or product

Incorporation into a formulation,

mixture, or a reaction product

A chemical substance is added to a

product (or product mixture) prior

to further distribution of the

product

Incorporation into an article

A chemical substance becomes an

integral component of an article

distributed for industrial, trade, or

consumer use

Repackaging

Preparation of a chemical

substance for distribution in

commerce in a different form,

state, or quantity. This includes

transferring the chemical

substance from a bulk container

into smaller containers

Industrial use1

/commercial use2

Non-incorporative activities

A chemical substance is otherwise

used (e.g., as a chemical

processing or manufacturing aid,

for cleaning or degreasing)
1 "Industrial use" means use at a site at which one or more chemicals or mixtures are manufactured

(including imported) or processed.
2 "Commercial use" means the use of a chemical or a mixture containing a chemical (including as part

of an article) in a commercial enterprise providing saleable goods or services.

recycling, fugitive emissions to air of the carbon tetrachloride contained
in the waste may occur and affect workers by inhaling chemical vapor
producing liver problems by acute toxicity (U.S. Environmental Protection
Agency, 2018b). Thus, in accordance with 3.1, recycling is the EoL activ-
ity, carbon tetrachloride is the stressor, the air is the exposure pathway,
inhalation is the exposure route, the workers are the receptors, and liver
toxicity is the hazard that carbon tetrachloride (the stressor) can cause in
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the workers (the receptors) handling the chemical in the above-mentioned
waste management activities.

3.3 methodology : data engineering framework

Figure 3.2 shows the schematic foundation of the proposed framework.
A chemical in a waste stream is tracked from an industrial facility (i.e.,
waste generator), to a recycling, energy recovery, treatment & disposal
facility (RETDF), considering that an intermediate facility or intermediary
waste broker facilitates transfer to a RETDF. Also, as presented in Figure 3.2,
the entities in the EoL supply and management chain include generators,
brokers, and RETDFs. However, the framework considers an “auxiliary”
entity named as receiver. The gray block enclosing the receiver, broker,
and RETDF denotes that the receiver can be the RETDF or broker. If there
is waste brokering, the receiver is the broker; otherwise, it is the RETDF.
This tracking is essential to find potential EoL stage locations, exposure
scenarios, and the environmental releases (i.e., soil, water, and air) affecting
workers or other receptors (e.g., occupational non-users). Furthermore, the
framework is used to build a generic EoL dataset to support risk evaluation
at the EoL stage, specifically in pathways that might not be further analyzed
previously (e.g., off-site recycling) due to lack of an easily accessible and
interoperable system that enable exchange, integration, and cooperative
use of data. The EoL dataset allows for clustering chemicals according to
similar hazards and generators and RETDFs into industry sectors, and EoL
activities based on existing classifications to streamline risk evaluation. In
summary, the EoL dataset structure includes the following data entries,
which are fully listed by database names in Table A.1 of the Appendix A:

1. Chemicals, their chemical category based on hazards, environmental
regulations to which they are subject, and their identification number
for future queries.

2. Generators and RETDF locations in the U.S., their industry sectors
based on primary economic activities and unit processes similarity,
and their identification numbers for future queries.
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Figure 3.2: Schematic explanation about the relationship between the entities in
the EoL supply and management chain, data entries, and data sources
after refinement, harmonization, and building the EoL dataset. Figure
A.1 in the Appendix A presents a detailed connection based on Table
A.1 notation.
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3. CoUs under which the wastes were generated.

4. Quantities of the chemicals transferred by the generators to RETDFs
in a reporting year.

5. Receiver locations in the U.S. and their EPA identification numbers.

6. EoL activity classifications. The EoL activities are classified into three
different categorizations and reported as separate columns in the
EoL dataset: EPA waste management hierarchy (U.S. Environmental
Protection Agency, 2015d), Toxics Release Inventory Program (U.S.
Environmental Protection Agency, 2014b), and TSCA reports (U.S.
Environmental Protection Agency, 2016g).

7. Maximum amounts of chemicals present at RETDFs, quantities of
chemicals released by RETDFs, and quantity of chemicals as waste
generated by RETDFs during a reporting year.

8. Reliability indicators of the flow data collected.

Figure 3.3 depicts how to use the EoL dataset to streamline the risk
evaluation process. The EoL dataset can relate to hazard assessment using
the chemical category (D17 − D19 in Table A.1) or identification (D11 − D15)
for collecting hazard parameters. The former method could be used even
for chemicals out of the built EoL dataset or new in the market. The
publicly-available databases with exposure records could be connected
utilizing the RETDF identification (D44 − D51) or industry sector (D52) and
the chemical category or identification. Currently, the framework can
provide an EoL exposure pathway or EoL activity where it is expected that
a chemical is present (D32 − D34, and D57). The identification of whether
an EoL exposure pathway is or is not of interest for an environmental
program can be made using the lists of substances of concern (D20 − D25).
For instance, if a chemical is classified as a hazardous air pollutant, i.e.,
(D20 = Yes), then the U.S. Clean Air Act provides standards to regulate
all sources of air emission, therefore, for that concerning chemical, other
environmental regulation would optimize resources by not addressing
risk evaluation of stack or fugitive releases from EoL activities such as
treatment via incineration.

For existing chemicals in the EoL dataset, the framework leverages the
existing information to quantify emission factors to estimate the quantity
of the chemicals transferred that might be potentially released to the
environment from the RETDF during an EoL activity. Reliability and
temporal correlation indicators of each flow in the EoL dataset (D31 in
Table A.1) can be used to connect with methodologies for uncertainty
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Data entries from the EoL dataset 

1. Chemical identification/category 
2. RETDF identification/industry sector and chemical/chemical category 
3. EoL activity categories, environmental compartments, and environmental regulation lists 
4. Equation 3.1 in Section 3.3.3. 
5. Reliability and temporal correlation indicators 
6. Chemical and EoL activity categories, RETDF industry sectors and releases based on Equation 3.1 

Figure 3.3: Schematic explanation about how to connect the EoL dataset with
hazard, exposure, and risk assessment for existing chemicals and with
data-driven models for chemicals outside the built EoL dataset.

quantification, which will be explored in future work for integrating into
the framework (Edelen & Ingwersen, 2016). As shown in Figure 3.3, the EoL
dataset provides domain-specific information for using the relationship of
the state variables to build data-driven models. Grouping the EoL activities
and chemicals into categories and the RETDFs into industry sectors may
facilitate the future development and performance of the models. In
this way, the EoL dataset can be used to extend the applicability of the
framework to chemicals outside the built dataset, either they are existing
but not subject to the EPA programs or new in the U.S. market.

3.3.1 Data sources: publicly-available databases

The framework enables exchanging and integrating the information
from siloed publicly-available databases such as Toxics Release Inventory
(TRI), Facility Registry Service (FRS), Substance Registry Services (SRS),
Resource Conservation and Recovery Act Information (RCRAInfo), and the
Computational Toxicology (CompTox) Chemicals Dashboard. Figure 3.2
illustrates how the framework connects the databases, which are reporting
information from the EoL supply and management chain entities, the
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chemical of concern properties, and the type of data entries into the EoL
dataset. Below, it is explained how each database supports the process of
information extraction and refinement, and how these connect with the
regulated substance lists:

1. The TRI Program collects information on certain toxic chemicals.
Facilities subject to TRI reporting requirements submit forms with in-
formation such as pollution prevention, environmental release quan-
tities, including on-site and off-site waste management (i.e., off-site
transfers) (Gaona et al., 2020a; Gaona et al., 2020; U.S. Environmental
Protection Agency, 2014b). Therefore, annual data entries on TRI
chemicals may be retrieved, including specifics such as the quantity
of transferred chemical, the purpose of the transfer (e.g., for acid
regeneration), and to where (see Figure 3.2).

2. The TSCA CDR database is used to allocate the industrial activities
into CoU categories, which is an advantage since the TRI program
uses similar chemical activity categories that are selected by facilities
when they fill out their TRI reporting forms. Thus, the chemical
activity categories of industrial CoUs taken from TSCA CDR and
defined in Table 3.1, are used as a data filter in the framework.

3. RCRAInfo provides information about hazardous waste such as waste
management and handlers (e.g., generators, transporters, treaters,
brokers, and disposers) (U.S. Environmental Protection Agency,
2015c). This information helps track a chemical at the EoL stage, by
providing, for instance, the quantity of hazardous waste received or
transferred by a facility, where it was transferred to (i.e., physical loca-
tion), and why (e.g., for wastewater treatment). Although RCRAInfo
does not provide any numerical data feature in the framework, a
waste that contains a TRI chemical may be classified as hazardous
waste under the Resource Conservation and Recovery Act (RCRA),
which is the U.S. public law in charge of the proper management
of hazardous and non-hazardous wastes. This classification helps
for (i) calculating the maximum amount of chemical which may be
potentially released from an EoL activity at the RETDF, as further
shown in Section 3.3.3; (ii) for tracking the chemical when there are
waste brokers, as shown in Figure 3.2; and (iii) for making consis-
tency analyses of flows when a compound is tracked from the waste
generator to the RETDF. Furthermore, using RCRAInfo, the RCRA
ID for the RETDF may be identified and subsequently used to merge
with information from the FRS and TRI.
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4. FRS is a central system for information about facilities and sites sub-
jected to EPA regulations, helping to identify them across several EPA
programs (U.S. Environmental Protection Agency, 2004). FRS helps
one to search for an off-site facility (broker, receiver, or RETDF) that
is subject to regulations by EPA programs and is an environmental
concern. Thus, facility identifiers in FRS (e.g., FRS IDs) can be used
to integrate data from other data sources.

5. SRS has information about substances tracked and regulated by EPA
or other organizations. SRS makes it possible to identify a substance
across EPA regulatory programs regardless of alternative names (U.S.
Environmental Protection Agency, 2016h). Thus, SRS finds TRI chem-
icals across different EPA regulations by using an internal tracking
number. The framework incorporates the following lists of substances
of concern from SRS: hazardous air pollutants (U.S. Environmental
Protection Agency, 2016c), chemical pollutants that may occur in U.S.
biosolids (U.S. Environmental Protection Agency, 2019a), chemical
water pollutants for which EPA has developed analytical test methods
(U.S. Environmental Protection Agency, 2016i), contaminants that
are subject primary drinking water regulation (U.S. Environmental
Protection Agency, 2016f) and those which are not currently subject
to any primary water regulation, but are known to occur in public
water systems (U.S. Environmental Protection Agency, 2016a), and
listed hazardous wastes (U.S. Environmental Protection Agency,
2016b). These lists are used in determining whether a TRI chemical is
subject to other EPA regulations, leading to having well-established
analytical tools for risk assessment in one or more EoL activities and
optimizing resources for not analyzing those pathways under TSCA.
For example, if a chemical is considered a hazardous waste, then EoL
activities, such as underground injection, must satisfy requirements
under RCRA Subtitle C, which sets up the framework for the U.S.
system of hazardous waste control. Additionally, SRS is used to find
whether a chemical is part of TSCA inventory (only non-confidential)
(U.S. Environmental Protection Agency, 2015b).

6. CompTox Chemicals Dashboard is a web-based tool that provides
valuable information to meet the needs of the environmental sciences
and computational chemistry and toxicology communities by inte-
grating the diverse type of relevant domain data (Williams et al.,
2017). CompTox is used to retrieve the Simplified Molecular Input
Line Entry System (SMILES) for each TRI chemical. SMILES is a
chemical notation that encodes information on the molecular struc-
ture in a way that can be used by a computer (Toropov et al., 2005).
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SMILES is used together with the Analog Identification Methodology
(AIM) tool to classify each TRI chemical according to TSCA NCP
chemical categories. The EPA’s Office of Pollution Prevention and
Toxics developed AIM to predict and assess the hazards of new chem-
ical substances by employing an inventory of over 86,000 chemicals
analyzing structure to match potential analogs (U.S. Environmental
Protection Agency, 2016k). This research searches for clustering chem-
icals, as is done with the TSCA NCP chemical categories currently
used to streamline the EPA review of new chemical substances (Jones,
2010). Furthermore, the Organization for Economic Co-operation
and Development integrated the TSCA NCP chemical categories into
the Quantitative Structure-Activity Relationship toolbox, which is
employed to estimate ecotoxicity and other parameters associated
with the assessment of hazardous properties of chemicals (Organiza-
tion for Economic Co-operation and Development, 2017). Therefore,
TSCA NCP categorization may help to rapidly connect the chemical
flow tracking with information from hazard assessment.

7. The North American Industry Classification System (NAICS) was
developed for use by federal statistical agencies for the collection,
analysis, and publication of statistical data related to the US econ-
omy. The NAICS uses numerical codes that can range from two to
six digits as descriptors of specific industry sectors and subsectors
therein. The U.S. Census Bureau uses NAICS to assign a code to
each establishment based on primary activity to collect, tabulate,
analyze, and publish statistical data related to the U.S. economy
(United States Census Bureau, 2017). Most EPA programs require
that facilities report their 6-digit NAICS code that represents their
industry sectors. The NAICS structure from the U.S. Census Bureau
is used to obtain the names of industry sectors for the generator
and RETDF. NAICS helps cluster the RETDFs by industry sectors
considering their primary economic activity. Additionally, NAICS
was developed following a principle of aggregation, which means
that producing units using similar production processes should be
grouped (United States Census Bureau, 2017). Hence, NAICS may
streamline gathering occupational exposure information for RETDFs
based on process similarity.

3.3.2 Data engineering process for tracking chemicals

This framework for tracking chemical flows at EoL activities and con-
structing a generic chemical EoL dataset is documented as sequential steps,
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as illustrated in Figure 3.4. The framework transforms the “raw data” into
machine-readable queries for future automatization. As mentioned earlier,
the current approach is only applicable to chemical flows generated for
industrial and commercial activities (e.g., manufacturing, processing, and
use). Furthermore, generator transfers to sewage treatment facilities are not
considered since those facilities do not report to the TRI Program. Thus,
the following steps, with numbering corresponding to Figure 3.4, are part
of the framework:

1. Is a generator record with CoU & EoL activities of interest? A TRI report-
ing year is selected. For this research, the TRI reporting year 2017

is used, which was the most recent data available online at the time
of the study. TRI Basic Plus Data Files - File 1a (Releases and Other
Waste Management) and 1b (Chemical Activities and Uses) - are used in
this step (U.S. Environmental Protection Agency, 2013). Consistent
with the information submitted by the generator (i.e., a facility that
reported to TRI), the record is selected if the three following condi-
tions are satisfied: the generator uses the chemical under any CoU
listed in Table 3.1; the EoL activity is of interest, i.e., if the generator
sends the waste containing the chemical off-site for further waste
management; and the receiver (broker or RETDF) is in a U.S. territory.
In this step, the TRI data entry groups 1, 2, 4, and 5 shown in Figure
3.2 are gathered.

2. Check environmental concern lists: The SRS chemical ID is collected
using the TRI chemical ID and then utilized to check whether the
chemical is part of any environmental regulated list. In this step, the
SRS data entry group 8 in Figure 3.2 is gathered.

3. Use AIM to categorize chemicals based on TSCA NCP: The CAS number
is used to gather the chemical SMILES from CompTox. The SMILE
for each chemical is the input to the AIM tool. The AIM determines
which TSCA NCP chemical category (e.g., epoxides) the chemical
could belong based on SMILES.

4. Is the receiver facility listed in FRS? The TRI data entry group 2 is
used to search for the FRS data entry group 6 in Figure 3.2. The
TRI data (entry group 2) is used to confirm accurate and complete
reporting of RCRA ID information. FRS is searched, and if the RCRA
ID submitted with the TRI report matches the FRS record, this ID is
used to retrieve the FRS data (entry group 6); otherwise, if the RCRA
ID information is not accurate, the receiver name and location are
utilized to try to find a match in the FRS records.
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5. Is a record with RCRA receiver, hazardous waste & brokering? For a record
to continue to step 6, it must satisfy these conditions: the receiver has
a RCRA ID, the chemical may be a listed hazardous waste (non-null
RCRA ID), and the generator reported that the transfer was to a
broker (based on the information gathered at step 1). If all three
conditions are not met, the record goes to step 8.

6. Map transfer from generator to RETDF: RCRAInfo is used to search for
the RETDF to which the chemical waste was transferred to, i.e., the
entity to which the broker shipped the waste. The search is based
on the transfer purpose reported by the generator (i.e., transfer to
a broker for energy recovery, for recycling, treatment, or disposal).
Thus, this step provides the RCRA ID(s) for the RETDF(s). Although
the RCRA ID for the RETDF is not included in Table A.1, this is used
to connect with FRS (as described in step 4) and collect the FRS ID
and TRIF ID for RETDF. Also, a generator-receiver flow consistency
analysis is applied, as further explained in Section 3.3.3.

7. Confirming identification of a RETDF: In this step, the success of the
search in step 6 is verified. The accomplishment of this step depends
on whether the RETDF was found, the result of the flow consistency
analysis, and the existence of a TRIF ID for a RETDF, i.e., the RETDF
has reported to the TRI program at some point. Thus, records with
a successful search pass to step 8, where they are merged with the
second subset obtained in step 5.

8. Identifying the most recent TRI report submitted by the RETDF: If the
RETDF did not report for the reference year 2017, the 2001–2016

TRI reporting years are used to search the most recent TRI report
submitted by the RETDF because the RETDF might have reported
during previous years. A RETDF stops reporting to the TRI program
when it does not meet all three criteria: covered industry sectors (e.g.,
electric power generation), total employee equivalence is more than
20,000 annual “employee” hours, and TRI chemical activity quantities
are above threshold levels in a given year (e.g., 0.1 g for dioxins at
manufacturing activities) (U.S. Environmental Protection Agency,
2013). In this way, the most recent TRI report of the RETDF provides
the most reasonable exposure scenario conditions for a concerning
chemical.

9. Gathering RETDF data reported to TRI: The RETDF’s reported release
quantities and other information (e.g., location, IDs) are collected
from the TRI database. Thus, the maximum amount of chemical
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present during a reporting year at the RETDF is gathered in this
step. This value is reported to the TRI as a range code to indicate
the “maximum quantity of the chemical on-site at any one time”
in a reporting year. RETDF chemical releases to environmental
compartments are also gathered.

10. Is the search successful? Even if a RETDF reported to the TRI program,
it might have reported other chemicals than the one being tracked.
Thus, these records are excluded from the final dataset. In this way,
the EoL dataset is obtained by applying the proposed framework.

Figure 3.4: Data engineering and refinement process for transforming the TRI
database into structures for the EoL dataset and tracking chemical
flows at EoL stages.

Detailed versions of Figures 3.2 and 3.4 are shown in Appendix A to
provide more technical aspects of the framework and the obtained generic
EoL dataset.

3.3.3 Assumptions and internal estimations to fill knowledge and data gaps

The data sources considered for this study do not have enough informa-
tion to cover all the needed aspects of tracking chemical flows at the EoL
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stage and knowing the potential chemical flow transferred, which may be
released to the environment. For example, from the publicly-available data
sources, it is not possible to gather information such as the total quantity
of chemical present at a facility in a reporting year, chemical quantity that
goes into an EoL activity (especially activity other than disposal), number
of days that a chemical is present at the facility, and chemical release quan-
tity from an EoL activity. Chemical process reports, life cycle inventories,
and computer-aided process simulation can be used to track the concern-
ing chemical, consistent with a “chemical process” systems engineering
analysis (Smith et al., 2017). However, this section proposes a method for
leveraging available data and screening tools to complete a chemical flow
tracking at the EoL stage and estimate how much of a chemical transferred
might be released from RETDFs, based on assumptions from available
literature to estimate chemical releases based on emission factors, and
some data entries like the maximum amount of chemical present at the
RETDF during an EoL activity.

The framework follows the track of the chemical until the RETDF. As
shown in Figure 3.5, a waste stream containing a chemical of interest may
pass through a broker before being received by the RETDF. The framework
considers up to two brokers between the generator and the RETDF, Broker
1 and Broker 2 (if applicable), as shown in Figure 3.5.Thus, if there is
waste brokering, the Receiver represents Broker 1; otherwise, it represents
the RETDF. An i data record is constituted by the quantity of chemical
transferred by Generator (D(i)

29 ), the maximum amount of chemical present
at RETDF during a reporting year (D(i)

54 ), the RETDF total generated waste

(D(i)
55 ), the environmental compartments (D(i)

57 ). Furthermore, for record i,
R(i)

1 , R(i)
2 , and R(i)

3 are the total quantities received by Broker 1, Broker 2 (if
applicable), and RETDF. In contrast, T(i)

1 and T(i)
2 are the total quantities

shipped by Receiver and Broker 2. Note that R(i)
1 , R(i)

2 , R(i)
3 , T(i)

1 , and T(i)
2 are

not in the EoL dataset since these are values only used by the framework
to track the chemicals, analyze the consistency of information, and make
internal estimations to lead to the finally calculated values. Thus, when a
material containing the chemical is tracked from the generator to RETDF
(step 6 in Figure 3.4), a flow consistency analysis must be performed. As
depicted in Figure 3.5, D(i)

29 is contained in or equal to R(i)
1 (D(i)

29 ⊆ R(i)
1 ),

T(i)
1 ⊆ R(i)

2 , and T(i)
2 ⊆ R(i)

3 or D(i)
29 ⊆ R(i)

3 , then the consistency analysis
is satisfied when D(i)

29 ≤ R(i)
1 , T(i)

1 ≤ R(i)
2 , and T(i)

2 ≤ R(i)
3 or D(i)

29 ≤ R(i)
3 .

Otherwise, it does not consider the tracking record.
Moreover, in this framework, it is assumed that a RETDF receives a

chemical flow for (i) energy recovery, recycling, treatment (physical/chem-
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Figure 3.5: EoL supply and management chain entities for tracking a concerning
chemical in transfer (D29) from the Generator to EoL environmental
compartment (D57) chemical releases (D58).

ical/biological), or disposal, and (ii) the recycled chemical is used as a
product or incorporated in a valuable product. Thus, with data entries
D(i)

29 , D(i)
54 , D(i)

55 , D(i)
57 , D(i)

58 , and D(i)
59 as shown in Table A.2, the Generator

indirectly releases the chemical to each environmental compartment (e.g.,
fugitive air release), during an EoL activity, and can be estimated using
Equation 3.1. In other words, an indirect release quantity is the mass flow
fraction of the chemical transferred off-site by the Generator (D(i)

29 ) for EoL
management, which may be potentially released during activities occurring
at RETDFs. In Equation 3.1, ER(i)[D(i)

57 k] represents the chemical indirect
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release to the environmental compartments D(i)
57 k, and EF(i)

k are emission
factor equivalents to the loss fraction used by the Chemical Screening Tool
for Exposures and Environmental Releases (ChemSTEER), which means,
“fraction of an amount of the chemical that is estimated to be released”
(U.S. Environmental Protection Agency, 2015a). Also, D(i)

29 is equivalent
to the production volume used by ChemSTEER, which means “the overall
‘volume’ of the assessed chemical.”

ER(i)[D(i)
57 k] =

{
D(i)

29 × EF(i)
k = D(i)

29 ×
D(i)

58 k

∆AC(i) + D(i)
55

, k = 1, 2, 3, 4

∥∥∥∥∥
∆AC(i) ∈ [MAX(D(i)

59 − D(i)
55 ,−MAX(QM(i))), MAX(QM(i))]

∩QM(i) ∈ D(i)
54

}
(3.1)

Emission factors, like EF(i)
k , relate the quantity of the chemical released

to the environment divided by a unit weight, volume, or duration of the
activity from which release the chemical occurs (Cheremisinoff, 2011). For
a record i, the divisor represents that Input + Generation = ∆AC(i) + D(i)

55
(i.e., an annual mass balance for a chemical at a RETDF, as demonstrated
in Section A.2).∆AC(i) is the difference in the amount of chemical present
at the RETDF between the end and the beginning of the reporting year, i.e.,
the annual increment in the amount of the chemical present at the RETDF.
D(i)

54 is a range code used by TRI to describe the maximum quantity of the
chemical present on-site at a facility at any one time during a reporting
year (U.S. Environmental Protection Agency, 2014b), while QM(i) is a
value within the range described by D(i)

54 . Thus, if the range code is 07, the
QM(i) is 4, 535, 924 − 22, 679, 618kg, then MAX(QM(i)) = 22, 679, 618kg.
Also, by knowing D(i)

54 , D(i)
55 , and D(i)

59 , an interval of ∆AC(i) values for the
record i can be determined. Consequently, ∆AC(i) is a range of values and
in the simplest case, sets of uniform statistical distribution numbers can
describe it. Table A.2 depicts an example for using Equation 3.1 to address
estimations based on data entries for a record from the EoL dataset.

On the other hand, a "high-end scenario" for exposure risk evaluation
(U.S. Environmental Protection Agency, 2018a), can be useful when only a
few records in the EoL dataset give information about an EoL activity for
a chemical of interest. This “high-end scenario” is given by D56, which is
the highest potential value of chemical release quantities from the RETDF
to the environmental compartments, attributed to the Generator’s transfer
(D29). Equation 3.2 shows the way to calculate D56. An example is given
below for a brokering scenario:



3.4 case study : methylene chloride (mc) 61

1. A Generator reported to the TRI program a chemical transfer of
500kg/yr (D(i)

29 ) to a Broker 1 Receiver (or Receiver in Figure 3.5).

2. Broker 1 reported a transfer of 20kg/yr (T(i)
1 in Figure 3.5) to a RETDF.

3. The RETDF reported to the TRI program total chemical releases to
environmental compartments of 60kg/yr (D(i)

59 ).

4. Even though the RETDF reported total chemical releases to the en-
vironmental compartment of 60kg/yr, the highest value from those
releases attributed to the amount taken from the Broker 1 is 20kg/yr.
Therefore, the highest value of RETDF environmental compartment
chemical releases attributed to the Generator’s transfer is the low-
est reported amount of chemical transfers by the EoL supply and
management chain entities.

5. Equation 3.2 computes the “high-end scenario” chemical flow (D(i)
56 ).

Thus, D(i)
56 is equal to MIN(500, 20, 60) = 20kg/yr, i.e., 20kg/yr of

the Generator’s chemical transfer may be potentially released in this
pathway.

D(i)
56 =

MIN(D(i)
29 , T(i)

1 , T(i)
2 , D(i)

59 ), if brokering

MIN(D(i)
29 , D(i)

59 ), if no brokering
(3.2)

On the other hand, since is the "high-end scenario,” Equation 3.3 esti-
mates the potential releases to the compartment D(i)

57 k under this scenario.

Thus, the “high-end scenario” release to the compartment D(i)
57 k, is given

by multiplying D(i)
56 by the ratio between the chemical released to the com-

partment reported by the RETDF (D(i)
58 k), and the sum of total releases

(D(i)
59 ).

ER(i)[D(i)
57 k]worst−case = D(i)

56 ×
D(i)

58 k

D(i)
59

(3.3)

3.4 case study : methylene chloride (mc)

In this section, a case study of MC (CAS 75-09-2), also known as
dichloromethane, is used to demonstrate the usefulness of the proposed
framework for tracking and analyzing chemical flows and estimating po-
tential releases at the EoL stage. MC is a U.S. high production volume
chemical (equal to or greater than 453,593kg/yr) (U.S. Environmental
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Protection Agency, 2000). It has several uses such as solvent, component of
adhesives, colorant, fragrance, flame retardant, food additive, and products
designed for children. Moreover, this chemical is associated with hazard
endpoints such as acute toxicity, irritation, liver toxicity, and neurotoxicity.

MC belongs to the following lists of substances of concern: (i) hazardous
air pollutants, (ii) chemical water pollutants for which EPA has developed
analytical test methods, (iii) contaminants subject to U.S. National Primary
Drinking Water Regulation, (iv) hazardous wastes, and (v) TRI toxic chemi-
cals. Furthermore, MC is a chemical that belongs to the TSCA inventory of
chemical substances and was selected in 2016 as one of the first ten chemi-
cals selected for risk evaluation. In the problem formulation document for
MC, EPA found EoL activities such as industrial pretreatment, industrial
wastewater treatment, and transfers to sewage treatment facilities. There-
fore, this chemical is a relevant case study due to its environmental and
health concerns, and the findings can be analyzed with those reported by
TSCA (U.S. Environmental Protection Agency, 2018c).

The EoL dataset is used as the information source to support the analysis.
The case study employs the following data entries (see Table A.1): the
generator industry sector (D10), the generator CoU (D28), the quantity of
chemical transferred by the generator (D29), the EoL category under previ-
ous TSCA reports (D33) (U.S. Environmental Protection Agency, 2016g),
the EoL activity under the waste management hierarchy category (D34)
(U.S. Environmental Protection Agency, 2015d), the RETDF industry sector
(D53), the maximum amount of chemical present at RETDF (D54), the total
chemical generated as waste by the RETDF (D55), and the RETDF chemical
releases (D58) to the environmental compartment D57. As highlighted in
Section 3.3.3, the entry ∆AC(i) is a range of values describing the annual
increment in the amount of the chemical present at the RETDF. This case
study assumes that ∆AC(i) is uniformly distributed, i.e., all the values
in the interval have an equal probability of occurrence. The case study
development uses the Python script shown in Section A.5 and follows these
steps:

1. All the records with information on MC transfers are taken from the
EoL dataset.

2. A sample size of 100 is used to obtain 100 random values of ∆AC(i)

for each record i. This sample size is a trade-off between having
enough data to achieve statistical significance and computing power
limitations.

3. For each record i, the 100 values of ∆AC(i) are used to compute 100

different values of ER(i)[D(i)
57 k] using Equation 3.1. Then, these are
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used to calculate the arithmetic average of ER(i)[D(i)
57 k], i.e., ER(i)[D(i)

57 k],
to represent the chemical flow transferred by each generator which
may be potentially released to each environmental compartment D(i)

57 k
from EoL activities at each RETDF.

4. The following dataset enables a performance analysis of the chemical
flow:

4.1. Quantity of chemical transferred by the generator or D29.

4.2. Generator industry sectors (GiS) or D10 as shown in Table A.6.

4.3. CoU of chemical at generator facility or D28 as shown in Table
A.7.

4.4. RETDF industry sectors (RETDFiS) or D53 as shown in Table
A.3.

4.5. The EoL activities are grouped into three distinct categories,
which are in separate columns in the EoL dataset. The EoL
activities are listed in Table A.8 for more details. The case
study development uses the categorization based on TSCA re-
ports (D33) and the EPA waste management activity hierarchy
(D34). To differentiate both categorizations, the first one is sim-
ply labeled as EoL and the second one as waste management
hierarchy (WMH), as shown in Table A.8. In addition, recycling
and energy recovery are in both classification systems; therefore,
for energy recovery EoL-2 = WMH-2 and for recycling EoL-1 =
WMH-1. Thus, both categorizations for the EoL activities are
represented in the chemical flow analysis. Table S8 shows a
third category consistent with the TRI Program is included since
these are more specific than the others and aids in the discussion
of the results.

4.6. Environmental compartment (EC). EC includes those contained
in D57. In addition, net recycling, net energy recovery, net
treatment, and net disposal are also included in EC due to mass
conservation consistency.

4.7. The ER(i)[D(i)
57 k] is calculated for each record i in step 3

This analysis tracks MC in waste streams generated at industrial
manufacture and processing stages to handling at off-site facilities
and estimate releases from EoL activities. The tracking of MC is
presented in Figure 3.6, which is a 6-level Sankey structure depicting
the fraction (relative to the total flow transferred) for allocating MC in
a potential pathway throughout the elements conforming to the EoL
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Sankey structure. The identification labels for GiSs, CoUs, RETDFiSs,
EoL, WMHs, and ECs, can be found in Tables A.3-A.8.

Figure 3.6: Chemical flow diagram of methylene chloride during end-of-life (EoL)
management scenarios in the U.S. using a 6-level Sankey structure.
Corresponding categories are the generator industry sector (GiS), the
conditions of use (CoU), the RETDF industry sector (RETDFiS), EoL
activity (EoL), the waste management hierarchy (WMH), and the
environmental compartment (EC).
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5. All values of chemical releases to the environmental compartment
D(i)

57 (see Table A.5) can be used to measure central tendency (mean
and median) and the descriptive statistics (percentiles and standard
deviation) of the 100 annual releases or ER(i)[D(i)

57 ] calculated in step
3 for each record i. The calculation of these statistical values should
be performed when a wide variety of data is handled to support risk
assessment (U.S. Environmental Protection Agency, 1991).

6. A statistical distribution of MC annual releases from EoL activities
(classified based on WMH) can be determined with all values of
ER(i)[D(i)

57 k] for all records. For this case study, TRI range codes are
selected to group annual release values to provide information about
the statistical distribution.

3.5 results and discussion

Tracking the chemical flows aims to determine the material allocation at
the EoL stage, under which a chemical exposure is foreseen, thereby finding
so-called generic exposure scenarios for use when assessing chemical risk.
Also, from a circular economy perspective, tracking the chemical flows
aids the building of a material flow analysis to determine a material closed-
loop considering the chemical risk associated with the substance under
analysis, the industry sectors that may supply the chemical (GiS), and
the industry sectors that may acquire it under certain CoUs. Thus, based
on the methodology described in Section 3.3 and the case study specific
considerations described in Section 3.4, the chemical flow analysis of MC
at the off-site EoL stage is performed consistent with the information
retrieved from several databases, as shown in Figure 3.2 and transformed
as described in Figure 3.4. After identifying the MC EoL activities, the
first step is determining the MC flow that may be potentially released.
Thus, Section 3.5.1 presents the chemical flow analysis for identifying
the possible EoL exposure scenarios for MC. Section 3.5.2 focuses on the
variability and distribution of the estimations of releases from the EoL
exposure scenarios. Finally, Section 3.5.3 discusses how the framework and
chemical flow tracking might extend the borders for risk assessment and
release allocation.

3.5.1 Chemical flow tracking: EoL exposure scenario identification

Figure 3.6 represents the material flow analysis for MC at the EoL
stage when tracking a chemical of interest using the proposed framework.
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The red pathways and their percentage values are the highest MC flow
fraction relative to the total MC flow transferred. From a descriptive
point of view, this figure indicates how the methodology can support risk
evaluation by the abstraction of potential exposure pathways at the EoL
stage. Also, chemical flows tracking aids to identify systematically the
relevant generator industry sector (GiS) of a chemical and how it is used
(CoU) by a GiS. Furthermore, the tracking provides information about how
the waste containing the chemical of interest is distributed among various
locations, managed, and released into the environmental compartments
(i.e., RETDFiS, EoL, WMH, and EC).

Table 3.2: Flow allocation between 6-level Sankey structure based on the 12,321,001

kg/yr of MC reported to the TRI Program in 2017. The source and
target names are in Figure 3.6. The fractions were obtained by means
of flow tracking using the EoL data engineering and saved in the EoL
dataset.

Source Target Fraction on

Sankey [%]

Flow

[kg/yr]Label Name Label Name

GiS-15

Medicinal and botanical

manufacturing
CoU-12

Chemical processing and

manufacturing aid
23.90 2,944,719

GiS-19

Other basic inorganic

chemical manufacturing
CoU-33

As a reactant, as a

formulation component,

and produce the chemical

11.05 1,361,471

CoU-12

Chemical processing and

manufacturing aid
RETDFiS-2

Hazardous waste treatment

and disposal
25.27 3,113,517

CoU-33

As a reactant, as a

formulation component,

and produce the chemical

RETDFiS-2
Hazardous waste treatment

and disposal
11.05 1,361,471

RETDFiS-2
Hazardous waste treatment

and disposal

WMH-1 and

EoL-1
Recycling 34.18 4,211,318

RETDFiS-2
Hazardous waste treatment

and disposal
EoL-3 Incineration 21.70 2,673,657

EoL-3 Incineration WMH-3 Treatment 38.37 4,727,568

WMH-1 and

EoL-1
Recycling EC-4 Stack air release ∼0.1 12,321

WMH-1 and

EoL-1
Recycling EC-5 Net recycling 42.74 5,265,996

WMH-3 Treatment EC-7 Net treatment 38.72 4,770,692

The chi-square hypothesis test with significance level 0.05 and 3-degrees
of freedom is used to compare the MC fraction transferred off-site to
recycling, energy recovery, treatment, and disposal calculated using both
the constructed EoL dataset and the 2017 TRI data for MC available online
(see section A.4). According to the test, the hypothesis that the “EoL
management allocation for MC calculated based on both sources are equal”
is not rejected (see Section A.4). That means, after tracking and finding
the MC EoL exposure pathways, its flow distribution trend is sustained
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without a statistical difference. According to the TRI Program, in 2017, the
total quantity of MC transferred for further management was 12,321,001

kg/yr (U.S. Environmental Protection Agency, 2019b). Thus, we use this
latter value to contrast what may be found in the case that the MC flows
reported to the TRI Program are completely tracked regarding the fraction
on the Sankey diagram. Table 3.2 presents the results of this comparison
for some of the most relevant fractions on the 6-level Sankey structure
calculated by using the EoL dataset.

For MC, it is possible to see that the generator industry sectors that
mainly contribute to the off-site transfers of MC are hazardous waste
treatment and disposal (GiS-10), medicinal and botanical manufacturing
(GiS-15), other basic inorganic chemical manufacturing (GiS-19), and phar-
maceutical preparation manufacturing (GiS-25). Also, the main CoUs
under which the waste containing MC is generated are the use as chemical
processing and manufacturing aid (CoU-12) and as a reactant, as a formu-
lation component, and to produce the chemical (CoU-33). Thus, 23.90%
or 2,944,719 kg/yr of the total MC transferred comes from the medicinal
and botanical manufacturing sector because of the use as a chemical pro-
cessing and manufacturing aid, while 11.05% or 1,361,471 kg/yr of MC
comes from the basic inorganic chemical manufacturing industry due to
the use as a reactant, as a formulation component, and to produce the
chemical. Furthermore, according to the EoL dataset, the most signifi-
cant RETDF industry sector is hazardous waste treatment and disposal
(RETDFiS-2). Since MC-containing waste is a hazardous waste, it requires
special handling under RCRA Subtitle C requirements. In addition, 11.05%
or 1,361,471 kg/yr of the total transferred waste (having MC) is received
by hazardous waste treatment and disposal industry sector from activities
associated with CoU-33 and shipped by GiS-19, while 25.27% or 3,113,517

kg/yr comes from CoU-15 and shipped by GiS-12 to the same sector or
RETDFiS-2.

In general, energy recovery (WMH-2 and EoL-2), treatment (WMH-3)
for destruction via incineration (EoL-3), and recycling (WMH-1 and EoL-1)
by solvent/organics recovery (see Table A.8) are noticeable EoL activities
for MC. As shown in Figure 3.6, energy recovery from waste containing
MC is widely employed by the cement manufacturing sector (RETDFiS-3).
In contrast, incineration and recycling are utilized by the hazardous waste
treatment and disposal sector (RETDFiS-2). Moreover, 34.18% or 4,211,318

kg/yr and 21.70% or 2,673,657 kg/yr of the MC transfers are received
by RETDFiS-2 for further management using recycling and incineration
(incineration or EoL-3 represents around 99.10% of treatment activities,
WMH-3), respectively. Furthermore, data from the EoL dataset would
inform exposure pathways excluded from MC risk evaluation due to a
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previous lack of reasonably available information, such as recycling and
solidification/stabilization (included in EoL-5 and WMH-3 as shown in
Table A.8). Fortunately, the MC flow tracking and analysis show that
these pathways might result in potential fugitive air releases (EC-1), on-
site surface water discharges (EC-3), and stack air emissions (EC-4), as
shown in Figure 3.6. Therefore, this framework may help to identify EoL
exposure scenarios not being evaluated and where there is not a well-
established analytical tool for risk evaluation under other EPA regulations
(U.S. Environmental Protection Agency, 2018c).

The box at the lower right in Fig. 6 shows that recycling, energy recov-
ery, treatment, and disposal activities affect air due to fugitive releases
(EC-1) and stack releases (EC-4). However, the recycling activities have a
considerable potential contribution to these compartments, especially to
stack releases ( 0.1% of the total MC flow transferred). If the distribution
fraction is conserved, this means that around 12,321 kg/yr of transferred
MC might have been potentially released from stacks to the atmosphere
during recycling activities. Under RCRA Subpart O, hazardous waste
incinerators are required to achieve a minimum destruction and removal
efficiency of 99.99% of the principal organic hazardous constituents (U.S.
Environmental Protection Agency, 1999c). Similarly, under RCRA Sub-
part H, energy recovery devices such as boilers and industrial furnaces
must satisfy the same destruction and removal efficiency requirement for
principal organic hazardous constituents (U.S. Environmental Protection
Agency, 1999b). Table 3.2 shows that 38.37% or 4,727,568 kg/yr of the MC
transferred was treated via incineration. Therefore, if the equipment for
incineration satisfies the destruction requirement, the stack emission from
this EoL activity might have been around 473 kg/yr, which is just below
the stack air releases from recycling activities and 2,846kg/yr obtained
by the tracking considering that incineration represents around 99.10% of
treatment activities and 0.02% was the fraction of MC transfer released
from the stack during treatment, according to the framework estimations.
Thus, this destruction requirement might explain why MC stack releases
from recycling are potentially higher than the releases from energy recov-
ery and treatment. However, this aspect makes clear the need to go further
and analyze in more depth the RETDFs and understand how the chemical
flows perform inside those facilities. That might be done by incorporat-
ing additional information from other sources utilizing data engineering
to enhance the allocation of releases and incorporate more details about
pollution abatement activities.
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3.5.2 Environmental release estimations: variability and distribution

After identifying the exposure pathways and scenarios at the EoL stage
by tracking chemical flows, the developed methodology can help to analyze
the potential flow released under the assumptions explained in Section
3.3.3 and considering statistical analysis. Some MC exposure scenarios and
pathways meet well-established requirements under regulations other than
TSCA. For example, the U.S. Clean Air Act gives specific requirements for
the control of hazardous air pollutants during incineration. However, in
this contribution, all pathways are examined, since the same exceptions do
not apply for all chemicals analyzed by TSCA or even the analysis may be
interesting for stakeholders outside EPA.

Figure 3.7: Variability of the MC annual releases during EoL management activ-
ities. A sample size of 100 was used to obtain 100 different values
for the annual increment in the amount of chemical present at each
RETDF (∆AC(i)).

Figure 3.7 describes the mean, median, percentiles (25th and 75th, the
median is the 50th percentile), and standard deviations of MC annual
releases from EoL activities based on waste management hierarchy classi-
fication (see Table A.8). The mean values are the dotted lines inside the
boxes, which aim to represent the average of the release values. In contrast,
the median values are the horizontal solid lines inside the boxes that aim
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to show the data sample midpoints of the potential releases. The purple
horizontal lines are the logarithmic values for 0.227, 4.762, 226.569, and
453.366 kg/yr, which are the limits of the TRI range codes. These values
are references in the box plot for the annual releases calculated in step 3

of the case study. In addition, this figure shows that both the mean and
median of stack air releases from recycling are between 0.227 and 4.763

kg/yr. Consequently, more than 50% of the data of stack air releases from
recycling activities do not exceed 4.763 kg/yr, and the highest release value
is above 453.366 kg/yr. Also, the statistical distributions depicted by his-
tograms in Figure 3.8 show the range of potential annual releases from EoL
activities, according to the waste management hierarchy(recycling > energy
recovery > treatment > disposal). These two figures illustrate how the
framework can support the analysis of the variability of results. However,
the current analysis does not incorporate the uncertainty associated with
the temporal correlation and reliability of the data, which will be part of
future development, as explained in Section 3.3.

Figure 3.8: The statistical distribution of MC annual release during EoL manage-
ment. 100 is the sample size to obtain values for the annual increment
in the amount of chemical present at each RETDF (∆AC(i)).

For this case study, a standardized TRI Program consisting of release
range codes A, B, and C is employed to show the results of the statistical
distribution analysis. The range codes A, B, and C are release values in
the following intervals 0.227-4.762 kg/yr, 4.762-226.569 kg/yr, and 226.569-
453.366 kg/yr, respectively. Notice that TRI does not use range codes
when emissions are less than 0.227 kg/yr and greater than 453.366 kg/yr.
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Therefore, O is used here when releases are less than 0.227kg/yr, and
H is for releases that are greater than 453.366 kg/yr. For instance, if a
released quantity is 100 kg/yr, the range code is B due to the value being
within 4.762-226.569 kg/yr. Figure 3.8 depicts that most of the stack air
releases from recycling are in the intervals O and A, above 40% and 10%,
respectively. Furthermore, it is possible to see from both figures that the
total air releases in all the scenarios exceed the average discharges of
MC to surface water, which can be because MC is a very volatile organic
compound according to EPA classification. Moreover, treatment, energy
recovery, and recycling scenarios could potentially result in higher releases
than disposal activities, such as class I underground injection wells and
hazardous waste landfills. The above may be explained by the fact that
MC is a hazardous substance under RCRA; therefore, disposal activities
must satisfy the technical requirements described in the RCRA Subtitle C,
thus reducing the risk. Also, consistent with both figures, notice that MC
releases to soil are not expected from any EoL scenario, and surface water
releases may be roughly zero from all scenarios. At room temperature, MC
readily partitions from water into the air and does not sorb to soil (Agency
for Toxic Substances and Disease Registry, 1990). Therefore, volatilization
to air during waste management activities should be expected, especially
from recycling activities, which may be in release ranges B and C. In general,
the obtained MC chemical flows can be used to assess the exposure of
different receptors to MC at RETDFs and their surroundings, for instance,
fugitive air releases for occupational receptors, stack air emissions for the
general population and terrestrial organisms, and surface water discharge
for aquatic organisms.

3.5.3 Industry sector and facility linkage: indirect effects of chemical flow trans-
fers

EPA addressed the risk evaluation for MC basing its decisions on the
weight of scientific evidence within no more than 3 years. Hence, compre-
hensive information about the industry sectors across the MC life cycle was
collected one by one by considering the reasonably available information
(U.S. Environmental Protection Agency, 2020). The framework dentifies
those industry sectors at EoL stage (i.e., RETDFiS) and is able to link EoL
flows (e.g., recycling) being transferred to industry sectors at upstream life
cycle stages (e.g., manufacturing), by considering the chemical uses and
activities generating the MC-containing waste and the EoL activities used
by the RETDFiS, as presented in Section 3.5.1. The above is essential to
run a cradle-to-gate analysis of the potential indirect effect of the chemical
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flows being managed off-site the waste generation source instead of on-site.
From the circular economy point of view, this industry sector linkage may
be beneficial to close the recycling loop, considering potential risks and
regulatory constraints (U.S. Environmental Protection Agency, 2016e).

Figure 3.9: Industry sector linkage and the potential indirect effect of the chemical
flow transfers.

The Pollutant Release and Transfer Registers databases do not directly
provide information on what happens to these chemical flows once they are
in the RETDF. Even though TRI is the Pollutant Release and Transfer Reg-
ister with more data granularity (U.S. Environmental Protection Agency,
2014b), it only gives this information for transfers to sewage treatment
facilities (U.S. Environmental Protection Agency, 2013). To overcome this
obstacle, the risk evaluation for MC uses the Exposure and Fate Assessment
Screening Tool to estimate the chemical concentration in water. However,
this tool requires input parameters associated with the releases to water
and the estimated removal by the treatment operations to calculate the
remaining chemical flow and subsequent chemical concentration in water
(U.S. Environmental Protection Agency, 1999a). Instead, the data engineer-
ing framework identifies the RETDFiS and reporting facility, which enables
to leverage the facilitylevel information to estimate a release range for the
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amount of chemical transferred that might be released to the environment
from the RETDF, as presented in Section 3.5.2. As Figure 3.9 depicts, the
chemical flow tracking represents a screening tool to extend the risk evalu-
ation to include and allocate the indirect effects (e.g., exposure scenarios,
releases) of chemical transfers. For instance, as presented in Table 3.2,
12,321 kg/yr 12,321 kg/yr of the MC transferred in 2017 might have been
released from stack due to recycling activities. By identifying the RETDF
and RETDFiS, the framework can enhance the release estimations for going
into the RETDFs and searching for additional data of the pollution abate-
ment operations, narrowing the range of emissions estimates regardless
the hands-on engineering knowledge and avoiding extensive calculating
()Smith2019.

3.6 conclusions

The framework created can aid with tracking chemicals in waste streams
generated at industrial activities and handled at off-site facilities, identify-
ing possible exposure scenarios for a concerning chemical. The framework
automatically identifies whether a chemical is of concern under a EPA
environmental regulation, thereby helping to rule out exposure pathways
that may not be of interest under a TSCA analysis. Indeed, the frame-
work builds the EoL dataset, whose machine-readable structure allows for
making an annual material balance rapidly for a chemical at RETDF and
subsequently calculating emission factors to environmental compartments.
Thus, the framework enables estimation of how much of a transferred
chemical may be potentially released from the RETDF during an EoL activ-
ity. However, a more detailed analysis of the RETDFs will help understand
what is occurring inside these facilities. Thus, incorporating additional
information about pollution abatement activities at RETDFs from other
sources utilizing data engineering might enhance release allocation. Fur-
thermore, the framework considers a "high-end scenario" based on the
quantity of transferred chemical that may be potentially released and quan-
tifies central tendency and standard deviation for handling a wide variety
of data. Nevertheless, future work will deal with the uncertainty of the
measurement based on the reliability and temporal correlation of the data.
Currently, this work considers up to two brokers between the generator
and the RETDF. However, it is expected to increase the number of brokers
considered in future developments.

The case study results for MC show that using the EoL dataset records,
the fraction of MC transferred to each element of the EPA’s waste man-
agement hierarchy preference is statistically like those obtained using the
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information from the 2017 TRI data for MC available online. The results
also demonstrate that the framework could analyze EoL exposure scenarios
like solidification/stabilization and recycling via solvent/organic recovery,
which were excluded from MC risk evaluation due to a lack of reasonably
available information. Nevertheless, there are some current limitations of
this framework; such as when the chemical of interest is not included on
the TRI list of toxic chemicals, whether the RETDFs do not appear in the
FRS, do not report to the TRI Program, or otherwise do not report the
chemical of interest.

Thus, the framework can aid in the rapid identification of hazards for
new chemicals and occupational exposure assessment. This is due to the
inclusion of the TSCA NCP chemical categories and knowing the man-
agement activity at the EoL stage. As a result, it supplies an inventory of
emissions from EoL activities for life cycle analysis and risk assessment.
Also, the use of data-reconciliation and data analytics approaches to cat-
egorize and combine knowledge of a chemical of interest derived from
an association with similar chemicals, hazards, or EoL activities will be
explored to increase the applicability of this work on future data-driven
models to predict chemical releases and exposure. Thus, risk evaluation
can be addressed for chemicals that do not report to existing regulatory
environmental programs or are new to the U.S. market. Finally, this ap-
proach aims to support the rapid TSCA risk evaluations of high priority
chemicals.
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abstract

Sustainable initiatives for converting end-of-life (EoL) material flows
into feedstocks would make a crucial contribution towards protecting
our environment and mitigating the negative impacts of anthropogenic
activities. Chemical flow analysis enables decision-makers to identify po-
tential environmental releases and exposure pathways at the EoL stage
and, therefore, improves the estimation of chemical exposure. Certain
industrial facilities apply on-site pollution abatement operations, thereby
constituting nodes of the chemical EoL management chain that can be
evaluated and improved to enable greater circularity of materials. This
work enhances and extends a recently published EoL data engineering
framework by using publicly-available databases, data-driven models, and
analytic hierarchy approaches to track chemicals, estimate releases, and
potential exposure pathways at on-site industrial pollution management
operations. The extended framework develops pollution abatement unit
(PAU) technologies and estimates their efficiencies, chemical releases, ex-
posure media, operating expenses, and capital expenditures. Relevant case
studies based on the food and pharmaceutical industry sectors illustrate
the application of the framework for chemical flow allocation and analysis
of a chemical of concern and the benefits of integrating and extending the
framework with data-driven and multi-criteria decision-making models.
The results show how the enhanced framework designs and evaluates PAU
technology systems for managing EoL chemical flows and provides release
inventories and pathways for conducting chemical risk evaluation and
exposure assessment of potential on-site EoL scenarios.

Keywords: Data engineering; Pollution abatement unit; Chemical re-
leases; Chemical flow analysis
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resumen

Las iniciativas sostenibles para convertir los flujos de materiales al fi-
nal de su vida útil (EoL, por sus siglas en inglés) en materias primas
supondrían una contribución crucial para proteger nuestro medio ambi-
ente y mitigar los impactos negativos de las actividades antropogénicas.
El análisis de los flujos químicos permite a los responsables de la toma
de decisiones identificar las posibles emisiones al medio ambiente y las
vías de exposición en la fase de EoL y, por tanto, mejora la estimación de
la exposición química. Algunas instalaciones industriales aplican opera-
ciones de reducción de la contaminación in situ, por lo que constituyen
nodos de la cadena de gestión de EoL química que pueden evaluarse y
mejorarse para permitir una mayor circularidad de los materiales. Este
trabajo mejora y amplía un marco de ingeniería de datos de EoL publicado
recientemente mediante el uso de bases de datos disponibles públicamente,
modelos basados en datos y enfoques de jerarquía analítica para realizar
un seguimiento de las sustancias químicas, estimar las emisiones y las posi-
bles vías de exposición en las operaciones de gestión de la contaminación
industrial in situ. El marco ampliado desarrolla tecnologías de unidades de
reducción de la contaminación (PAU, por sus siglas en inglés) y estima su
eficiencia, las emisiones químicas, los medios de exposición, los gastos de
funcionamiento y los gastos de capital. Los estudios de casos pertinentes
basados en los sectores de la industria alimentaria y farmacéutica ilustran
la aplicación del marco para la asignación del flujo de sustancias químicas y
el análisis de una sustancia química de preocupación, así como las ventajas
de integrar y ampliar el marco con modelos de toma de decisiones basados
en datos y criterios múltiples. Los resultados muestran cómo el marco
mejorado diseña y evalúa los sistemas de tecnología PAU para la gestión
de los flujos de sustancias químicas de EoL y proporciona inventarios de
liberación y vías para llevar a cabo la evaluación del riesgo químico y la
evaluación de la exposición de posibles escenarios de EoL in situ.

Palabras clave: Ingeniería de datos; Unidad de reducción de la contami-
nación; Emisiones químicas; Análisis del flujo químico
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4.1 introduction

Every year, humankind and the environment are exposed to chemical
substances. Numerous chemicals may present a risk of injury to health
or the environment during production, processing, distribution in com-
merce, use, or end-of-life (EoL) (European Chemicals Agency, 2019; U.S.
Environmental Protection Agency, 2017c). Therefore, regulations exist to
track and manage chemicals through their life cycle, evaluating potential
impacts, and imposing restrictions if needed (Bodar et al., 2018; National
Research Council, 2014). Chemical risk assessment supports the selection
of safer-profile chemicals and regulatory decision-making to protect hu-
man health and the environment (Bernas, 2013; Whittaker, 2015). However,
conducting risk evaluation is a time-consuming and challenging task, es-
pecially at the EoL stage, due to the extensive data requirements, data
scarcity, problem comprehensiveness, proper reporting, traceability, and
epistemic uncertainty to describe the risk (Ragas, 2011). The data gap
is especially noteworthy when seeking to prioritize thousands of chemi-
cals based on risk (e.g., the U.S. Toxics Substances Control Act inventory
lists about 41,000 commercially-active and non-confidential chemicals (U.S.
Environmental Protection Agency, 2017a)).

Using publicly-available information, Hernandez-Betancur, Ruiz-Mercado,
et al. (2020) developed a novel EoL data engineering framework for tracking
chemicals, estimating releases, and identifying potential exposure scenar-
ios in EoL flows generated at industrial processes and handled at off-site
facilities located across the U.S. However, becase of the use of facility-level
information for calculating the emission factors, the framework may not
allocate releases considering the underlying characteristics of on-site EoL
activities and pollution abatement units (PAUs). For instance, the efficiency
of a PAU for recovering a chemical of concern from an EoL stream can be
essential to allocate chemical flows and exposure downstream of the PAU.

In the literature, it is possible to find methodologies that can be incor-
porated into the EoL data engineering framework to enhance chemical
flow allocation. For example, engineering process design and modeling
have represented a toolkit to provide data for life cycle inventory and
integrate environmental, health, and safety considerations (Righi et al.,
2018; Sugiyama et al., 2008). These approaches can describe a wide variety
of PAUs such as boilers, aerobic/anaerobic digesters, wet/dry scrubbers,
pH neutralizers, distillers, absorbers, adsorbers, strippers, and biofilters
(Baquerizo et al., 2007; Bojarski et al., 2008; Eberle et al., 2017; Jiménez-
González et al., 2000; Zhang & Guo, 2013). Likewise, Process System
Engineering offers an approach for dealing with complex systems such as
solvent recovery and air pollution treatment processes (Cavanagh et al.,
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2014; Chea et al., 2019; Guerras & Martín, 2019b). Although the above
methodologies provide detailed information on the physical, chemical,
and biological phenomena underlying each PAU, they require case-by-case
development, hands-on application of engineering knowledge, and exten-
sive calculations that can result in a disadvantage compared to the rapid
screening provided by the EoL data engineering framework (Smith et al.,
2019).

In contrast, data-driven modeling can help to streamline the chemical
flow allocation and to overcome the case-by-case limitation (Cashman et al.,
2016; Meyer et al., 2019). For example, data mining has proved to reduce
the cost associated with screening life cycle assessment (Sundaravaradan
et al., 2011), while machine learning addresses data deficiencies (Song,
2019; Zhu et al., 2020). The data-driven method relies on the company
data, which can offer some benefits in terms of more realistic insights (Li
et al., 2018). However, it can present limitations because of flow allocation
and coverage of reported substances, which lead to data gaps (Smith et al.,
2017). The performance of these models depends on the specific dataset
domain. Diverse sources can supply the datasets for data-driven modeling.
Although some databases like EXIOBASE are free to use, others are licensed
and proprietary (GreenDelta, 2013), e.g., ecoinvent, which is widely used
worldwide for life cycle inventory and impact assessment (Vélez-Henao
et al., 2020). Nevertheless, their methodologies focus on relating products
and services to cradle-to-grave environmental impacts instead of chemical
flow tracking (Frischknecht et al., 2007).

This contribution describes the addition of new data sources, data-driven
and multi-criteria decision-making (MCDM) models to enhance and extend
the EoL data engineering framework to track chemicals, estimate releases,
and potential exposure pathways at facility on-site PAUs. This work has
four key features to provide relevant data and PAU techno-economic
information into the framework. First, collecting information regarding
PAU technologies such as the removal efficiency related to substances of
interest and the predominant phase of EoL flow managed by the PAU
(e.g., liquid waste). Second, leveraging the data itself and literature for
filling data gaps and allocating chemical flows. Third, transforming the
information into a machine-readable structure for PAU design, evaluation,
and selection using data-driven and MCDM models. Fourth, incorporating
the created features into the framework developed by Hernandez-Betancur,
Ruiz-Mercado, et al. (2020) to include inside-facility allocation, new data
sources, and tools for decision-making. The enhanced framework can
offer insights for selecting and recommending PAU technologies to handle
chemicals of concern in EoL streams at the early engineering design step
to achieve a sustainable process and a circular life cycle (Hassim, 2016).
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Furthermore, the enhanced framework may be used as a first layer to
provide alternatives for building optimization approaches for pollution
abatement systems and networks to deal with chemical pollutants (Chea
et al., 2020; Guerras & Martín, 2019a; Yenkie et al., 2019).

4.2 methodology

For a chemical of concern c in an EoL input flow to a PAU (Finput), the
framework allocates the chemical into the waste/environmental release
flow (F(c)

waste/release), the remaining chemical flow leaving the PAU, i.e., efflu-

ent (F(c)
e f f luent), and determines the chemical flow being destroyed (F(c)

destroyed),

including converted and degraded), removed (F(c)
removed), or recycled (F(c)

recycled)

as well as the chemical fugitive air release (F(c)
f ugitive). This allocation consid-

ers the PAU effect on the chemical like thermal (Lee et al., 1986; National
Research Council, 2000; Saxena & Jotshi, 1996), chemical (Fanning, 2000;
Huang et al., 1993; Wang et al., 2005), biological (Darvin & Serageldin, 2003;
Kaur, 2017; Tay & Zhang, 1999), and physical (Jaeger Products Inc, 2010;
Kreith et al., 2001; U.S. Environmental Protection Agency, 2002) treatments,
and energy (Energy and Environmtental Analysis Inc., 2005; Mantus, 1992;
Ottoboni et al., 1998) and material recovery processes (Bascone et al., 2016;
Chmielewski et al., 1997; Hansen et al., 1991; Mular et al., 2002; Shin
et al., 2009; Smallwood, 2002; U.S. Environmental Protection Agency, 1978).
Additionally, the framework incorporates the predominant phase for Finput
(αinput) because is a key PAU technology selection criterion.

As presented in Figure 4.1, the framework employs an input-output
model representation for each PAU. This model must satisfy the annual
material balance for a chemical of concern c in Equation 4.1.

F(c)
input = η(c) × F(c)

input + F(c)
f ugitive + F(c)

waste/release + F(c)
e f f luent

F(c)
input = w(c) × Finput

F(c)
f ugitive = (1 − η(c))× β(c) × F(c)

input

η(c) × F(c)
input =


F(c)

recycled, if recycling

F(c)
removed, if physical treatment

F(c)
destroyed, if otherwise

(4.1)

w(c) represents the input concentration of the chemical in Finput, F(c)
input

the chemical input flow, β(c) the emission factor for F(c)
f ugitive, and η(c) the

PAU abatement efficiency relative to the chemical, i.e., the degree to which
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the PAU destroys, removes, or recovers it. The framework tracks the
chemical regardless of other incidentals that might be generated during the
EoL activity, as the case for combustion, chemical, and biological operations
that may generate undesired substances.β(c) is calculated as described in
Hernandez-Betancur, Ruiz-Mercado, et al. (2020), which uses facility-level
information for estimating the environmental chemical releases.

PAU technology

Input-output model

Figure 4.1: Generic PAU diagram for tracking chemical flows based on the PAU
effect on a chemical of concern. The framework allocates output flows
into F(c)

waste/release, F(c)
e f f luent, F(c)

f ugitive, and F(c)
destroyed, F(c)

removed, or F(c)
recycled.

The framework focuses on recycling, energy recovery, and treatment
activities. Also, the framework enables exchanging and integrating informa-
tion from siloed publicly-available databases and transforms information
into a machine-readable structure for future automatization, thereby cre-
ating the PAU dataset. A GitHub Repository named PAU4Chem has the
Python scripts that build the PAU dataset (Hernandez-Betancur, Martin,
et al., 2020b). The PAU dataset information allows input-output modeling
to track and allocate chemicals of concern. Moreover, the PAU dataset has
chemical unit prices (UP(c)) and EoL activity capital expenditures (CAPEX)
and operating expenses (OPEX). Hence, the generic framework can pro-
vide more realistic insights into the relationship between PAU technologies,
expenses, and chemical allocation.

In order to develop the PAU dataset, the framework integrates the fol-
lowing databases: Toxics Release Inventory (TRI) (U.S. Environmental
Protection Agency, 2014), Chemical Data Reporting (CDR) (U.S. Environ-
mental Protection Agency, 2016), Facility Registry Service (FRS) (U.S. En-
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vironmental Protection Agency, 2004), Statistics of U.S. Businesses (SUSB)
(U.S. Census Bureau, 2007, 2011), Annual Survey of Manufactures (ASM)
(U.S. Census Bureau, 2009), and Pollution Abatement Costs and Expen-
ditures (PACE) Survey (U.S. Environmental Protection Agency, 2017b).
Additionally, it uses the North American Industry Classification System
(NAICS) structure to cluster the TRI reporting facility into industry sectors
(ISs) to connect the TRI information to the SUSB, ASM, and PACE Survey
(U.S. Census Bureau, 2017b). Three modules constitute the PAU dataset:
Technologies, OPEX & CAPEX, and ChemPrices. Sections 4.2.1, 4.2.2, and
4.2.3 depict how the framework effectively gathers, cleans, transforms,
and integrates qualitative and quantitative information from multiple data
sources to build the three modules. Section 4.2.4 shows how to use the
PAU dataset modules for data-driven modeling and incorporating MCDM
to predict EoL management and chemical flow analysis (CFA).

4.2.1 Data engineering for collecting PAU information: Technology module

Figure 4.2 illustrates the steps for building the PAU dataset – Technology
module. The framework harnesses the TRI Program (from 1987 to 2018) as
this module backbone due to its comprehension and data availability and
granularity that enables gathering information for the PAU technologies
(U.S. Environmental Protection Agency, 2014).

In step one, PAU technologies and uses/activities for a given chemical c
are collected. For treatments, PAU sequences, codes describing αinput, w(c)

and η(c) value ranges, and η(c) estimated values are taken. However, w(c)

and η(c) estimated values were reported from 1987 to 2004 (U.S. Environ-
mental Protection Agency, 2013). If treatment activities for the chemical
c were submitted by a facility, typical w(c) and αinput are estimated for
recycling and energy recovery activities. Otherwise, as NAICS uses a
hierarchical structure organized from 2-digit NAICS codes (less specific)
to 6-digit NAICS codes (more specific) (U.S. Census Bureau, 2017a), this
structure supports estimating w(c) and αinput. Moreover, higher weight
is given for typical αinput. Records with no estimated w(c) and αinput are
dropped (step two).

In step three, η(c) is estimated for recycling and energy recovery activ-
ities. Due to energy recovery and incineration activities are combustion
operations, incineration activities from TRI are leveraged to obtain a η(c)

value. Using the NAICS structure as in step one, η(c) is assigned. However,
if η(c) cannot be estimated, this is obtained by considering the threshold
limits under hazardous waste and hazardous air pollutant regulations (U.S.
Environmental Protection Agency, 1999, 2006).
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Figure 4.2: Data engineering for transforming information from TRI database into
structures for the PAU dataset – Technologies and CFA.

For recycling activities, the EoL chemical flows reported by each facility
are used to estimate a η(c) potential value. As depicted in Figure 4.3, an
EoL chemical flow may have several potential pathways like transfers to



4.2 methodology 91

sewage treatment plants. The exact pathway a chemical follows in a facility
is uncertain. To overcome this uncertainty, for each facility, the non-zero
flows for a chemical c are combined obtaining a set of scenarios Θ. Each
scenario θi ∈ Θ has a possible input flow to recycling F(c)

input,θi
. Using F(c)

input,θi

and the reported F(c)
recycled, η

(c)
θi

is calculated. Assuming a recycling operation
is used to obtain high cost-effectiveness, Equation 4.2 takes the upper value
of η

(c)
θi

as η(c), if this value is not an outlier and its coefficient of variation
(CV) is less than 1 (low variance), ensuring a narrow value range for η(c).
If the above two conditions are not satisfied for a facility, a η(c) value is
assigned leveraging the NAICS structure again. The assignment considers
facilities having the same recycling PAU technology type.

η(c) = MAX
θi∈Θ

(η
(c)
θi
) = MAX

θi∈Θ

(
F(c)

recycled

F(c)
input,θi

× 100

)
(4.2)

On-site
recycling

EoL 
chemical

flow
?

On-site 
treatment

?

On-site 
Energy

recovery

On-site 
disposal

Sewage 
plant

transfers

Releases

Transfers

Figure 4.3: Schematic explanation to calculate η(c) for recycling using TRI infor-
mation.

In step four, the framework excludes the PAU dataset records if η(c) could
not be estimated. Finally, in step five, the value range for Finput is calculated

using the w(c) range, η(c), and F(c)
recycled. Hence, this module provides Finput

,αinput, w(c), η(c), PAU technologies, and chemical uses/activities.

4.2.2 Data engineering for estimating OPEX and CAPEX: OPEX & CAPEX
module

OPEX and CAPEX influence implementing a PAU technology (Collins
& Harris, 2002; Gray & Shadbegian, 1995, 1998). Hence, incorporating
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both parameters would result in realistic insights for inferring/predicting
whether an IS affords a specific PAU technology. The framework uses the
2005 PACE – Survey to obtain the CAPEX and OPEX (U.S. Environmental
Protection Agency, 2017b). The PACE–survey presents such parameters by
media (air, water, and solid waste), EoL activity, and IS (only manufactur-
ers). However, using the publicly-available version is impossible to know
each surveyed facility expenses in USD/EoL-flow-kg, e.g., treating air emis-
sions since the information is presented as an aggregated value in USD.
Figure 4.4 shows a procedure based on Monte Carlo for mimicking poten-
tial CAPEX and OPEX in USD/EoL-flow-kg for each facility to manage
contaminants that would otherwise have polluted the environment.

Legends
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Figure 4.4: Data engineering for mimicking the PACE–survey and obtaining the
PAU dataset–OPEX & CAPEX module.

In step one, the probability of sampling an IS is calculated. The PACE –
Survey targeted ISs with a high percentage of facilities reporting no OPEX
in 1994. Hence, the framework selects 1994 TRI and uses the EoL chemical
flows to determine potential facilities in ISs with no OPEX in 1994. In step
two, the probability of sampling a facility is estimated, considering that the
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2004 SUSB was the PACE–Survey sample frame and facilities with twenty
or more employees were eligible.

The CAPEX and OPEX correlate positively with the value of shipments
(VoS) (U.S. Environmental Protection Agency, 2017b), which measures the
USD of products sold by manufacturers, and it is an IS measure-of-size.
Thus, the probability of sampling a facility from an IS is proportional to
the VoS. 2008 SUSB and 2008 ASM were selected due to being the closest
survey period to 2005. The total VoS, including relative standard error,
is taken from the 2008 ASM, meanwhile, the number of facilities from
2008 SUSB. Using these two values, the VoS mean and standard deviation
by IS are calculated. After, using the sample frame and the above VoS
statistical measures, a lognormal distribution is obtained to assign a VoS for
a facility. This distribution has positive values that create a right-skewed
curve explaining better the earnings behavior (Heckman & Sattinger, 2015).

In step three, facilities are drawn from the sampling pool, considering
the probabilities calculated in steps one and two. In step four, from the
PACE – Survey, the CAPEX and OPEX by activity and media are used to
calculate the probability that facilities within ISs may have spent on specific
activity and media. Thus, using the above probability, the one calculated in
step two, and assuming these two events are independent, the number of
facilities within ISs having at least a PAU for a specific activity and media
are determined.

Finally, in step five, the 2004 PAU dataset – Technologies helps calculate
the EoL flow mean and standard deviation by IS, media, and activity to
obtain lognormal distribution to assign an EoL flow value for a facility. EoL
flow by IS, activity, and media is calculated by the probability obtained in
step four and summing up the EoL flow values. This amount normalizes
the OPEX and CAPEX for each activity, media, and IS, i.e., OPEX and
CAPEX in USD/EoL-flow-kg.

4.2.3 Data engineering for estimating chemical unit price: ChemPrices module

ChemPrices module contains information about the relationship between
the PAUs and the chemical/chemical category prices (UP(c)) in USD/g.
UP(c) is obtained from e-commerce sources like SciFinder, Amazon, Al-
ibaba, and Fisher Scientific, considering the currency exchange rate of the
U.S. dollar. Due to having UP(c) for multiple suppliers, the framework
drops the outliers using the Z score test. For the TRI chemical categories,
the framework uses regulatory lists to know potentially-candidate chemi-
cals belonging to them. Such lists can be found in the GitHub repository
PAU4Chem (Hernandez-Betancur, Martin, et al., 2020b). The framework
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uses the FRS, a database containing information about facilities regulated
by the U.S. Environmental Protection Agency. FRS provides the alternative
name for the reporting facilities in the PAU dataset so the framework can
connect them to the CDR database. Hence, the framework identifies those
chemicals reported by the facilities to the CDR and allocates these into the
TRI chemical categories. If the search is successful, the framework calcu-
lates UP(c) for a category using a smaller group of chemicals; otherwise, it
uses all the chemicals in the corresponding category. UP(c) attribution is
based on the median because it is a central tendency statistic less sensitive
to outliers than the mean.

4.2.4 Estimation of EoL management and CFA

This section shows a procedure to employ the PAU dataset modules
with data-driven and MCDM to suggest PAU technologies and estimate
their η(c), CAPEX, and OPEX. Moreover, the procedure moves forward
to perform CFA after the MCDM, thus, enabling the rapid estimation
of chemical releases and output streams from the PAU technologies and
providing exposure scenarios for further assessment (Hernandez-Betancur
& Ruiz-Mercado, 2019).

Figure 4.5 shows the step-by-step procedure to perform CFA for a chem-
ical of concern in PAU sequences. Bayesian Networks (BNs) infer the
potential PAU technologies to manage the chemical (Koller & Friedman,
2009). BN variables are the CAPEX, OPEX, type of EoL management,
η(c), w(c) ), Finput, UP(c), αinput, whether the chemical is an impurity/by-

product (I(c)IB = Yes/Not), and PAU technology. The BNs structure, variables,
and their connections are in the GitHub repository (Hernandez-Betancur,
Martin, et al., 2020a). This structure mimics the decision-making process
of technical stakeholders selecting and designing a PAU. The three PAU
dataset modules supply the data for building the conditional probabil-
ity tables for revealing relationships between the BN variables, e.g., the
conditional probability of obtaining a η(c) value given w(c). As shown in
Figure 4.5, if Finput has n individual chemicals, n BNs are built. Thus,
the inference is based on a case-by-case analysis using the individual
chemical information from the PAU dataset. The BNs only use the PAU
dataset from 1987 to 2004 since these reporting years have information
about w(c). Moreover, the procedure uses the PAU dataset to determine
the PAU sequence using only dataset records not reporting PAU sequences
to avoid any systematic error. Stakeholders must enter either η(c) or PAU
technology or optional problem specifications to calculate the probability
of either selecting a PAU technology or η(c) for a chemical.
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As Figure 4.5 depicts, if a chemical has more than one potential PAU tech-
nology to satisfy the specifications, the Fuzzy Analytic Hierarchy Process
(FAHP) with triangular fuzzy numbers supports the MCDM (Hernández-
Betancur et al., 2019). The FAHP–selection uses the criteria presented in
Figure 4.5, considering the importance of the type of EoL management
activity to which the PAU technology belongs, i.e., if the PAU technology is
for recycling (more preferable), energy recovery, or treatment (less prefer-
able) (U.S. Environmental Protection Agency, 2015). The FAHP – selection
checks the probability of a type of EoL management, and the PAU technol-
ogy are selected and designed by the BN. If the Finput has more than one
chemical, the FAHP – selection considers whether the PAU technology can
manage several chemicals in Finput. Finally, if CAPEX and OPEX are not
problem specifications, they are considered as FAHP - selection criteria.

As mentioned before, the framework considers the effect of the PAU tech-
nology on the chemical of concern. Hence, if more than one PAU technology
is needed to manage an EoL stream, the FAHP – sequence supports PAU
sequences arrangement. FAHP–sequence works using five criteria. Three
criteria are chemical flammability, instability, and corrosiveness. These
criteria ensure the safety of equipment and process structure. These proper-
ties are in a public GitHub repository (Hernandez-Betancur, Martin, et al.,
2020c), supporting exposure assessment and circular life cycle endeavors
(Hernandez-Betancur et al., 2022). The fourth criterion is the feasibility of
finding a similar PAU technology sequence in the PAU dataset. The fifth
criterion is F(c)

input, associated with PAU equipment size and cost.
Finally, the CFA is completed considering Equation 4.1 and the procedure

for calculating β(c) developed by Hernandez-Betancur, Ruiz-Mercado, et al.
(2020). As described in Figure 4.5, the CFA complies with boiling and
melting points to determine whether a chemical is assessed as a liquid,
solid, or gas at standard conditions. The CFA considers if the chemical is a
metal to determine whether combustion operations may abate it. Based
on PAU technology functioning knowledge, αinput, and water solubility,
a potential predominant phase for the output streams (αinput) is assigned.
Meanwhile, the physicochemical properties are in the GitHub repository
named above (Hernandez-Betancur, Martin, et al., 2020c). The procedure
and data-driven and MCDM depicted in Figure 4.5 are not definitive. In
the future, it would be extended and modified to predict potential on-site
EoL management for chemicals that are not in the PAU dataset.
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Figure 4.5: A generic step-by-step procedure and schematic explanation to perform CFA in PAU sequences by using the PAU dataset
and data-driven and MCDM models.
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4.3 case studies

Three relevant case studies based on food and pharmaceutical ISs il-
lustrate the application of the enhanced and extended framework with
the PAU dataset modules described in Sections 4.1, and the procedure
presented in Section 4.2.4. The results show how the enhanced framework
designs and evaluates PAU technology systems handling individual and
multiple chemicals in EoL flows and provides release inventories and
pathways for conducting chemical exposure assessment for potential on-
site EoL scenarios. The case studies specify budget (CAPEX and OPEX),.
Case study Python scripts can be found in a public GitHub repository
(Hernandez-Betancur, Martin, et al., 2020a). Tables describing relevant
input/output information for the case studies are in the Appendix B.

The chemicals for the case studies are isopropanol, methanol, ammo-
nia, ethylene glycol, n-hexane, toluene, N,N-dimethylformamide, and
dichloromethane. These eight chemicals are part of the Organization for
Economic Co-operation and Development List of High Production Volume
Chemicals, which contains chemicals produced in amounts equal to or
greater than 1,000,000 kg/yr (Organization for Economic Co-operation and
Development, 2004). Those chemicals can be found at least in one of the
lists of chemicals of concern categories, e.g., as hazardous air pollutants,
hazardous wastes, and extremely hazardous substances (U.S. Environ-
mental Protection Agency, 2020). Chemicals like methanol, ammonia,
ethylene glycol, and n-hexane are associated with toxic releases from the
food manufacturing IS (Gaona et al., 2020). Isopropanol, methanol, toluene,
N,N-dimethylformamide, and dichloromethane are related to pharmaceu-
tical manufacturing. These four chemicals are widely released into the air
and incinerated (Beck et al., 1978).

Hence, as outcomes from in-depth numerical validation findings, the
case study results show features, implications, and limitations of the data
engineering framework that should be considered in future developments.
Case study 1 demonstrates that, although using historical data can increase
data availability, it can dilute most recent data evidencing releases reduction
due to using more cleaner technologies. Case study 2 shows potential
unintended outcomes on the predictions due to using ranges to describe .
Case study 3 shows that the framework can provide data to build models
capable of designing PAU technologies and arranging PAU sequences like
those used in actual industrial facilities.
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4.4 results and discussion

4.4.1 Case study 1: Celecoxib manufacturing process

Three EoL flows associated with the isopropanol/water washes, mother
liquor or filtrate, and dryer distillates from the Celecoxib manufacturing
process are used as a case study (Hounsell et al., 2012; Slater et al., 2008).
These streams contain water, methanol, ethanol, and isopropanol. Iso-
propanol and methanol are the chemicals of concern selected due to their
toxicity and presence in the PAU dataset. The GitHub repository has all the
problem specifications for the BNs, the criteria values for performing the
FAHP decision-making, and the physicochemical properties for completing
the CFA (Hernandez-Betancur, Martin, et al., 2020a). The input chemical
concentration (w(c)) and the predominant input phase (αinput) may deter-
mine the type of management for each chemical in the EoL flows. Table
B.1 presents these specifications. The EoL input flow to a PAU (Finput) is
8.05 × 106kg/yr. This value is the average Finput containing both chemicals
and is calculated using the estimated values of Finput for the pharmaceutical
industry sector (IS) records from the PAU dataset.

A finding from the development of the case studies relates to the best
procedure for performing the CFA for the PAU/PAU sequence by fol-
lowing Equation 4.1. A PAU - level approach is employed to perform
the CFA and ensures that both the material balance and the required
abatement efficiency relative to the chemical (η(c)) are satisfied (bottom-up
in Table B.2). This is an enhancement to the framework developed by
Hernandez-Betancur, Ruiz-Mercado, et al. (2020) since using facility-level
information to estimate emission factors (top-down in Table B.2) causes an
overestimation of and does not meet the requirements.

Comparing between the CFA obtained by both approaches for stream
# 1 in Table B.1, e.g., the mean for isopropanol from the batch still dis-
tillation is 1.99 × 104kg/yr using the bottom-up approach. In contrast, is
9.86 × 105kg/yr using the top-down approach. The mean for isopropanol
is 3.93 × 106kg/yr by the bottom-up approach, which means 99.18% of
the isopropanol fed in stream # 1. Instead, for the case of the top-down
approach, is 1.97× 106kg/yr, i.e., 49.86% of the isopropanol fed into stream
# 1 (see comparison Table B.2 for more details). In this case study, the
expected for isopropanol must be 99.50%; therefore, the bottom-up ap-
proach can satisfy the established in the material balance. Hence, this
exercise demonstrates the effectiveness of using the bottom-up approach to
perform all material balances and design PAU systems to estimate chemical
releases at on-site EoL management activities, as proposed in this research
contribution. Therefore, the inclusion of the on-site EoL activities and PAU
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technology information enhances the CFA at the EoL stage developed by
Hernandez-Betancur, Ruiz-Mercado, et al. (2020).

Considering the problem specifications like , , and for the three streams
from the Celecoxib process (see Table B.1), the framework suggests batch
still distillation for recycling methanol, while incineration using liquid
injection for treating isopropanol, see further details in Table B.3. Hence,
the PAU dataset used to develop the BNs would lead to suggest to a stake-
holder the use of a technology associated with a destructive process like
a liquid injection incinerator. In fact, from a phenomenological perspec-
tive, liquid injection incinerator is a suitable technology for wastes with
a high-organic content like the three streams from the Celecoxib process
(Lee et al., 1986). The BN has a structure whose estimates are based on
statistical evidence. Hence, the statistical evidence in the PAU dataset from
1987 to 2004 shows the companies used to destroy the isopropanol instead
of recovering it. In fact, researchers have studied isopropanol recovery by
pervaporation and distillation as an alternative to incineration (Hounsell
et al., 2012; Slater et al., 2008). Methanol has been reported several times,
describing successful applications of green chemistry and engineering
activities (U.S. Environmental Protection Agency, 2019).

Although both methanol and isopropanol are on the Organization for
Economic Co-operation and Development List of High Production Volume
Chemicals, the quantities of methanol reported in the U.S. as domesti-
cally manufactured, imported, used, and exported far exceed those of
isopropanol. For example, the ratio of imported methanol to imported iso-
propanol is about 51.73 (see Table B.9). This may explain why the statistical
distribution of the data used to construct the BN leads to the selection of
recycling for methanol but not for isopropanol. However, the quantities
may also reflect the importance of the methanol market relative to that of
isopropanol. This may be supported by the fact that the global market size
of the methanol is around USD 33.69 billion, while for isopropanol it is
around USD 2.65 billion (see Table B.9). Nevertheless, unlike BNs, other
data-driven models combined with a data preprocessing step for the PAU
dataset can get a greener suggestion for managing EoL flow containing
isopropanol or even other substances, thereby overcoming the data drift
and concept drift that could affect the applicability of the models.

An important implication from a life cycle inventory perspective and
chemical releases quantification is that after selecting PAU technologies,
the framework suggests potential output streams and their αoutput where
the chemical in the case study may be allocated downstream of the PAUs.
This implication is important for understanding the potential indirect risk
that may be associated with using a PAU technological to abate a chemical
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of concern. For example, methanol may generate F(c)
waste/release (whose αoutput

is wastewater) from batch still distillation. Both methanol and isopropanol
may be in F(c)

e f f luent from the liquid injection operation related to stack
air releases. In addition to the potential output streams and αoutput, the
framework also provides a value range for each flow (see Table B.3). For
instance, the mean F(c)

f ugitive for isopropanol from the batch still distillation is
1.99 × 104kg/yr for the stream # 1 and 1.39 × 104kg/yr for stream # 2. The
result above means the F(c)

f ugitive for isopropanol from batch still distillation
is higher for stream # 1 than for stream # 2. This result makes sense,
considering w(c) for isopropanol is higher for stream # 1, and Finput for
both cases is 8.05 × 106kg/yr. Moreover, the mean value is accompanied
by a Coefficient of Variation (CV) for each flow estimate (see Table B.3),
enabling the analysis of intervals instead of point values for the results.
For example, methanol in F(c)

waste/release from batch still distillation can be in
the interval of [0, 9.49 × 100kg/yr] and [0, 1.31 × 101kg/yr] for stream # 1

and 3. Hence, it may be possible to find methanol quantities in F(c)
waste/release

from batch still distillation for stream # 1 lower than for stream # 3, even
though w(c) for methanol in stream # 1 is higher than for stream # 3, as
shown in Table B.1.

4.4.2 Case study 2: Solvent EoL flows from Food IS

Methanol, ammonia, ethylene glycol, and n-hexane are four chemicals
widely used in the food IS (Gaona et al., 2020). Case studies have been
addressed using possible values for the problem specifications (Hernandez-
Betancur, Martin, et al., 2020a). Information for these four chemicals
reported by this IS was searched in the PAU dataset to identify whether
the chemical is an impurity/by-product (I(c)IB = Yes/Not), (w(c)), and Finput
the average . Hence, the Finput containing the chemicals is fixed to 8.28 ×
106kg/yr for methanol, 2.60 × 109kg/yr for ammonia, 8.70 × 109kg/yr for
ethylene glycol, and 5.40× 108kg/yr for n-hexane. Each Finput is assumed to
be a methanol-water mixture (see Table B.4). The desired output chemical
concentration of the case study is based on the lowest ecological benchmark
found for each chemical in the Risk Assessment Information System (U.S.
Department of Energy, 1998), except for methanol that is based on a study
developed for the American Methanol Institute (Malcolm Pirnie Inc, 1999).
These values are used to set the required η(c) for each circumstance. Hence,
setting parameter I(c)IB , w(c), η(c), and αoutput to a specific value could lead
to suggest a different PAU technology for each Finput (see Table B.4 for the
values established).
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Performing the procedure shown in Figure 4.5 results in the selection
of PAU technologies for each solvent Finput from the food IS and their
CFA for allocating the chemicals downstream (see Tables B.5–B.8 for more
details). An aspect to highlight is that according to the results obtained for
methanol, see Table B.5, and ammonia, see Table B.7, the selection of the
PAU technology depends more on the input concentration of the chemical
(w(c)) and the required PAU abatement efficiency relative to the chemical
(η(c)) than whether the chemical is an impurity/by-product (I(c)IB = Yes).
For instance, batch still distillation is selected for managing a solvent
Finput when w(c) for ammonia is 0.01 %wt/wt regardless of I(c)IB = Yes for
ammonia. Likewise, solvent recovery via fractionation is selected when w(c)

for ammonia is 0.01 and 0.51 %wt/wt. Hence, for data-driven modeling
and decision-making, w(c) has higher relative importance than I(c)IB .

Another variable having an important influence on data-driven modeling
and decision-making is Finput. For example, in case study one, Finput
containing methanol was 8.05 × 106kg/yr, and the result suggested solvent
recovery via batch still distillation. Likewise, for streams # 4 and 7, Finput is
8.28× 106kg/y, and the suggestion in both cases is batch still distillation for
methanol recovery. In contrast, for streams # 11, 12, 15, and 16 containing
ammonia, Finput is 2.60× 109kg/yr, and the recovery for all the cases would
require fractionation. The above may be explained because continuous
distillation and fractionation are often preferred to batch operations for
large solvent recovery streams (Douglas, 1988; Smallwood, 2002). This
aspect may lead to developing future data-driven models that assign a
high weight to the parameters associated with w(c) and Finput; however,
this aspect should be studied thoroughly.

The PAU selection in case of the highest w(c)s indicates a high chance
of selecting treatment via incineration when w(c) is high. For instance,
Table B.5 indicates when w(c) for methanol is 75.00 %wt/wt, liquid injec-
tion incineration operation is chosen, which is like what happens with
n-hexane at the same w(c), as indicated in Table A.5. In case study one,
the same occurred with isopropanol, whose w(c) was between 34.50 and
50.70 %wt/wt, close to high organic content, the desired requirement for
combustion operations. Although the above Finput contains water, liquid
injection incineration can handle high organic-strength aqueous wastes
without requiring auxiliary devices (Lee et al., 1986). As explained in case
study one, facilities should explore recycling and reuse activities instead of
using incineration to reduce the waste volume before disposal.

For each solvent, aerobic treatment was selected for managing the sol-
vent. The concentration under the BN and the FAHP suggests that biologi-
cal treatment is recommended when w(c) is 25.50 %wt/wt for methanol;
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1.00 × 10−4 %wt/wt for ammonia; 0.51 and 25.50 %wt/wt for ethylene
glycol; and 1.00 × 10−4, 0.51, and 25.50 %wt/wt for n-hexane. Addition-
ally, Finput is wastewater for all the cases. This fact may be explained
because several bioenvironmental factors affect bacteria activity and the
rate of biological reactions. The biochemical oxygen demand is efficiently
treated in the range of 60-500mg/L (≈ 0.01 to 0.05 %wt/wt) (Samer, 2015).
However, aerobic treatment suggestion for w(c) at 25.50 %wt/wt might
be because 25.50 %wt/wt is in TRI concentration range code 1, which
describes w(c) higher than 1.00 %wt/wt. Since w(c) is a crucial design and
operating parameter for this treatment technology, employing values range
for describing w(c) may be a disadvantage for applying these PAUs in
these EoL flows. Another reasonable explanation for the above suggestion
is the reporting facilities might have used aerobic wastewater treatment
above 500mg/L (≈ 0.05 %wt/wt) biochemical oxygen demand by applying
enough dilution rate (Samer, 2015).

As in case study one, after selecting the PAU technologies for each Finput,
it is possible to allocate chemical flows downstream of each PAU. Finput

may be larger for Finput having ammonia when I(c)IB = Yes, e.g., F(c)
f ugitive is

1.06 × 100kg/yr and 6.39 × 10−1kg/y for stream # 13 and 17 (see Table B.7).
However, considering CV, the intervals for F(c)

f ugitive is [0, 2.49 × 100kg/yr]
and [0, 1.43× 100kg/yr] for stream # 13 and 17. From a statistical viewpoint,
both values may be the same. This result is coherent because F(c)

f ugitive is
directly proportional to the mass under analysis.

4.4.3 Case study 3: EoL flow from pharmaceutical preparation manufacturing

As indicated in Section 4.3, the first two case studies only use the
information for individual PAU technologies instead of the PAU sequences
found in the PAU dataset. This third case study is employed to demonstrate
the framework effectiveness in designing a network of PAUs and estimating
the potential releases of the chemical of concern. An existing record from
the PAU dataset is randomly selected by considering only records with
PAU sequences for comparing this sequence with the one designed and
built by BNs and FAHP. The randomly selected record has a gaseous Finput
having methanol, dichloromethane, toluene, and N,N-dimethylformamide.
This record uses a PAU sequence consisting of a condenser, a scrubber,
and an absorber. The record belongs to a facility in pharmaceutical IS.
The problem specifications for BNs and the value for FAHP criteria can
be found in the GitHub repository (Hernandez-Betancur, Martin, et al.,
2020a). The problem specifications used for obtaining the results are the
same reported by the facility. The PAU sequence obtained following the
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procedure in Figure 4.5 is compared with the one in the selected record;
therefore, testing the framework. Figure 4.6 presents the PAU sequence
obtained and the CFA for each chemical.

1 Stream # in the Flow Diagram.
2 For the TRI Program, A represents air emissions. Additionally, liquid wastes having more
than 50.00 %wt/wt of water are considered wastewater (W); otherwise, they are taken as a
nonaqueous material (L). NA is not applicable, and it is used for destroyed or converted
mass streams.
3 The bright red color represents the flows have high variance or variability, i.e., CV > 1.
4 All chemicals in the randomly selected record have a concentration in the interval 0.01-1
%wt/wt. For the CFA, the concentration was set at the middle of the interval, i.e., 0.051 %
wt/wt.

Figure 4.6: PAU selection and sequence and CFA for the record randomly selected
from the PAU dataset. Finput for this case study is 3.18 × 109kg/yr.
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As depicted in Figure 4.6, the PAU network designed consists of a
scrubber followed by a fume/vapor incinerator. Although this sequence is
different from the selected record one (condenser, scrubber, and absorber),
the sequence consists of treatment operations and neither recycling nor
energy recovery technologies were selected. Additionally, as presented in
the stream # 2 in Figure 4.6, a scrubber was selected for handling methanol,
dichloromethane, and N,N-dimethylformamide. It means it is possible that
for the record sequence, the reporting facility used a scrubber to remove
these three chemicals and the other operations for removing different
chemicals from the same Finput (e.g., toluene). This inference is coherent
because the TRI Program requires reporting the treatment unit or sequence
regardless of whether all the units handle the reporting chemical. The BN
and FAHP also suggest fume/vapor incineration as the most probable and
feasible PAU technology for toluene. Fume/vapor incinerator also called
thermal oxidizers are widely used for the treatment of volatile organic
compounds and hazardous air pollutants like toluene. In addition, this
operation unit performs best at pollutant loading of around 1, 500 − 3, 000
ppm (≈ 0.15 to 0.3 %wt/wt) (U.S. Environmental Protection Agency, 2002).
Therefore, the PAU statistics for toluene suggests that for the reporting
years 1987-2004, facilities frequently reduced EoL flow containing toluene
by incineration. The CFA also indicates the stack emission or F(c)

e f f luent

consists of 7.09 × 104kg/yr of methanol (CV = 0.13), 8.02 × 104kg/yr of N,
N-dimethylformamide (CV = 0.01), 5.35 × 105kg/yr of dichloromethane
(CV = 0.35), and 5.97 × 104kg/yr of toluene (CV = 0.14). As shown the
CVs for the chemical flows from stack, these result values do not present
a high variability (CV < 1). Unlike, the above flows, the F(c)

f ugitives for
this case study also have a wide range of possible values. For instance,
F(c)

f ugitive for methanol from fume/vapor incinerator has a mean value of
5.2 × 103kg/yr, but its CV is equal to 1.48, which means that the result
variability is high (the highest CV for this case study). Thus, the range of
potential values for the F(c)

f ugitive for methanol from fume/vapor incinerator
is [0, 1.30 × 104kg/yr].

4.5 conclusions

This work proposed a framework that tracks chemical flows, estimates re-
leases, and identifies potential exposure pathways at on-site EoL industrial
activities. The framework integrates multiple publicly-available databases
and employs data-driven models and MCDM to develop PAU technology
systems and estimates their η(c), CAPEX, and OPEX. Nonetheless, further
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data collection should be required to reduce cost data uncertainty and
increase the reliability of the data-driven models or incorporating heuristic
equations to estimate costs. The framework leverages the data and the lit-
erature to fill information gaps to complete the chemical flow tracking and
allocate chemicals of concern inside EoL stage facilities and downstream
of the PAU technologies.

Case studies based on food and pharmaceutical ISs were used to illus-
trate the framework application for CFA and allocation and the benefits
of integrating and extending the framework with data-driven models
and MCDM. The framework can support PAU technologies selection for
managing chemicals of concern in EoL flows, considering the PAU effect
on chemicals, and suggesting the EoL management activity sequences.
However, some data mining enhancements may help find cross-year data
relationships and identify sustainable PAU technologies for chemicals of
concern from the PAU dataset. This effort might overcome potential data
availability limitations due to reporting requirement changes from the TRI
Program post-2004 (no need for reporting w(c)). This reporting specification
change might affect identifying recent industrial PAU developments and
improvements. It is crucial to thoroughly analyze and enhance the frame-
work for designing and recommending biological treatment operations to
ensure accurate PAU technology predictions and inferences.

The framework enables the analysis of estimated chemical flow variabil-
ities. In the future, the framework can help support a complete CFA at
the EoL life stage for risk assessment, avoiding case-by-case studies, by
connecting the on-site EoL framework with the chemical off-site tracking
framework and developing and exploring robust data-driven models. The
further investigation of robust data-driven models would support CFA and
EoL exposure pathway characterization to extend the framework to chemi-
cals outside the PAU dataset. Nonetheless, the models must incorporate
techniques to thoroughly assess their uncertainty and reliability.
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A D ATA E N G I N E E R I N G A P P R O A C H F O R S U S TA I N A B L E
C H E M I C A L E N D - O F - L I F E M A N A G E M E N T

abstract

The presence of chemicals causing significant adverse human health
and environmental effects during end-of-life (EoL) stages is a challenge
for implementing sustainable management efforts and transitioning to-
wards a safer circular life cycle. Conducting chemical risk evaluation
and exposure assessment of potential EoL scenarios can help understand
the chemical EoL management chain for its safer utilization in a circular
life-cycle environment. However, the first step is to track the chemical
flows, estimate releases, and potential exposure pathways. Hence, this
work proposes an EoL data engineering approach to perform chemical
flow analysis and screening to support risk evaluation and exposure assess-
ment for designing a safer circular life cycle of chemicals. This work uses
publicly-available data to identify potential post-recycling scenarios (e.g.,
industrial processing/use operations), estimate inter-industry chemical
transfers, and exposure pathways to chemicals of interest. A case study
demonstration shows how the data engineering framework identifies, es-
timates, and tracks chemical flow transfers from EoL stage facilities (e.g.,
recycling and recovery) to upstream chemical life cycle stage facilities (e.g.,
manufacturing). Also, the proposed framework considers current regu-
latory constraints on closing the recycling loop operations and provides
a range of values for the flow allocated to post-recycling uses associated
with occupational exposure and fugitive air releases from EoL operations.

Keywords: Circular life cycle; End-of-life management chain; Chemical
flow analysis; Data pipeline
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resumen

La presencia de productos químicos que causan efectos adversos signi-
ficativos para la salud humana y el medio ambiente durante las etapas de
fin de vida (EoL, por sus siglas en inglés) es un reto para la aplicación de
los esfuerzos de gestión sostenible y la transición hacia un ciclo de vida
circular más seguro. Llevar a cabo una evaluación del riesgo químico y de
exposición de los posibles escenarios de EoL puede ayudar a entender la
cadena de gestión de EoL de las sustancias químicos, para su utilización
más segura en un entorno de ciclo de vida circular. Sin embargo, el primer
paso es rastrear los flujos químicos, estimar las liberaciones y las posibles
vías de exposición. Por lo tanto, este trabajo propone un enfoque de in-
geniería de datos de EoL para llevar a cabo el análisis del flujo químico
y la selección, con el fin de apoyar la evaluación de riesgos y exposición
para el diseño de un ciclo de vida circular más seguro de los productos
químicos. Este trabajo utiliza datos disponibles públicamente para iden-
tificar posibles escenarios de post-reciclaje (por ejemplo, operaciones de
procesamiento/uso industrial), estimar las transferencias químicas entre
industrias y las vías de exposición a las sustancias químicas de interés.
Una demostración de un caso práctico muestra cómo el marco de inge-
niería de datos identifica, estima y rastrea las transferencias de flujo de
sustancias químicas desde las instalaciones de la etapa EoL (por ejemplo,
el reciclaje y la recuperación) a las instalaciones donde ocurre un etapa
de post-reciclaje para un químico (por ejemplo, la fabricación). Asimismo,
el marco propuesto tiene en cuenta las actuales restricciones normativas
sobre las operaciones de cierre del bucle de reciclado y proporciona valores
para el flujo de químico que es reciclado y procede de operaciones de EoL,
el cual podría estar asociados exposición ocupacional y emisiones fugitivas
al aire.

Palabras clave: Ciclo de vida circular; Cadena de gestión del fin de la
vida útil; Análisis del flujo químico; Canalización de datos
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5.1 introduction

Sustainable materials management and circular economy have under-
pinned many initiatives to achieve sustainable economic systems and
industrial value chains by improving resource productivity, source reduc-
tion, reuse, recycling, and prevention and minimizing waste generation
and disposal rate (Corona et al., 2019; United Nations Industrial Develop-
ment Organization, 2019). Governments worldwide have enacted policies
to promote these initiatives (European Environment Agency, 2016; U.S.
Environmental Protection Agency, 2012), which have created jobs and
generated wages and tax revenues (U.S. Environmental Protection Agency,
2016c). However, the transition towards a circular economy still has many
challenges to overcome (Bressanelli et al., 2019; Hopkinson et al., 2018).
One of them is the presence of hazardous chemicals in end-of-life (EoL)
flows that may enter the environment during recycling or unexpectedly
accompany the ingredients of an industrial, commercial, or consumer prod-
uct (Bodar et al., 2018). Additionally, the uncertainty at the EoL stage
is a barrier both to know how much of a chemical flow can be recycled
(Henriksson et al., 2010) and to characterize the risk that the circular life
cycle may pose to human beings and the environment due to exposure to
chemicals of concern (Alaranta & Turunen, 2020; de Römph & van Cal-
ster, 2018; Wassenaar et al., 2017). For example, bromine and brominated
flame retardants that may be contained in plastic products may affect the
quality of waste plastics as secondary materials; therefore, recycling may
reintroduce bromine and brominated flame retardants into the new plastic
product cycle and lead to increased exposure levels (Pivnenko et al., 2016).

Material flow analysis has been widely used for EoL flow tracking in a
circular life cycle (Chertow & Park, 2015; Tanzer & Rechberger, 2019) and
chemical release quantification during exposure assessment (Bornhöft et al.,
2013; Gottschalk et al., 2010). Previous work developed a data engineering
framework based on publicly-available databases to track chemical flows
generated by industrial facilities and transferred to other off-site locations
for further EoL management. The framework leverages facility-level infor-
mation to estimate the potential release quantity of a transferred chemical
from EoL operations (e.g., recycling) at an off-site facility (Hernandez-
Betancur et al., 2020). Another work employs a data engineering approach
on a bottom-up chemical flow analysis (CFA) of industrial pollution abate-
ment units (PAUs) (e.g., batch still distillation). This PAU-level approach
allocates a chemical downstream of a PAU. The allocation considers the
PAU effect on a chemical of interest and the expected flows from a PAU
(e.g., wastewater from solvent recovery) (Hernandez-Betancur et al., 2021).
Although both frameworks could work synergistically to perform an EoL
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CFA rapidly, they do not provide the potential paths and destination of a
recycled chemical flow.

The databases which are part of the openLCA Nexus, like ecoinvent
(GREENDELTA, 2013), which is the most widely used database by LCA
practitioners (Vélez-Henao et al., 2020), have supported analyses towards
a safer circular life cycle (Bech et al., 2019; Lucchetti et al., 2019; Meys
et al., 2020; Rigamonti et al., 2017). However, these databases focus on
assessing environmental impacts associated with the inputs and outputs
for obtaining products and services instead of tracking chemical flows
for potential release estimation and exposure assessment (Wedema et al.,
2013). Efforts from policy-makers, academia, and corporations like RISKCY-
CLE (Waste Management Alternatives Development and Exchange Forum,
2012), Chemical Leasing (Perthen-Palmisano & Jakl, 2004; United Nations
Industrial Development Organization, 2013), and others have looked for
designing sustainable chemical supply chains and accelerating the shift
to a circular life cycle, considering the traceability and risk of chemicals
(De Groene Zaak, 2015; Together for Sustainability, 2013). Nevertheless, the
studies developed started targeting specific industry sectors like textiles
in order to find hazardous chemicals in their products (Grundmann et al.,
2013; Lahl & Zeschmar-Lahl, 2013), or searching for particular chemical-
s/chemical categories in recycled products, for example, phthalates or
other persistent organic pollutants in recycled plastics (Leslie et al., 2016;
Pivnenko et al., 2016) or polycyclic aromatic hydrocarbons in recycled
rubber (European Chemicals Agency (ECHA), 2017; Pronk et al., 2020).
Although these analyses can provide accurate results, they are case-by-
case approaches and time-consuming tasks, and they require significant
resources for running experiments. These aspects are disadvantages for
conducting a rapid chemical risk evaluation and exposure assessment of a
chemical of interest.

This work proposes an EoL data engineering framework to connect
siloed publicly-available database systems to estimate releases and track
chemical flow transfers from EoL stage facilities (e.g., recycling and recov-
ery) to upstream chemical life cycle stage facilities (e.g., manufacturing).
Also, the current approach performs a screening to identify potential sus-
tainable EoL management and circular life cycle exposure scenarios for
recycled chemicals and could be extended by using data-driven models.
The scenarios consider whether the recycled chemical might end up in
industrial, commercial, and consumer uses and processing operations.
Additionally, the framework proposes a methodology that leverages the
data to identify if the recycling activities target the chemical under analysis
besides the other chemicals constituting the EoL multicomponent material
flow transfers. This methodology can be connected to publicly-available
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frameworks for near-field exposure assessment (U.S. Environmental Pro-
tection Agency, 2015c, 2015d). The advantage of the framework is that
it automatizes the above searches reducing the need for extensive user
input and hands-on knowledge (Smith et al., 2019). This contribution also
describes the estimation of chemical flows for including EoL performance
indicators and release estimations (Hernandez-Betancur & Ruiz-Mercado,
2019).

5.2 background

5.2.1 Tracking chemical flow transfers: facility-level information

A data engineering framework previously developed tracks chemicals
contained in industrial EoL flows generated due to the chemical manufac-
turing (e.g., as a byproduct), importing, processing operations (e.g., as a
reactant), and industrial uses (e.g., used as a cleaner) (Hernandez-Betancur
et al., 2020). The framework tracks chemical flow transfers from the EoL
flow Generator facility to the recycling, energy recovery, treatment & dis-
posal facility (RETDF) situated across different locations in the U.S. The
off-site chemical flow tracking maps the RETDF in case of EoL brokering
scenarios. In the case of recycling, the identification of the RETDF can help
determine whether the RETDF recycles a chemical for sale, distribution, or
on-site use. As a result of the tracking, the framework provides the type
of EoL activity (e.g., solvents/organics recovery) and both the Generator
and RETDF industry sectors. Identifying the industry sectors determines
the link between them as nodes of the chemical EoL management chain.
Furthermore, the framework provides chemical and RETDF identification
numbers to connect with additional information like the PAU functionality
(see Section 5.2.2). Moreover, the framework leverages facility-level infor-
mation to estimate how much of a chemical flow transferred to a RETDF
might be released to the environment during an EoL activity. Equation 5.1
is how the framework estimates emission factors by leveraging facility-level
information (Hernandez-Betancur et al., 2020).

TRk =

{
FT × EFk = FT × FR−k

∆AC + FTW
, k = 1, 2, 3, 4

∥∥∥∥∥
∆AC ∈ [MAX(FTR − FTW ,−MAX(QM)), MAX(QM)]

∩QM ∈ PMC

} (5.1)

In Equation 5.1, k represents the release compartments considered by the
framework, i.e., fugitive air, on-site surface soil, on-site surface water, and
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stack air releases. Furthermore, TRk represents the indirect chemical release
to the compartment k, FT is the annual quantity of chemical transferred by
a Generator, FTW is the RETDF total generated waste, FR−k is the RETDF
chemical flow releases to compartment k, ∆AC is a range of potential
values for the annual increment in the amount of the chemical present at
the RETDF, FTR is the RETDF total chemical releases to compartments, PMC
is a range code that represents the maximum amount of chemical present
at RETDF during a reporting year, and QM is a value within the range
described by PMC.

5.2.2 Chemical flow allocation at PAU technologies: PAU-level information

A second framework uses an equivalent principle to the one presented
in Section 5.2.1 (Hernandez-Betancur et al., 2021). However, this frame-
work relies on PAU-level information (process units) instead of aggregated
facility-level information. This framework regards the effect of a PAU
technology on a chemical of interest; for instance, an incinerator destroys
organic chemicals but not metals. Additionally, using equipment process
design catalogs, guidelines, and reports about PAUs, the framework deter-
mines generic PAU output flows. Thus, the framework allocates a chemical
of interest that passes through a PAU technology into fugitive air release
flow, effluent flow, destroyed, recycled, or recovered flow, and release flows.
The effect and abatement efficiency of a PAU on a chemical determine
the destroyed, recycled, or recovered flows. The framework considers
the chemical water solubility, melting and boiling point, and whether the
chemical is a metal compound for the allocation. Moreover, the framework
suggests a phase for the output flows (e.g., liquid waste). Equation 5.2 is
the generic chemical flow balance proposed by the PAU framework. In
Equation 5.2, Finput is the chemical input flow, η is the PAU abatement
efficiency relative to the chemical of interest, β is the emission factor for the
chemical fugitive air release, Fwaste/release is the chemical flow in the PAU
waste or release (excluding fugitive air), and Fe f f luent is the chemical flow
in the effluent. Therefore, this framework determines η given the input
chemical concentration (Hernandez-Betancur et al., 2021).

Finput = η × F(c)
input + (1 − η)× β × Finput + Fwaste/release + Fe f f luent

(5.2)
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5.3 methodology

The developed frameworks can operate alone to build data-driven mod-
els, perform generic CFA for PAUs and chemical transfers, and incorporate
decision-making tools into chemical EoL management. Therefore, the new
proposed development combines both frameworks and extends the CFA to
track chemicals, estimate releases, and potential exposure pathways in flow
transfers from EoL stage facilities (e.g., recycling) to upstream chemical
life cycle stage facilities (e.g., manufacturing). This framework can also
determine recycling activities and their chemical flows that might be trans-
formed into new products in a circular world while possibly assessing,
reducing, or eliminating hazards.

5.3.1 Previous methodology enhancements

5.3.1.1 ∆AC statistical distribution

As presented in Equation 5.1, ∆AC is a range of values so that one can
take ∆AC as an uncertain variable. In addition, information entropy is
a measure of the uncertainty and is maximum when the outcome of a
random process is equally likely, which is the case for a uniform distri-
bution (MacKay, 2002). Therefore, to reduce the ∆AC uncertainty, this
work assumes the mode value of the statistical distribution that describes
∆AC should be around zero. This means that it is more likely the an-
nual chemical material balance at RETDF is at steady state, which is a
reasonable assumption for operating periods above 1 yr (Honrath, 2020).
Nevertheless, the framework computes and places the mode value of ∆AC
(∆ACmode) around zero by using information from the Toxics Release In-
ventory (TRI) about the source reduction activities for a chemical and the
annual change of the production or activity that is the primary influence
on the quantity of chemical at RETDF (U.S. Environmental Protection
Agency, 2013). Hence, for each chemical at each RETDF, the framework
gathers information associated with whether the RETDF uses source re-
duction activities to decrease the mass of chemical present at the facility,
the estimated percentage of reduction (SR), and the ratio of production
or activity in the reporting year divided by production or activity in the
previous year (PAR). Equation 5.3 shows how the framework leverages
the RETDF information to place ∆ACmode. In Equation 5.3, Lmode is a value
which depends on both PAR and SR. Equation 5.3 uses a logistic function
to allocate the ∆ACmode value inside the interval described in Equation
5.1. This work uses a triangular distribution to accurately represent the
whole range of potential ∆AC values. The triangular distribution en-
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ables to work with functions either symmetric (i.e., ∆ACmode = 0 = 0 and
|MAX(FTR − FTW ,−MAX(QM))| = MAX(QM) or non-symmetric (e.g.,
∆ACmode = 0 but |MAX(FTR − FTW ,−MAX(QM))| ̸= MAX(QM).

∆ACmode =


0, if Lmode = 0

MAX(QM)× Lmode, if Lmode > 0

MAX(FRT − FTW ,−MAX(QM))× |Lmode|, if Lmode < 0

Lmode = logistic(PAR)− logistic(SR + 1)
(5.3)

5.3.1.2 Uncertainty for brokering scenario pathways

Wj,i,α= 1

No brokering scenario

Brokering scenario

W
j,m,1,α

W
j,m,2,α

W
j,m,N,α

W
j,m,i,a 

: Relative importance of pathway
α: EoL activity
j: Generator
i: RETDF
m: Broker

Generator
j

RETDF
i

RETDF
1

RETDF
2

RETDF
N

Generator
j

Broker
m

Figure 5.1: Analysis for the degree of certainty or relative importance for both
no brokering and brokering scenarios, considering the geographical
location of the Generators, Brokers, and RETDFs.
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Although the framework developed by Hernandez-Betancur et al. (2020)
maps the potential RETDFs for brokering scenarios, it does not indicate
information about the uncertainty that a chemical flow transfer by a Gen-
erator passes through one of the identified RETDFs. This work develops
a methodology to assign a degree of uncertainty or relative importance
to each potential pathway that a chemical flow transfer can follow in EoL
brokering cases. Figure 5.1 depicts the analysis for no brokering and bro-
kering scenarios. For no brokering, Generatorj transfers a chemical directly
to RETDFi (i = 1, . . . , N) for EoL activity α. Therefore, the relative impor-
tance of the pathway (Wj,i,α) is equal to one, i.e., the pathway is clearly
defined. For brokering, Wj,m,i,α is less than one and greater than or equal
to zero and depends on the Brokerm.

TRI is the most comprehensive worldwide publicly-available Pollutant
Release and Transfer Register regulatory system. Its year of data avail-
ability and granularity of release data elements enable gathering helpful
information for tracking chemical transfers, considering chemical quan-
tities transferred, EoL activity, reporting year, facilities, and the location
of the facilities involved in these transfers (U.S. Environmental Protection
Agency, 2014). Thus, this work uses this information to overcome the
epistemic uncertainty associated with brokering scenarios using a Fuzzy
Analytic Hierarchy Process (FAHP) and considering four criteria to de-
termine potential EoL pathways (Hernández-Betancur et al., 2019). Each
pathway found for brokering scenarios is an alternative assessed by FAHP
under the four criteria to obtain a value for Wj,m,i,α by applying fuzzy
operations (Sabaghi et al., 2016).

Hernandez-Betancur et al. (2020) mapped a potential RETDFi for Generatorj
using the available reporting years for the publicly-available information
like TRI and selecting the RETDFi reporting information closest to the
reference year. Therefore, the first criterion for the FAHP is a temporal cor-
relation indicator assigned to each RETDFi, based on the data uncertainty
analysis (quality pedigree matrix) (Edelen & Ingwersen, 2016). The second
criterion considers how many times the relationship Brokerm - RETDFi
appears in the available information. The third criterion considers the
times the EoL activity α associated with RETDFi appears in the records
for the chemical of interest. The EoL activity α is why Brokerm transfers
the chemical to the RETDFi. The fourth and last criterion is the cost of
transporting a EoL chemical from Generatorj to RETDFi.

The transportation cost considers FT as well as the length of the traveling
route. The traveling route is based on the geographical location of facilities,
as presented in Figure 5.1. The framework collects facility latitude and
longitude from TRI and the other sources used by Hernandez-Betancur et al.
(2020). In cases not found in those sources, the addresses, zip codes, cities,
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and counties help make queries to the open-source geocoding API of the
Nominatim project, thereby obtaining the facility latitudes and longitudes
(contributors, 2011a). The current work uses the shortest route between
geographical locations by ground transportation, retrieving it via the OSRM
project API (contributors, 2011b). Hence, FT (i.e., the annual quantity of
chemical transferred) and the shortest ground transportation distance are
employed together in a methodology developed by the U.S. Environmental
Protection Agency for calculating ground transportation cost of hazardous
waste by stake trucks (Abkowitz et al., 1985). The framework includes
maritime transportation costs, e.g., for transfers from Florida to Puerto Rico.
Thus, the haversine formula calculates the maritime transport distance
(Shylaja, 2015), considering the locations of container and tonnage ports
in the U.S. (U.S. Department of Transportation, 2018). Furthermore,
the framework takes from the Organization for Economic Co-operation
and Development statistics, the average maritime transportation cost of
manufacturing goods that include commodities like organic chemicals
(Organization for Economic Co-operation and Development, 2010). The
framework uses the degree of uncertainty in the methodology explained in
Section 5.3.3.

5.3.2 Chemical activities and uses for recycled chemicals

Closing the recycling loop requires information about the possible uses
and activities for a chemical of interest once recycled. The framework lever-
ages the information from the Chemical Data Reporting (CDR) database,
which contains information about chemicals domestically manufactured
in the U.S. or imported into U.S. territory (including byproducts and im-
purities) (U.S. Environmental Protection Agency, 2015a). This database
information connects to the frameworks presented in Sections 5.2.1 and
5.2.2 by using the Facility Registry Service (U.S. Environmental Protection
Agency, 2004) and the Substance Registry Services (U.S. Environmental
Protection Agency, 2016d). The former service system provides the identi-
fication numbers and industry sectors for the CDR reporting facilities. The
industry sector classification for the CDR facilities is according to the 6-digit
code provided by North American Industry Classification System (NAICS)
(U.S. Census Bureau, 2017b), which is used by the framework as shown
in Sections 5.2.1 and 5.2.2. Hence, CDR information links to the RETDFs,
either using the facility identification number (preferable) or NAICS code.
The second service system supports relating CDR substances to TRI chem-
icals by a unique chemical identification number (Hernandez-Betancur
et al., 2020).
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Thus, CDR supplies information about potential product categories for
commercial and consumer uses (e.g., personal care products). Moreover,
CDR provides the industrial processing and operations (e.g., repackag-
ing), industrial function categories for the chemical compounds (e.g., odor
agents), and industry sectors for facilities downstream the CDR reporting
facilities (U.S. Environmental Protection Agency, 2016a). The framework
uses these industry sectors to determine what are called the post-recycling
industry sectors, which may buy the materials containing the recycled
chemicals sold by the REDTFs. Unfortunately, in some cases, CDR report-
ing facilities only provide a description of the industry sectors or use an
industry sector classification that is different from the NAICS codes (U.S.
Environmental Protection Agency, 2009). The framework processes and
transforms the description texts and uses web automatization to search
for the potential NAICS codes which satisfy those descriptions. Thus, the
framework standardizes the industry sector classification across the chemi-
cal EoL management chain and recycling loop, i.e., the Generator, RETDF,
and post-recycling industry sectors. In some instances, the NAICS codes
obtained for the post-recycling industry sectors are not the 6-digit ones,
which is the most specific in the NAICS hierarchical structure (U.S. Census
Bureau, 2017a). Therefore, this research uses the number of industry sector
facilities from the 2017 Statistics of U.S. Businesses (U.S. Census Bureau,
2020). In the methodology described in Section 5.3.3, this information helps
to select a 6-digit NAICS code for the potential post-recycling industry
sectors retrieved from CDR, based on the probabilities proportional to
the number of facilities. For instance, the Bituminous Coal Underground
Mining industry sector (6-digit NAICS code 212112) might be chosen if
the post-recycling industry sector, according to CDR, is Mining, Quarrying,
and Oil and Gas Extraction (2-digit NAICS code 21).

5.3.3 Relationship between the EoL management chain elements and recycling
loop

Figure 5.2A depicts a generic CFA for a chemical across its life cy-
cle stages, i.e., manufacturing or importing, processing, uses (industrial,
commercial, and commercial), and EoL. The framework focuses on the
chemical flows represented by the continuous black arrows in Figure 5.2A.
The framework tracks the chemical flow transfers according to Section
5.2.1 and allocates them as Section 5.2.2 describes. The chemical EoL
management chain and the recycling loop consider seven critical elements
represented by the light blue circles in Figure 5.2A. The generator, the
RETDF industry sectors, and the EoL activity engage in the chemical flow
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transfer. Furthermore, in the case of recycling, the EoL activity and the
RETDF industry sector enable connecting with the other four elements
in the recycling loop, i.e., the post-recycling industry sector, industrial
function category, industrial processing or use operation, and commercial
and consumer product category, described in Section 5.3.2. The last four
elements depict the chemical flow transfer, which goes back into the value
chain and closes the recycling loop.

The framework incorporates a Markov Random Field (MRF), a proba-
bilistic graphical model with undirected edges (Koller & Friedman, 2009),
to represent the correlation between the chemical EoL management chain
elements and the recycling loop. Unlike directed graphical models like
Bayesian Networks, MRF allows the framework to depict the relationship
between the EoL management chain and recycling loop elements without
forcing a specific direction to the influence between them. For example, al-
though the paper manufacturing industry sector recycles chlorine, chlorine
recycling is not restricted to this sector and vice versa. In addition, MRF is
less data-demanding than an undirected discriminative graphical model
like Conditional Random Fields (Li et al., 2021). Conditional Random
Fields focus on the posterior distribution of a label sequence for a known
observation array, while MRF lets describe the network and its joint statis-
tical distribution by factorization (Koller & Friedman, 2009; Li et al., 2021).
Thus, MRF results adequate considering that the exact sequence is not
well-known for an example and the relationship between the elements in
the chemical EoL management chain elements and the recycling loop come
from siloed database systems. Figure 5.2B presents the MRF structure com-
posed of the seven elements described before. The elements are the blue
light nodes in the MRF, and the undirected red edges are their relationships.
Although the three sectors (i.e., generator, RETDF, and post-recycling) may
be the same, their representation as separate nodes in the MRK allows
such a result to be possible, but not a restriction. Therefore, MRF can
establish the relationship between the chemical EoL management chain
elements and the recycling loop. Also, the framework employs Markov
Chain Monte Carlo (MCMC) to obtain local statistical distributions for
determining potential pathways between the EoL management chain and
recycling loop elements, thereby inferring about the global distribution for
the MRF (joint probability distribution) (Winkler, 2003).

The framework presented here is not definitive and future developments
can incorporate additional data sources and more robust models for data-
driven modeling and decision-making to reduce uncertainty, improve
estimates, and extend the framework to chemicals that are not in the data
source. The models presented here would enable identify limitations and
implications for future developments, and they should be seen for an
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Figure 5.2: A schematic explanation for the proposed methodology. (A) Generic
CFA across a chemical life cycle and its connection with the proposed
data engineering approach. (B) Markov random field (MRF) establishes
the relationship between the chemical EoL management chain elements
and the recycling loop.

exploratory data analysis. Additionally, although the framework takes
advantage of publicly-available data to determine whether RETDFs, in the
case of recycling, can sell the recycled chemical, the framework does not
incorporate information to determine the waste management capacity of
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RETDFs to either fully manage the waste received or to sell and ship a
portion to other RETDFs yet. Figure C.1 in the Appendix C depicts a generic
scheme that outlines the uncertainty propagation both for identifying the
EoL management chain and recycling loop elements and performing the
CFA.

5.4 case studies

This section presents a case study based on n-hexane (CAS 110–54–3)
to demonstrate the framework usefulness for performing CFA, tracking
the chemical across the chemical EoL management chain, and closing
the recycling loop. N-hexane is part of the Organization for Economic
Co-operation and Development list of high production volume chemicals,
which are chemicals produced at levels greater than 1.00 × 106kg/yr in at
least one organization member (Organization for Economic Co-operation
and Development, 2004). N-hexane major global use is as a component in
fuels and other petroleum products; however, its physicochemical prop-
erties like high solubility and low cost make n-hexane ideal for many
petroleum products applications. For instance, as an edible-oil extractant
for various seed crops like soybeans, cottonseed, and corn germ (Canadian
Environmental Protection Agency, 2009) and solvent in biodiesel produc-
tion (Martín & Grossmann, 2012). Moreover, this chemical is associated
with toxicity hazards to aquatic life and damage to organs and fertility
functions (U.S. Department of Health and Human Services, 1999). There-
fore, this chemical results in a relevant case study due to its applications
and environmental and health concerns.

This case study uses the information for n-hexane obtained by the
framework explained in Sections 5.2 and 5.3. The reference reporting year
is 2018, which corresponds to the last TRI report at the study time. MRF
enables analyzing the chemical EoL management chain and recycling loop
for n-hexane. Due to a trade-off between achieving statistical significance
and computing power limitations, the case study takes 100 cycles to infer
and draw samples by the MCMC. Python scripts support data engineering,
web automation, FAHP, MRF and inference, and CFA. These scripts are
in a public GitHub repository (see Section C.2 in the Appendix C). The
case study analyzes first the global state of the n-hexane EoL management
chain. The case study also gives an idea of the potential performance of
the n-hexane recycling loop and determines if n-hexane is a chemical of
interest in the recycling activities for which the generator industry sector
transfers the chemical to the RETDF sector. The last aspect is based on the
chemicals found in the information submitted by the RETDFs to the TRI
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Program, considering whether the recycling PAU technologies reported
for n-hexane process other chemicals, e.g., a RETDF reports the use of
fractionation for n-hexane and 1-butanol.

5.5 results and discussion

Tracking chemical flow transfers enables identifying potential exposure
scenarios and estimating releases in the chemical EoL management chain.
Moreover, it allows moving forward to analyze potential pathways for
chemicals in the recycling loop, considering potential risk due to the
unintended recycling of their toxic contents, and identifying if the recycling
activities mainly target the chemical under analysis besides the other
chemicals constituting the multicomponent EoL flow transfers. Therefore,
Section 5.5.1 shows the most probable scenario both for the n-hexane EoL
management chain and for the recycling loop. Section 5.5.2 presents aspects
of the inter-industry EoL transfers and recycled flows containing n-hexane.
Finally, Section 5.5.3 depicts a way to analyze potential risks due to the
unintended recycling of toxic contents in the recycling loop.

5.5.1 Generic performance for the EoL management chain and recycling loop

A finding from the development of the case study is associated with
representing the MRF factor or potential functions by using the data. These
potential functions depict the affinity or the strength of the relationship
occurrence; for example, the automobile manufacturing industry sector
transfers EoL chemical flows to the materials recovery facilities. The
number of times a relationship appears in the data can misinterpret the
affinity between the EoL chemical flow generator and the receiver. Table
C.1 (in Section C.3 in the Appendix C) presents examples for the values of
two variables in the MRF for n-hexane, i.e., generator and RETDF industry
sectors. Table C.1 shows that according to the times of appearance, n-
hexane transfers from facilities in the hazardous waste treatment & disposal
sector to facilities in the same sector have a greater affinity (5 times) than
from all other basic organic chemical manufacturing to the hazardous waste
treatment & disposal (3 times). However, if the flow transfer is considered,
the last relationship would have a higher affinity (9.72 × 104kg/yr) than
the initial one (1.72 × 103kg/yr).

Additionally, using the number of times of appearance leads to the belief
that transfers from the other chemical and allied products merchant whole-
saler sector would have the same affinity than from all other basic organic
chemical manufacturing to the hazardous waste treatment & disposal (3
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times). Nevertheless, for this case, the former relation has 1.14 × 102kg/yr
of affinity, i.e., only 0.12% of the last relation affinity. The above finding
leads to select the multiplication between the number of appearances and
the transfer flow as the value for the MRK potential function. The flow
transfer can reflect and enable the inclusion of regulatory aspects associ-
ated with legitimate hazardous waste recycling operations like tolling and
contractual agreements, speculative accumulation before recycling, and
adaptation of the facilities to recycle hazardous wastes (U.S. Environmental
Protection Agency, 2015b). Also, it can show whether the chemical is a
processing or manufacturing impurity.

Table 5.1: General results for the CFA of n-hexane by using data engineering
and the MRK. This table presents n-hexane transfers for waste man-
agement in 2018 from TRI Explorer (data released April 2020) (U.S.
Environmental Protection Agency, 2020).

Query Value

Total n-hexane transferred according to data engineering [kg/yr]1 3.75 × 106

Total n-hexane transferred according to the TRI Explorer [kg/yr]1,2 4.23 × 106

Total n-hexane transferred for recycling according to data engineering [kg/yr]1 1.70 × 105

Total n-hexane transferred for recycling according to the TRI Explorer [kg/yr]1 2.49 × 105

Average recycled flow for industrial activities [kg/yr] 1.49 × 105

Average recycled flow sold [kg/yr] 9.19 × 104

1 The differences between values reported by TRI Explorer and the ones obtained by data engineering
are because the RETDFs could not be tracked (Hernandez-Betancur et al., 2020).
2 Excluding transfers to sewage treatment plants. These transfers are not part of the data engineering

framework developed by Hernandez-Betancur et al. (2020).

Table 5.1 presents the data engineering framework tracking n-hexane
transfers for further waste management is equivalent to 3, 75 × 106kg/yr,
88.86% of the total n-hexane is transferred off-site for further waste manage-
ment reported in the TRI Explorer (U.S. Environmental Protection Agency,
2020). Moreover, the framework tracks 1.70 × 105kg/yr of n-hexane trans-
ferred for recycling, 68.53% of the value reported in the TRI Explorer.
Hence, tracking the flows transferred off-site for recycling and identifying
the RETDF in charge of this activity is more challenging than other EoL
activities. Nevertheless, for this chemical, the ratio between recycling flow
transfers and the total one is similar for both information sources, 4.54%
and 5.88% for data engineering and TRI Explorer, respectively. These nu-
merical differences between values might be because some RETDFs do not
need to report to the TRI Program. Therefore, the framework cannot close
the recycling loop. However, future development and further research is
expected to overcome this limitation.
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Figure 5.3: CFA for n-hexane in the EoL management chain and recycling loop.
(A) CFA for the most probable pathway in the MRK. (B) CFA for the
most probable recycling path determined by the MRK. CV represents
the coefficient of variation of the quantity presented.

Due to the length limits of the manuscript and to facilitate the visual-
ization and explanation of the results in this section, not all the potential
pathways in the n-hexane EoL management chain and recycling loop are
presented. Instead, Figure 5.3 depicts the two scenarios, whose most rele-
vant details are discussed in this section. Figure 5.3A shows the CFA for
the most probable n-hexane EoL pathway according to the MRF described
in Figure 5.2B, while Figure 5.3B represents the most probable n-hexane
pathway when it is established in the MRF that the pathway must contain
recycling activities.

In Figure 5.3A, the most probable n-hexane EoL pathway is associated
with energy recovery from EoL flows containing n-hexane transferred by
the hazardous waste treatment and disposal industry sector (generator in-
dustry sector) and harnessed by the cement manufacturing industry sector
(RETDF industry sector). Because of the generator sector, the waste contain-
ing n-hexane can be categorized as hazardous, leading to satisfying special
regulatory requirements and making it unsafe for recycling activities (U.S.
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Department of Health and Human Services, 1999). Moreover, the regulation
considers the chemical heating value to differentiate between legitimate
energy recovery and incinerator (U.S. Environmental Protection Agency,
2019). Thus, the combustion heat of liquid n-hexane (−4, 163 ± 20kJ/mol)
(National Institute of Standards and Technology, 1987) and its average flow
transferred for this scenario (2.02 × 105kg/yr) can make energy recovery a
feasible EoL activity.
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Furthermore, industrial kilns from the cement manufacturing industry
sector are considered legitimate waste-to-energy management equipment
(U.S. Environmental Protection Agency, 2019). The above facts prove that
considering the linkage between the industry sectors involved in an EoL
chemical transfer may help understand and predict potential EoL scenarios
for chemicals. Figure 5.3A presents the results of the n-hexane allocation
for this scenario. On average, the energy recovery processes do not destroy
around 5.03 × 103kg/yr of n-hexane, which is 2.49% of the average flow
transferred for this scenario (2.02 × 105kg/yr). This undestroyed gaseous
flow may end up as stack air releases if there is no further treatment. This
value presents a high variability, as the coefficient of variation (CV) is
equal to 1.26. Hence, by adding and subtracting the average value times
its CV (±5.031031.26) to the average value (5.03 × 103 ± 5.03 × 103 × 1.26)
the expected gaseous flow values are in the interval [0, 1.14 × 104kg/yr];
therefore, providing low-end and high-end scenarios for a further exposure
assessment (U.S. Environmental Protection Agency, 1991).

As presented in Figure 5.3A, the most probable current scenario for
n-hexane is not associated with recycling. However, as mentioned above,
4.54% of the amount of n-hexane transferred was recycled in 2018. Fig-
ure 5.3B depicts that the most potential recycling pathway for n-hexane
is related to transfers from facilities in all the other basic organic chem-
ical manufacturing sector (generator industry sector) to facilities in the
hazardous waste treatment & disposal sector (RETDF industry sector).
The generator sector transfers on average 5.51 × 103kg/yr (CV = 3.96) of
n-hexane for solvent/organic recovery. Moreover, for the recycling scenario
presented in Figure 5.3B, petroleum refineries are the post-recycling in-
dustry sector of choice. Since the RETDF and the post-recycling industry
sectors are different for this case, this scenario consists of the RETDF sector
selling the recycled n-hexane instead of using it on-site (e.g., as a reactant or
solvent). As shown in Table 5.1, the average recycled flow sold by RETDFs
is 9.19 × 104kg/yr, i.e., corresponding to 54.06% of the n-hexane recycled.
Therefore, there is a probability just above 50% that an RETDF sells the
recycled n-hexane.

According to Figure 5.3B, on average, for this scenario, 5.49 × 103kg/yr
would be the net n-hexane recycled amount, i.e., around 99.64% of the
n-hexane transfer. The petroleum refineries sector may use such a recycled
n-hexane as an intermediate (industrial function category) in a chemical
reaction (processing/use operation). Hence, recycled n-hexane may go
back to industrial activities, which would be expected due to the industrial
source of the EoL flow containing n-hexane to reduce the risk associated
with hazardous waste recycling (U.S. Environmental Protection Agency,
2015b). Likewise, Table 5.1 presents that on average 1.49 × 105kg/yr of the
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n-hexane transferred for recycling ends up in industrial activities. Figure
5.3B allows visualizing that this scenario generates wastewater and fugitive
air releases. Hence, the wastewater generated relates to potential on-site
surface water releases or further transfers to sewage treatment plants if
there is not further on-site treatment at the RETDFs. As described for the
undestroyed gaseous flow, by adding and subtracting the average value
times its CV (±2.23 × 101 × 4.46) to the average value (2.23 × 101), this
wastewater flow may be in the interval described by [0, 1.22 × 102kg/yr].
Also, fugitive air releases that would affect occupational receptors at the
RETDFs, with an average value of 3.16 × 10−1 and CV of 4.45, may lie in
the interval [0, 1.72 × 100kg/yr].

Like Table 5.1, Figure 5.4 depicts the RETDF industry sectors mainly
recycle n-hexane sent back to industrial processing/use operations. Never-
theless, Table 5.1 indicates that on average 2.10 × 104kg/yr of the recycled
n-hexane may flow to commercial/consumer uses (12.35% of the recycled
flow). As shown in Figure 5.4, this linkage of recycled n-hexane and fresh
n-hexane comes from the hazardous waste treatment & disposal sector.
The probability the n-hexane recycled by this sector goes to commercial
uses is around 20.00%. As shown in Section 5.5.2, this RETDF industry
sector receives a large amount of n-hexane flow transferred for recycling,
increasing the chance of such flows being transferred to commercial ac-
tivities. Additionally, the MRF in Figure 5.2B does not include potential
composition and functionality differences between recycled and brand-new
product flows. Future research should incorporate this aspect into the
MRF variables that describe the chemical EoL management chain and its
recycling loop.

5.5.2 Inter-industry sector transfers for n-hexane

As presented in Section 5.5.1, there is a high chance the n-hexane flow
transfers for recycling go back to industrial processing/use operations. An
important aspect to capture the behavior of the EoL management chain
and recycling loop is understanding the inter-industry sector transfers.
Hence, drawing only the samples from the MCMC that indicate transfers
that would end up into industrial processing/use operation, Figure 5.5 is
elaborated for inter-industry transfer flows whose mean value is greater
or equal to 1.00 × 103kg/yr for visualization purposes. Figure 5.5A is for
inter-industry EoL n-hexane transfer for recycling, while Figure 5.5B is
for n-hexane recycled transfers. Figure 5.5 shows that a fragment on the
outer part of the circular layout represents each industry sector (a chord
diagram node). In the figure, the arcs represent the inter-industry sector
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connections. The size of each arc is proportional to the inter-industry sector
transfer flow importance. Also, the arc color is the same as the color of the
parent node.
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Figure 5.5: Inter-industry n-hexane transfer flows. A fragment on the outer part
of the circular layout represents each industry sector (a chord diagram
node). The arcs represent the inter-industry sector connections. The
size of each arc is proportional to the inter-industry sector transfer flow
importance. Also, the arc color is the same as the color of the parent
node. (A) transfer of EoL n-hexane flows between industry sectors
for recycling. This plot only considers transfer flows for recycling that
would end up in industrial processing/use operations, and their mean
value is greater or equal to 1.00 × 103kg/yr. (B) transfer of n-hexane
recycled flow between industry sectors. This plot only considers the
recycled flows used in industrial processing/use operations and whose
mean value is greater or equal to 1.00 × 103kg/yr.
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Figure 5.5A depicts that hazardous waste treatment & disposal (IS-1),
petroleum refineries (IS-6), and paint and coating manufacturing (IS-9)
are the RETDF industry sectors that received a significant part of the EoL
n-hexane transfers from recycling. As the dark blue chord in Figure 5.5A
indicates, the hazardous waste treatment & disposal sector receives most of
the n-hexane transferred for recycling operations, followed by petroleum
refineries. The hazardous waste treatment & disposal sector mainly receives
transfers from four generator industry sectors (IS-4, IS-7, IS-8, and IS-11).
The all other basic organic chemical manufacturing industry sector (IS-11)
is the largest transfer generator. This fact supports that in Figure 5.3B,
the MRK most probable path under recycling activities involves these two
sectors as generator and RETDF.

Figure 5.5B presents the hazardous waste treatment & disposal industry
sector is related to the inter-industry sector shipments of recycled n-hexane
flows whose arithmetic average is greater or equal to 1.00 × 103kg/yr. It
is consistent with Figure 5.5A that presents this RETDF industry sector
as the most relevant EoL n-hexane flow receptor. This RETDF sector
recycles n-hexane to ship it to the post-recycling industry sectors involved
in petroleum refining and petrochemical manufacturing. As presented
in Figure 5.5A, the former post-recycling sector is involved in recycling
operations. The petroleum refineries sector receives a large amount of flow
from the petroleum bulk stations and terminals (see Figure 5.5A), but it
is not involved in the transfer of recycled n-hexane (see Figure 5.5B). The
above may signify there are scenarios under which petroleum refineries
receive EoL n-hexane flow and recycle it for on-site use.

Nevertheless, as indicated in Figure 5.5B, other scenarios exist under
which petroleum refineries can play as the post-recycling industry sector for
the n-hexane recycled by the hazardous waste treatment & disposal sector.
This last scenario may indicate that petroleum refineries sign tolling or
contractual agreements to receive n-hexane and recycle it from hazardous
secondary materials (U.S. Environmental Protection Agency, 2015b). This
inter-industry transfer behavior can explain why the petroleum refineries
sector is the post-recycling industry sector for the MRF most probable
path in Figure 5.3B. Additionally, Figure 5.5B depicts the hazardous waste
treatment & disposal sector ships a considerable amount of recycled n-
hexane to all other basic organic chemical manufacturing industry sector.
Figure 5.5A indicates that all the EoL n-hexane flow received by the former
sector comes from the last one. Hence, it could point out that an agreement
may exist between facilities in these two sectors. The recycling operation
is performed by a facility in the hazardous waste treatment & disposal
sector but under any facility control in the other basic organic chemical
manufacturing sector (U.S. Environmental Protection Agency, 2015b).
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5.5.3 Risk due to the potential unintended recycling of toxic content

The inadequate design of a recycling loop can lead to recirculate haz-
ardous chemicals that are not expected to appear in a product or service.
Up to this point, n-hexane was analyzed as if it was an intentionally
recycled compound. Nevertheless, as presented in the above analyses,
the inter-industry amount of n-hexane transferred annually can be below
1.00 × 103kg/yr. These small flow transfers may be associated with man-
ufacturing or processing impurities generated by the generator industry
sector. For example, only one time, the ground or treated mineral and
earth manufacturing sector transfers 7.67 × 10−1kg/yr of EoL n-hexane
flow to the hazardous waste treatment & disposal sector (see Table C.1). In
addition, due to tracking only n-hexane and not all the EoL material flow,
large amounts of n-hexane may be at a low concentration in industrial EoL
flows.

5.5.3.1 A screening approach for identifying unintended recycled chemicals

This work moves forward to proposing a methodology based on publicly-
available data to identify unintended recycling of toxic content. The screen-
ing seeks to identify whether the chemical being tracked (n-hexane) is
intentionally recycled or is otherwise an impurity of the recycled product.
Hence, Figure 5.6 is a “heatmap” whose components represent a different
visualization dimension:

The horizontal axis contains the commercial product categories for
n-hexane (e.g., adhesives and sealants).

The vertical axis contains toxic chemicals that may be potentially
recycled with n-hexane (e.g., dichloromethane).

The rightmost vertical bar presents the mean value of the mass ratio
between the other toxic chemicals and n-hexane on a logarithmic
scale. This logarithmic scale is used to display the wide variety of
ratios in a compact way. Negative values (blue) on the bar mean the
amount of n-hexane is greater than the amount of the other chemical
indicated on the vertical axis. Positive values (red) mean n-hexane is
present in a smaller amount than the other chemical. Finally, a value
equal to 0 indicates that both n-hexane and the other chemical are in
equal amount.´
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Figure 5.6: Analysis of potential chemicals associated with unintended recycling
once n-hexane is recycled and goes back to commercial or consumer
products. The analysis is based on the ratio between the flow recycled
of another chemical and n-hexane flow.

¸Inside each cell of the "heatmap" there is a score that says how reli-
able is the ratio value according to the data used for estimating it (e.g.,
using the same facility information). The reliability score is similar to
the technological correlation score used in the Pedigree Matrix for
life cycle assessment (Edelen & Ingwersen, 2016). Nonetheless, the re-
liability score uses the taxonomy of the NAICS hierarchical structure
to indicate the presence of toxic chemicals that may be potentially
recycled together with the chemical of interest (e.g., n-hexane) (U.S.
Census Bureau, 2017a). The NAICS taxonomy ranges from 2-digit
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(Sector) to 6-digit codes (National Industry), where the 6-digit NAICS
code is the most specific classification. However, as shown in Figure
5.6, the score indicates whether the toxic chemicals are found based
on the same reporting facility information. Thus, the reliability score
ranges from 1 for less reliable (2-digit NAICS code) to 6 for more
reliable (same facility).

The empty spaces (dotted pattern) in Figure 5.6 mean that non relation-
ship between the toxic chemical and the product categories was found
using the data. According to Table 5.1, 87.65% of the recycled n-hexane
may go back to industrial processing/use operations and the remaining to
commercial/consumer activities. Also, Figure 5.4 indicates the n-hexane
recycled by facilities in the hazardous waste treatment & disposal sector
has a 20.00% chance of going into commercial uses for producing valuable
goods in the generic CDR product categories (described in Figure 5.6). All
the findings presented in Figure 5.6 have a reliability score of 5, which
means they are found based on a 6-digit NAICS code or National Industry.
Although this figure does not show the full granularity of the results, i.e.,
PAU technology and probability that recycled n-hexane flows back to each
product category, it depicts the overall result of each product category.
For example, Figure 5.6 indicates that p-cresol may accompany n-hexane
in adhesive and sealants and petrochemical products. However, the p-
cresol/n-hexane mass ratios are below 1 (blue), i.e., the average amount
of n-hexane is greater than that of p-cresol. In contrast, Figure 5.6 shows
that aluminum may flow along n-hexane in all the product categories
(excluding wheel covering for automotive transport); nonetheless, the dark
red color warns the aluminum/n-hexane mass ratio would be above 1.

If only the mass ratio is considered as an indicator of unintended re-
cycling, based on Figure 5.6, someone could decide that n-hexane is an
impurity contaminating products containing aluminum. Therefore, one
could also conclude that n-hexane is not recycled to be incorporated into
any category presented in Figure 5.6, e.g., adhesive and sealant products
category, especially considering that aluminum would not be in the above
category (U.S. Environmental Protection Agency, 2016b). Unlike the ad-
hesive and sealant category, aluminum could be part of fuels and related
products (Pawel et al., 2012), with n-hexane being one constituent. Hence,
concluding unintended recycling requires further effort to thoroughly in-
corporate additional information about the product category formulations
and chemical uses (Dionisio et al., 2018; Isaacs et al., 2020). Moreover,
incorporating the PAU technology information as a MRF variable instead
of only performing the CFA and allocation can support and enhance such
a critical task. Likewise, the information describing activities and uses (e.g.,
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as a manufacturing impurity) of the chemical under study by the industry
sector generating the EoL chemical transfers can provide the framework
some additional insights to compare the composition and functionality
between recycled and brand-new products.

5.5.3.2 Using publicly-available data with product formulations

As mentioned above, incorporating information about products for-
mulation may help to improve the results soundness. Information from
Chemicals and Products Database (CPDat) can be used for comparison
with results in Figure 5.6 (see Table C.2). Using CPDat data, summary
information (e.g., mean) for the ratio value on logarithmic scale is es-
timated for chemicals in products whose categorization/description is
related to the adhesive and sealants product category in Figure 5.6 and
n-hexane is included in their formulation (see Table C.2). For example,
comparing the chemicals in Table C.2 and the ones in Figure 5.6 for ad-
hesive and sealants category, there are chemicals like 2-methoxyethanol
(CAS 109-86-4) that are not reported in Table C.2. Due to the mean ratio
value on logarithmic scale, 2-methoxyethanol/n-hexane is much greater
than zero and 2-methoxyethanol is not reported in any product formula-
tion with the adhesive and sealants category, someone would conclude
that the RETDF did not have intention to recycle n-hexane. Instead, the
RETDF intentionally recycles 2-methoxyethanol, and n-hexane may have
contaminated the recycled products. Moreover, chemicals that are in the
adhesives and sealants product category may not have been tracked by the
framework. For instance, acetone (CAS 67-64-1) can appear in the product
category formulation (see Table C.2), but it is not in Figure 5.6 (nor for
other product categories). The reason is because that chemical is not part of
the TRI Program. Additionally, both toluene and n-hexane are part of the
formulation of this product category. According to Figure 5.6, the ratio for
toluene/n-hexane is much greater than 1 (red); however, the range value
for the ratio in Table C.2 is [-2.01, 0.09] for seven samples. Then at this
point, it is not feasible to obtain results with statistical significance. Hence,
in summary, future developments must overcome the database reporting
limitations and confidentiality, include more data sources and/or building
most robust data models, and define their domain of applicability.

5.6 conclusions

The developed data engineering framework tracks EoL chemical trans-
fers, performs a screening to identify potential EoL exposure scenarios, and
allocates chemical flows at PAU technologies. Also, the framework supplies
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quantitative and qualitative information from on-site PAU technologies
for allocating chemical flows inside a RETDF facility, which is essential to
understand the chemical EoL management chain performance, releases,
and potential exposure pathways. Therefore, this contribution describes
and demonstrates developments and enhancements to the data engineer-
ing framework by incorporating the EoL flow generator, the RETDF, and
post-recycling sectors for identifying and assessing the current chemical
EoL management chain and their recycling loops. The n-hexane case study
demonstrates the framework capability of understanding current inter-
industry relationships and determining feasible flow transfers between
EoL and manufacturing industry sectors under existing regulatory con-
straints and contractual agreements. Additionally, the MRF provides the
link and affinity between the chemical EoL management chain and their
recycling loops, vital for their design, comprehension, and optimization.
The enhanced framework can incorporate potential industrial function,
use, industrial processing/use operations, post-recycling industry sector,
and commercial and consumer uses. Also, the approach advances the data
engineering framework in determining potential unintended recycling of
toxic contents in a circular life cycle. Nevertheless, future work should ana-
lyze the integration of the chemical weight composition of products, which
is relevant to understanding the near-field exposure associated with the cir-
cular life cycle and comparing the composition and functionality between
recycled and brand-new products. Moreover, future work must overcome
the reporting criteria restrictions of the publicly-available database systems
for adequately connecting the data sources. In addition, future research
should carefully analyze whether post-recycling scenarios are economi-
cally viable and if not, try to incorporate features such as OPEX, CAPEX,
chemical unit price, and potential product category costs. Finally, some
upcoming work should extend the framework applicability by integrating
additional data and developing data-driven models for multi-scale and
multi-level analyses of the chemical EoL management chain and their
recycling loops.
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6
C O N T R I B U T I O N S A N D F U T U R E D I R E C T I O N S

6.1 contributions

The key contribution of this work is the development of a data-driven
methodology that leverages publicly-accessible environmental regulatory
database systems (e.g., the U.S. Toxics Release Inventory or TRI) in order
to streamline the chemical risk evaluation process by rapid identification
of potential end-of-life exposure scenarios. The following specific contribu-
tions can be made in this context:

1. A data engineering framework that connects different siloed database
systems and saves that transformed data into a machine-readable
structure for automation, either for exploratory data analysis or
building and testing data-driven models to predict potential end-of-
life activities and exposure scenarios.

2. A harmonization framework for industry sectors, chemicals, and
end-of-life activities that facilitates crosswalking between different
international Pollution Release and Transfer Register systems. More-
over, it can easily be connected to additional sources like the OECD
statistics in order to gain economic and environmental context for
decision-making.

3. The data-driven framework advances by interconnecting database
systems to better understand end-of-life inter-industry chemical flow
transfers and the inderect chemical environmental releases that may
occur when a chemical is transferred to off-site locations for end-of-
life management. Moreover, the framework contributes to the state
of the art by developing data-driven solutions for screening risk due
to the potential unintended recycling of toxic content.

4. The framework proposes a Markov random field, a statistical graph-
ical model, that can help to understand the end-of-life manage-
ment chain and recycling loop. This statistical model is less data-
demanding than an undirected discriminative graphic model, and it
is suitable considering that the exact sequence for the relationship
between the elements in the chemical end-of-life management chain
and the recycling loop comes from siloed database systems.
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5. This thesis explores the development of data preparation pipelines
and the building of QSAR-inspired machine learning models called
Quantitative Structure-Transfer Relationship or QSTR to predict po-
tential end-of-life activities. Those models can be included as part
of the Markov random field to provide the model factors for chem-
icals that are not reported in the primary data sources used by the
framework.

6.2 directions for future work

Multiple directions for future research can be developed to build a
multi-scale and multi-level model for rapid chemical flow tracking and
end-of-life exposure scenario identification. Some future lines of work are
drawn below:

1. The development of data-driven models to predict pollution abate-
ment technologies for chemicals that are not reported in the primary
data sources. Those data-driven models can be integrated with
multi-criteria decision-making tools like the Fuzzy Analytical Hier-
arcy Process or FAHP and criteria like flammability, as this thesis
presents.

2. Chemical risk evaluation reports usually assess and consider high-
end, central tendency, and low-end parameters that represent poten-
tial scenarios that may occur during chemical exposure. Thus, three
separate data-driven models to predict those three different scenarios
for environmental chemical releases should be developed: worst-case,
middle-case, and best-case scenario models.

3. A multi-label classification modelling strategy should be explored to
develop data-driven models or QSTRs to predict end-of-life transfer
scenarios for chemicals. However, the multi-label approach should be
developed, considering techniques like label powerset or transforma-
tion chain. Those models should be developed under a data-centric
paradigm, keeping in mind that the result of a modelling experiment
strongly depends on the dataset and the model.

4. The models developed for predicting the pollution abatement units,
estimating the environmental chemical releases, and screening poten-
tial end-of-life chemical flow transfer scenarios should be integrated
and incorporated into the Markov random field model, in order to
perform a rapid chemical flow analysis and understand the end-of-
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life management chain for chemicals that are not in the primary data
sources presented in the thesis.
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A
A P P E N D I X A : S U P P O RT I N G I N F O R M AT I O N O F
C H A P T E R 3

a.1 data engineering framework

Table A.1 and Figure A.1 describe the collected data entry (i.e., EoL
dataset features or columns) names, sources, data type, and the entities
in the EoL supply and management chain. Please note that data symbol
entries (first column, A.1) are used to show their entity sources in Figure
A.1.

The data engineering process to transform the data into structures for
the framework is depicted as sequential steps in Figure A.2 and Figure A.3.
Figure A.2 presents the data engineering process used to retrieve, clean,
filter, and transform information from TRI considering waste brokering,
while Figure A.3 describes a similar approach for RCRAInfo. The following
step-by-step instructions describe the proposed approach to build the EoL
dataset and correspond to those processing steps shown in Figure A.2 and
Figure A.3, respectively. Notice that Figure 3.4 is a simplified version of
the data engineering and refinement process after combining Figure A.2
and Figure A.3 for transforming the TRI database into structures for the
EoL dataset and tracking chemical flows at EoL stages.

data engineering and refinement process of tri , figure A.2

1. A TRI reporting year (D1) is selected. For this work, the TRI re-
porting year 2017 is used, which is the most recent data year avail-
able online at the time of the study. The documents that described
the content of the data reported to the TRI Program can be found
in https://rb.gy/tcao4t (last access May 15, 2020). Note that the
database that generates these files is updated 4-6 times per year.
Thus, analysts might not be able to reproduce the case study with
the same data source.

2. Generator TRIF ID, location, and primary NAICS code (D2-D9), TRI
chemical I.D. (D12), TRI chemical name (D15), TRI classification (D26),
and generator condition of use (D28) are retrieved from TRI File 1a
and TRI File 1b (Release and Other Waste Management and Chemical
Activities and Uses, respectively). In contrast, the quantity transferred

https://rb.gy/tcao4t
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Table A.1: Data entries collected from several sources (as shown in Figure A.1) for
reconciliation, harmonization, and built the EoL dataset. The 3rd and
6th columns describe the data type for each entry in the EoL dataset: I
for integer, F for float type, and C for character data (alphanumeric).

Data

symbol
Data name

Data

type

Data

symbol
Data name

Data

type

D1 TRI reporting year1 I D2 Generator TRIF ID C

D3 Generator name C D4 Generator street C

D5 Generator city C D6 Generator county C

D7 Generator state C D8 Generator zip I

D9 Generator primary NAICS code I D10 Generator primary NAICS name C

D11 SRS chemical ID I D12 TRI chemical I.D. C

D13 RCRA chemical I.D. C D14 CAS number C

D15 TRI chemical name C D16 SMILES C

D17 TSCA NCP chemical category 1
3 C D18 TSCA NCP chemical category 2

3 C

D19 TSCA NCP chemical category 3
3 C D20 Is a HAP under the CAA?4 C

D21 Is it identified in biosolids by the CWA?5 C D22 Is a priority pollutant under the CWA?6 C

D23 Is it part of CCL under the SDWA?7 C D24 Is it part of NPDWR under the SDWA?8 C

D25
Is a chemical in the TSCA

non-confidential inventory?9

C D26 TRI classification10 C

D27 Metal indicator C D28
Generator CoU based on

TRI and matching TSCA CDR categories
C

D29 Quantity transferred by the generator F D30 Unit of measurement C

D31
Reliability and temporal correlation

of the quantity transferred
F D32 EoL activity category based on TRI C

D33 EoL activity category under TSCA reports C D34 EoL activity category under the WMH C

D35 Receiver FRS ID2 I D36 Receiver TRIF ID2 C

D37 Receiver RCRA ID C D38 Receiver name C

D39 Receiver street C D40 Receiver city C

D41 Receiver county C D42 Receiver state C

D43 Receiver zip I D44 RETDF FRS ID2 I

D45 RETDF TRIF ID2 C D46 RETDF name C

D47 RETDF street C D48 RETDF city C

D49 RETDF county C D50 RETDF state C

D51 RETDF zip I D52 RETDF primary NAICS code I

D53 RETDF primary NAICS name C D54
Maximum amount of chemical present

at RETDF
I

D55 Total chemical generated as waste by RETDF F D56 High-end scenario chemical flow F

D57 Environmental compartments, EC-1-EC-4 C D58
RETDF chemical flow releases to the

compartment D57
11

F

D59 RETDF total chemical release11 F
1D1 is the year when the generator reported the off-site transfer in the TRI program. It is the starting point for data engineering (see Figure

A.1).
2For traceability, if D35 = D44 and D36 = D45, then the RETDF was the receiver; therefore, there is not a brokerage. On the other hand,

when a transfer was to a waste broker D35 ̸= D44 and D36 ̸= D45.
3For the starting point of hazard assessment, D17, D18, and D19 are the categories in which a chemical may belong under TSCA NCP.

However, when a chemical does not belong to any TSCA NCP category, then this is classified according to the TRI program, that means,
D17 = D26.
4Link: https://rb.gy/a97rbp (access June 2, 2020).
5Link: https://rb.gy/zmox5e, Appendix A, Table A1 (access June 2, 2020).
6Link: https://rb.gy/d4zapo (access June 2, 2020)
7Link: https://rb.gy/xkoxx0 (access June 2, 2020).
8Link: https://rb.gy/jc6u59 (access June 2, 2020).
9Link: https://rb.gy/ej09ah (access June 2, 2020).
10TRI (general EPCRA Section 313 chemical), Persistent Bioaccumulative and Toxic, and Dioxin or Dioxin-like compound.
11D58 is the total emission to each environmental compartment that was reported by the RETDF to the TRI (see Section 3.3.3) instead of

being the indirect release of a chemical that may occur after it is transferred to an off-site facility for EoL management. Moreover, D59 is the
sum of all releases to each compartment from the RETDF.

https://rb.gy/a97rbp
https://rb.gy/zmox5e
https://rb.gy/d4zapo
https://rb.gy/xkoxx0
https://rb.gy/jc6u59
https://rb.gy/ej09ah
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off-site (D29), EoL activity category based on TRI (D32), receiver name
and location (D38-D43), and in some cases receiver RCRA ID (D37,
when it has the correct structure of the I.D. assigned by EPA to the
physical location of a hazardous RETDF), are gathered from TRI File
3a (Off-site Transfers).

3. If D28 belonging to TSCA CDR industrial CoU, the receiver is located
in the U.S., and D32 is an EoL activity of interest, the records are
selected to form a partial dataset called TRI dataset 1.

4. As shown by the red diamond 1, D37 or D38-D43 are used to access
to FRS. When D37 has the correct reporting structure, this is used
to retrieve receiver FRS ID (D35) and subsequently receiver TRIF ID
(D36). Otherwise, D38-D43 are compared to find whether or not these
are similar to any facility location recorded in the FRS, and after
gathering D35, D36, and D37.

5. To be able to continue the tracking, records are selected when the
receivers have reported at least to TRI or RCRAInfo (D36 and D37 are
not null) to form TRI dataset 2.

6. As shown by the red diamond 2, D12 is used to connect SRS and
then obtain SRS chemical I.D. (D11) and CAS number (D14). After
that, as indicated by the red diamond 3, D11 is used to confirm using
D20-D25 whether or not a TRI chemical belongs to one of the lists
of substances of concern named in Section 3.3.1 (e.g., RCRA listed
hazardous waste). Thus, TRI dataset three is obtained.

7. According to the red diamond 4, D12 is used to retrieve the SMILES
(D16) of each TRI chemical from CompTox. After that, as presented
by the red diamond 5, SMILES of each chemical is the input so that
the AIM tool, predicts whether a chemical may belong to any TSCA
NCP categories (D17-D19). Thus, TRI dataset four is built.

8. As shown by the red diamond 6, D12, D13, D32, D36, and D37 are
used to merge TRI database 4 with RCRA database 3 (resulting as
explained below in the Data engineering and refinement process of
RCRAInfo). Thus, obtaining RETDF location and primary NAICS
code (D46-D52), the maximum amount of chemical at RETDF (D54),
total chemical generated as waste at by RETDF (D55), and chemical
flow released to a compartment from RETDF and sum of releases to
all compartments (D57-D59), which are data entry group 3 in Figure
A.1. Moreover, the next sub-steps shall be followed:
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Data entry groups
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Figure A.1: Schematic explanation about the relationship between the entities
in the EoL supply and management chain and data entries and
their source after refinement, harmonization, and building of the
EoL dataset.
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9. 9.1. Brokering case: If D13 and D37 are non-null; these are used to
check whether the TRI chemical may be considered a listed
hazardous waste, and the receiver has reported to RCRAInfo.
Then, D13, D37 and D32 are used to access to RCRA dataset 3.
If several data records satisfy the search for D13, D32, and D37,
then the one closest to the year 2017 is selected, as far as it
satisfies the consistency analysis explained in Section 3.3.3.

9.2. No brokering case: If the previous search is not successfully
completed and the record has a non-null D36 (i.e., the receiver
has reported to TRI), it goes through a recursive search from
the TRI reporting year 2001 to 2017. The same applies when
a receiver has not reported to RCRAInfo (null D32), the TRI
chemical is not listed hazardous waste (null D13), or both. For
this recursive search, D12, D32, and D36 (for this case D44=D36)
are used. If various records are found having the same D12,
D32, and D36 (or D44), then the record closest to the year 2017 is
selected.

10. Finally, the maximum possible flow of chemical transferred (D56) is
computed as described in Section 3.3.3. As was explained before, D56

is the maximum amount of chemical transferred that could end up
as emissions at an off-site facility during its EoL. As explained in
Section 3.3.3, it is given by the minimum flow found by tracking a
chemical using the procedures described in Figure A.2 and Figure
A.3.

data engineering and refinement process of rcrainfo, fig-
ure A.3

1. A reporting year of the RCRA report is selected as a starting point.
However, the procedure in Figure A.3 is done for each RCRA biennial
report from 2001 to 2017 (odd years). The idea is to try to find an
off-site facility (broker(s), receiver, and RETDF) in the information
stored to date, such that it is possible to track a chemical flow.

2. Using the amount of hazardous waste received by a facility and the
reported management method code (at the red diamond 1 stage), the
Nonbrokers dataset 1 and Brokers dataset 1 are built. Therefore, If the
record has an amount received other than 0, this goes to Nonbrokers
dataset 1, unless it has a management method code equal to H141,
which means that a facility receives the waste only for storage and
then transfer, therefore, it would go to Brokers dataset 1.
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Figure A.2: Data engineering and refinement process for transforming the TRI database into structures for the EoL dataset and tracking
chemical flows at EoL stages. RCRAInfo, data engineering process, is presented in Figure A.3.
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3. With the information collected at the red diamond 2 stage, the Bro-
kers dataset 1 passes through the grey block composed of 4 stages,
obtaining a cleaner data set called Brokers dataset 2 by:

3.1. Searching the quantity of waste containing the chemical of con-
cern shipped by a broker if source code is G61, that means, the
waste was received from off-site for storage and then transfer.
Here, information about “to where” and “for what” the waste
was shipped is identified as well.

3.2. Knowing the management activity for which a hazardous waste
was shipped (e.g., biological treatment) and where it was trans-
ferred, the off-site facility which received the hazardous waste
is searched in the information stored in RCRAInfo to date.

3.3. If the searching is successful, a flow consistency analysis is done
to ensure the flow shipped by a broker is less than the flow
received by the off-site facility.

3.4. If several records are found having the same off-site facility
and management activity, it is selected the record closest to the
reporting year of the RCRA report, which was selected in step 1.

3.5. Step 3 is done until the RETDF is found.

4. Broker dataset 2 and Nonbrokers dataset 1 are combined.

5. After that, RCRA IDs of facilities, at the red diamond 3, are used to
find their FRS IDs. Subsequently, as shown the red diamond 4, these
are used to check if a facility has reported to the TRI program at any
time. Thus, if a facility satisfies the above, a record is kept in RCRA
dataset 1.

6. As shown at the red diamond 5, RCRA IDs of hazardous wastes
are used to retrieve the SRS IDs. They are then used to verify if
hazardous waste is a TRI chemical, which means if it has a TRIF ID.
Thus, RCRA dataset 2 is generated at this step.

7. Finally, the TRIF ID of RETDFs and hazardous wastes are used to
connect with TRI reports (the red diamond 7). Then, information
about data entry group 9 in Figure A.1 is searched in the existing and
available TRI reports to date. If the search is successful, the record
is kept; otherwise, it is discarded. Subsequently, RCRA dataset 3 is
obtained and can be used by step 8.1 of the Data engineering and
refinement process of TRI.
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Figure A.3: Data engineering and refinement process for transforming the RCRAInfo database into structures for the EoL dataset
and tracking chemicals in industrial wastes. Management method code H141 “describes the type of hazardous waste
management system used to treat, recover, or dispose of hazardous waste.” The source code G61 “describes the type of
process or activity (i.e., source) where hazardous waste was generated.”
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Note that both processes shown in Figure A.2 and Figure A.3 can be
done in parallel, at least until the process presented in Figure A.2, requires
RCRA dataset 3. It is essential to clarify that the recursive search shown in
Figure A.2 for all existing and available TRI reports to date, is independent
of the data engineering process presented in Figure A.3 for RCRAInfo,
making it possible to address both procedures in parallel.

a.2 development of equation 3 .1

The framework assumes that a RETDF receives a chemical flow for (i)
energy recovery, recycling, treatment (physical/chemical/thermal/biolog-
ical), or disposal, and (ii) the recycled chemical is used as a product or
incorporated in a valuable product. Additionally, as shown in Figure
A.4(A), the RETDF may also generate wastes containing a chemical. The to-
tal waste having the chemical can be recycled, treated, transferred, released,
disposed of, used for recovering energy. Thus, Equation A.1 presents the
annual mass balance for the chemical. ∆AC(i) is the annual change of
the amount of chemical present at the RETDF, which can be calculated
as ∆AC(i) = AC(i)

end − AC(i)
start using the amount of chemical present at the

start of the year (AC(i)
start) and at the end of the year (AC(i)

end).

∆AC(i) = Input + Generation − D(i)
55 ↔ Input + Generation = ∆AC(i) + D(i)

55
(A.1)

As depicted in Figure A.4(B), the amount of chemical present or accu-
mulated at the RETDF can change over the reporting year. Thus, if D(i)

54
is the range code representing the maximum amount of chemical present
at RETDF at any moment over the reporting year and QM(i) is a value
that belongs to D54, AC(i)

start, and AC(i)
end would be AC(i)

start ≤ QM(i) and

AC(i)
end ≤ QM(i) and even they can be 0. Thus, ∆AC(i) must be estimated to

calculate the emission factor for each record i. Also, two boundary-value
cases are:

1. Figure A.5(A) shows a first case where AC(i)
start = QM(i) and AC(i)

end =

0 with QM(i) ∈ D(i)
54 . If the highest value for QM(i) is taken from D(i)

54 ,
∆AC(i) = −MAX(QM(i)). This case represents the lowest possible
value that ∆AC(i) can take.

2. Figure A.5(B) shows a second case where AC(i)
start = 0 and AC(i)

end =

QM(i). Similarly, taking the highest value for QM(i), ∆AC(i) =

MAX(QM(i)). This value is the highest possible value for∆AC(i).



170 appendix a : supporting information of chapter 3

 

Figure A.4: (A) Summary of the elements included in the annual mass balance
for a chemical at a RETDF based on the assumptions presented in
Section 3.3.3 (B) The hypothetical curve is representing the amount of
a chemical present at a RETDF over the course of a reporting year as
a time function.

Due to the above boundary-value cases, ∆AC(i) has a constraint such
∆AC(i) ∈ [−MAX(QM(i)), MAX(QM(i))]. However, this is the first of
three constraints for ∆AC(i), as shown in Figure A.5(C). The other two
constraints for ∆AC(i) are obtained as:

1. The term Input + Generation cannot be negative, and the denom-
inator of the emission factor must not be 0 to avoid indetermina-
tion. Thus, using the Equation A.1, a second constraint for ∆AC(i)

is obtained, ∆AC(i) > −D(i)
55 , i.e., ∆AC(i) ∈ (−D(i)

55 ,+∞), which is
depicted in Figure A.5(C).
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Figure A.5: (A) Hypothetical case with the lowest value for ∆AC(i) (more nega-
tive).(B) Hypothetical case with the highest value for ∆AC(i) (more
positive).(C) Intersection of the intervals obtained by applying the
constraints.

2. Additionally, the sum of the emission factors must be a value be-
tween 0 to 1. As Figure 3.5 shows, the framework considers four
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Table A.2: Estimating indirect release quantities using Equation 3.1. A record from
the EoL dataset is used as an example.

Data from the EoL dataset

D(i)
29 D(i)

54 MAX(QM(i)) D(i)
55 D(i)

57 D(i)
58 D(i)

59

784.261kg

05

(45,359.237

to

453,591.916kg)

453,591.916kg 348,373.733kg

fugitive air release 170.319kg

176.234kg
on-site soil release 0.000kg

on-site surface water release 0.023kg

stack air release 5.892kg

Internal calculations to obtain quantities released to each environmental compartment

• D(i)
59 − D(i)

55 = −348, 197.499kg

• MAX(D(i)
59 − D(i)

55 ,−MAX(QM(i))) = MAX(−348, 197.499kg,−453, 591.916kg) = −348, 197.499kg

• Thus, ∆AC(i) ∈ [−348, 197.499kg, 453, 591.916kg]

• As an example, uniform distribution and a sample size of 3 is used to obtain three values of ∆AC(i) and

subsequently three values of EF(i)
k for each environmental compartment using Equation 3.1:

1. Fugitive air release, EC-1: 6.44 × 10−5, 0.0001, and 4.88 × 10−5kg/kg

2. On-site soil release, EC-2: all are equal to 0kg/kg

3. On-site surface water release, EC-3: 8.57 × 10−9, 1.34 × 10−8, and 6.50 × 10−9kg/kg

4. Stack air release, EC-4: 2.23 × 10−6, 3.47 × 10−6, and 1.69 × 10−6kg/kg

• Using the values obtained above it is possible to calculate ER(i)[D(i)
57 k]:

1. Fugitive air release, EC-1: 5.05 × 10−2,7.87 × 10−2, and 3.83 × 10−2kg

2. On-site soil release, EC-2: all are equal to 0kg

3. On-site surface water release, EC-3: 6.72 × 10−6, 1.05 × 10−5, and 5.10 × 10−6kg

4. Stack air release, EC-4: 1.75 × 10−3, 2.72 × 10−3, and 1.32 × 10−3kg

• For each compartment an arithmetic average for ER(i)[D(i)
57 k], i.e., ER(i)[D(i)

57 k] can be computed:

1. Fugitive air release, EC-1: 5.58 × 10−2kg

2. On-site soil release, EC-2: 0.0kg

3. On-site surface water release, EC-3: 7.43 × 10−6kg

4. Stack air release, EC-4: 1.93 × 10−3kg

• Additionally, these values can be added to obtain the average total amount of the chemical transferred by the

generator that may be potentially released from the RETDF: 5.78 × 10−2kg

• Additionally, these values can be added to obtain the average total amount of the chemical transferred by the

generator that may be potentially released from the RETDF: 5.78 × 10−2kg

compartments: indoor air (EC-1), on-site soil (EC-2), on-site sur-
face water (EC-3), and outdoor air (EC-4). Due to this criterion in
the sum of the emission factors, a third constraint can be obtained
for ∆AC(i). Thus, developing the Equation A.2 results in the con-
straint −D(i)

55 ≤ D(i)
59 − D(i)

55 ≤ ∆AC(i). However, considering the
second constraint, the third constraint for ∆AC(i) can be expressed as
D(i)

59 − D(i)
55 ≤ ∆AC(i), i.e. [D(i)

59 − D(i)
55 ,+∞) , as presented in Figure

A.5(C).

Figure A.5(C) shows the intersection of the three intervals which repre-
sent the three constraints for ∆AC(i). Thus, from the discontinued vertical
purple line on the right, MAX(QM(i)) is the upper value for the intersec-
tion. However, as indicated by the green curly bracket, the lower value
for the intersection depends on the largest value between D(i)

59 − D(i)
55 and

MAX(QM(i)), i.e., MAX(D(i)
59 − D(i)

55 ,−MAX(QM(i))). Thus, the domain



A.3 tables with labels for the mc case study 173

for ∆AC(i) is [MAX(D(i)
59 − D(i)

55 ,−MAX(QM(i))), MAX(QM(i))]. Thus,
for a record i, ∆AC(i) has several values in that interval so that ∆AC(i) may
be represented by a random number.

0 ≤ ∑4
k=1 EF(i)

k ≤ 1

0 ≤ ∑4
k=1

D(i)
58 k

∆AC(i) + D(i)
55

≤ 1

0 ≤ 1

∆AC(i) + D(i)
55

× ∑4
k=1 D(i)

58 k ≤ 1

0 ≤≤ 1

0 ≤
D(i)

59

∆AC(i) + D(i)
55

≤ 1 ↔ −D(i)
55 ≤ D(i)

59 − D(i)
55 ≤ ∆AC(i)

(A.2)

a.3 tables with labels for the case study : tracking of mc

flows at the eol stage at off-site locations (transfers)

Table A.3: NAICS Classification for the RETDF industry sector (RETDFiS) and
used in the chemical flow analysis shown in Figure 3.6.

Name Label

All other miscellaneous chemical product and preparation manufacturing RETDFiS-1

Hazardous waste treatment and disposal RETDFiS -2

Cement manufacturing RETDFiS -3

Materials recovery facilities RETDFiS -4

Solid waste combustors and incinerators RETDFiS -5

Petroleum lubricating oil and grease manufacturing RETDFiS -6

All other basic organic chemical manufacturing RETDFiS -7

Photographic film, paper, plate, and chemical manufacturing RETDFiS -8

Pesticide and other agricultural chemical manufacturing RETDFiS -9

Table A.4: TRI activities and uses of chemicals (TRIU) for defining the CoU cate-
gories described in Table A.7.

Name Label

Added as a formulation component TRIU-1

Used as a chemical processing aid TRIU-2

Repackaging TRIU-3

Ancillary or other use TRIU-4

Produce the chemical TRIU-5

Used as a reactant TRIU-6

As a process impurity TRIU-7

Used as a manufacturing aid TRIU-8

Import the chemical TRIU-9

Used as an article component TRIU-10
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Table A.5: Environmental compartment (E.C.) labels for the data engineering
approach, and shown in Figure 3.6.

Name Label
1Fugitive air release EC-1
1On-site soil release EC-2
1On-site surface water release EC-3
1Stack air release EC-4

Net recycling EC-5

Net energy recovery EC-6

Net treatment EC-7

Net disposal EC-8
1These are the environmental compartments

which are part of D57 in the EoL dataset.

Table A.6: NAICS classification for the generator industry sector (GiS) used in the
chemical flow analysis shown in Figure 3.6.

Name Label

Adhesive manufacturing GiS-1

All other basic organic chemical manufacturing GiS-2

All other miscellaneous chemical product and preparation manufacturing GiS-3

Ammunition (except small arms) manufacturing GiS-4

Artificial and synthetic fibers and filaments manufacturing GiS-5

Cement manufacturing GiS-6

Copper rolling, drawing, extruding, and alloying GiS-7

Ethyl alcohol manufacturing GiS-8

Guided missile and space vehicle propulsion unit and propulsion unit parts manufacturing GiS-9

Hazardous waste treatment and disposal GiS-10

In–vitro diagnostic substance manufacturing GiS-11

Industrial gas manufacturing GiS-12

Irradiation apparatus manufacturing GiS-13

Materials recovery facilities GiS-14

Medicinal and botanical manufacturing GiS-15

Metal coating, engraving (except jewelry and silverware), and allied services to manufacturers GiS-16

Metal crown, closure, and other metal stamping (except automotive) GiS-17

National security GiS-18

Other basic inorganic chemical manufacturing GiS-19

Other chemical and allied products merchant wholesalers GiS-20

Paint and coating manufacturing GiS-21

Pesticide and other agricultural chemical manufacturing GiS-22

Petrochemical manufacturing GiS-23

Petroleum lubricating oil and grease manufacturing GiS-24

Pharmaceutical preparation manufacturing GiS-25

Photographic and photocopying equipment manufacturing GiS-26

Plastics material and resin manufacturing GiS-27

Precision turned product manufacturing GiS-28

Special die and tool, die set, jig, and fixture manufacturing GiS-29

Sporting and athletic goods manufacturing GiS-30

Surgical and medical instrument manufacturing GiS-31
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Table A.7: Chemical condition of use (CoU) categories (at generator facility) em-
ployed in the chemical flow analysis shown in Figure 3.6. Also, Table
A.4 describes the corresponding TRI activities and uses of chemicals
(TRIU) combinations.

Label1 Combination

CoU-1 TRIU-1

CoU-2 TRIU-1 + TRIU-2

CoU-3 TRIU-1 + TRIU-3 + TRIU-4

CoU-4 TRIU-1 + TRIU-3 + TRIU-2

CoU-5 TRIU-1 + TRIU-3 + TRIU-2 + TRIU-4

CoU-6 TRIU-4

CoU-7 TRIU-5

CoU-8 TRIU-5 + TRIU-3

CoU-9 TRIU-5 + TRIU-6 + TRIU-1 + TRIU-7 + TRIU-2 + TRIU-8 + TRIU-4

CoU-10 TRIU-3 + TRIU-2 + TRIU-4

CoU-11 TRIU-2

CoU-12 TRIU-2 + TRIU-8

CoU-13 TRIU-2 + TRIU-8 + TRIU-4

CoU-14 TRIU-6 + TRIU-1 + TRIU-3 + TRIU-2

CoU-15 TRIU-6 + TRIU-2 + TRIU-4

CoU-16 TRIU-1 + TRIU-4

CoU-17 TRIU-5 + TRIU-3 + TRIU-7

CoU-18 TRIU-6 + TRIU-2

CoU-19 TRIU-8

CoU-20 TRIU-3 + TRIU-7 + TRIU-4

CoU-21 TRIU-3

CoU-22 TRIU-7

CoU-23 TRIU-7 + TRIU-4

CoU-24 TRIU-5 + TRIU-1

CoU-25 TRIU-5 + TRIU-9 + TRIU-3 + TRIU-7 + TRIU-4

CoU-26 TRIU-5 + TRIU-3 + TRIU-4

CoU-27 TRIU-3 + TRIU-4

CoU-28 TRIU-9 + TRIU-1 + TRIU-4

CoU-29 TRIU-5 + TRIU-2 + TRIU-4

CoU-30 TRIU-2 + TRIU-4

CoU-31 TRIU-6 + TRIU-1

CoU-32 TRIU-1 + TRIU-3

CoU-33 TRIU-5 + TRIU-6 + TRIU-1

CoU-34 TRIU-6

CoU-35 TRIU-6 + TRIU-7 + TRIU-2 + TRIU-8 + TRIU-4

CoU-36 TRIU-5 + TRIU-9 + TRIU-3 + TRIU-2 + TRIU-8 + TRIU-4

CoU-37 TRIU-1 + TRIU-7 + TRIU-2

CoU-38 TRIU-5 + TRIU-1 + TRIU-2 + TRIU-4
1In the TRI program, facilities do not report quantities of chemicals generated at each

activity; instead of that, they submit a form with all the aggregated quantities.
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Table A.8: Classification of EoL activities used in the chemical flow analysis shown
in Figure 3.6. The 1st column is the categorization used by the TRI
program for representing off-site transfers. Notice that EoL manage-
ment by combustion is captured in both energy recovery and treatment
via incineration. Also, this table shows the resulting TRI classifica-
tion categories after applying the EoL data engineering framework
for the MC case study. Other chemical substances might have other
resulting categories from the full set of TRI classification categories
https://rb.gy/d2hwez (access June 2, 2020).

TRI classification1 TSCA classification2 Label EPA WMH3 Label

Solvents/organics recovery
Recycling4 EoL-1 Recycling4 WMH-1

Other reuse or recovery

Energy recovery Energy recovery4 EoL-2 Energy recovery4 WMH-2

Incineration/insignificant fuel

value5 Incinerators EoL-3

Treatment WMH-3Incineration/thermal treatment5

Wastewater treatment

(excluding POTWs)

—non–metals

Industrial wastewater treatment EoL-4

Solidification/stabilization —

treatment —non–metals Other treatment EoL-5

Other waste treatment

RCRA Subtitle C landfills
Landfill (municipal, hazardous,

or other land disposals)
EoL-6

Disposal WMH-4

Underground injection class I

wells
Underground injection EoL-7

1These correspond to D32.
2These correspond to D33.
3These correspond to D34.
4These classifications are part of D33 and D34.
5 For a facility “to claim that a reported EPCRA Section 313 chemical sent off-site is used for the purpose of energy

recovery and not for treatment for destruction, the EPCRA Section 313 chemical must have a significant
heating value and must be combusted in an energy recovery unit such as an industrial boiler, furnace, or kiln”. Thus,
the “incineration/insignificant fuel value” category represents that the chemical goes into a “legitimate energy recovery
unit,” but it does not “contribute to the heating value of the waste.”

a.4 data obtained from tri explorer

Based on https://rb.gy/ot4mph (access May 15, 2020), the TRI off-site
transfers for further management of waste containing MC were gathered
and summarized in Table A.9 using percentages. That information was ob-
tained by the TRI administrators by means of 257 facilities in all industries,
for MC in the U.S., 2017. In addition, from the EoL dataset, 259 pathways
for MC were obtained after tracking using the data engineering approach,
which were used to calculate the values in the 3rd column of Table A.9.
Using chi-square hypothesis test with 3-degree freedom and significance
level 0.05, the critical value is 7.81 and the test statistic 1.9011, that means, it
is not rejected the hypothesis that the obtained material distribution using

https://rb.gy/d2hwez
https://rb.gy/ot4mph
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the EoL dataset records are similar to those obtained using the information
available online from the TRI Explorer tool since 1.9011 < 7.81.

Table A.9: MC percentage distribution for each type of off-site waste management
using the pathways found using the data engineering approach and
the information from TRI administrators.

Management type
%

χ2

From TRI From EoL

Transfers to energy recovery 19.016 18.215 0.0337

Transfer to recycling 36.720 42.779 0.9998

Transfers to disposal 0.348 0.017 0.3148

Transfers to treatment 43.916 38.989 0.5528

Total Transfers off-site for further waste management 100.000 100.000 1.9011

a.5 python script that was written for the mc case study

The Python code was uploaded to the following GitHub repository:

¸ https://github.com/jodhernandezbe/MC_Case_Study

https://github.com/jodhernandezbe/MC_Case_Study
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b.1 case study 1 : celecoxib manufacturing process

Table B.1: Specifications of EoL streams from the Celecoxib manufacturing process.
Stream αinput

1 Chemical [%wt/wt]

1 (isopropanol/water washes) L
Isopropanol 49.20

Methanol 0.70

2 (mother liquor or filtrate) W
Isopropanol 34.50

Methanol 8.45

3 (dryer distillates) L
Isopropanol 50.70

Methanol 0.47

1 For the TRI Program, liquid wastes having more than 50.00 %wt/wt
of water are considered wastewater (W); otherwise, they are taken as
nonaqueous waste (L).

Table B.2: Comparison between CFA performed by the bottom-up and top-down
approaches. The results in the table are for stream # 1 in Table B.1.

PAU name
Output

stream
Chemical

Mean quantity -

bottom-up [kg/yr]

Mean quantity -

top-down [kg/yr]

Solvents/Organics

Recovery - Batch

Still Distillation

F(c)
waste/release methanol 2.79 × 100 4.46 × 100

F(c)
recycled methanol 5.07 × 104 (88.48 %)1 4.74 × 104 (82.72%)1

F(c)
f ugitive methanol 3.67 × 102 3.62 × 103

F(c)
e f f luent isopropanol 1.99 × 104 9.86 × 105

methanol 5.26 × 103 5.26 × 103

isopropanol 3.95 × 106 2.99 × 106

Liquid Injection

Incinerator

F(c)
destroyed isopropanol 3.93 × 106 (99.18 %)2 1.97 × 106 (49.85%)2

F(c)
f ugitive methanol 3.79 × 102 3.39 × 102

isopropanol 4.55 × 103 1.19 × 106

F(c)
e f f luent methanol 4.90 × 103 4.90 × 103

isopropanol 1.52 × 104 9.92 × 103

1 The expected η(c) for methanol is 90.00%.
2 The expected η(c) for isopropanol is 99.50%.
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Table B.3: PAU selection and sequence arrangement and CFA for the EoL flows
from the Celecoxib manufacturing process in Table B.1.

Stream
PAU

name
Position

Output

stream
αinput

1 Chemical
Mean

quantity [kg/yr]
CV2

1

Solvents/Organics

Recovery -

Batch Still

Distillation

1

F(c)
waste/release W methanol 2.79 × 100

2.40

F(c)
recycled L methanol 5.07 × 104

0.01

F(c)
f ugitive A

methanol 3.67 × 102
1.22

isopropanol 1.99 × 104
0.01

F(c)
e f f luent L

methanol 5.26 × 103
0.08

isopropanol 3.95 × 106
0.01

Liquid

Injection

Incinerator

2

F(c)
destroyed NA isopropanol 3.93 × 106

0.01

F(c)
f ugitive A

methanol 3.79 × 102
1.36

isopropanol 4.55 × 103
0.79

F(c)
e f f luent A

methanol 4.90 × 103
0.13

isopropanol 1.52 × 104
0.24

2

Solvents/Organics

Recovery -

Batch Still

Distillation

1

F(c)
waste/release W methanol 4.16 × 101

2.80

F(c)
recycled L methanol 6.12 × 105

0.01

F(c)
f ugitive A

methanol 3.99 × 103
1.26

isopropanol 1.39 × 104
0.01

F(c)
e f f luent W

methanol 6.39 × 104
0.07

isopropanol 2.77 × 106
0.01

Liquid

Injection

Incinerator

2

F(c)
destroyed NA isopropanol 2.75 × 106

0.01

F(c)
f ugitive A

methanol 4.46 × 103
1.34

isopropanol 3.20 × 103
0.82

F(c)
e f f luent A

methanol 5.99 × 104
0.12

isopropanol 1.07 × 104
0.25

3

Solvents/Organics

Recovery -

Batch Still

Distillation

1

F(c)
waste/release W methanol 2.84 × 100

3.61

F(c)
recycled L methanol 3.41 × 104

0.01

F(c)
f ugitive A

methanol 2.23 × 102
1.34

isopropanol 2.04 × 104
0.01

F(c)
e f f luent L

methanol 3.56 × 103
0.08

isopropanol 4.07 × 106
0.01

Liquid

Injection

Incinerator

2

F(c)
destroyed NA isopropanol 4.05 ×1 06

0.01

F(c)
f ugitive A

methanol 2.37 × 102
1.36

isopropanol 5.86 × 103
0.91

F(c)
e f f luent A

methanol 3.31 × 103
0.13

isopropanol 1.45 × 104
0.37

1 For the TRI Program, A represents air emissions. Additionally, liquid wastes holding more than 50.00 %wt/wt of
water are considered wastewater (W); otherwise, they are taken as a nonaqueous liquid (L). NA is not applicable,
and it is used for destroyed or converted mass streams.
2 The bright red color represents the flows have high variance or variability, i.e., CV > 1.
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b.2 case study 2 : solvent eol flows from food is

Table B.4: Parameters in the EoL flow that differentiate how the procedure in
Figure 4.5 deals with each solvent EoL amount from the food IS1.

Chemical Stream I(c)IB αinput
2 η(c) [%] w(c) [%]

methanol

4 Yes W 89.55 0.51

5 Yes W 99.85 25.50

6 Yes L 99.98 75.00

7 No W 89.55 0.51

8 No W 99.85 25.50

9 No L 99.98 75.00

ammonia

10 Yes W 99.00 1.00 × 10−4

11 Yes W 99.99 0.01

12 Yes W 100.00 0.51

13 Yes W 100.00 25.50

14 No W 99.00 1.00 × 10−4

15 No W 99.99 0.01

16 No W 100.00 0.51

17 No W 100.00 25.50

ethylene

glycol

18 No W 96.22 0.51

19 No W 99.94 25.50

n-hexane

20 No W 42.00 1.00 × 10−7

21 No W 99.88 1.00 × 10−4

22 No W 100.00 0.01

23 No W 100.00 0.51

24 No W 100.00 25.50

25 No L 100.00 75.00

1 These streams are assumed to be a binary mixture.
2 For the TRI Program, liquid wastes having more than 50.00

%wt/wt of water are considered wastewater (W); otherwise, they
are taken as a nonaqueous liquid (L).
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Table B.5: PAU selection and CFA for the methanol EoL flows from the food IS in
Table B.4.

Stream PAU name Output stream αoutput
1 Mean quantity

[kg/yr]
CV2

F(c)
waste/release W 4.00 × 100

1.64

F(c)
recycled L 3.75 × 104

0.01

F(c)
f ugitive A 1.73 × 102

1.19

4

Solvents/Organics Recovery -

Batch Still Distillation

F(c)
e f f luent W 4.19 × 103

0.05

F(c)
destroyed NA 2.11 × 106

0.01

F(c)
f ugitive A 1.97 × 102

1.405 Aerobic Treatment

F(c)
e f f luent W 3.08 × 103

0.09

F(c)
destroyed NA 6.21 × 106

0.01

F(c)
f ugitive A 7.12 × 101

1.376 Liquid Injection Incinerator

F(c)
e f f luent A 1.03 × 103

0.10

F(c)
waste/release W 3.07 × 100

2.72

F(c)
recycled L 3.75 × 104

0.01

F(c)
f ugitive A 2.55 × 102

1.22

7

Solvents/Organics Recovery -

Batch Still Distillation

F(c)
e f f luent W 4.12 × 103

0.07

F(c)
destroyed NA 2.11 × 106

0.01

F(c)
f ugitive A 2.00 × 102

1.198 Aerobic Treatment

F(c)
e f f luent W 3.07 × 103

0.08

F(c)
destroyed NA 6.21 × 106

0.01

F(c)
f ugitive A 7.31 × 101

1.249

Liquid Injection

Incinerator
F(c)

e f f luent A 1.02 × 103
0.09

1 For the TRI Program, A represents air emissions. Additionally, liquid wastes containing more than
50.00 %wt/wt of water are considered wastewater (W); otherwise, they are taken as nonaqueous material
(L). NA is not applicable, and it is used for destroyed or converted mass streams.
2 The bright red color represents the flows have high variance or variability, i.e., CV > 1.

Table B.6: PAU selection and CFA for the ethylene glycol EoL flows from the food
IS in Table B.4.

Stream PAU name Output stream αoutput
1

Mean

quantity

[kg/yr]

CV2

18 Aerobic Treatment
F(c)

destroyed NA 4.23 × 107
0.01

F(c)
f ugitive A 3.50 × 104

1.55

F(c)
e f f luent W 1.63 × 106

0.04

19 Aerobic Treatment
F(c)

destroyed NA 2.22 × 109
0.01

F(c)
f ugitive A 2.57 × 104

1.38

F(c)
e f f luent W 1.22 × 106

0.03

1 For the TRI Program, A represents air emissions. Additionally, liquid wastes con-
taining more than 50.00 %wt/wt of water are considered wastewater (W); otherwise,
they are taken as nonaqueous material (L). NA is not applicable, and it is used for
destroyed or converted mass streams.
2 The bright red color represents the flows have high variance or variability, i.e., CV

> 1.
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Table B.7: PAU selection and CFA for the ammonia EoL flows from the food IS in
Table B.4.

Stream PAU name Output stream αoutput
1

Mean

quantity

[kg/yr]

CV2

10 Aerobic Treatment
F(c)

destroyed NA 1.29 × 103
0.01

F(c)
f ugitive A 1.23 × 100

1.17

F(c)
e f f luent W 1.18 × 101

0.12

11

Solvents/Organics Recovery -

Fractionation

F(c)
waste/release W 1.29 × 10−1

2.56

F(c)
recycled L 1.32 × 105

0.01

F(c)
f ugitive A 1.32 × 100

1.24

F(c)
e f f luent W 1.14 × 101

0.17

12

Solvents/Organics Recovery -

Fractionation

F(c)
waste/release W 4.10 × 10−2

1.55

F(c)
recycled L 1.31 × 107

0.01

F(c)
f ugitive A 1.46 × 100

1.14

F(c)
e f f luent W 1.14 × 101

0.15

13 Neutralization
F(c)

destroyed NA 6.64 × 108
0.01

F(c)
f ugitive A 1.06 × 100

1.35

F(c)
e f f luent W 8.64 × 100

0.16

14 Aerobic Treatment
F(c)

destroyed NA 1.29 × 103
0.01

F(c)
f ugitive A 8.44 × 10−1

1.21

F(c)
e f f luent W 1.22 × 101

0.08

15

Solvents/Organics Recovery -

Fractionation

F(c)
waste/release W 3.91 × 10−2

2.61

F(c)
recycled L 1.31 × 105

0.01

F(c)
f ugitive A 8.89 × 10−1

1.32

F(c)
e f f luent W 1.20 × 101

0.10

16

Solvents/Organics Recovery -

Fractionation

F(c)
waste/release W 3.45 × 10−2

2.37

F(c)
recycled L 1.31 × 107

0.01

F(c)
f ugitive A 8.37 × 10−1

1.24

F(c)
e f f luent W 1.20 × 101

0.09

17 Neutralization
F(c)

destroyed NA 6.64 × 108
0.01

F(c)
f ugitive A 6.39 × 10−1

1.24

F(c)
e f f luent W 9.05 × 100

0.09

1 For the TRI Program, A represents air emissions. Additionally, liquid wastes containing more than
50.00 %wt/wt of water are considered wastewater (W); otherwise, they are taken as nonaqueous
material (L). NA is not applicable, and it is used for destroyed or converted mass streams.
2 The bright red color represents the flows have high variance or variability, i.e., CV > 1.
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Table B.8: PAU selection and CFA for the n-hexane EoL flows from the food IS in
Table B.4.

Stream PAU name Output stream αoutput
1

Mean

quantity

[kg/yr]

CV2

20 Oil Skimming
F(c)

removed L 2.27 × 10−1
0.01

F(c)
f ugitive A 2.57 × 10−2

1.25

F(c)
e f f luent W 2.87 × 10−1

0.11

21 Aerobic Treatment
F(c)

destroyed NA 2.70 × 102
0.01

F(c)
f ugitive A 2.41 × 10−2

1.15

F(c)
e f f luent W 2.89 × 10−1

0.10

22

Solvents/Organics

Recovery -

Solvent Extraction

F(c)
waste/release W 3.00 × 10−4

2.33

F(c)
recycled L 2.72 × 104

0.01

F(c)
f ugitive A 2.53 × 10−2

1.27

F(c)
e f f luent W 2.87 × 10−1

0.11

23 Aerobic Treatment
F(c)

destroyed NA 2.72 × 106
0.01

F(c)
f ugitive A 2.13 × 10−2

1.28

F(c)
e f f luent W 2.90 × 10−1

0.09

24 Aerobic Treatment
F(c)

destroyed NA 1.38 × 108
0.01

F(c)
f ugitive A 1.97 × 10−2

1.46

F(c)
e f f luent W 2.14 × 10−1

0.13

25

Liquid Injection

Incinerator

F(c)
destroyed NA 4.05 × 108

0.01

F(c)
f ugitive A 6.10 × 10−3

1.41

F(c)
e f f luent A 7.22 × 10−2

0.12

1 For the TRI Program, A represents air emissions. Additionally, liquid wastes contain-
ing more than 50.00 %wt/wt of water are considered wastewater (W); otherwise, they
are taken as nonaqueous material (L). NA is not applicable, and it is used for destroyed
or converted mass streams.
2 The bright red color represents the flows have high variance or variability, i.e., CV >

1.
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b.3 comparative data for methanol and isopropanol

Table B.9: Data for the comparison of methanol and isopropanol for the case study
one.

Data

name
Methanol Isopropanol

Ratio kg

methanol/kg

isopropanol

Domestic Manufacturing Production [kg/yr]1 4.60 × 108 3.20 × 107
14.34

Imported Volume [kg/yr]1 3.91 × 109 7.56 × 107
51.73

Volume Used [kg/yr]1 8.07 × 106 3.64 × 106
2.22

Volume Exported [kg/yr]1 4.1 × 107 3.85 × 106
10.77

OECD High Production Volume2 Yes Yes NA

Market size [USD] 33.69 billion in 2020
3

2.65 billion in 2019
4 NA

1 Source: https://bit.ly/2YMyyhq
2 Source: https://bit.ly/3AOSOfL
3 Source: https://bwnews.pr/3j0XjgZ
4 Source: https://bit.ly/3AB8935

https://bit.ly/2YMyyhq 
https://bit.ly/3AOSOfL 
https://bwnews.pr/3j0XjgZ
https://bit.ly/3AB8935
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c.1 uncertainty propagation

Figure C.1: Generic visualization diagram of uncertainty propagation. The red
captions represent data entries from the data sources (e.g., TRI), the
blue captions are for the models for handling uncertainty or equa-
tions. The black captions are for the outputs/results from models or
equations. The purple dotted-line area encloses the generic scheme
of uncertainty propagation for identifying chemical EoL management
and recycling pathways, while the green dotted-line area encloses the
generic uncertainty propagation for the CFA.

c.2 github repository

The supplementary GitHub repository associated with this article can be
found in the public GitHub repository named EoL4Chem at the following
link:

https://github.com/jodhernandezbe/EoL4Chem.

https://github.com/jodhernandezbe/EoL4Chem
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c.3 example of mrf factor or potential function

Table C.1: Comparison between the MRF factors using the number of times a
relationship appears and the transfer flows for n-hexane. The light blue
cells are the highest value for the MRF factor or potential function.

Generator industry sector RETDF industry sector
Transfer

[kg/yr]
Times

All other basic organic chemical

manufacturing
Hazardous waste treatment & disposal 9.72 × 104

3

Other motor vehicle parts manufacturing Hazardous waste treatment & disposal 3.07 × 103
1

Hazardous waste treatment & disposal Hazardous waste treatment & disposal 1.72 × 103
5

Ethyl alcohol manufacturing Hazardous waste treatment & disposal 1.12 × 103
1

Commercial printing (except screen and

books)
Cement manufacturing 8.01 × 102

1

Adhesive manufacturing Hazardous waste treatment & disposal 6.32 × 102
2

Other chemical and allied products

merchant wholesalers
Hazardous waste treatment & disposal 1.14 × 102

3

Ground or treated mineral and earth

manufacturing
Hazardous waste treatment & disposal 7.67 × 10−1

1

c.4 dataset from cpdat

In the link CPDat.csv, you can find the processed dataset extracted from
the Chemical and Products Database (CPDat). This database contains
information mapping more than 49,000 chemicals to a set of terms catego-
rizing their usage or function in 16,000 consumer products (e.g. shampoo,
soap, etc.) based on their chemical content (CPDat). The processed dataset
contains information of products having n-hexane and the other chemicals
that are part of their formulation. After obtaining the processed dataset,
the information is used to get the values presented in Table C.2.

https://github.com/USEPA/EoL4Chem/blob/main/dataser_from_CPDat.csv
https://www.epa.gov/chemical-research/chemical-and-products-database-cpdat
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Table C.2: Summary information obtained for the product formulations containing
n-hexane and product category related to generic CDR product category
named adhesives and sealants.

ln(wf chemical/wf n-Hexane)
Name CAS

sample min max mean median

1,1,1-Trichloroethane 71-55-6 3 -1.61 1.53 0.44 1.40

1,3-Butadiene, homopolymer 9003-17-2 1 -0.69 -0.69 -0.69 -0.69

1,3-Butadiene-styrene copolymer 9003-55-8 3 -0.92 0.00 -0.31 0.00

Acetone 67-64-1 3 -2.01 0.00 -0.67 0.00

Bentonite 1302-78-9 1 -0.69 -0.69 -0.69 -0.69

Benzene, 1,3-diethenyl-, polymer

with 1,3-butadiene and ethenylbenzene
26471-45-4 2 0.00 0.00 0.00 0.00

Butane 106-97-8 3 -1.10 -1.10 -1.10 -1.10

Calcium carbonate 471-34-1 3 -0.92 -0.18 -0.67 -0.92

Carbon dioxide 124-38-9 1 -1.50 -1.50 -1.50 -1.50

Cyclohexane 110-82-7 3 -1.90 0.00 -1.26 -1.90

Dichloromethane 75-09-2 2 -1.74 -1.70 -1.72 -1.72

Dimethyl ether 115-10-6 1 0.00 0.00 0.00 0.00

Dimethyl polysiloxane 63148-62-9 4 -2.71 -1.00 -1.99 -2.12

Distillates (petroleum), steam-cracked, polymers

with light steam-cracked petroleum naphtha
68410-16-2 3 -0.92 0.69 -0.07 0.00

Heptane 142-82-5 4 0.00 0.00 0.00 0.00

Isobutane 75-28-5 14 -1.79 1.61 -0.65 -0.85

Isopropanol 67-63-0 1 -1.00 -1.00 -1.00 -1.00

Kaolin 1332-58-7 2 1.54 1.54 1.54 1.54

Methylcyclohexane 108-87-2 2 -0.98 -0.98 -0.98 -0.98

Petroleum resins 64742-16-1 1 -1.10 -1.10 -1.10 -1.10

Propane 74-98-6 17 -1.35 0.17 -0.59 -0.57

Quartz-alpha (SiO2) 14808-60-7 1 -2.39 -2.39 -2.39 -2.39

Resin acids and Rosin acids, esters with glycerol 8050-31-5 2 0.00 0.00 0.00 0.00

Solvent naphtha, petroleum, light aliph. 64742-89-8 9 -0.11 1.39 0.62 0.69

Stoddard solvent 8052-41-3 2 -2.01 -0.92 -1.47 -1.47

Stoddard solvent IIC 64742-88-7 1 -2.35 -2.35 -2.35 -2.35

Tetraethyl orthosilicate 78-10-4 3 -2.89 -2.89 -2.89 -2.89

Toluene 108-88-3 7 -2.01 0.09 -0.68 -0.49

Zinc oxide 1314-13-2 1 -2.90 -2.90 -2.90 -2.90
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