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Abstract
The inactivation processes of coliform bacteria (total and fecal) and sulphito-reducing Clostridium bacteria (vegetative 
species and spores) in water maturation lagoon of a low-cost nature-based wastewater treatment plant using constructed 
wetlands and through processes of photolysis in a pilot photoreactor have been comparatively studied. The different inactiva-
tion mechanisms by photolysis of these bacteria have been studied following the criteria of different statistical and kinetic 
models. Clostridium disinfection treatments fit models in which two types of bacteria populations coexist, one sensitive 
(vegetative species) and the other (spores) resistant to the treatment, the sensitive one (94%) with an inactivation rate of 
k = 0.24 ± 0.07 min−1 and the resistant one (6%) with k = 0.11 ± 0.05 min−1. Total coliform photolytic disinfection also shows 
two populations with different physiological state. The time required to reduce the first logarithmic decimal cycle of the 
different types of bacteria (physiological states) are δ1 = 4.2 ± 0.9 and δ2 = 8.3 ± 1.1 min, respectively. For fecal coliform 
photolytic disinfection, only bacteria population, with k = 1.15 ± 0.19 min−1, is found. The results obtained confirm the pho-
tolytic disinfection processes and maturation lagoon are effective systems for Clostridia bacteria removal after water treat-
ment by nature-based systems. Total removal of coliform bacteria is not achieved by maturation lagoons, but their reduction 
is significant using low doses of cumulative radiation.

Keywords  Photolysis · Wastewater · Disinfection/inactivation · Endospores · Clostridium · Coliforms · Maturation lagoons · 
Constructed wetlands

Introduction

The inactivation of microorganisms by ultraviolet radiation 
has been known for more than 100 years (Downes and Blunt 
1877). The factors affecting the germicidal action of ultra-
violet light (photolysis) depend on the absorption by the 
microorganisms of the appropriate electromagnetic energy 
(wavelength and irradiation power), which in turn depends 
on the properties of the fluid itself and the substances pre-
sent in the fluid such as suspended solids, which can absorb 
part of this electromagnetic radiation (Lorch 1987). This 
electromagnetic energy affects the genetic material of the 
organism (DNA and/or RNA), so that the microorganisms 
cannot replicate and, therefore, die (Bolton and Linden 
2003). An important aspect in the efficiency of this process 
is the existence of nucleic acid repair mechanisms called 
photoreactivation or photo repair (Groocock 1984; Guo et al. 
2013), in which a photoreactive enzyme, after absorbing 
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radiation, is able to repair the damage caused. This regenera-
tive capacity occurs in bacteria and other microorganisms, 
but not in viruses, and its performance is related to the extent 
of UV damage, exposure to reactivating light, pH, and water 
temperature (Masschelein and Rice 2002). The photoreac-
tivation phenomenon will require that the exposure of the 
microorganism to the reactivating light does not exceed 2 
to 3 h after inactivation, taking into account that the degree 
of reactivation is a function inversely proportional to the 
radiation dose used.

Nowadays, nature-based wastewater treatments are an 
important alternative in the field of wastewater disinfection 
strategies to reduce pathogenic species that affect health 
(Vymazal 2005; Wu et al. 2016; Huang et al. 2018) and 
agricultural wastewater reuse (Masi and Martinuzzi 2007; 
Almuktar et al 2018; Nan et al. 2020). Furthermore, disin-
fection is required in some areas to fulfil certain directives, 
such as the Habitats Directive (92/43/EEC) and Bathing 
Water Directive (2006/7/EC). The level of disinfection of 
microorganism is insufficient in constructed wetlands (López 
et al. 2019), which is why some authors propose the use of 
UV photolytic reactors (Azaizeh et al. 2013; González et al. 
2019) and others the use of maturation lagoons (Tanner et al. 
2005; Russo et al. 2020).

Bacterial cells have always been described as an easy 
target for the study of disinfection and the selected microor-
ganisms (Coliforms and Clostridia) to monitor the process 
are the major groups of bacteria covered by the regulation 
relating to water for human consumption (Gorchev and 
Ozolins 1984). On the one hand, coliform bacteria such as 
Escherichia coli are the most commonly used indicators of 
fecal contamination in drinking and wastewater regulations 
(Ashbolt et al. 2001). These Gram-negative bacteria inhabit 
the intestinal tract of humans and warm-blooded animals. 
Their presence in water is not only indicative of fecal con-
tamination, but also of the presence of other possible enteric 
pathogens such as Salmonella spp., Yersinia spp., and Shi-
gella spp. These enteric bacteria are responsible for minor 
gastrointestinal diseases (Dekker and Frank 2015).

On the other hand, the microorganisms such as spore-
forming bacteria and protozoa, used as target organisms, 
have been shown to be much more resistant to disinfection 
(WHO 2011). For this reason, few articles have focused on 
these spore-forming bacteria, such as Clostridium, which 
have greater resistance to disinfection treatments (Dolin 
1959; Ando and Tsuzuki 1986; Lanao et al. 2010). Given 
the extraordinary resistance of Clostridium spores to dis-
infection processes and other adverse environmental con-
ditions, their presence in disinfected waters may indicate 
that the treatment has been deficient and perhaps other 
resistant pathogens have also survived (Payment 1999); 
hence the European Directive 98/83/EC proposed this spe-
cies as an index of the presence of enteric protozoa and 

viruses in treated drinking water. Consequently, sporu-
lating bacteria of the genus Clostridium have been used 
as indicators of the efficiency of the disinfection process 
(Josset et al. 2008). These bacteria are Gram-positive, 
anaerobic, sulphito-reducing bacilli that produce spores 
that are exceptionally resistant to adverse conditions in 
aquatic environments, including UV irradiation, extreme 
temperatures, and pH, and disinfection processes such as 
chlorination (Venczel et al. 1997; Dunlop et al. 2008). 
Like E. coli, Clostridium does not proliferate in most 
aquatic environments, making them very specific indica-
tors of fecal contamination, thus being highly distributed 
in the environment and present in natural waters and soils. 
They are generally originated from human and animal 
fecal matters, especially present in wastewaters discharged 
into receiving waterways; hence they may represent a sign 
of remote or intermittent contamination (Talukdar et al. 
2016). In addition, other authors indicated that climatic 
factors such as ambient temperature, rainfall, and relative 
humidity affect the incidence of these microorganisms. 
Hence, the rates of diseases could be influenced by climate 
change (Park et al. 2018; Oh et al. 2021).

Disinfection in constructed wetlands have different influenc-
ing factors, such as water composition, seasonal fluctuations, 
and local vegetation and whether fecal waste from wild birds 
and other animals add significantly to the total from human 
waste (Rahman et al. 2020). This means low-cost nature-
based wastewater treatment plants cannot provide standard-
ized performance, unlike conventional treatment plants. The 
pathogen removal mechanisms are also complex—most fre-
quently including natural die-off due to starvation or preda-
tion, sedimentation and filtration, and adsorption (Alufasi et al. 
2017). Therefore, it is therefore difficult to assess wetlands 
performance on average. In this work, the feasibility and per-
formance of the photolysis for the inactivation of Coliforms 
and Clostridia bacteria and their spores in urban wastewaters 
after their treatment by low-cost nature-based wastewater treat-
ment plants have been studied. For this, photolysis process in a 
pilot reactor and maturation lagoon in series with constructed 
wetlands has been used for this purpose.

Materials and methods

Photoreactor with total recirculation

The photoreactor used is shown in Fig. 1. The system has a 
tank for the sample with a capacity of 200 L, a pump of 1 
hp for recirculation of the sample in the system, and at the 
outlet of the pump, the water passes through a 50-μm solid 
filter and then through a rotameter to measure the sample 
flow entering the reactor body.
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The reactor is characterized by maintaining a vertical 
piston flow with bottom inlet and upper lateral outlet; the 
reactor body is made of stainless steel and has a manom-
eter on the bottom and another on the top. A 40 W Philips 
lamp emitting 15 W of ultraviolet radiation was used as 
irradiation source. The lamp was placed inside a transpar-
ent quartz tube to prevent it from entering in contact with 
the sample.

Bacteria sampling, growth, sporulation, 
and analysis

For the study of the inactivation of Coliforms and Clostrid-
ium bacteria, aliquot samples were taken from the effluents 
of the wastewater treatment plant (WWTP) of the munici-
pality of Monleras, belonging to the province of Salamanca, 
Spain, with geographical location coordinates 41° 11′ 11.99″ 
North, 6° 14′ 04.21″ West, was chosen as low-cost nature-
based WWTP. Primary treatment is carried out in an Imhoff 
tank for the decantation of solids and digestion of organic 
matter. Secondary treatment is initially carried out in a hori-
zontal wetland of macrophytes in flotation with other aquatic 
plant species, and then the water is sent to three parallel ver-
tical subsurface flow wetlands, where the water percolates 
vertically through an inert substrate of sand and gravel, and 
finally the water reaches an artificial wetland that functions 
as an aerobic maturation lagoon, due to its shallow depth, 
for the disinfection of the water by the effect of sunlight 
(Arco-Alaínez 2014). This plant was designed by CIDTA’s 
authors, and this design was chosen by the Duero Watershed 
Confederation (Spain) to finance its construction within the 
framework of its pilot project “Singular experimental treat-
ment of sewage discharges in small towns in the Duero river 
basin” (García-Prieto and Cachaza Silverio 2008).

The coliform bacteria count was carried out by the pour 
plate method (APHA 1995), using Chromogenic agar (Schar-
lau, Spain), which contains nutrients to give coloration and 
allows to differentiate between fecal coliforms (E. coli) and 
other coliform microorganisms present in the sample. After 
24 h of incubation at 37 ℃, a visual count of the colonies was 
made in each plate, considering as fecal coliforms colonies 
those of purple coloration and as other coliforms, those that 
showed pink to red coloration, the total coliforms count results 
from the addition of fecal coliforms colonies and those of other 
coliforms present. As culture media for the growth and deter-
mination of Clostridium, iron agar and modified sulfite agar, 
both from SCHARLAU, were used. The culturing and count-
ing of vegetative cells and spores of Clostridium perfringens 
are carried out following the procedure described in the Span-
ish Standard UNE-EN 26,461 (AENOR 2009).

Experimental procedure

The control of the parameters involved in the determina-
tion of the inactivation efficiencies by photolysis was carried 
out. For each experiment, a 50 L wastewater sample from 
the wastewater treatment plant (Monleras) was deposited 
in the feed tank of the photoreactor (Fig. 1). The pump was 
adjusted to a recirculation flow rate of 1000 L/h; the tem-
perature was 25 °C and in three aliquot samples, taken at 
each different time of the inactivation process; the colony-
forming units per mL (CFU/mL) of bacteria were counted.

Data analysis

To obtain the kinetic parameters of each model proposed for 
bacteria inactivation processes, it is necessary to fit the experi-
mental kinetic data to the corresponding rate equation of the 
model by non-linear regression techniques. The model parame-
ters are fitted to equations using iterative algorithms based on the 
least squares method. The statistical package SimFIT (Bardsley 
2017) and GInaFiT (Geeraerd et al. 2005) will be used to obtain 
model parameters. The experimental data represent the average 
number of colony-forming units per mL (CFU/mL), counted at 
each time on triplicate samples, along the kinetic runs. To evalu-
ate how well the model fits the experimental data obtained, in 
addition to the plotting of the real data along the fitting curve, 
two indicators are used, the coefficient of determination (R2) 
which provides a measure of how well observed outcomes are 
replicated by the inactivation model, based on the proportion of 
total variation of outcomes explained by the model, the closer to 
unity, the better the fit, and the root mean sum of squared error 
(MSE), which measures the average squared difference between 
the estimated values and the actual value, so the closer to zero, 
the better the goodness of fit. The kinetic parameters of bacte-
ria inactivation in the different water samples by the photolysis 
processes were determined.

Fig. 1   Reactor system used for photolytic inactivation processes
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Results and discussion

Sampling tests

Several factors affect the susceptibility of microorganisms 
to photolytic processes. Previous studies show that it is very 
difficult to extrapolate the results obtained with synthetic 
wastewaters to real wastewater, since the growth stage of 
the bacteria and the synergy existing between the different 
microbial species present in the effluent strongly influence 
the results of the application of photolysis processes (Rincón 
and Pulgarin 2004, Rincón and Pulgarin 2007). The annual 
monitoring study of the main physicalchemical characteris-
tics of Monleras WWTP wastewater samples and global UV 
radiation (direct and diffuse) (AEMET 2020) is shown in 
Fig. 2. Regarding the pH, the pH of water samples from the 
macrophyte wetland was 6.5–7.0, and the pH of waters from 
the maturation pond was between 7.23 and 7.95, through-
out the year. In this sense, some researchers reported that 
the photochemical elimination of coliform bacteria was not 

affected by the pH of the solution in the range of pH 6.0–8.0 
(Watts et al. 1995; Cho et al. 2004).

In the case of the photolytic reactor, UV rays are pre-
dominantly emitted perpendicular to the lamp surface. To 
determine the radiation intensity on a surface at different 
distances, the intensity of the lamp at 1 m must be multi-
plied by the intensity factor with distance. According to 
the data provided by the lamp manufacturer (Koninklijke 
Philips), the 15 W lamp has a global UV irradiance of 
144 μW/cm2 at a distance of 1 m. The irradiated ener-
gies at different distances within the photolytic reactor are 
shown in Fig. 3.

The biocidal effect of sunlight is due to the synergis-
tic effect between radiation and temperature. Sunlight is 
absorbed by natural photosensitizers present in water that 
react with oxygen to produce highly reactive molecules 
such as hydrogen peroxide and superoxide ion (Khaen-
graeng and Reed 2005; Heaselgrave and Kilvington 2010).

Under these conditions, wastewater samples were taken 
in May to July (red shading Fig. 2), when optimal climatic 

Fig. 2   Wastewater physico-
chemical parameters and UV 
radiation characterizations at the 
municipal wastewater treatment 
plant (Monleras, Salamanca, 
Spain)
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conditions exist for the reproduction of these microorgan-
isms and the overall UV radiation conditions are more 
similar to the radiation emitted by the lamp in the photol-
ytic reactor. These bacterial inactivation processes in the 
tertiary wetland (maturation lagoon) of Monleras WWTP 
to pilot photolytic reactor were compared.

Kinetics of bacteria inactivation processes 
in wastewaters treated by nature‑based treatments

In the first place, the bacteria removal effect of the 50-μm 
filter of the reactor circuit on the bacteria present in the 
wastewater samples was tested. For comparative purposes, 
bacteria (CFU/mL) were counted in kinetic experiments 
carried out in the photoreactor for 60 min with macro-
phyte wetland of Monleras WWTP effluent samples (1) 
in absence of UV radiation (without lamp with filtering 
effect), and (b) with UV light irradiation (photolysis with 
filtering effect) (Fig. 4). It can be seen that the CFU/mL 

remained in the order of 20% in the “no treatment” experi-
ments, which shows that the filter do not reduce the ini-
tial concentration order on their own in the reactor. It is 
observed how the inactivation kinetics of bacteria in the 
wastewater samples treated by photolysis are fast and effi-
cient, reaching a 100% inactivation performance of the 
bacteria present in about 25 min of treatment.

Kinetic modeling of photolytic processes 
of microbial inactivation

Different kinetic models have been proposed in the lit-
erature to explain microbial disinfection processes by 
photolysis under ultraviolet irradiation (Dalrymple et al. 
2010). The first kinetic models described for ultraviolet 
disinfection are based on the Chick-Watson model (Chick 
1908), which proposed a first-order model according to 
the following differential and integrated rate equations:

where N is the concentration of viable organisms 
(CFU/100 mL) after exposure to UV light, No is the concen-
tration of viable organisms (CFU/100 mL) before exposure 
to UV light, k is the first-order rate constant, C is the con-
centration of disinfectant, and n is the number of disinfectant 
molecules required for microbial inactivation.

In the case of photolytic processes, these simple kinet-
ics assume that all microorganisms in the population have 
the same sensitivity to the lethal agent, so when their 
inactivation is plotted versus treatment time, under a con-
stant light irradiation power (I), a straight line would be 
obtained (pseudo-first order kinetics), but it is known that 
in real conditions this behaviour can present shoulder and 
tail deviations (Gyürek and Finch 1998).

Several theories develop alternative kinetics that allow 
describing non-linear survival curves (Hom 1972; Cerf 
1977; Geeraerd et al. 2005). Kinetics curves showing 
initial shoulder or lag phase deviations indicate that a 
fraction of surviving microorganisms remains constant 
in the first instants of treatment, followed by a linear 
decrease in the number of surviving microorganisms. 
This is attributed to an inadequate distribution of the 
UV light through the sample, a delay in the diffusion 
of the UV light to the bacterial action sites or an initial 
resistance of the microorganisms to the attack of the dis-
infectant agent. Tailing-off curves are characterized by 
an initial rapid linear inactivation phase followed by a 
slow population decline.

r = −
dN

dt
= −kCN

Ln
Nt

No

= −kCnt == −k I t

Fig. 3   Distribution of UV lamp irradiation inside the reactor

Fig. 4   % Survival bacteria in wastewater samples from the Monleras 
WWTP subjected to photolysis and no light irradiation within the 
reactor

35488 Environmental Science and Pollution Research  (2022) 29:35484–35499

1 3



The inactivation kinetics curves that typically show an 
initial shoulder type deviation (Geeraerd et al. 2000) are 
adapted to a logarithmic-linear model with one shoulder, 
indicating that a fraction of surviving microorganisms 
remains constant in the first instants of treatment, followed 
by a linear decrease in the number of microorganisms. 
This model is defined by the equation:

where kmax is the specific inactivation rate constant, Nres is 
the residual population density, and S is the initial stress 
resistance.

As in the case of the shoulder phenomenon, there are 
several theories about the occurrence of tails. It may be due 
to microorganism clusters, to the presence of subpopulations 
with variable resistance to the disinfectant, either innate or 
in response to an adaptation to the environment, or also, to a 
decrease in the concentration of the disinfectant during treat-
ment. There are sigmoidal curves with both linear devia-
tions, showing an initial shoulder phase followed by a linear 
inactivation phase and ending with a tailing phenomenon.

Mafart et al. (2002) propose the use of Weibull statistical 
distributions to develop models that include both convex 
kinetics, with an initial period of no apparent inactivation, 
and concave kinetics where complete inactivation is not 
achieved. The Weibull frequency distribution model is based 
on the distribution of probability designed to describe the 
behavior of systems that have a certain degree of variabil-
ity, assuming that microbial populations are heterogeneous 
in terms of resistance and that each cell requires different 
conditions to die. Mafart’s model is given by the equation:

where δ is the scale parameter and corresponds to the time 
required to reduce the first logarithmic decimal cycle of the 
bacterial population and p is the shape parameter and indi-
cates the shape of the equation curve, since it takes convex 
shapes when p is greater than 1 and concave when it is less 
than 1. This model is based on thermal inactivation models 
and has been used to describe the disinfection on different 
types of microorganisms in photoreactors, as well as the 
operational parameters in photolysis (Gomes et al. 2009).

There are two models that describe sigmoidal curves of 
inactivation; i.e., they describe the behavior of microorgan-
isms when shoulder phenomena, a linear inactivation phase, 
and tail occur. These models are the biphasic model with 
shoulder (Geeraerd et al. 2005) and the mixed model of two 
Weibull-type statistical distributions (Coroller et al. 2006).

The biphasic model with shoulder considers two groups in 
the microbial population, one having initial stress resistance 

Nt = (No − N
���
)(
(

e−kmaxt
)

.(
ekmaxS

1 + (ekmaxS − 1).e−kmaxt
) + Nres

Log
Nt

No

= −(
t

δ
)
P

(shoulder), an initial protection that is gradually destroyed, 
and a second more resilient population group based on vital-
istic or mechanistic models. The vitalistic concept refers to 
the notion that individuals within a population are not iden-
tical and are grouped into populations. This would explain 
the different UV resistance of microorganisms. The second 
is a mechanistic concept, which assumes that microorganism 
inactivation processes are analogous to chemical reactions, 
which can occur through different pathways (Cerf 1977). 
The integrated rate equation of the biphasic model is the 
following:

where Nt represents the bacterial concentration at time t, No 
is the initial concentration of microorganisms (CFU/mL), t 
is the time, f is the fraction of the initial population follow-
ing the fast reaction, and (1- f) is the fraction of the initial 
population following the second phase of the reaction, where 
k1 is the rate constant of the sensitive population and k2 is 
the rate constant of the resistant population. The parameter 
S is the time of the shoulder effect, i.e., the time of the initial 
stress resistance before bacterial decay.

The mixed model of two Weibull-type statistical distribu-
tions proposes that the survival patterns of cells can change 
with the physiological state of the cells and with how they 
adapt to stress. It assumes an initially large subpopulation 
that is more sensitive to stress (first part of the inactivation 
curve) and a smaller subpopulation that is more resistant to 
stress (second part of the curve). Its integrated rate equa-
tion is:

Like the Weibull model, δ1and δ2 parameters correspond 
to the time required to reduce the first logarithmic decimal 
cycle of the sensitive and resistant bacterial population, p 
indicates the shape of the equation curve, and α is the frac-
tion of the first subpopulation that remains of the total popu-
lation, defined as α  = log (f/(1-f)). This model fits sigmoidal 
curves when δ2 tends to infinity and tends to biphasic models 
when p is close to unity and to linear models with tail when 
δ2 tends to infinity and p to unity.

Kinetic modeling of photolytic processes 
of Clostridium inactivation

The inactivation kinetic curves describing the death of 
Clostridium vegetative cells and spores by photolytic 
treatments of wastewater effluent samples from Monleras 
macrophyte wetland were analyzed using four mathemati-
cal models: (1) the classical Chick-Watson model, (2) the 

Log
Nt

No

= log(
(

f .e−k1t + (1 − f).e−k2t
)

.
e−k1S

1 + (e−k1S − 1).e−k1t
)

LogNt = log(
No

1 + 10∝

[

10
−
(

t

δ1

)P

+∝
+ 10

−
(

t

δ2

)P]

)
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Weibull distribution model, (3) the biphasic model (with tail 
or shoulder), and (4) the mixed double Weibull model. The 
classical model of exponential death will tell us if there is a 
homogeneous population or if there are deviations due to the 
different resistance of these microorganisms in their different 
forms. The Weibull distribution model will discriminate the 
type of curve, either concave or convex, fitting the kinetic 
data to the corresponding biphasic model curve with shoul-
der or tail. And finally, the mixed double Weibull model 
will confirm the type of model that fits the experimental 
inactivation kinetic curves. The joint count of spores and 
vegetative Clostridium species has been considered for the 
study of the kinetic mechanism. Figure 5 shows these fits 
together with the goodness-of-fit parameters for the waste-
water samples. Error bars represent the standard deviation 
of experimental data.

The values of the MSE (close to 0) and R2 (very close 
to 1) indicators (Fig. 5), used to measure the goodness of 
each model fit, show, as a whole, a good fit of two proposed 
non-linear models (biphasic with shoulder and mixed double 
Weibull models) to the experimental microorganism inacti-
vation data. However, the linear and Weibull models show 
an MSE value greater than 0.1, which indicates a worse fit 
to experimental data by these two models show that there is 
not a homogeneous population that reacts to stress caused 
by the photolytic disinfecting action.

The kinetic and statistical parameters for each of the mod-
els fitted to the experimental kinetic data for Clostridium 
inactivation by photolysis in wastewater samples are shown 
in Table 1.

It is observed that the experimental kinetic curves are not 
fitted by a linear model but seem to fit a convex curve model, 

Fig. 5   Fits of the integrated rate equations of the models to the experimental kinetic data for Clostridium inactivation by photolysis
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p of the mixed double Weibull distribution model are greater 
than 1, so the curve of Clostridium inactivation by photoly-
sis treatment was fitted to a biphasic model with shoulder. 
The difference of both rate constants (biphasic model) and δ 
values (mixed double Weibull model) indicates the presence 
of two Clostridium population groups, one resistant to UV 
radiation with an inactivation rate k2 = 0.11 ± 0.05 min−1, the 
first part of the curve with a shoulder lasting 5.3 ± 2.1 min, 
and the second one, more sensitive to radiation with a 
k1 = 0.24 ± 0.07  min−1. Thus, the first part of the curve 
(1-f = 6%) shows the UV light irradiation resistant popu-
lation (k2) during a period that marks the shoulder of 
S = 5.3 min, followed by a rapid inactivation of the sensi-
tive population (f = 94%). Finally, the mixed double Weibull 
model fit confirms a convex curve (p = 1.4 ± 0.3) with two 
populations with a difference between them of α  = 1.3 ± 0.4 
log units and with times needed to reduce the first decimal 
log cycle of the bacterial population of δ1 = 14.5 ± 1.2 min 
and δ2 = 31.2 ± 5.7 min, respectively.

The difference in percentages between populations (sensi-
tive and resistance) can be explained by the fact that stress 
suffered by Clostridium vegetative species, an anaerobic spe-
cies, in the wastewater treatment of the Monleras WWTP, 
which primary treatment (Imhoff tank) has an anaerobic 
environment and the macrophyte ponds, with a facultative 
environment.

As indicated, UV radiation has a high bactericidal capac-
ity on its own, producing severe injury in the cellular genetic 
material that result in an impediment to DNA replication and 
the generation of gene mutations, so this mechanism can 
be explained in vitalistic terms. Thus, initially (shoulder of 
the curve) radiation doses produce only a few lethal lesions 
and produce many sublethal lesions that are easily repaired. 
As increasing the time of the administered radiation dose, 
a greater number of lethal lesions are produced as a conse-
quence of a greater accumulation of sublethal lesions, lead-
ing to a faster rate of cell inactivation. Other factors that 
could justify this shoulder effect, such as light irradiation 
power and light distribution in the reactor, are considered to 
have remained constant over time.

In morphological terms, the spore differs significantly 
from the vegetative cell, as it is composed in most cases of 

an outer surface envelope known as exosporium, followed 
inwards by the protein layers of the envelope and the cortex, 
which is made up of peptidoglycan, which the vegetative cell 
lacks (Mitchell 2001). As the cell wall is thicker in spores 
than in vegetative cells, the disinfection process according 
to this mechanism must be different for vegetative species 
(sensitive population) and spores (resistant population), the 
latter being more resilient. To verify this, samples subjected 
to photolytic treatment were taken after 100 min, a period 
longer than that necessary for the reduction of 4 logarith-
mic cycles (4δ) of microorganisms, which is the classical 
value considered as a guarantee of food preservation and 
food safety, hygiene, and quality conditions (Buchanan 
et al. 1993). After the samples were taken, seeding of the 
treated water was carried out, increasing the sensitivity of 
the method. For this purpose, 5 mL of sample was added to 
5 mL of culture medium at double concentration instead of 
1 to 9 mL of culture medium, and the Clostridium vegeta-
tive species and spores were identified, observing growth 
of 9 ± 2 CFU, which indicates that the photolysis process is 
not effective for the total disinfection of water with presence 
of Clostridium. The presence of the bacteria in the aerobic 
lagoon opens up new perspectives, since the wild birds may 
be transporting Clostridium from one wetland to another 
(Long and Tauscher 2006).

Kinetic modeling of photolytic processes 
of Coliforms inactivation

Likewise, the inactivation kinetic curves of coliforms bac-
teria by photolytic treatments of wastewater samples were 
analyzed using the different mathematical models indicated 
(discrimination model). Figure 6 (total coliforms) and Fig. 7 
(fecal coliforms) show these fits together with the goodness-
of-fit parameters for the wastewater samples from Monleras 
WWTP.

In short inactivation times, the kinetics follow a log-lin-
ear-model; however, when inactivation was followed until 
times beyond 20 min, it was found that these models dem-
onstrate a better fit to the experimental data obtained, which 
are reflected in R2 and MSE values better than those of the 

Table 1   Kinetic and statistical 
parameters for the models fitted 
to the experimental kinetic data 
for Clostridium inactivation by 
photolysis

Chick-Watson model k (min−1)
0.16 ± 0.01

Weibull distribution model p δ1 (min)
0.97 ± 0.09 13.5 ± 1.6

Biphasic model k1 (min−1) k2 (min−1) f S
0.24 ± 0.07 0.11 ± 0.05 0.94 ± 0.11 5.3 ± 2.1

Double Weibull model p δ1 (min) δ2 (min) α
1.4 ± 0.3 14.5 ± 1.2 31.2 ± 5.7 1.3 ± 0.4
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linear model (Fig. 6). The biphasic model does not show 
up in the fits, as despite having a good fit, the equality of 
the estimated inactivation constants (k1 and k2) of the two 
populations indicates that the biphasic model is unlikely for 
these data.

The kinetic and statistical parameters for each of the mod-
els fitted to the experimental kinetic data for total coliforms 
inactivation by photolysis in wastewater samples are shown 
in Table 2.

On the one hand, statistical fitting confirms that the curve 
is convex (p = 1.7 ± 0.2) with two populations of coliforms 
with different physiological state. The time required to 
reduce the first logarithmic decimal cycle of the different 
types of bacteria (physiological states) are δ1 = 4.2 ± 0.9 and 
δ2 = 8.3 ± 1.1 min, respectively. According to the suggested 
model, total inactivation is reached at 17.4 min.

On the other hand, it is observed that the best kinetic fit is 
to a logarithmic-linear model with a shoulder. Considering 
the hypothesis that there are two subgroups with different 
levels of resistance to stress coexist in a bacterial population, 
the first part of the curve shows the population resistance to 
electromagnetic radiation attack during the shoulder period 
2.62 ± 0.75 min.

It was verified during the study time that the total elimi-
nation of coliforms in the maturation pond is not reached, 
which indicates that there is photoreactivation by sunlight.

Figure 7 shows these fits together with the goodness-of-fit 
parameters for fecal coliforms inactivation by photolysis in 
wastewater samples. Error bars represent the standard devia-
tion of experimental data.

The kinetic and statistical parameters for each of the mod-
els fitted to the experimental kinetic data for fecal coliforms 

Fig. 6   Fits of the integrated rate equations of the models to the experimental kinetic data for total coliforms inactivation by photolysis
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inactivation by photolysis in wastewater samples are shown 
in Table 3.

The kinetic study of inactivation of fecal coliform bac-
teria indicates that, as in the study of total coliform bacte-
ria, it fits a logarithmic-linear model with a shoulder, with 

a poor fit to the classical Chick-Watson model. It shows 
an initial electromagnetic radiation resistance (shoulder of 
the curve) with a duration of 5.7 ± 1.0 min and an inactiva-
tion rate of k = 1.15 ± 0.19 min−1. From a statistical point 
of view, no difference is observed between the Weibull 

Fig. 7   Fits of the integrated rate equations of the models to the experimental kinetic data for Fecal Coliforms inactivation by photolysis

Table 2   Kinetic and statistical 
parameters for the models fitted 
to the experimental kinetic data 
for Total Coliforms inactivation 
by photolysis

Chick-Watson model k (min−1)
0.56 ± 0.02

Weibull distribution model p δ1 (min)
1.33 ± 0.07 6.11 ± 0.37

Log Linear + shoulder model k (min−1) S 4δ (min)
0.63 ± 0.03 2.62 ± 0.75  ± 17.4

Double Weibull model p δ1 (min) δ2 (min) α
1.7 ± 0.2 4.2 ± 0.9 8.3 ± 1.1 0.43 ± 0.36
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and double Weibull models, which seems to indicate that 
fecal coliform bacteria behave as a single population, with 
7.3 min being the time needed to reduce the first logarith-
mic decimal cycle. In the inactivation of fecal coliform 
bacteria, the shoulder phase observed for a total coliform 
bacteria concentration (No) with a very smooth decay is 
attributed to the loss of cell viability following the accu-
mulation of damage during the photolytic process.

Extrapolation of results from the photolytic reactor 
to the maturation lagoon

In most of the works presented on the different types of 
constructed wetlands, emphasis has been placed on the study 
of the elimination of enteric bacteria such as fecal and total 
coliforms and Clostridium perfigens (Vymazal 2005), either 
by biological mechanisms such as competition for nutrients 
and exposure to inhibitory secretions of other bacteria 
(Stevik et al. 2004), virus-induced lysis (Fischer et al. 2006), 
and predation by protozoa (Decamp and Warren 1998) or by 
physical mechanisms, such as filtration and sedimentation as 
the main physical mechanisms for the removal of pathogenic 
microorganisms (Alufasi et al. 2017). In this work, we study 
the influence of chemical mechanisms such as UV solar 
radiation in real water maturation ponds (without vegetation) 
in a nature-based wastewater treatment.

In order to compare the results obtained by the photol-
ytic process studied in the reactor and the inactivation pro-
cesses of aerobic lagoons in the treatment plant, sampling 

and analysis of coliform and clostridium bacteria were car-
ried out at different points of the treatment plant during the 
selected months. Samples were collected from the macro-
phyte wetland and from the tertiary wetland (both inside and 
at the outlet of the wetland). The average results are shown 
in Table 4.

The vegetative species of Clostridium and Coliforms 
bacteria were very low in the aerobic lagoon, due to the 
low vegetation and low water sheet, which favors the ger-
micidal action of sunlight and therefore the elimination of 
these microorganisms. As can be seen, at the outlet of the 
maturation lagoon, the total elimination of coliform bacteria 
is not achieved, which may suggest processes of photo repair 
or bacterial photoreactivation.

According to the results of the inactivation kinetics 
obtained, both total coliform bacteria and total sulfite-reduc-
ing Clostridia can be approximated to the Chick-Watson 
model. In the case of fecal coliform bacteria, the first 10 min 
is considered in which the model has a linear behaviour. The 
population of a species of microorganism exposed to UV 
light is directly proportional to the intensity I of the radiation 
and the time t of exposure. The differential rate equation of 
the Chick-Watson model (Chick 1908):

where kred is the reduction constant, (cm2/mW.s), I is the 
ultraviolet germicidal irradiation (UVGI) (mW/cm2), and t 
is the exposure time in seconds. The kred constant defines 
the microorganism sensitivity to UVGI and is unique for 
each species of microorganism under condition studied. 
The UVGI (Fig. 3) of 51 mW/cm2 was considered. Figure 8 
shows the determination of the microbial reduction constant 
for the bacteria studied.

Different reviews have shown that the removal of enteric 
bacteria occurs in different types of constructed wetlands at 
a high removal rate 75–99% (Vymazal 2005; López et al. 
2019), but the process is extremely slow with first order 
inactivation rate constants for E. coli 0.18 day−1 at 22.8 °C 
(Boutilier et al., 2009), for fecal coliforms 0.177 day−1, for 
total coliforms 0.620 day−1, and for Clostridium 0.102 day−1 
(Vymazal 2005). Solar disinfection is usually insignificant in 

Nt

No

= e−kred.I.t

Table 3   Kinetic and statistical parameters for the models fitted to the 
experimental kinetic data for Fecal Coliforms inactivation by photoly-
sis

Chick-Watson model k (min−1)
0.67 ± 0.09

Weibull distribution model p δ1 (min)
2.4 ± 0.4 7.3 ± 0.7

Log Linear + shoulder model k (min−1) S
1.15 ± 0.19 5.7 ± 1.0

Double Weibull model p δ1 (min) δ2 (min) α
2.4 ± 0.5 7.3 7.3 4.32

Table 4   Bacteriological analysis 
in wastewater treated by nature-
based wastewater treatments

Macrophyte wetland Maturation lagoon

Inside
(CFU/100 mL)

Outlet
(CFU/100 mL)

Inside
(CFU/100 mL)

Outlet
(CFU/100 mL)

Vegetative Clostridia 950 ± 350 860 ± 230 5 ± 3 1 ± 1
Spore Clostridia 35 ± 10 27 ± 8 Not detected Not detected
Total Coliforms bacteria 52 ± 14. 104 37 ± 17. 104 520 ± 30 490 ± 23
Fecal Coliforms bacteria 16 ± 9. 104 11 ± 9. 104 160 ± 15 120 ± 16
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vegetated wetlands due to shading by emergent macrophytes 
and floating vegetation (Kadlec and Wallace 2009). Recent 
studies have shown that solar exposure, during warmer sea-
sons and in vegetation-free spaces, decreases by several 
logarithmic units for E. coli contamination in short periods 
of time (Schmidtlein et al. 2015; Vivant et al. 2016), obtain-
ing values similar to this work in the elimination of enteric 
microorganisms in summer periods, expressed as a reduction 
of logarithmic units, thus for fecal coliforms of 2. 0 Ulog in 
maturation lagoons and 2.5 Ulog in UV systems, for total 
coliforms of 1.8 Ulog in maturation lagoons and 2.9 Ulog in 
UV systems and for Clostridium of 0.1 Ulog in maturation 
lagoons and 0.2 Ulog in UV systems (Russo et al. 2019). 
Furthermore, other authors such as Nguyen et al. (2015) 
demonstrated that the comparison of vegetated versus pilot-
scale open water wetlands seems to provide higher rates of 

bacterial indicator removal (E. coli inactivation rate constant 
k = 2.9 day−1 in winter and k = 7.0 day−1 in summer), mainly 
through sunlight-mediated inactivation.

The microbicidal action depends on the radiation inten-
sity and the dose applied. The UV dose corresponds to the 
product of the intensity by the time (mW.s/cm2). According 
to the values obtained for the microbial reduction constant 
in the photolytic reactor lamp for these species, the bacterio-
logical analysis in wastewater treated by nature-based waste-
water treatments (Table 5), and the average radiation inten-
sity during the months of May to July was 31.6 mW/cm2, the 
inactivation time was calculated for maturation lagoon. The 
inactivation time in photolytic reactor is the time necessary 
for the reduction of 4 logarithmic cycles (4δ) of microorgan-
isms, while the inactivation time for the maturation lagoon 
is calculated as a function of the bacterial reduction from 

Fig. 8   Coliforms and Clostridium microbial reduction constants
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the macrophyte wetland outlet and the maturation lagoon 
outlet, not reaching total water disinfection. Table 5 shows 
this extrapolation for the maturation lagoon.

The efficacy of disinfection (UV dose applied for bacte-
rial load reduction) will depend on several factors includ-
ing turbidity and organic matter concentration, so the dose 
applied will depend on the nature of the water (Carré et al. 
2018). Authors have reported lower applied dose values than 
those reported in this paper for coliform bacteria, but these 
were not extrapolated to total inactivation and used samples 
that had been filtered or centrifuged prior to UV dosing, such 
as water from salmonid culture system with an average UV 
dose of 1821 ± 86 mW s/cm2 for a 98% reduction (Sharrer 
et al. 2005) or swine wastewater lagoons with 700 to 2400 
mW s/cm2 (Macauley et al. 2006), while in the current work, 
the samples have not been pre-treated.

The results obtained confirm the photolytic disinfection 
processes, and the maturation lagoon are effective systems 
for Clostridia bacteria removal after water treatment by 
nature-based systems. Total removal of coliform bacteria is 
not achieved by maturation lagoons, but their reduction is 
significant using low doses of cumulative radiation.

Conclusions

The inactivation kinetic curves of Clostridium bacteria 
by photolysis fits well in a biphasic model with a shoul-
der, compatible with two populations, a first resistant one 
(shoulder of the curve) and a second sensitive one (second 
part of the curve). This model would be interpreted in terms 
of a radiation attack on the DNA of the bacterial cell: ini-
tially the bacteria would be resistant to radiation, resulting 
in only a few lethal lesions and many sublethal lesions that 
would be easily repaired, but as the time of the radiation 
dose administered is increased, a greater number of lethal 
lesions would occur, due to more accumulation of suble-
thal lesions, leading to a faster rate of cell inactivation. It is 
observed that the Clostridium corresponds almost entirely 
to the sensitive population (94%); this may be due to the fact 
that the anaerobic and facultative pre-treatment conditions 
favor the non-formation of spores.

In wastewater after nature-based treatment, the photol-
ytic processes of inactivation of Coliform bacteria are faster 
than those of Clostridia bacteria. Regarding total coliform 
bacteria, there appear to be two populations with different 
resistance to stress due to the different physiological states 
of the bacteria, whereas there is only one population for fecal 
coliform bacteria.

The extrapolation of the results obtained for the bacte-
rial reduction constants in the photolytic reactor to the 
maturation lagoons concludes that lower applied UV 
doses are required to reduce bacterial contamination in 
these lagoons, being effective systems to reduce bacte-
rial contamination after water treatment by nature-based 
systems, although complete disinfection is not achieved. 
Therefore, when implementing this type of low-cost natu-
ral treatment for wastewater disinfection, it is the cumula-
tive dose of ultraviolet radiation, and not the treatment 
time, that should be considered the most important factor. 
In this sense, with an adequate pre-treatment and mainte-
nance of the plant, low vegetation, and water level in the 
maturation lagoon, a good performance of disinfection of 
the wastewater can be obtained, even in the months less 
favorable for UV radiation due to that during such periods 
of time a lower organic load enters the maturation lagoons 
of such nature-based WWTPs, which generally exist in 
small towns in rural areas, as a consequence of the popula-
tion seasonality of those municipalities, being necessary 
a lower radiation dose to reach the bacterial inactivation.
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